code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_: Optional[Any] = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_: List[str] = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowercase_: str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
648
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _lowercase ): _lowercase : List[str] = ['''pixel_values'''] def __init__( self : Dict , __A : bool = True , __A : Optional[Dict[str, int]] = None , __A : PILImageResampling = PILImageResampling.BILINEAR , __A : bool = True , __A : Dict[str, int] = None , __A : bool = True , __A : Union[int, float] = 1 / 255 , __A : bool = True , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , **__A : int , ): super().__init__(**__A ) __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 256} __A : Dict = get_size_dict(__A , default_to_square=__A ) __A : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __A : int = get_size_dict(__A , param_name="""crop_size""" ) __A : str = do_resize __A : Dict = size __A : Any = resample __A : Optional[Any] = do_center_crop __A : List[str] = crop_size __A : Optional[int] = do_rescale __A : int = rescale_factor __A : Union[str, Any] = do_normalize __A : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __A : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self : Optional[Any] , __A : np.ndarray , __A : Dict[str, int] , __A : PILImageResampling = PILImageResampling.BICUBIC , __A : Optional[Union[str, ChannelDimension]] = None , **__A : List[Any] , ): __A : str = get_size_dict(__A , default_to_square=__A ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __A : Dict = get_resize_output_image_size(__A , size=size["""shortest_edge"""] , default_to_square=__A ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : np.ndarray , __A : Dict[str, int] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : str , ): __A : str = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__A , size=(size["""height"""], size["""width"""]) , data_format=__A , **__A ) def lowerCAmelCase_ ( self : List[str] , __A : np.ndarray , __A : float , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Optional[int] ): return rescale(__A , scale=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Any , __A : np.ndarray , __A : Union[float, List[float]] , __A : Union[float, List[float]] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Tuple , ): return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : int , __A : ImageInput , __A : Optional[bool] = None , __A : Dict[str, int] = None , __A : PILImageResampling = None , __A : bool = None , __A : Dict[str, int] = None , __A : Optional[bool] = None , __A : Optional[float] = None , __A : Optional[bool] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[str, TensorType]] = None , __A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__A : Optional[int] , ): __A : List[str] = do_resize if do_resize is not None else self.do_resize __A : Any = size if size is not None else self.size __A : Union[str, Any] = get_size_dict(__A , default_to_square=__A ) __A : Tuple = resample if resample is not None else self.resample __A : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop __A : List[Any] = crop_size if crop_size is not None else self.crop_size __A : int = get_size_dict(__A , param_name="""crop_size""" ) __A : Tuple = do_rescale if do_rescale is not None else self.do_rescale __A : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __A : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __A : Optional[int] = image_mean if image_mean is not None else self.image_mean __A : List[str] = image_std if image_std is not None else self.image_std __A : Union[str, Any] = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __A : Union[str, Any] = [to_numpy_array(__A ) for image in images] if do_resize: __A : int = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: __A : Optional[Any] = [self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: __A : List[Any] = [self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: __A : Any = [self.normalize(image=__A , mean=__A , std=__A ) for image in images] __A : int = [to_channel_dimension_format(__A , __A ) for image in images] __A : Tuple = {"""pixel_values""": images} return BatchFeature(data=__A , tensor_type=__A ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[Tuple] = None ): __A : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__A ) != len(__A ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(__A ): __A : str = target_sizes.numpy() __A : int = [] for idx in range(len(__A ) ): __A : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=__A ) __A : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__A ) else: __A : List[str] = logits.argmax(dim=1 ) __A : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
17
0
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Dict = logging.get_logger(__name__) # TODO Update this lowercase__ : Union[str, Any] = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCAmelCase ( _lowercase ): '''simple docstring''' lowerCAmelCase_ = '''esm''' def __init__( self : Dict , __lowercase : Any=None , __lowercase : Optional[Any]=None , __lowercase : Tuple=None , __lowercase : Any=7_68 , __lowercase : Optional[Any]=12 , __lowercase : int=12 , __lowercase : Union[str, Any]=30_72 , __lowercase : Optional[Any]=0.1 , __lowercase : Dict=0.1 , __lowercase : Union[str, Any]=10_26 , __lowercase : Any=0.02 , __lowercase : Any=1E-12 , __lowercase : str="absolute" , __lowercase : List[str]=True , __lowercase : List[Any]=None , __lowercase : List[str]=False , __lowercase : Optional[int]=False , __lowercase : Optional[Any]=None , __lowercase : str=None , **__lowercase : Tuple , ): """simple docstring""" super().__init__(pad_token_id=__A , mask_token_id=__A , **__A ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = position_embedding_type snake_case_ = use_cache snake_case_ = emb_layer_norm_before snake_case_ = token_dropout snake_case_ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) snake_case_ = EsmFoldConfig() elif isinstance(__A , __A ): snake_case_ = EsmFoldConfig(**__A ) snake_case_ = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) snake_case_ = get_default_vocab_list() else: snake_case_ = vocab_list else: snake_case_ = None snake_case_ = None if self.esmfold_config is not None and getattr(self.esmfold_config , "use_esm_attn_map" , __A ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def snake_case__ ( self : Union[str, Any] ): """simple docstring""" snake_case_ = super().to_dict() if isinstance(self.esmfold_config , __A ): snake_case_ = self.esmfold_config.to_dict() return output @dataclass class UpperCAmelCase : '''simple docstring''' lowerCAmelCase_ = None lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = 0 lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = 128 lowerCAmelCase_ = None def snake_case__ ( self : Optional[Any] ): """simple docstring""" if self.trunk is None: snake_case_ = TrunkConfig() elif isinstance(self.trunk , __A ): snake_case_ = TrunkConfig(**self.trunk ) def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = asdict(self ) snake_case_ = self.trunk.to_dict() return output @dataclass class UpperCAmelCase : '''simple docstring''' lowerCAmelCase_ = 48 lowerCAmelCase_ = 1024 lowerCAmelCase_ = 128 lowerCAmelCase_ = 32 lowerCAmelCase_ = 32 lowerCAmelCase_ = 32 lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 lowerCAmelCase_ = False lowerCAmelCase_ = 4 lowerCAmelCase_ = 128 lowerCAmelCase_ = None def snake_case__ ( self : int ): """simple docstring""" if self.structure_module is None: snake_case_ = StructureModuleConfig() elif isinstance(self.structure_module , __A ): snake_case_ = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) snake_case_ = self.sequence_state_dim // self.sequence_head_width snake_case_ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def snake_case__ ( self : int ): """simple docstring""" snake_case_ = asdict(self ) snake_case_ = self.structure_module.to_dict() return output @dataclass class UpperCAmelCase : '''simple docstring''' lowerCAmelCase_ = 384 lowerCAmelCase_ = 128 lowerCAmelCase_ = 16 lowerCAmelCase_ = 128 lowerCAmelCase_ = 12 lowerCAmelCase_ = 4 lowerCAmelCase_ = 8 lowerCAmelCase_ = 0.1 lowerCAmelCase_ = 8 lowerCAmelCase_ = 1 lowerCAmelCase_ = 2 lowerCAmelCase_ = 7 lowerCAmelCase_ = 10 lowerCAmelCase_ = 1E-8 lowerCAmelCase_ = 1E5 def snake_case__ ( self : Tuple ): """simple docstring""" return asdict(self ) def lowerCamelCase__ ( ): '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
376
class lowerCamelCase_ : def __init__( self : Dict , __A : Tuple , __A : Optional[int] , __A : int ): __A : List[str] = name __A : Optional[int] = value __A : Optional[Any] = weight def __repr__( self : Any ): return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowerCAmelCase_ ( self : Union[str, Any] ): return self.value def lowerCAmelCase_ ( self : str ): return self.name def lowerCAmelCase_ ( self : str ): return self.weight def lowerCAmelCase_ ( self : Dict ): return self.value / self.weight def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : Optional[int] ,a__ : Union[str, Any] ) -> int: __A : Tuple = [] for i in range(len(a__ ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : Any ,a__ : Optional[int] ) -> Tuple: __A : Optional[int] = sorted(a__ ,key=a__ ,reverse=a__ ) __A : Optional[Any] = [] __A , __A : Tuple = 0.0, 0.0 for i in range(len(a__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Optional[int] ): '''simple docstring''' super().__init__() lowercase : Optional[int] =nn.Linear(3 , 4 ) lowercase : Optional[Any] =nn.BatchNormad(4 ) lowercase : Optional[int] =nn.Linear(4 , 5 ) def lowerCamelCase_ ( self : str , UpperCAmelCase__ : Any ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__A ) ) ) class __SCREAMING_SNAKE_CASE ( _lowercase ): def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : int , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Any ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __SCREAMING_SNAKE_CASE ( _lowercase ): def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str ): '''simple docstring''' return output + 1 class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : Union[str, Any] =ModelForTest() lowercase : Union[str, Any] =ModelHook() add_hook_to_module(__A , __A ) self.assertEqual(test_model._hf_hook , __A ) self.assertTrue(hasattr(__A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(__A ) self.assertFalse(hasattr(__A , '''_hf_hook''' ) ) self.assertFalse(hasattr(__A , '''_old_forward''' ) ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowercase : str =ModelForTest() lowercase : Tuple =ModelHook() add_hook_to_module(__A , __A ) add_hook_to_module(__A , __A , append=__A ) self.assertEqual(isinstance(test_model._hf_hook , __A ) , __A ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__A , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(__A ) self.assertFalse(hasattr(__A , '''_hf_hook''' ) ) self.assertFalse(hasattr(__A , '''_old_forward''' ) ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : int =ModelForTest() lowercase : List[str] =torch.randn(2 , 3 ) lowercase : Tuple =test_model(x + 1 ) lowercase : List[str] =test_model(x + 2 ) lowercase : int =PreForwardHook() add_hook_to_module(__A , __A ) lowercase : Union[str, Any] =test_model(__A ) self.assertTrue(torch.allclose(__A , __A , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain lowercase : Dict =PreForwardHook() add_hook_to_module(__A , __A ) lowercase : Union[str, Any] =test_model(__A ) self.assertTrue(torch.allclose(__A , __A , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks lowercase : List[Any] =SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__A , __A ) lowercase : List[str] =test_model(__A ) assert torch.allclose(__A , __A , atol=1E-5 ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowercase : Any =ModelForTest() lowercase : List[str] =torch.randn(2 , 3 ) lowercase : Union[str, Any] =test_model(__A ) lowercase : Dict =PostForwardHook() add_hook_to_module(__A , __A ) lowercase : int =test_model(__A ) self.assertTrue(torch.allclose(__A , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain lowercase : Optional[int] =PostForwardHook() add_hook_to_module(__A , __A ) lowercase : int =test_model(__A ) self.assertTrue(torch.allclose(__A , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks lowercase : Dict =SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__A , __A ) lowercase : Union[str, Any] =test_model(__A ) assert torch.allclose(__A , output + 2 , atol=1E-5 ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowercase : Optional[Any] =ModelForTest() lowercase : List[Any] =torch.randn(2 , 3 ) lowercase : int =test_model(__A ) lowercase : Tuple =PostForwardHook() add_hook_to_module(__A , __A ) lowercase : List[Any] =test_model(__A ) self.assertTrue(torch.allclose(__A , output + 1 ) ) self.assertTrue(outputa.requires_grad ) lowercase : int =True lowercase : Any =test_model(__A ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def lowerCamelCase_ ( self : str ): '''simple docstring''' lowercase : Union[str, Any] =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device lowercase : Tuple =torch.randn(2 , 3 ) lowercase : Tuple =model(__A ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__A , AlignDevicesHook(io_same_device=__A ) ) lowercase : List[str] =torch.randn(2 , 3 ).to(0 ) lowercase : Tuple =model(__A ) self.assertEqual(output.device , torch.device(0 ) ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : str =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices lowercase : Optional[int] ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__A ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device lowercase : List[str] =torch.device(hook_kwargs['''execution_device'''] ) self.assertEqual(model.batchnorm.running_mean.device , __A ) lowercase : Optional[Any] =torch.randn(2 , 3 ) lowercase : Optional[int] =model(__A ) self.assertEqual(output.device , __A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload lowercase : str ={ """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__A ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) lowercase : int =torch.randn(2 , 3 ) lowercase : Optional[Any] =model(__A ) self.assertEqual(output.device , __A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : Dict =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices lowercase : str =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__A , execution_device=__A , offload=__A ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device lowercase : List[Any] =torch.device(__A ) self.assertEqual(model.batchnorm.running_mean.device , __A ) lowercase : List[str] =torch.randn(2 , 3 ) lowercase : Dict =model(__A ) self.assertEqual(output.device , __A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook(__A , execution_device=__A , offload=__A , offload_buffers=__A ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) lowercase : Dict =torch.randn(2 , 3 ) lowercase : List[str] =model(__A ) self.assertEqual(output.device , __A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowercase : Any =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices lowercase : int =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __A , execution_device=__A , offload=__A , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device lowercase : Optional[int] =torch.device(__A ) self.assertEqual(model.batchnorm.running_mean.device , __A ) lowercase : Optional[Any] =torch.randn(2 , 3 ) lowercase : Any =model(__A ) self.assertEqual(output.device , __A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook( __A , execution_device=__A , offload=__A , weights_map=model.state_dict() , offload_buffers=__A , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) lowercase : Any =torch.randn(2 , 3 ) lowercase : int =model(__A ) self.assertEqual(output.device , __A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__A ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
92
UpperCAmelCase_ : dict[str, float] = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.35_5818, } def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ,a__ : float ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __A : Optional[int] = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {", ".join(a__ )}""" ) raise ValueError(a__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
17
0
def _SCREAMING_SNAKE_CASE ( snake_case , snake_case = 0 ) -> list: _UpperCAmelCase = length or len(a__ ) _UpperCAmelCase = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _UpperCAmelCase = list_data[i + 1], list_data[i] _UpperCAmelCase = True return list_data if not swapped else bubble_sort(a__ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
518
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : Optional[Any] = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a_ = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase_ : Optional[Any] = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def __SCREAMING_SNAKE_CASE ( a__ : str=True ) -> List[Any]: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_lowercase ) ) class lowerCamelCase_ ( _lowercase ): _lowercase : Optional[int] = None _lowercase : str = None def lowerCAmelCase_ ( self : Dict , __A : Optional[int] , __A : Optional[Any] ): with TemporaryDirectory() as tmp_dir: __A : List[Any] = dataset_module_factory(__A , cache_dir=__A ) __A : Tuple = import_main_class(dataset_module.module_path , dataset=__A ) __A : DatasetBuilder = builder_cls( cache_dir=__A , config_name=__A , hash=dataset_module.hash , ) __A : List[Any] = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=__A ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) __A : Union[str, Any] = cached_path(__A , cache_dir=__A ) self.assertTrue(os.path.exists(__A ) ) @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( a__ : Dict ) -> Optional[Any]: __A : Optional[Any] = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" __A : Union[str, Any] = dataset_module_factory("""wikipedia""" ,cache_dir=a__ ) __A : List[Any] = import_main_class(dataset_module.module_path ) __A : DatasetBuilder = builder_cls( cache_dir=a__ ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam __A : Any = None builder_instance.download_and_prepare() __A : Union[str, Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( a__ : List[str] ) -> List[str]: __A : Tuple = dataset_module_factory("""wikipedia""" ,cache_dir=a__ ) __A : str = import_main_class(dataset_module.module_path ,dataset=a__ ) __A : DatasetBuilder = builder_cls( cache_dir=a__ ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) __A : Optional[int] = builder_instance.as_streaming_dataset() assert ds assert isinstance(a__ ,a__ ) assert "train" in ds assert isinstance(ds["""train"""] ,a__ ) assert next(iter(ds["""train"""] ) )
17
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class UpperCAmelCase_ : snake_case__ = 42 snake_case__ = 42 class UpperCAmelCase_ : def __init__( self : Tuple , __UpperCamelCase : int ) -> int: _UpperCamelCase = [[] for _ in range(__A )] _UpperCamelCase = size def __getitem__( self : Optional[Any] , __UpperCamelCase : int ) -> int: return iter(self._graph[vertex] ) @property def _UpperCamelCase ( self : Optional[int] ) -> int: return self._size def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> str: if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(__A , __A ) ) def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : int ) -> Optional[int]: _UpperCamelCase = deque([start_vertex] ) _UpperCamelCase = [None] * self.size _UpperCamelCase = 0 while queue: _UpperCamelCase = queue.popleft() _UpperCamelCase = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCamelCase = current_distance + edge.weight _UpperCamelCase = distances[edge.destination_vertex] if ( isinstance(__A , __A ) and new_distance >= dest_vertex_distance ): continue _UpperCamelCase = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
420
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Optional[int] , __A : Union[str, Any] , __A : int=7 , __A : int=3 , __A : int=30 , __A : Dict=400 , __A : str=True , __A : str=None , __A : str=True , __A : Optional[int]=[0.5, 0.5, 0.5] , __A : List[str]=[0.5, 0.5, 0.5] , __A : Optional[Any]=True , __A : int=1 / 255 , __A : List[Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __A : Union[str, Any] = parent __A : Union[str, Any] = batch_size __A : Union[str, Any] = num_channels __A : Optional[Any] = min_resolution __A : Union[str, Any] = max_resolution __A : Any = do_resize __A : Union[str, Any] = size __A : Optional[int] = do_normalize __A : Dict = image_mean __A : Optional[int] = image_std __A : Tuple = do_rescale __A : Optional[Any] = rescale_factor __A : Tuple = do_pad def lowerCAmelCase_ ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase_ ( self : Optional[Any] , __A : Optional[int] , __A : Dict=False ): if not batched: __A : Union[str, Any] = image_inputs[0] if isinstance(__A , Image.Image ): __A , __A : Union[str, Any] = image.size else: __A , __A : Optional[int] = image.shape[1], image.shape[2] if w < h: __A : Optional[int] = int(self.size["""shortest_edge"""] * h / w ) __A : Dict = self.size["""shortest_edge"""] elif w > h: __A : Optional[Any] = self.size["""shortest_edge"""] __A : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: __A : Union[str, Any] = self.size["""shortest_edge"""] __A : str = self.size["""shortest_edge"""] else: __A : Any = [] for image in image_inputs: __A , __A : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __A : Tuple = max(__A , key=lambda __A : item[0] )[0] __A : Union[str, Any] = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( _lowercase , unittest.TestCase ): _lowercase : Tuple = DetaImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : Optional[Any] ): __A : Tuple = DetaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : List[str] ): __A : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """image_mean""" ) ) self.assertTrue(hasattr(__A , """image_std""" ) ) self.assertTrue(hasattr(__A , """do_normalize""" ) ) self.assertTrue(hasattr(__A , """do_resize""" ) ) self.assertTrue(hasattr(__A , """do_rescale""" ) ) self.assertTrue(hasattr(__A , """do_pad""" ) ) self.assertTrue(hasattr(__A , """size""" ) ) def lowerCAmelCase_ ( self : Any ): __A : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , __A ) def lowerCAmelCase_ ( self : Optional[Any] ): pass def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A , __A : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) __A : List[str] = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : int = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Optional[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Dict ): # Initialize image_processing __A : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input __A : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Tuple = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Any = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase_ ( self : Tuple ): # prepare image and target __A : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __A : Any = json.loads(f.read() ) __A : int = {"""image_id""": 3_9769, """annotations""": target} # encode them __A : List[str] = DetaImageProcessor() __A : List[str] = image_processing(images=__A , annotations=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Tuple = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : List[str] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : List[str] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify orig_size __A : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) ) @slow def lowerCAmelCase_ ( self : Optional[int] ): # prepare image, target and masks_path __A : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __A : Tuple = json.loads(f.read() ) __A : Optional[int] = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} __A : Any = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __A : Any = DetaImageProcessor(format="""coco_panoptic""" ) __A : int = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : Any = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify masks __A : List[str] = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __A ) # verify orig_size __A : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) )
17
0
'''simple docstring''' import fire from utils import calculate_rouge, save_json def a ( __a , __a , __a=None , **__a ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ :int = [x.strip() for x in open(a__ ).readlines()] UpperCamelCase__ :List[str] = [x.strip() for x in open(a__ ).readlines()][: len(a__ )] UpperCamelCase__ :List[Any] = calculate_rouge(a__ , a__ , **a__ ) if save_path is not None: save_json(a__ , a__ , indent=a__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
189
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __A : List[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" ,type=a__ ,default=1 ,help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" ,type=a__ ,help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) ,) # rest from the training program parser.add_argument("""training_script_args""" ,nargs=a__ ) return parser.parse_args() def __SCREAMING_SNAKE_CASE ( ) -> str: __A : Union[str, Any] = parse_args() # Import training_script as a module. __A : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __A : str = script_fpath.stem __A : int = importlib.import_module(a__ ) # Patch sys.argv __A : List[str] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
17
0
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __UpperCamelCase ( _lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" random.seed(a__ ) np.random.seed(a__ ) torch.manual_seed(a__ ) torch.cuda.manual_seed_all(a__ ) # ^^ safe to call this function even if cuda is not available class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ = 0.9999, lowerCamelCase__ = 0.0, lowerCamelCase__ = 0, lowerCamelCase__ = False, lowerCamelCase__ = 1.0, lowerCamelCase__ = 2 / 3, lowerCamelCase__ = None, lowerCamelCase__ = None, **lowerCamelCase__, ): if isinstance(__A, torch.nn.Module ): A : Optional[Any] = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""", """1.0.0""", __A, standard_warn=__A, ) A : List[Any] = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility A : List[Any] = True if kwargs.get("""max_value""", __A ) is not None: A : List[Any] = """The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""", """1.0.0""", __A, standard_warn=__A ) A : Any = kwargs["""max_value"""] if kwargs.get("""min_value""", __A ) is not None: A : List[str] = """The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""", """1.0.0""", __A, standard_warn=__A ) A : List[Any] = kwargs["""min_value"""] A : Optional[int] = list(__A ) A : Optional[int] = [p.clone().detach() for p in parameters] if kwargs.get("""device""", __A ) is not None: A : str = """The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""", """1.0.0""", __A, standard_warn=__A ) self.to(device=kwargs["""device"""] ) A : Tuple = None A : str = decay A : List[str] = min_decay A : Tuple = update_after_step A : Dict = use_ema_warmup A : Optional[Any] = inv_gamma A : Any = power A : Optional[int] = 0 A : Union[str, Any] = None # set in `step()` A : Optional[int] = model_cls A : str = model_config @classmethod def _lowerCAmelCase ( cls, lowerCamelCase__, lowerCamelCase__ ): A : str = model_cls.load_config(__A, return_unused_kwargs=__A ) A : Optional[Any] = model_cls.from_pretrained(__A ) A : Optional[Any] = cls(model.parameters(), model_cls=__A, model_config=model.config ) ema_model.load_state_dict(__A ) return ema_model def _lowerCAmelCase ( self, lowerCamelCase__ ): if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) A : List[str] = self.model_cls.from_config(self.model_config ) A : List[str] = self.state_dict() state_dict.pop("""shadow_params""", __A ) model.register_to_config(**__A ) self.copy_to(model.parameters() ) model.save_pretrained(__A ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Tuple = max(0, optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: A : Any = 1 - (1 + step / self.inv_gamma) ** -self.power else: A : str = (1 + step) / (10 + step) A : Dict = min(__A, self.decay ) # make sure decay is not smaller than min_decay A : Dict = max(__A, self.min_decay ) return cur_decay_value @torch.no_grad() def _lowerCAmelCase ( self, lowerCamelCase__ ): if isinstance(__A, torch.nn.Module ): A : Tuple = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""", """1.0.0""", __A, standard_warn=__A, ) A : Union[str, Any] = parameters.parameters() A : Any = list(__A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. A : List[Any] = self.get_decay(self.optimization_step ) A : Optional[int] = decay A : Union[str, Any] = 1 - decay A : int = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params, __A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): A : List[str] = deepspeed.zero.GatheredParameters(__A, modifier_rank=__A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__A ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Union[str, Any] = list(__A ) for s_param, param in zip(self.shadow_params, __A ): param.data.copy_(s_param.to(param.device ).data ) def _lowerCAmelCase ( self, lowerCamelCase__=None, lowerCamelCase__=None ): A : Tuple = [ p.to(device=__A, dtype=__A ) if p.is_floating_point() else p.to(device=__A ) for p in self.shadow_params ] def _lowerCAmelCase ( self ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def _lowerCAmelCase ( self, lowerCamelCase__ ): A : List[str] = [param.detach().cpu().clone() for param in parameters] def _lowerCAmelCase ( self, lowerCamelCase__ ): if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params, __A ): param.data.copy_(c_param.data ) # Better memory-wise. A : Any = None def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Optional[Any] = copy.deepcopy(__A ) A : Optional[Any] = state_dict.get("""decay""", self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) A : int = state_dict.get("""min_decay""", self.min_decay ) if not isinstance(self.min_decay, __A ): raise ValueError("""Invalid min_decay""" ) A : List[Any] = state_dict.get("""optimization_step""", self.optimization_step ) if not isinstance(self.optimization_step, __A ): raise ValueError("""Invalid optimization_step""" ) A : List[Any] = state_dict.get("""update_after_step""", self.update_after_step ) if not isinstance(self.update_after_step, __A ): raise ValueError("""Invalid update_after_step""" ) A : int = state_dict.get("""use_ema_warmup""", self.use_ema_warmup ) if not isinstance(self.use_ema_warmup, __A ): raise ValueError("""Invalid use_ema_warmup""" ) A : Any = state_dict.get("""inv_gamma""", self.inv_gamma ) if not isinstance(self.inv_gamma, (float, int) ): raise ValueError("""Invalid inv_gamma""" ) A : List[Any] = state_dict.get("""power""", self.power ) if not isinstance(self.power, (float, int) ): raise ValueError("""Invalid power""" ) A : Dict = state_dict.get("""shadow_params""", __A ) if shadow_params is not None: A : Union[str, Any] = shadow_params if not isinstance(self.shadow_params, __A ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(__A, torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
662
from collections.abc import Sequence def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: return sum(c * (x**i) for i, c in enumerate(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: __A : Any = 0.0 for coeff in reversed(a__ ): __A : List[str] = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase_ : List[str] = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase_ : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
0
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset _snake_case = '''bert-base-cased''' _snake_case = '''google/pegasus-xsum''' _snake_case = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] _snake_case = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] _snake_case = '''patrickvonplaten/t5-tiny-random''' _snake_case = '''sshleifer/bart-tiny-random''' _snake_case = '''sshleifer/tiny-mbart''' _snake_case = '''sshleifer/tiny-marian-en-de''' def snake_case ( _a: Path , _a: list )-> List[Any]: '''simple docstring''' lowerCamelCase__ = """\n""".join(a__ ) Path(a__ ).open('w' ).writelines(a__ ) def snake_case ( _a: Union[str, Any] )-> List[Any]: '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(a__ , F'{split}.source' ) , a__ ) _dump_articles(os.path.join(a__ , F'{split}.target' ) , a__ ) return tmp_dir class _a ( _lowercase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def _UpperCamelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any ): lowerCamelCase__ = AutoTokenizer.from_pretrained(__A ) lowerCamelCase__ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCamelCase__ = max(len(tokenizer.encode(__A ) ) for a in ARTICLES ) lowerCamelCase__ = max(len(tokenizer.encode(__A ) ) for a in SUMMARIES ) lowerCamelCase__ = 4 lowerCamelCase__ = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowerCamelCase__ = """ro_RO""", """de_DE""" # ignored for all but mbart, but never causes error. lowerCamelCase__ = SeqaSeqDataset( __A , data_dir=__A , type_path='train' , max_source_length=__A , max_target_length=__A , src_lang=__A , tgt_lang=__A , ) lowerCamelCase__ = DataLoader(__A , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(__A , __A ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowerCamelCase__ = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): lowerCamelCase__ = AutoTokenizer.from_pretrained(__A ) lowerCamelCase__ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCamelCase__ = max(len(tokenizer.encode(__A ) ) for a in ARTICLES ) lowerCamelCase__ = max(len(tokenizer.encode(__A ) ) for a in SUMMARIES ) lowerCamelCase__ = 4 lowerCamelCase__ = LegacySeqaSeqDataset( __A , data_dir=__A , type_path='train' , max_source_length=20 , max_target_length=__A , ) lowerCamelCase__ = DataLoader(__A , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) lowerCamelCase__ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowerCamelCase__ = tmp_dir.joinpath('train.source' ).open().readlines() lowerCamelCase__ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(__A , __A , 1_28 , __A ) lowerCamelCase__ = {x.name for x in tmp_dir.iterdir()} lowerCamelCase__ = {x.name for x in save_dir.iterdir()} lowerCamelCase__ = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__A ) < len(__A ) assert len(__A ) == 1 assert len(packed_examples[0] ) == sum(len(__A ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def _UpperCamelCase ( self : Optional[int] ): if not FAIRSEQ_AVAILABLE: return lowerCamelCase__ = self._get_dataset(max_len=64 ) lowerCamelCase__ = 64 lowerCamelCase__ = ds.make_dynamic_sampler(__A , required_batch_size_multiple=__A ) lowerCamelCase__ = [len(__A ) for x in batch_sampler] assert len(set(__A ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__A ) == len(__A ) # no dropped or added examples lowerCamelCase__ = DataLoader(__A , batch_sampler=__A , collate_fn=ds.collate_fn , num_workers=2 ) lowerCamelCase__ = [] lowerCamelCase__ = [] for batch in data_loader: lowerCamelCase__ = batch["""input_ids"""].shape lowerCamelCase__ = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowerCamelCase__ = np.product(batch['input_ids'].shape ) num_src_per_batch.append(__A ) if num_src_tokens > (max_tokens * 1.1): failures.append(__A ) assert num_src_per_batch[0] == max(__A ) if failures: raise AssertionError(F'too many tokens in {len(__A )} batches' ) def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ = self._get_dataset(max_len=5_12 ) lowerCamelCase__ = 2 lowerCamelCase__ = ds.make_sortish_sampler(__A , shuffle=__A ) lowerCamelCase__ = DataLoader(__A , batch_size=__A , collate_fn=ds.collate_fn , num_workers=2 ) lowerCamelCase__ = DataLoader(__A , batch_size=__A , collate_fn=ds.collate_fn , num_workers=2 , sampler=__A ) lowerCamelCase__ = tokenizer.pad_token_id def count_pad_tokens(SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any]="input_ids" ): return [batch[k].eq(__A ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__A , k='labels' ) ) < sum(count_pad_tokens(__A , k='labels' ) ) assert sum(count_pad_tokens(__A ) ) < sum(count_pad_tokens(__A ) ) assert len(__A ) == len(__A ) def _UpperCamelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any]=10_00 , SCREAMING_SNAKE_CASE__ : List[Any]=1_28 ): if os.getenv('USE_REAL_DATA' , __A ): lowerCamelCase__ = """examples/seq2seq/wmt_en_ro""" lowerCamelCase__ = max_len * 2 * 64 if not Path(__A ).joinpath('train.len' ).exists(): save_len_file(__A , __A ) else: lowerCamelCase__ = """examples/seq2seq/test_data/wmt_en_ro""" lowerCamelCase__ = max_len * 4 save_len_file(__A , __A ) lowerCamelCase__ = AutoTokenizer.from_pretrained(__A ) lowerCamelCase__ = SeqaSeqDataset( __A , data_dir=__A , type_path='train' , max_source_length=__A , max_target_length=__A , n_obs=__A , ) return ds, max_tokens, tokenizer def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = self._get_dataset() lowerCamelCase__ = set(DistributedSortishSampler(__A , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=__A ) ) lowerCamelCase__ = set(DistributedSortishSampler(__A , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=__A ) ) assert idsa.intersection(__A ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def _UpperCamelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): lowerCamelCase__ = AutoTokenizer.from_pretrained(__A , use_fast=__A ) if tok_name == MBART_TINY: lowerCamelCase__ = SeqaSeqDataset( __A , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) lowerCamelCase__ = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowerCamelCase__ = SeqaSeqDataset( __A , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) lowerCamelCase__ = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__A ) == 1 if tok_name == BART_TINY else len(__A ) == 0
510
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowerCamelCase_ ( _lowercase ): _lowercase : Union[str, Any] = '''EncodecFeatureExtractor''' _lowercase : Any = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : List[Any] , __A : Any , __A : Tuple ): super().__init__(__A , __A ) __A : Dict = self.feature_extractor __A : List[str] = False def lowerCAmelCase_ ( self : Union[str, Any] , __A : str=None , __A : Tuple=None , __A : Dict=True ): return self.tokenizer.get_decoder_prompt_ids(task=__A , language=__A , no_timestamps=__A ) def __call__( self : Optional[Any] , *__A : Tuple , **__A : Tuple ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A , **__A ) __A : str = kwargs.pop("""audio""" , __A ) __A : Optional[Any] = kwargs.pop("""sampling_rate""" , __A ) __A : int = kwargs.pop("""text""" , __A ) if len(__A ) > 0: __A : int = args[0] __A : Dict = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: __A : Dict = self.tokenizer(__A , **__A ) if audio is not None: __A : Optional[int] = self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) if audio is None: return inputs elif text is None: return audio_inputs else: __A : List[Any] = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: __A : int = audio_inputs["""padding_mask"""] return inputs def lowerCAmelCase_ ( self : List[str] , *__A : int , **__A : Tuple ): __A : Optional[int] = kwargs.pop("""audio""" , __A ) __A : List[str] = kwargs.pop("""padding_mask""" , __A ) if len(__A ) > 0: __A : Dict = args[0] __A : Optional[int] = args[1:] if audio_values is not None: return self._decode_audio(__A , padding_mask=__A ) else: return self.tokenizer.batch_decode(*__A , **__A ) def lowerCAmelCase_ ( self : Optional[Any] , *__A : Dict , **__A : Any ): return self.tokenizer.decode(*__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : Union[str, Any] , __A : Optional = None ): __A : List[str] = to_numpy(__A ) __A , __A , __A : Tuple = audio_values.shape if padding_mask is None: return list(__A ) __A : Union[str, Any] = to_numpy(__A ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __A : List[str] = seq_len - padding_mask.shape[-1] __A : Tuple = 1 - self.feature_extractor.padding_value __A : Optional[int] = np.pad(__A , ((0, 0), (0, difference)) , """constant""" , constant_values=__A ) __A : int = audio_values.tolist() for i in range(__A ): __A : str = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __A : List[Any] = sliced_audio.reshape(__A , -1 ) return audio_values
17
0
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets A__ : List[str] = '''\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' A__ : Dict = '''\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. ''' A__ : Dict = ''' Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: \'score\' (float): The chrF (chrF++) score, \'char_order\' (int): The character n-gram order, \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, \'beta\' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def UpperCAmelCase__ ( self : Tuple): if version.parse(scb.__version__) < version.parse('''1.4.12'''): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install \"sacrebleu>=1.4.12\"`.''') return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''') , id='''references'''), }) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''] , reference_urls=[ '''https://github.com/m-popovic/chrF''', ] , ) def UpperCAmelCase__ ( self : Any , A_ : Any , A_ : Optional[int] , A_ : int = CHRF.CHAR_ORDER , A_ : int = CHRF.WORD_ORDER , A_ : int = CHRF.BETA , A_ : bool = False , A_ : bool = False , A_ : bool = False , ): lowerCAmelCase_ : str = len(references[0]) if any(len(__A) != references_per_prediction for refs in references): raise ValueError('''Sacrebleu requires the same number of references for each prediction''') lowerCAmelCase_ : int = [[refs[i] for refs in references] for i in range(__A)] lowerCAmelCase_ : Tuple = CHRF(__A , __A , __A , __A , __A , __A) lowerCAmelCase_ : Union[str, Any] = sb_chrf.corpus_score(__A , __A) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
171
def __SCREAMING_SNAKE_CASE ( a__ : int ) -> int: if not isinstance(a__ ,a__ ): raise TypeError("""Input value must be an 'int' type""" ) __A : Union[str, Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' from __future__ import annotations def _snake_case ( _SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(a__ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(a__ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
433
UpperCAmelCase_ : dict[tuple[int, int, int], int] = {} def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int ,a__ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __A : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __A : Dict = _calculate(days - 1 ,a__ ,late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __A : List[str] = _calculate(days - 1 ,absent + 1 ,0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __A : int = _calculate(days - 1 ,a__ ,0 ) __A : Optional[int] = state_late + state_absent + state_ontime __A : Tuple = prizestrings return prizestrings def __SCREAMING_SNAKE_CASE ( a__ : int = 30 ) -> int: return _calculate(a__ ,absent=0 ,late=0 ) if __name__ == "__main__": print(solution())
17
0
from math import factorial def _lowercase ( UpperCAmelCase_ = 100): """simple docstring""" return sum(map(a__ , str(factorial(a__)))) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
648
class lowerCamelCase_ : def __init__( self : Dict , __A : int , __A : Tuple , __A : List[Any] ): __A : Optional[int] = None __A : Any = None __A : int = graph self._normalize_graph(__A , __A ) __A : str = len(__A ) __A : Optional[int] = None def lowerCAmelCase_ ( self : int , __A : Any , __A : Optional[Any] ): if sources is int: __A : Dict = [sources] if sinks is int: __A : Optional[int] = [sinks] if len(__A ) == 0 or len(__A ) == 0: return __A : str = sources[0] __A : Dict = sinks[0] # make fake vertex if there are more # than one source or sink if len(__A ) > 1 or len(__A ) > 1: __A : Optional[Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __A : List[Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __A : str = max_input_flow __A : Union[str, Any] = 0 __A : Any = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __A : int = max_input_flow __A : Optional[Any] = size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase_ ( self : Optional[Any] , __A : Dict ): __A : Dict = algorithm(self ) class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : str ): __A : Any = flow_network __A : int = flow_network.verticesCount __A : List[Any] = flow_network.sourceIndex __A : Union[str, Any] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __A : Optional[int] = flow_network.graph __A : str = False def lowerCAmelCase_ ( self : List[Any] ): if not self.executed: self._algorithm() __A : Any = True def lowerCAmelCase_ ( self : List[str] ): pass class lowerCamelCase_ ( _lowercase ): def __init__( self : Any , __A : List[str] ): super().__init__(__A ) # use this to save your result __A : str = -1 def lowerCAmelCase_ ( self : Any ): if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class lowerCamelCase_ ( _lowercase ): def __init__( self : List[Any] , __A : Dict ): super().__init__(__A ) __A : Tuple = [[0] * self.verticies_count for i in range(self.verticies_count )] __A : Optional[Any] = [0] * self.verticies_count __A : Union[str, Any] = [0] * self.verticies_count def lowerCAmelCase_ ( self : int ): __A : Optional[int] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __A : List[str] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __A : Dict = 0 while i < len(__A ): __A : List[Any] = vertices_list[i] __A : Optional[Any] = self.heights[vertex_index] self.process_vertex(__A ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__A ) ) __A : Any = 0 else: i += 1 __A : Optional[int] = sum(self.preflow[self.source_index] ) def lowerCAmelCase_ ( self : Optional[Any] , __A : str ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__A , __A ) self.relabel(__A ) def lowerCAmelCase_ ( self : Dict , __A : List[str] , __A : Optional[Any] ): __A : Union[str, Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase_ ( self : Optional[Any] , __A : Tuple ): __A : Tuple = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __A : Dict = self.heights[to_index] if min_height is not None: __A : Optional[int] = min_height + 1 if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = [0] UpperCAmelCase_ : Dict = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCAmelCase_ : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCAmelCase_ : str = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCAmelCase_ : int = flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
17
0
from __future__ import annotations from fractions import Fraction def lowerCamelCase__ ( _A , _A ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = [] snake_case_ = 11 snake_case_ = int("1" + "0" * digit_len ) for num in range(a__ , a__ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(a__ , a__ ): solutions.append(f"{num}/{den}" ) den += 1 num += 1 snake_case_ = 10 return solutions def lowerCamelCase__ ( _A = 2 ): '''simple docstring''' snake_case_ = 1.0 for fraction in fraction_list(a__ ): snake_case_ = Fraction(a__ ) result *= frac.denominator / frac.numerator return int(a__ ) if __name__ == "__main__": print(solution())
376
from __future__ import annotations from collections.abc import Sequence from typing import Literal def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ) -> str | Literal[False]: __A : Tuple = list(a__ ) __A : Optional[int] = list(a__ ) __A : int = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count += 1 __A : int = """_""" if count > 1: return False else: return "".join(a__ ) def __SCREAMING_SNAKE_CASE ( a__ : list[str] ) -> list[str]: __A : Optional[Any] = [] while True: __A : Tuple = ["""$"""] * len(a__ ) __A : Union[str, Any] = [] for i in range(len(a__ ) ): for j in range(i + 1 ,len(a__ ) ): __A : int = compare_string(binary[i] ,binary[j] ) if k is False: __A : List[str] = """*""" __A : Any = """*""" temp.append("""X""" ) for i in range(len(a__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(a__ ) == 0: return pi __A : Optional[Any] = list(set(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : Sequence[float] ) -> list[str]: __A : List[str] = [] for minterm in minterms: __A : List[Any] = """""" for _ in range(a__ ): __A : Union[str, Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(a__ ) return temp def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ,a__ : int ) -> bool: __A : Optional[Any] = list(a__ ) __A : Tuple = list(a__ ) __A : Any = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __SCREAMING_SNAKE_CASE ( a__ : list[list[int]] ,a__ : list[str] ) -> list[str]: __A : Optional[int] = [] __A : Tuple = [0] * len(a__ ) for i in range(len(chart[0] ) ): __A : str = 0 __A : Any = -1 for j in range(len(a__ ) ): if chart[j][i] == 1: count += 1 __A : Optional[Any] = j if count == 1: __A : int = 1 for i in range(len(a__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(a__ ) ): __A : List[str] = 0 temp.append(prime_implicants[i] ) while True: __A : Optional[Any] = 0 __A : Any = -1 __A : int = 0 for i in range(len(a__ ) ): __A : List[Any] = chart[i].count(1 ) if count_n > max_n: __A : Dict = count_n __A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(a__ ) ): __A : Union[str, Any] = 0 def __SCREAMING_SNAKE_CASE ( a__ : list[str] ,a__ : list[str] ) -> list[list[int]]: __A : Any = [[0 for x in range(len(a__ ) )] for x in range(len(a__ ) )] for i in range(len(a__ ) ): __A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(a__ ) ): if is_for_table(prime_implicants[i] ,binary[j] ,a__ ): __A : Union[str, Any] = 1 return chart def __SCREAMING_SNAKE_CASE ( ) -> None: __A : Any = int(input("""Enter the no. of variables\n""" ) ) __A : List[str] = [ float(a__ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] __A : Dict = decimal_to_binary(a__ ,a__ ) __A : Union[str, Any] = check(a__ ) print("""Prime Implicants are:""" ) print(a__ ) __A : Optional[Any] = prime_implicant_chart(a__ ,a__ ) __A : Any = selection(a__ ,a__ ) print("""Essential Prime Implicants are:""" ) print(a__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
17
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __SCREAMING_SNAKE_CASE ( _lowercase , unittest.TestCase ): lowerCamelCase_ = KandinskyVaaControlnetImgaImgPipeline lowerCamelCase_ = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] lowerCamelCase_ = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] lowerCamelCase_ = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowerCamelCase_ = False @property def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' return 32 @property def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return 32 @property def lowerCamelCase_ ( self : str ): '''simple docstring''' return self.time_input_dim @property def lowerCamelCase_ ( self : Any ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' return 100 @property def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) lowercase : List[Any] ={ """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase : Any =UNetaDConditionModel(**__A ) return model @property def lowerCamelCase_ ( self : str ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCamelCase_ ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) lowercase : Union[str, Any] =VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowercase : Any =self.dummy_unet lowercase : Any =self.dummy_movq lowercase : Optional[Any] ={ """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } lowercase : Tuple =DDIMScheduler(**__A ) lowercase : str ={ """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCamelCase_ ( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : str=0 ): '''simple docstring''' lowercase : int =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__A ) ).to(__A ) lowercase : Optional[int] =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __A ) # create init_image lowercase : str =floats_tensor((1, 3, 64, 64) , rng=random.Random(__A ) ).to(__A ) lowercase : Any =image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase : List[str] =Image.fromarray(np.uinta(__A ) ).convert('''RGB''' ).resize((256, 256) ) # create hint lowercase : Tuple =floats_tensor((1, 3, 64, 64) , rng=random.Random(__A ) ).to(__A ) if str(__A ).startswith('''mps''' ): lowercase : str =torch.manual_seed(__A ) else: lowercase : List[Any] =torch.Generator(device=__A ).manual_seed(__A ) lowercase : Optional[int] ={ """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : Any ="""cpu""" lowercase : str =self.get_dummy_components() lowercase : Any =self.pipeline_class(**__A ) lowercase : Union[str, Any] =pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) lowercase : Optional[int] =pipe(**self.get_dummy_inputs(__A ) ) lowercase : List[Any] =output.images lowercase : int =pipe( **self.get_dummy_inputs(__A ) , return_dict=__A , )[0] lowercase : Optional[int] =image[0, -3:, -3:, -1] lowercase : str =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase : str =np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def lowerCamelCase_ ( self : Dict ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : Any =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) lowercase : List[Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowercase : List[str] =init_image.resize((512, 512) ) lowercase : Union[str, Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) lowercase : Optional[int] =torch.from_numpy(np.array(__A ) ).float() / 255.0 lowercase : int =hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowercase : List[str] ="""A robot, 4k photo""" lowercase : int =KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__A ) lowercase : List[Any] =KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) lowercase : str =pipeline.to(__A ) pipeline.set_progress_bar_config(disable=__A ) lowercase : Optional[Any] =torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase : Tuple =pipe_prior( __A , image=__A , strength=0.85 , generator=__A , negative_prompt='''''' , ).to_tuple() lowercase : Optional[Any] =pipeline( image=__A , image_embeds=__A , negative_image_embeds=__A , hint=__A , generator=__A , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) lowercase : int =output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__A , __A )
92
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( a__ : List[str] ,a__ : Dict ,a__ : Union[str, Any] ,a__ : Any ) -> Optional[int]: # noqa: E741 while r - l > 1: __A : Any = (l + r) // 2 if v[m] >= key: __A : Optional[int] = m else: __A : List[Any] = m # noqa: E741 return r def __SCREAMING_SNAKE_CASE ( a__ : list[int] ) -> int: if len(a__ ) == 0: return 0 __A : str = [0] * len(a__ ) __A : List[str] = 1 __A : List[Any] = v[0] for i in range(1 ,len(a__ ) ): if v[i] < tail[0]: __A : int = v[i] elif v[i] > tail[length - 1]: __A : Union[str, Any] = v[i] length += 1 else: __A : Any = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
17
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class _A ( _lowercase ): __a = 42 @flax_register_to_config class _A ( nn.Module , _lowercase , _lowercase ): __a = 32 __a = 4 __a = 4 __a = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __a = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") __a = False __a = (3_20, 6_40, 12_80, 12_80) __a = 2 __a = 8 __a = None __a = 12_80 __a = 0.0 __a = False __a = jnp.floataa __a = True __a = 0 __a = False def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): # init input tensors _UpperCAmelCase = (1, self.in_channels, self.sample_size, self.sample_size) _UpperCAmelCase = jnp.zeros(__A , dtype=jnp.floataa ) _UpperCAmelCase = jnp.ones((1,) , dtype=jnp.intaa ) _UpperCAmelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) _UpperCAmelCase = jax.random.split(__A ) _UpperCAmelCase = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(__A , __A , __A , __A )["params"] def UpperCAmelCase ( self ): _UpperCAmelCase = self.block_out_channels _UpperCAmelCase = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( """At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.""" ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _UpperCAmelCase = self.num_attention_heads or self.attention_head_dim # input _UpperCAmelCase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _UpperCAmelCase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) _UpperCAmelCase = FlaxTimestepEmbedding(__A , dtype=self.dtype ) _UpperCAmelCase = self.only_cross_attention if isinstance(__A , __A ): _UpperCAmelCase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__A , __A ): _UpperCAmelCase = (num_attention_heads,) * len(self.down_block_types ) # down _UpperCAmelCase = [] _UpperCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): _UpperCAmelCase = output_channel _UpperCAmelCase = block_out_channels[i] _UpperCAmelCase = i == len(__A ) - 1 if down_block_type == "CrossAttnDownBlock2D": _UpperCAmelCase = FlaxCrossAttnDownBlockaD( in_channels=__A , out_channels=__A , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _UpperCAmelCase = FlaxDownBlockaD( in_channels=__A , out_channels=__A , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__A ) _UpperCAmelCase = down_blocks # mid _UpperCAmelCase = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up _UpperCAmelCase = [] _UpperCAmelCase = list(reversed(__A ) ) _UpperCAmelCase = list(reversed(__A ) ) _UpperCAmelCase = list(reversed(__A ) ) _UpperCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): _UpperCAmelCase = output_channel _UpperCAmelCase = reversed_block_out_channels[i] _UpperCAmelCase = reversed_block_out_channels[min(i + 1 , len(__A ) - 1 )] _UpperCAmelCase = i == len(__A ) - 1 if up_block_type == "CrossAttnUpBlock2D": _UpperCAmelCase = FlaxCrossAttnUpBlockaD( in_channels=__A , out_channels=__A , prev_output_channel=__A , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _UpperCAmelCase = FlaxUpBlockaD( in_channels=__A , out_channels=__A , prev_output_channel=__A , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(__A ) _UpperCAmelCase = output_channel _UpperCAmelCase = up_blocks # out _UpperCAmelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _UpperCAmelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = False , ): # 1. time if not isinstance(__A , jnp.ndarray ): _UpperCAmelCase = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__A , jnp.ndarray ) and len(timesteps.shape ) == 0: _UpperCAmelCase = timesteps.astype(dtype=jnp.floataa ) _UpperCAmelCase = jnp.expand_dims(__A , 0 ) _UpperCAmelCase = self.time_proj(__A ) _UpperCAmelCase = self.time_embedding(__A ) # 2. pre-process _UpperCAmelCase = jnp.transpose(__A , (0, 2, 3, 1) ) _UpperCAmelCase = self.conv_in(__A ) # 3. down _UpperCAmelCase = (sample,) for down_block in self.down_blocks: if isinstance(__A , __A ): _UpperCAmelCase = down_block(__A , __A , __A , deterministic=not train ) else: _UpperCAmelCase = down_block(__A , __A , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: _UpperCAmelCase = () for down_block_res_sample, down_block_additional_residual in zip( __A , __A ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) _UpperCAmelCase = new_down_block_res_samples # 4. mid _UpperCAmelCase = self.mid_block(__A , __A , __A , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: _UpperCAmelCase = down_block_res_samples[-(self.layers_per_block + 1) :] _UpperCAmelCase = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(__A , __A ): _UpperCAmelCase = up_block( __A , temb=__A , encoder_hidden_states=__A , res_hidden_states_tuple=__A , deterministic=not train , ) else: _UpperCAmelCase = up_block(__A , temb=__A , res_hidden_states_tuple=__A , deterministic=not train ) # 6. post-process _UpperCAmelCase = self.conv_norm_out(__A ) _UpperCAmelCase = nn.silu(__A ) _UpperCAmelCase = self.conv_out(__A ) _UpperCAmelCase = jnp.transpose(__A , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=__A )
518
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
17
0
a_ = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def lowerCamelCase__ ( _a): assert type(a__) in (int, float) and decimal == int(a__) SCREAMING_SNAKE_CASE : List[str] = int(a__) SCREAMING_SNAKE_CASE : List[Any] = """""" SCREAMING_SNAKE_CASE : int = False if decimal < 0: SCREAMING_SNAKE_CASE : Tuple = True decimal *= -1 while decimal > 0: SCREAMING_SNAKE_CASE : List[Any] = divmod(a__ , 16) SCREAMING_SNAKE_CASE : Union[str, Any] = values[remainder] + hexadecimal SCREAMING_SNAKE_CASE : Optional[Any] = """0x""" + hexadecimal if negative: SCREAMING_SNAKE_CASE : Tuple = """-""" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
25
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : str = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCamelCase_ ( _lowercase ): _lowercase : Dict = '''unispeech''' def __init__( self : str , __A : Tuple=32 , __A : List[str]=768 , __A : Dict=12 , __A : Union[str, Any]=12 , __A : Tuple=3072 , __A : Any="gelu" , __A : int=0.1 , __A : Optional[int]=0.1 , __A : List[Any]=0.1 , __A : Any=0.0 , __A : List[str]=0.0 , __A : int=0.1 , __A : List[Any]=0.1 , __A : List[str]=0.0_2 , __A : List[str]=1e-5 , __A : List[Any]="group" , __A : int="gelu" , __A : Any=(512, 512, 512, 512, 512, 512, 512) , __A : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , __A : Tuple=(10, 3, 3, 3, 3, 2, 2) , __A : Optional[int]=False , __A : Any=128 , __A : Union[str, Any]=16 , __A : Optional[Any]=False , __A : str=True , __A : Dict=0.0_5 , __A : Optional[Any]=10 , __A : Dict=2 , __A : int=0.0 , __A : List[str]=10 , __A : str=0 , __A : List[str]=320 , __A : List[Any]=2 , __A : Tuple=0.1 , __A : Optional[int]=100 , __A : Any=256 , __A : Dict=256 , __A : Tuple=0.1 , __A : List[str]="mean" , __A : int=False , __A : List[str]=False , __A : List[Any]=256 , __A : str=80 , __A : Tuple=0 , __A : Tuple=1 , __A : int=2 , __A : Dict=0.5 , **__A : List[Any] , ): super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) __A : Dict = hidden_size __A : Optional[Any] = feat_extract_norm __A : List[Any] = feat_extract_activation __A : str = list(__A ) __A : Optional[Any] = list(__A ) __A : Optional[int] = list(__A ) __A : List[Any] = conv_bias __A : Optional[int] = num_conv_pos_embeddings __A : List[Any] = num_conv_pos_embedding_groups __A : int = len(self.conv_dim ) __A : Optional[Any] = num_hidden_layers __A : List[str] = intermediate_size __A : Union[str, Any] = hidden_act __A : Optional[int] = num_attention_heads __A : Tuple = hidden_dropout __A : Optional[Any] = attention_dropout __A : Union[str, Any] = activation_dropout __A : Dict = feat_proj_dropout __A : Optional[int] = final_dropout __A : Dict = layerdrop __A : Optional[int] = layer_norm_eps __A : Optional[Any] = initializer_range __A : Optional[int] = num_ctc_classes __A : Dict = vocab_size __A : List[str] = do_stable_layer_norm __A : Tuple = use_weighted_layer_sum __A : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A : Tuple = apply_spec_augment __A : Union[str, Any] = mask_time_prob __A : Optional[Any] = mask_time_length __A : List[Any] = mask_time_min_masks __A : List[Any] = mask_feature_prob __A : Any = mask_feature_length __A : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __A : Any = num_codevectors_per_group __A : Tuple = num_codevector_groups __A : List[str] = contrastive_logits_temperature __A : Optional[int] = feat_quantizer_dropout __A : int = num_negatives __A : List[str] = codevector_dim __A : int = proj_codevector_dim __A : Union[str, Any] = diversity_loss_weight # ctc loss __A : List[str] = ctc_loss_reduction __A : Any = ctc_zero_infinity # pretraining loss __A : Union[str, Any] = replace_prob @property def lowerCAmelCase_ ( self : int ): return functools.reduce(operator.mul , self.conv_stride , 1 )
17
0
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase ( a__ : Any , a__ : Optional[Any] ) -> Union[str, Any]: # Load checkpoint _UpperCamelCase = torch.load(a__ , map_location='''cpu''' ) _UpperCamelCase = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository _UpperCamelCase = {} for k, v in state_dict.items(): if "pred_layer" in k: _UpperCamelCase = v else: _UpperCamelCase = v _UpperCamelCase = chkpt["""params"""] _UpperCamelCase = {n: v for n, v in config.items() if not isinstance(a__ , (torch.FloatTensor, numpy.ndarray) )} _UpperCamelCase = chkpt["""dico_word2id"""] _UpperCamelCase = {s + """</w>""" if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model _UpperCamelCase = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME _UpperCamelCase = pytorch_dump_folder_path + """/""" + CONFIG_NAME _UpperCamelCase = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(a__ , a__ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(a__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(a__ , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(a__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(a__ , indent=2 ) + '''\n''' ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
420
import fire from utils import calculate_rouge, save_json def __SCREAMING_SNAKE_CASE ( a__ : Any ,a__ : Tuple ,a__ : Any=None ,**a__ : Dict ) -> Optional[Any]: __A : int = [x.strip() for x in open(a__ ).readlines()] __A : List[str] = [x.strip() for x in open(a__ ).readlines()][: len(a__ )] __A : List[Any] = calculate_rouge(a__ ,a__ ,**a__ ) if save_path is not None: save_json(a__ ,a__ ,indent=a__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
17
0
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( _lowercase ): """simple docstring""" _a = (PNDMScheduler,) _a = (('''num_inference_steps''', 50),) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[str] = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**__A ) return config def lowerCAmelCase__ ( self , UpperCamelCase_=0 , **UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Tuple = dict(self.forward_default_kwargs ) UpperCamelCase__ :str = kwargs.pop('''num_inference_steps''' , __A ) UpperCamelCase__ :str = self.dummy_sample UpperCamelCase__ :Any = 0.1 * sample UpperCamelCase__ :List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCamelCase__ :Dict = self.get_scheduler_config(**__A ) UpperCamelCase__ :Optional[Any] = scheduler_class(**__A ) scheduler.set_timesteps(__A ) # copy over dummy past residuals UpperCamelCase__ :Union[str, Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__A ) UpperCamelCase__ :str = scheduler_class.from_pretrained(__A ) new_scheduler.set_timesteps(__A ) # copy over dummy past residuals UpperCamelCase__ :Any = dummy_past_residuals[:] UpperCamelCase__ :List[str] = scheduler.step_prk(__A , __A , __A , **__A ).prev_sample UpperCamelCase__ :int = new_scheduler.step_prk(__A , __A , __A , **__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCamelCase__ :int = scheduler.step_plms(__A , __A , __A , **__A ).prev_sample UpperCamelCase__ :List[str] = new_scheduler.step_plms(__A , __A , __A , **__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowerCAmelCase__ ( self ): '''simple docstring''' pass def lowerCAmelCase__ ( self , UpperCamelCase_=0 , **UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[str] = dict(self.forward_default_kwargs ) UpperCamelCase__ :Dict = kwargs.pop('''num_inference_steps''' , __A ) UpperCamelCase__ :int = self.dummy_sample UpperCamelCase__ :Tuple = 0.1 * sample UpperCamelCase__ :Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCamelCase__ :Any = self.get_scheduler_config() UpperCamelCase__ :Union[str, Any] = scheduler_class(**__A ) scheduler.set_timesteps(__A ) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase__ :Dict = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__A ) UpperCamelCase__ :List[str] = scheduler_class.from_pretrained(__A ) # copy over dummy past residuals new_scheduler.set_timesteps(__A ) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase__ :List[Any] = dummy_past_residuals[:] UpperCamelCase__ :List[str] = scheduler.step_prk(__A , __A , __A , **__A ).prev_sample UpperCamelCase__ :Any = new_scheduler.step_prk(__A , __A , __A , **__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCamelCase__ :Tuple = scheduler.step_plms(__A , __A , __A , **__A ).prev_sample UpperCamelCase__ :Tuple = new_scheduler.step_plms(__A , __A , __A , **__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :int = self.scheduler_classes[0] UpperCamelCase__ :List[Any] = self.get_scheduler_config(**__A ) UpperCamelCase__ :List[Any] = scheduler_class(**__A ) UpperCamelCase__ :Optional[int] = 10 UpperCamelCase__ :Optional[Any] = self.dummy_model() UpperCamelCase__ :Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(__A ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCamelCase__ :Tuple = model(__A , __A ) UpperCamelCase__ :List[str] = scheduler.step_prk(__A , __A , __A ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCamelCase__ :Optional[Any] = model(__A , __A ) UpperCamelCase__ :Tuple = scheduler.step_plms(__A , __A , __A ).prev_sample return sample def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = dict(self.forward_default_kwargs ) UpperCamelCase__ :Optional[int] = kwargs.pop('''num_inference_steps''' , __A ) for scheduler_class in self.scheduler_classes: UpperCamelCase__ :str = self.get_scheduler_config() UpperCamelCase__ :List[str] = scheduler_class(**__A ) UpperCamelCase__ :Any = self.dummy_sample UpperCamelCase__ :str = 0.1 * sample if num_inference_steps is not None and hasattr(__A , '''set_timesteps''' ): scheduler.set_timesteps(__A ) elif num_inference_steps is not None and not hasattr(__A , '''set_timesteps''' ): UpperCamelCase__ :Union[str, Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCamelCase__ :Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCamelCase__ :Any = dummy_past_residuals[:] UpperCamelCase__ :Any = scheduler.step_prk(__A , 0 , __A , **__A ).prev_sample UpperCamelCase__ :Tuple = scheduler.step_prk(__A , 1 , __A , **__A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCamelCase__ :Dict = scheduler.step_plms(__A , 0 , __A , **__A ).prev_sample UpperCamelCase__ :List[Any] = scheduler.step_plms(__A , 1 , __A , **__A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase__ ( self ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__A ) def lowerCAmelCase__ ( self ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__A ) UpperCamelCase__ :int = self.scheduler_classes[0] UpperCamelCase__ :Any = self.get_scheduler_config(steps_offset=1 ) UpperCamelCase__ :List[str] = scheduler_class(**__A ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def lowerCAmelCase__ ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=__A , beta_end=__A ) def lowerCAmelCase__ ( self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__A ) def lowerCAmelCase__ ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def lowerCAmelCase__ ( self ): '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=__A ) def lowerCAmelCase__ ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__A ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = 27 for scheduler_class in self.scheduler_classes: UpperCamelCase__ :Tuple = self.dummy_sample UpperCamelCase__ :List[str] = 0.1 * sample UpperCamelCase__ :List[Any] = self.get_scheduler_config() UpperCamelCase__ :int = scheduler_class(**__A ) scheduler.set_timesteps(__A ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCamelCase__ :Any = scheduler.step_prk(__A , __A , __A ).prev_sample def lowerCAmelCase__ ( self ): '''simple docstring''' with self.assertRaises(__A ): UpperCamelCase__ :Optional[int] = self.scheduler_classes[0] UpperCamelCase__ :int = self.get_scheduler_config() UpperCamelCase__ :Tuple = scheduler_class(**__A ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.full_loop() UpperCamelCase__ :int = torch.sum(torch.abs(__A ) ) UpperCamelCase__ :str = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = self.full_loop(prediction_type='''v_prediction''' ) UpperCamelCase__ :Tuple = torch.sum(torch.abs(__A ) ) UpperCamelCase__ :List[Any] = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = self.full_loop(set_alpha_to_one=__A , beta_start=0.01 ) UpperCamelCase__ :List[Any] = torch.sum(torch.abs(__A ) ) UpperCamelCase__ :Optional[int] = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = self.full_loop(set_alpha_to_one=__A , beta_start=0.01 ) UpperCamelCase__ :Optional[int] = torch.sum(torch.abs(__A ) ) UpperCamelCase__ :List[Any] = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
189
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( a__ : Optional[Any] ,a__ : Union[str, Any] ,a__ : Optional[int] ) -> List[Any]: # Initialise PyTorch model __A : Dict = MobileBertConfig.from_json_file(a__ ) print(f"""Building PyTorch model from configuration: {config}""" ) __A : Tuple = MobileBertForPreTraining(a__ ) # Load weights from tf checkpoint __A : Dict = load_tf_weights_in_mobilebert(a__ ,a__ ,a__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() ,a__ ) if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase_ : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
17
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=_lowercase ) class SCREAMING_SNAKE_CASE__ ( _lowercase ): '''simple docstring''' __lowerCamelCase : str = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) __lowerCamelCase : ClassVar[Features] = Features({"question": Value("string" ), "context": Value("string" )} ) __lowerCamelCase : ClassVar[Features] = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) __lowerCamelCase : str = "question" __lowerCamelCase : str = "context" __lowerCamelCase : str = "answers" @property def _lowerCAmelCase ( self ): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
662
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : int = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
0
"""simple docstring""" from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _a : def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str]=3 , SCREAMING_SNAKE_CASE__ : List[Any]=32 , SCREAMING_SNAKE_CASE__ : int=3 , SCREAMING_SNAKE_CASE__ : str=10 , SCREAMING_SNAKE_CASE__ : List[Any]=[10, 20, 30, 40] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int="relu" , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Dict=None , ): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = image_size lowerCamelCase__ = num_channels lowerCamelCase__ = embeddings_size lowerCamelCase__ = hidden_sizes lowerCamelCase__ = depths lowerCamelCase__ = is_training lowerCamelCase__ = use_labels lowerCamelCase__ = hidden_act lowerCamelCase__ = num_labels lowerCamelCase__ = scope lowerCamelCase__ = len(__A ) def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase__ = self.get_config() return config, pixel_values, labels def _UpperCamelCase ( self : int ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ): lowerCamelCase__ = TFRegNetModel(config=__A ) lowerCamelCase__ = model(__A , training=__A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = TFRegNetForImageClassification(__A ) lowerCamelCase__ = model(__A , labels=__A , training=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : str ): lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ = config_and_inputs lowerCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _a ( _lowercase , _lowercase , unittest.TestCase ): a_ : Optional[Any] = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () a_ : Tuple = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) a_ : Union[str, Any] = False a_ : Any = False a_ : Optional[int] = False a_ : Optional[Any] = False a_ : Union[str, Any] = False def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = TFRegNetModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=__A , has_text_modality=__A ) def _UpperCamelCase ( self : List[str] ): return @unittest.skip(reason='RegNet does not use inputs_embeds' ) def _UpperCamelCase ( self : List[Any] ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , ) @slow def _UpperCamelCase ( self : Dict ): super().test_keras_fit() @unittest.skip(reason='RegNet does not support input and output embeddings' ) def _UpperCamelCase ( self : Optional[int] ): pass def _UpperCamelCase ( self : str ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(__A ) lowerCamelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ = [*signature.parameters.keys()] lowerCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __A ) def _UpperCamelCase ( self : Any ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _UpperCamelCase ( self : List[str] ): def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = model_class(__A ) lowerCamelCase__ = model(**self._prepare_for_class(__A , __A ) , training=__A ) lowerCamelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__ = self.model_tester.num_stages self.assertEqual(len(__A ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCamelCase__ = layer_type lowerCamelCase__ = True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ = True check_hidden_states_output(__A , __A , __A ) def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any={} ): lowerCamelCase__ = model(__A , return_dict=__A , **__A ) lowerCamelCase__ = model(__A , return_dict=__A , **__A ).to_tuple() def recursive_check(SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int ): if isinstance(__A , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__A , __A ): recursive_check(__A , __A ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__A , __A ) ) , msg=( 'Tuple and dict output are not equal. Difference:' F' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}' ) , ) recursive_check(__A , __A ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(__A ) lowerCamelCase__ = self._prepare_for_class(__A , __A ) lowerCamelCase__ = self._prepare_for_class(__A , __A ) check_equivalence(__A , __A , __A ) lowerCamelCase__ = self._prepare_for_class(__A , __A , return_labels=__A ) lowerCamelCase__ = self._prepare_for_class(__A , __A , return_labels=__A ) check_equivalence(__A , __A , __A ) lowerCamelCase__ = self._prepare_for_class(__A , __A ) lowerCamelCase__ = self._prepare_for_class(__A , __A ) check_equivalence(__A , __A , __A , {'output_hidden_states': True} ) lowerCamelCase__ = self._prepare_for_class(__A , __A , return_labels=__A ) lowerCamelCase__ = self._prepare_for_class(__A , __A , return_labels=__A ) check_equivalence(__A , __A , __A , {'output_hidden_states': True} ) def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @slow def _UpperCamelCase ( self : int ): for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFRegNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def snake_case ( )-> List[str]: '''simple docstring''' lowerCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class _a ( unittest.TestCase ): @cached_property def _UpperCamelCase ( self : Union[str, Any] ): return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _UpperCamelCase ( self : str ): lowerCamelCase__ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCamelCase__ = self.default_image_processor lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=__A , return_tensors='tf' ) # forward pass lowerCamelCase__ = model(**__A , training=__A ) # verify the logits lowerCamelCase__ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , __A ) lowerCamelCase__ = tf.constant([-0.41_80, -1.50_51, -3.48_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , __A , atol=1e-4 )
510
import math class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : List[str]=0 ): # a graph with Node 0,1,...,N-1 __A : List[str] = n __A : List[str] = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # adjacency matrix for weight __A : str = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # dp[i][j] stores minimum distance from i to j def lowerCAmelCase_ ( self : str , __A : Union[str, Any] , __A : Any , __A : Optional[int] ): __A : List[Any] = w def lowerCAmelCase_ ( self : Union[str, Any] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __A : List[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[str] ): return self.dp[u][v] if __name__ == "__main__": UpperCAmelCase_ : Tuple = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
17
0
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' _lowerCAmelCase = FunnelConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(F'''Building PyTorch model from configuration: {config}''' ) _lowerCAmelCase = FunnelBaseModel(SCREAMING_SNAKE_CASE_ ) if base_model else FunnelModel(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
18
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : int = ["pixel_values"] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = IMAGENET_DEFAULT_MEAN , _lowerCAmelCase = IMAGENET_DEFAULT_STD , **_lowerCAmelCase , ) -> None: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = size if size is not None else {"shortest_edge": 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else {"height": 224, "width": 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = resample _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _lowerCAmelCase = int((256 / 224) * size["shortest_edge"] ) _lowerCAmelCase = get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = {"height": output_size[0], "width": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( _lowerCAmelCase , size=(size_dict["height"], size_dict["width"]) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ) -> BatchFeature: _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase = image_std if image_std is not None else self.image_std _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) _lowerCAmelCase = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _lowerCAmelCase = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: _lowerCAmelCase = [self.resize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_center_crop: _lowerCAmelCase = [self.center_crop(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_rescale: _lowerCAmelCase = [self.rescale(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_normalize: _lowerCAmelCase = [self.normalize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase = {"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
18
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor _SCREAMING_SNAKE_CASE = random.Random() def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any]=1.0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : List[Any]=None ): '''simple docstring''' if rng is None: _lowerCAmelCase = global_rng _lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=400 , _lowerCAmelCase=2000 , _lowerCAmelCase=24 , _lowerCAmelCase=24 , _lowerCAmelCase=0.0 , _lowerCAmelCase=16000 , _lowerCAmelCase=True , _lowerCAmelCase=True , ) -> Optional[int]: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = min_seq_length _lowerCAmelCase = max_seq_length _lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowerCAmelCase = feature_size _lowerCAmelCase = num_mel_bins _lowerCAmelCase = padding_value _lowerCAmelCase = sampling_rate _lowerCAmelCase = return_attention_mask _lowerCAmelCase = do_normalize def _snake_case ( self ) -> str: return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _snake_case ( self , _lowerCAmelCase=False , _lowerCAmelCase=False ) -> List[Any]: def _flatten(_lowerCAmelCase ): return list(itertools.chain(*_lowerCAmelCase ) ) if equal_length: _lowerCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _lowerCAmelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _lowerCAmelCase = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ): __lowerCamelCase : Union[str, Any] = SpeechaTextFeatureExtractor if is_speech_available() else None def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = SpeechaTextFeatureExtractionTester(self ) def _snake_case ( self , _lowerCAmelCase ) -> Optional[int]: self.assertTrue(np.all(np.mean(_lowerCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def _snake_case ( self ) -> List[str]: # Tests that all call wrap to encode_plus and batch_encode_plus _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size _lowerCAmelCase = feature_extractor(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input _lowerCAmelCase = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features _lowerCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched _lowerCAmelCase = feature_extractor(_lowerCAmelCase , return_tensors="np" ).input_features _lowerCAmelCase = feature_extractor(_lowerCAmelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _lowerCAmelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] _lowerCAmelCase = np.asarray(_lowerCAmelCase ) _lowerCAmelCase = feature_extractor(_lowerCAmelCase , return_tensors="np" ).input_features _lowerCAmelCase = feature_extractor(_lowerCAmelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def _snake_case ( self ) -> str: _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase = ["longest", "max_length", "do_not_pad"] _lowerCAmelCase = [None, 16, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = feature_extractor( _lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase ) _lowerCAmelCase = inputs.input_features _lowerCAmelCase = inputs.attention_mask _lowerCAmelCase = [np.sum(_lowerCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase = ["longest", "max_length", "do_not_pad"] _lowerCAmelCase = [None, 16, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = feature_extractor( _lowerCAmelCase , max_length=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="np" , return_attention_mask=_lowerCAmelCase ) _lowerCAmelCase = inputs.input_features _lowerCAmelCase = inputs.attention_mask _lowerCAmelCase = [np.sum(_lowerCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase = feature_extractor( _lowerCAmelCase , padding="max_length" , max_length=4 , truncation=_lowerCAmelCase , return_tensors="np" , return_attention_mask=_lowerCAmelCase , ) _lowerCAmelCase = inputs.input_features _lowerCAmelCase = inputs.attention_mask _lowerCAmelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase = feature_extractor( _lowerCAmelCase , padding="longest" , max_length=4 , truncation=_lowerCAmelCase , return_tensors="np" , return_attention_mask=_lowerCAmelCase , ) _lowerCAmelCase = inputs.input_features _lowerCAmelCase = inputs.attention_mask _lowerCAmelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) _lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase = feature_extractor( _lowerCAmelCase , padding="longest" , max_length=16 , truncation=_lowerCAmelCase , return_tensors="np" , return_attention_mask=_lowerCAmelCase , ) _lowerCAmelCase = inputs.input_features _lowerCAmelCase = inputs.attention_mask _lowerCAmelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def _snake_case ( self ) -> List[str]: import torch _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase = np.random.rand(100 , 32 ).astype(np.floataa ) _lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowerCAmelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _lowerCAmelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]: from datasets import load_dataset _lowerCAmelCase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech _lowerCAmelCase = ds.sort("id" ).select(range(_lowerCAmelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _snake_case ( self ) -> Any: # fmt: off _lowerCAmelCase = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ] ) # fmt: on _lowerCAmelCase = self._load_datasamples(1 ) _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase = feature_extractor(_lowerCAmelCase , return_tensors="pt" ).input_features self.assertEquals(input_features.shape , (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , _lowerCAmelCase , atol=1E-4 ) )
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "donut-swin" __lowerCamelCase : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , **_lowerCAmelCase , ) -> Optional[Any]: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
18
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[Any] = "distilbert" __lowerCamelCase : Tuple = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self , _lowerCAmelCase=30522 , _lowerCAmelCase=512 , _lowerCAmelCase=False , _lowerCAmelCase=6 , _lowerCAmelCase=12 , _lowerCAmelCase=768 , _lowerCAmelCase=4 * 768 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.02 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.2 , _lowerCAmelCase=0 , **_lowerCAmelCase , ) -> int: _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = sinusoidal_pos_embds _lowerCAmelCase = n_layers _lowerCAmelCase = n_heads _lowerCAmelCase = dim _lowerCAmelCase = hidden_dim _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation _lowerCAmelCase = initializer_range _lowerCAmelCase = qa_dropout _lowerCAmelCase = seq_classif_dropout super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase ) class lowerCAmelCase_ ( __magic_name__ ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "swinv2" __lowerCamelCase : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=32 , **_lowerCAmelCase , ) -> Tuple: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) _lowerCAmelCase = (0, 0, 0, 0)
18
1
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ): '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif stress < 0: raise ValueError("Stress cannot be negative" ) elif tangential_force < 0: raise ValueError("Tangential Force cannot be negative" ) elif area < 0: raise ValueError("Area cannot be negative" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
18
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ): __lowerCamelCase : Optional[Any] = AutoencoderKL __lowerCamelCase : List[Any] = "sample" __lowerCamelCase : Tuple = 1e-2 @property def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = 4 _lowerCAmelCase = 3 _lowerCAmelCase = (32, 32) _lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCAmelCase ) return {"sample": image} @property def _snake_case ( self ) -> Any: return (3, 32, 32) @property def _snake_case ( self ) -> List[Any]: return (3, 32, 32) def _snake_case ( self ) -> str: _lowerCAmelCase = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def _snake_case ( self ) -> Optional[int]: pass def _snake_case ( self ) -> Any: pass @unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" ) def _snake_case ( self ) -> str: # enable deterministic behavior for gradient checkpointing _lowerCAmelCase , _lowerCAmelCase = self.prepare_init_args_and_inputs_for_common() _lowerCAmelCase = self.model_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) assert not model.is_gradient_checkpointing and model.training _lowerCAmelCase = model(**_lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() _lowerCAmelCase = torch.randn_like(_lowerCAmelCase ) _lowerCAmelCase = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing _lowerCAmelCase = self.model_class(**_lowerCAmelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_lowerCAmelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training _lowerCAmelCase = model_a(**_lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() _lowerCAmelCase = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) _lowerCAmelCase = dict(model.named_parameters() ) _lowerCAmelCase = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(_lowerCAmelCase ) _lowerCAmelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _snake_case ( self ) -> Dict: _lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) _lowerCAmelCase = model.to(_lowerCAmelCase ) model.eval() if torch_device == "mps": _lowerCAmelCase = torch.manual_seed(0 ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) _lowerCAmelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _lowerCAmelCase = image.to(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , sample_posterior=_lowerCAmelCase , generator=_lowerCAmelCase ).sample _lowerCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": _lowerCAmelCase = torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ] ) elif torch_device == "cpu": _lowerCAmelCase = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: _lowerCAmelCase = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(_lowerCAmelCase , _lowerCAmelCase , rtol=1E-2 ) ) @slow class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy''' def _snake_case ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _lowerCAmelCase=0 , _lowerCAmelCase=(4, 3, 512, 512) , _lowerCAmelCase=False ) -> Tuple: _lowerCAmelCase = torch.floataa if fpaa else torch.floataa _lowerCAmelCase = torch.from_numpy(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) ).to(_lowerCAmelCase ).to(_lowerCAmelCase ) return image def _snake_case ( self , _lowerCAmelCase="CompVis/stable-diffusion-v1-4" , _lowerCAmelCase=False ) -> Tuple: _lowerCAmelCase = "fp16" if fpaa else None _lowerCAmelCase = torch.floataa if fpaa else torch.floataa _lowerCAmelCase = AutoencoderKL.from_pretrained( _lowerCAmelCase , subfolder="vae" , torch_dtype=_lowerCAmelCase , revision=_lowerCAmelCase , ) model.to(_lowerCAmelCase ).eval() return model def _snake_case ( self , _lowerCAmelCase=0 ) -> str: if torch_device == "mps": return torch.manual_seed(_lowerCAmelCase ) return torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase ) _lowerCAmelCase = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] _lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> str: _lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] _lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def _snake_case ( self , _lowerCAmelCase ) -> List[str]: _lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def _snake_case ( self , _lowerCAmelCase ) -> Any: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase ) _lowerCAmelCase = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model.encode(_lowerCAmelCase ).latent_dist _lowerCAmelCase = dist.sample(generator=_lowerCAmelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] _lowerCAmelCase = sample[0, -1, -3:, -3:].flatten().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) _lowerCAmelCase = 3E-3 if torch_device != "mps" else 1E-2 assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=_lowerCAmelCase )
18
1
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = [] create_all_state(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , [] , SCREAMING_SNAKE_CASE_ ) return result def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : list[list[int]] , ): '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE_ , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE_ ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE_ , level - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) current_list.pop() def __a(SCREAMING_SNAKE_CASE_ : list[list[int]] ): '''simple docstring''' for i in total_list: print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = generate_all_combinations(n, k) print_all_state(total_list)
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : str = "gpt_bigcode" __lowerCamelCase : Optional[int] = ["past_key_values"] __lowerCamelCase : List[str] = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _lowerCAmelCase=50257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=50256 , _lowerCAmelCase=50256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]: _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_embd _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = attention_softmax_in_fpaa _lowerCAmelCase = scale_attention_softmax_in_fpaa _lowerCAmelCase = multi_query _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
18
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ): __lowerCamelCase : Optional[int] = "maskformer-swin" __lowerCamelCase : Optional[Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Any: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) _lowerCAmelCase = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(_lowerCAmelCase ) + 1 )] _lowerCAmelCase , _lowerCAmelCase = get_aligned_output_features_output_indices( out_features=_lowerCAmelCase , out_indices=_lowerCAmelCase , stage_names=self.stage_names )
18
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[Any] = "data2vec-audio" def __init__( self , _lowerCAmelCase=32 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase="gelu" , _lowerCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _lowerCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase=False , _lowerCAmelCase=16 , _lowerCAmelCase=19 , _lowerCAmelCase=5 , _lowerCAmelCase=0.05 , _lowerCAmelCase=10 , _lowerCAmelCase=2 , _lowerCAmelCase=0.0 , _lowerCAmelCase=10 , _lowerCAmelCase=0 , _lowerCAmelCase="sum" , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=256 , _lowerCAmelCase=(512, 512, 512, 512, 1500) , _lowerCAmelCase=(5, 3, 3, 1, 1) , _lowerCAmelCase=(1, 2, 3, 1, 1) , _lowerCAmelCase=512 , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=False , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Dict: super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = feat_extract_activation _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = conv_bias _lowerCAmelCase = num_conv_pos_embeddings _lowerCAmelCase = num_conv_pos_embedding_groups _lowerCAmelCase = conv_pos_kernel_size _lowerCAmelCase = len(self.conv_dim ) _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = feat_proj_dropout _lowerCAmelCase = final_dropout _lowerCAmelCase = layerdrop _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = vocab_size _lowerCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase = mask_time_prob _lowerCAmelCase = mask_time_length _lowerCAmelCase = mask_time_min_masks _lowerCAmelCase = mask_feature_prob _lowerCAmelCase = mask_feature_length _lowerCAmelCase = mask_feature_min_masks # ctc loss _lowerCAmelCase = ctc_loss_reduction _lowerCAmelCase = ctc_zero_infinity # adapter _lowerCAmelCase = add_adapter _lowerCAmelCase = adapter_kernel_size _lowerCAmelCase = adapter_stride _lowerCAmelCase = num_adapter_layers _lowerCAmelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = xvector_output_dim @property def _snake_case ( self ) -> str: return math.prod(self.conv_stride )
18
1
'''simple docstring''' from math import factorial def __a(SCREAMING_SNAKE_CASE_ : int = 20 ): '''simple docstring''' _lowerCAmelCase = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... _lowerCAmelCase = n // 2 return int(factorial(SCREAMING_SNAKE_CASE_ ) / (factorial(SCREAMING_SNAKE_CASE_ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: _SCREAMING_SNAKE_CASE = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number.")
18
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = (DDPMParallelScheduler,) def _snake_case ( self , **_lowerCAmelCase ) -> int: _lowerCAmelCase = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**_lowerCAmelCase ) return config def _snake_case ( self ) -> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def _snake_case ( self ) -> Any: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _snake_case ( self ) -> List[str]: self.check_over_configs(thresholding=_lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , ) def _snake_case ( self ) -> int: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _snake_case ( self ) -> Dict: for t in [0, 500, 999]: self.check_over_forward(time_step=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = self.dummy_sample_deter + 0.1 _lowerCAmelCase = self.dummy_sample_deter - 0.1 _lowerCAmelCase = samplea.shape[0] _lowerCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) _lowerCAmelCase = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase ) _lowerCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _lowerCAmelCase = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowerCAmelCase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowerCAmelCase ): if i == len(_lowerCAmelCase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowerCAmelCase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowerCAmelCase , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowerCAmelCase ) with self.assertRaises(_lowerCAmelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=_lowerCAmelCase , timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowerCAmelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=_lowerCAmelCase )
18
1
'''simple docstring''' import functools def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) @functools.cache def min_distance(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa _lowerCAmelCase = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , SCREAMING_SNAKE_CASE_ ) , 1 + min_distance(SCREAMING_SNAKE_CASE_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
18
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "spiece.model"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<sep>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<cls>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=["<eop>", "<eod>"] , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: _lowerCAmelCase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) _lowerCAmelCase = 3 _lowerCAmelCase = do_lower_case _lowerCAmelCase = remove_space _lowerCAmelCase = keep_accents _lowerCAmelCase = vocab_file _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) _lowerCAmelCase = jieba _lowerCAmelCase = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _snake_case ( self ) -> Optional[int]: return len(self.sp_model ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__( self , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , _lowerCAmelCase ) -> str: if self.remove_space: _lowerCAmelCase = " ".join(inputs.strip().split() ) else: _lowerCAmelCase = inputs _lowerCAmelCase = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _lowerCAmelCase = unicodedata.normalize("NFKD" , _lowerCAmelCase ) _lowerCAmelCase = "".join([c for c in outputs if not unicodedata.combining(_lowerCAmelCase )] ) if self.do_lower_case: _lowerCAmelCase = outputs.lower() return outputs def _snake_case ( self , _lowerCAmelCase ) -> List[str]: _lowerCAmelCase = self.preprocess_text(_lowerCAmelCase ) _lowerCAmelCase = self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) _lowerCAmelCase = [] for piece in pieces: if len(_lowerCAmelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCAmelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase = cur_pieces[1:] else: _lowerCAmelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowerCAmelCase ) else: new_pieces.append(_lowerCAmelCase ) return new_pieces def _snake_case ( self , _lowerCAmelCase ) -> str: return self.sp_model.PieceToId(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]: return self.sp_model.IdToPiece(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = "".join(_lowerCAmelCase ).replace(_lowerCAmelCase , " " ).strip() return out_string def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is not None: return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] return ([0] * len(_lowerCAmelCase )) + [1, 1] def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(_lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , "wb" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,) def _snake_case ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: _lowerCAmelCase = super()._decode(*_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
18
1
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path _SCREAMING_SNAKE_CASE = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) _SCREAMING_SNAKE_CASE = [ord(letter) for letter in string.ascii_lowercase] _SCREAMING_SNAKE_CASE = {ord(char) for char in VALID_CHARS} _SCREAMING_SNAKE_CASE = ["the", "be", "to", "of", "and", "in", "that", "have"] def __a(SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : tuple[int, ...] ): '''simple docstring''' _lowerCAmelCase = "" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 for keychar, cipherchar in zip(cycle(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(SCREAMING_SNAKE_CASE_ ) return decoded def __a(SCREAMING_SNAKE_CASE_ : list[int] ): '''simple docstring''' _lowerCAmelCase = [] for key in product(SCREAMING_SNAKE_CASE_ , repeat=3 ): _lowerCAmelCase = try_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if encoded is not None: possibles.append(SCREAMING_SNAKE_CASE_ ) return possibles def __a(SCREAMING_SNAKE_CASE_ : list[str] , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def __a(SCREAMING_SNAKE_CASE_ : str = "p059_cipher.txt" ): '''simple docstring''' _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = Path(SCREAMING_SNAKE_CASE_ ).parent.joinpath(SCREAMING_SNAKE_CASE_ ).read_text(encoding="utf-8" ) _lowerCAmelCase = [int(SCREAMING_SNAKE_CASE_ ) for number in data.strip().split("," )] _lowerCAmelCase = filter_valid_chars(SCREAMING_SNAKE_CASE_ ) for common_word in COMMON_WORDS: _lowerCAmelCase = filter_common_word(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) == 1: break _lowerCAmelCase = possibles[0] return sum(ord(SCREAMING_SNAKE_CASE_ ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
18
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _SCREAMING_SNAKE_CASE = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" _SCREAMING_SNAKE_CASE = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" _SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def _snake_case ( self ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def _snake_case ( self ) -> Tuple: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="uniform_average" , _lowerCAmelCase=True ) -> Union[str, Any]: _lowerCAmelCase = mean_squared_error( _lowerCAmelCase , _lowerCAmelCase , sample_weight=_lowerCAmelCase , multioutput=_lowerCAmelCase , squared=_lowerCAmelCase ) return {"mse": mse}
18
1
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : bytes ): '''simple docstring''' return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
18
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
18
1
'''simple docstring''' import math def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' return math.sqrt(SCREAMING_SNAKE_CASE_ ) * math.sqrt(SCREAMING_SNAKE_CASE_ ) == num def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = 0 _lowerCAmelCase = n while left <= right: _lowerCAmelCase = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: _lowerCAmelCase = mid - 1 else: _lowerCAmelCase = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
18
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : int | float | str , SCREAMING_SNAKE_CASE_ : int | float | str ): '''simple docstring''' if nth_term == "": return [""] _lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = [] for temp in range(int(SCREAMING_SNAKE_CASE_ ) ): series.append(F'''1 / {pow(temp + 1 , int(SCREAMING_SNAKE_CASE_ ) )}''' if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = int(input("Enter the last number (nth term) of the P-Series")) _SCREAMING_SNAKE_CASE = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
18
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : str = "encoder-decoder" __lowerCamelCase : Tuple = True def __init__( self , **_lowerCAmelCase ) -> str: super().__init__(**_lowerCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _lowerCAmelCase = kwargs.pop("encoder" ) _lowerCAmelCase = encoder_config.pop("model_type" ) _lowerCAmelCase = kwargs.pop("decoder" ) _lowerCAmelCase = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _lowerCAmelCase = AutoConfig.for_model(_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = AutoConfig.for_model(_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = True @classmethod def _snake_case ( cls , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) -> PretrainedConfig: logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) _lowerCAmelCase = True _lowerCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowerCAmelCase ) def _snake_case ( self ) -> Any: _lowerCAmelCase = copy.deepcopy(self.__dict__ ) _lowerCAmelCase = self.encoder.to_dict() _lowerCAmelCase = self.decoder.to_dict() _lowerCAmelCase = self.__class__.model_type return output
18
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] )
18
1
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def __a(SCREAMING_SNAKE_CASE_ : Namespace ): '''simple docstring''' return TrainCommand(SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_ ( __magic_name__ ): @staticmethod def _snake_case ( _lowerCAmelCase ) -> Any: _lowerCAmelCase = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=_lowerCAmelCase , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=_lowerCAmelCase , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=_lowerCAmelCase , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=_lowerCAmelCase , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=_lowerCAmelCase , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=_lowerCAmelCase , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=_lowerCAmelCase , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=_lowerCAmelCase , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=_lowerCAmelCase , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=_lowerCAmelCase , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=_lowerCAmelCase , default=3E-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=_lowerCAmelCase , default=1E-08 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=_lowerCAmelCase ) def __init__( self , _lowerCAmelCase ) -> Tuple: _lowerCAmelCase = logging.get_logger("transformers-cli/training" ) _lowerCAmelCase = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=_lowerCAmelCase ) _lowerCAmelCase = args.output _lowerCAmelCase = args.column_label _lowerCAmelCase = args.column_text _lowerCAmelCase = args.column_id self.logger.info(f'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": _lowerCAmelCase = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'''Loading dataset from {args.train_data}''' ) _lowerCAmelCase = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase = None if args.validation_data: self.logger.info(f'''Loading validation dataset from {args.validation_data}''' ) _lowerCAmelCase = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase = args.validation_split _lowerCAmelCase = args.train_batch_size _lowerCAmelCase = args.valid_batch_size _lowerCAmelCase = args.learning_rate _lowerCAmelCase = args.adam_epsilon def _snake_case ( self ) -> Optional[Any]: if self.framework == "tf": return self.run_tf() return self.run_torch() def _snake_case ( self ) -> Optional[int]: raise NotImplementedError def _snake_case ( self ) -> List[str]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
18
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() _lowerCAmelCase = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) _lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict=None ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() _lowerCAmelCase = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) _lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = result.headers["Location"] _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F'''{artifact_name}.zip''' ) with open(SCREAMING_SNAKE_CASE_ , "wb" ) as fp: fp.write(response.content ) def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=None ): '''simple docstring''' _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE_ ) as f: for line in f: _lowerCAmelCase = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _lowerCAmelCase = line[: line.index(": " )] _lowerCAmelCase = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed _lowerCAmelCase = line[len("FAILED " ) :] failed_tests.append(SCREAMING_SNAKE_CASE_ ) elif filename == "job_name.txt": _lowerCAmelCase = line if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( F'''`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE_ )} for `errors` ''' F'''and {len(SCREAMING_SNAKE_CASE_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' " problem." ) _lowerCAmelCase = None if job_name and job_links: _lowerCAmelCase = job_links.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # A list with elements of the form (line of error, error, failed test) _lowerCAmelCase = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] return result def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = [] _lowerCAmelCase = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for p in os.listdir(SCREAMING_SNAKE_CASE_ ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE_ , job_links=SCREAMING_SNAKE_CASE_ ) ) return errors def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str=None ): '''simple docstring''' _lowerCAmelCase = Counter() counter.update([x[1] for x in logs] ) _lowerCAmelCase = counter.most_common() _lowerCAmelCase = {} for error, count in counts: if error_filter is None or error not in error_filter: _lowerCAmelCase = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} _lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def __a(SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' _lowerCAmelCase = test.split("::" )[0] if test.startswith("tests/models/" ): _lowerCAmelCase = test.split("/" )[2] else: _lowerCAmelCase = None return test def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs] _lowerCAmelCase = [x for x in logs if x[2] is not None] _lowerCAmelCase = {x[2] for x in logs} _lowerCAmelCase = {} for test in tests: _lowerCAmelCase = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _lowerCAmelCase = counter.most_common() _lowerCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _lowerCAmelCase = sum(error_counts.values() ) if n_errors > 0: _lowerCAmelCase = {"count": n_errors, "errors": error_counts} _lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase = "| no. | error | status |" _lowerCAmelCase = "|-:|:-|:-|" _lowerCAmelCase = [header, sep] for error in reduced_by_error: _lowerCAmelCase = reduced_by_error[error]["count"] _lowerCAmelCase = F'''| {count} | {error[:100]} | |''' lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase = "| model | no. of errors | major error | count |" _lowerCAmelCase = "|-:|-:|-:|-:|" _lowerCAmelCase = [header, sep] for model in reduced_by_model: _lowerCAmelCase = reduced_by_model[model]["count"] _lowerCAmelCase , _lowerCAmelCase = list(reduced_by_model[model]["errors"].items() )[0] _lowerCAmelCase = F'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _SCREAMING_SNAKE_CASE = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _SCREAMING_SNAKE_CASE = get_job_links(args.workflow_run_id, token=args.token) _SCREAMING_SNAKE_CASE = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _SCREAMING_SNAKE_CASE = k.find(" / ") _SCREAMING_SNAKE_CASE = k[index + len(" / ") :] _SCREAMING_SNAKE_CASE = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _SCREAMING_SNAKE_CASE = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _SCREAMING_SNAKE_CASE = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _SCREAMING_SNAKE_CASE = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = reduce_by_error(errors) _SCREAMING_SNAKE_CASE = reduce_by_model(errors) _SCREAMING_SNAKE_CASE = make_github_table(reduced_by_error) _SCREAMING_SNAKE_CASE = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
18
1
'''simple docstring''' from math import sqrt def __a(SCREAMING_SNAKE_CASE_ : int = 1000000 ): '''simple docstring''' _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(SCREAMING_SNAKE_CASE_ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
18
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = (DPMSolverSinglestepScheduler,) __lowerCamelCase : int = (("num_inference_steps", 25),) def _snake_case ( self , **_lowerCAmelCase ) -> Any: _lowerCAmelCase = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf" ), "variance_type": None, } config.update(**_lowerCAmelCase ) return config def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> List[Any]: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) _lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase ) new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase , _lowerCAmelCase = sample, sample for t in range(_lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self ) -> int: pass def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) _lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Tuple: if scheduler is None: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample return sample def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = 50 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults _lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 _lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _snake_case ( self ) -> str: self.check_over_configs(thresholding=_lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , algorithm_type="dpmsolver++" , solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , ) def _snake_case ( self ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , ) _lowerCAmelCase = self.full_loop( solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , ) assert not torch.isnan(_lowerCAmelCase ).any(), "Samples have nan numbers" def _snake_case ( self ) -> Optional[Any]: self.check_over_configs(lower_order_final=_lowerCAmelCase ) self.check_over_configs(lower_order_final=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: self.check_over_configs(lambda_min_clipped=-float("inf" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def _snake_case ( self ) -> str: self.check_over_configs(variance_type=_lowerCAmelCase ) self.check_over_configs(variance_type="learned_range" ) def _snake_case ( self ) -> int: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowerCAmelCase , time_step=0 ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.full_loop() _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.full_loop(use_karras_sigmas=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.full_loop(prediction_type="v_prediction" ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def _snake_case ( self ) -> Any: _lowerCAmelCase = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(thresholding=_lowerCAmelCase , dynamic_thresholding_ratio=0 ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa
18
1
'''simple docstring''' _SCREAMING_SNAKE_CASE = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _SCREAMING_SNAKE_CASE = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __a(SCREAMING_SNAKE_CASE_ : dict[int, list[int]] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[bool] ): '''simple docstring''' _lowerCAmelCase = True _lowerCAmelCase = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) order.append(SCREAMING_SNAKE_CASE_ ) return order def __a(SCREAMING_SNAKE_CASE_ : dict[int, list[int]] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[bool] ): '''simple docstring''' _lowerCAmelCase = True _lowerCAmelCase = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return component def __a(SCREAMING_SNAKE_CASE_ : dict[int, list[int]] ): '''simple docstring''' _lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) * [False] _lowerCAmelCase = {vert: [] for vert in range(len(SCREAMING_SNAKE_CASE_ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = [] for i, was_visited in enumerate(SCREAMING_SNAKE_CASE_ ): if not was_visited: order += topology_sort(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = [] _lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) * [False] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): _lowerCAmelCase = order[len(SCREAMING_SNAKE_CASE_ ) - i - 1] if not visited[vert]: _lowerCAmelCase = find_components(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) components_list.append(SCREAMING_SNAKE_CASE_ ) return components_list
18
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : list ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
18
1
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=128 , _lowerCAmelCase=32 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ) -> str: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ) -> Dict: return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def _snake_case ( self ) -> str: ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = self.prepare_config_and_inputs() _lowerCAmelCase = True _lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = NezhaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> Optional[int]: _lowerCAmelCase = True _lowerCAmelCase = NezhaModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Any: _lowerCAmelCase = NezhaForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: _lowerCAmelCase = NezhaForNextSentencePrediction(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: _lowerCAmelCase = NezhaForPreTraining(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , next_sentence_label=_lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: _lowerCAmelCase = NezhaForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = self.num_labels _lowerCAmelCase = NezhaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: _lowerCAmelCase = self.num_labels _lowerCAmelCase = NezhaForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: _lowerCAmelCase = self.num_choices _lowerCAmelCase = NezhaForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,__magic_name__ ,unittest.TestCase ): __lowerCamelCase : Dict = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) __lowerCamelCase : str = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : str = True def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> Any: _lowerCAmelCase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): _lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCAmelCase ) _lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def _snake_case ( self ) -> str: _lowerCAmelCase = NezhaModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def _snake_case ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_lowerCAmelCase ) def _snake_case ( self ) -> str: # This regression test was failing with PyTorch < 1.3 ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() _lowerCAmelCase = None self.model_tester.create_and_check_model_as_decoder( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def _snake_case ( self ) -> str: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) @slow def _snake_case ( self ) -> Optional[Any]: for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = NezhaModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @slow @require_torch_gpu def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return _lowerCAmelCase = True _lowerCAmelCase = model_class(config=_lowerCAmelCase ) _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = torch.jit.trace( _lowerCAmelCase , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , "bert.pt" ) ) _lowerCAmelCase = torch.jit.load(os.path.join(_lowerCAmelCase , "bert.pt" ) , map_location=_lowerCAmelCase ) loaded(inputs_dict["input_ids"].to(_lowerCAmelCase ) , inputs_dict["attention_mask"].to(_lowerCAmelCase ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def _snake_case ( self ) -> Tuple: _lowerCAmelCase = NezhaModel.from_pretrained("sijunhe/nezha-cn-base" ) _lowerCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] _lowerCAmelCase = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1E-4 ) ) @slow def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base" ) _lowerCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] _lowerCAmelCase = torch.Size((1, 6, 21128) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1E-4 ) )
18
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCAmelCase = cs.out[:-1] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) _lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase ) _lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase ) thread.start() _lowerCAmelCase = "" for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) _lowerCAmelCase = greedy_ids[:, input_ids.shape[1] :] _lowerCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_prompt=_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCAmelCase = cs.out[:-1] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Dict: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _lowerCAmelCase = AutoTokenizer.from_pretrained("distilgpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = torch.ones((1, 5) , device=_lowerCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=1 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _lowerCAmelCase = cs.out[:-1] # Remove the final "\n" _lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase , timeout=0.001 ) _lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = "" for new_text in streamer: streamer_text += new_text
18
1
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[List[PIL.Image.Image], np.ndarray] __lowerCamelCase : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
18
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "blenderbot-small" __lowerCamelCase : Optional[Any] = ["past_key_values"] __lowerCamelCase : str = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , _lowerCAmelCase=50265 , _lowerCAmelCase=512 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="gelu" , _lowerCAmelCase=512 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=2 , **_lowerCAmelCase , ) -> Dict: _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = d_model _lowerCAmelCase = encoder_ffn_dim _lowerCAmelCase = encoder_layers _lowerCAmelCase = encoder_attention_heads _lowerCAmelCase = decoder_ffn_dim _lowerCAmelCase = decoder_layers _lowerCAmelCase = decoder_attention_heads _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = activation_function _lowerCAmelCase = init_std _lowerCAmelCase = encoder_layerdrop _lowerCAmelCase = decoder_layerdrop _lowerCAmelCase = use_cache _lowerCAmelCase = encoder_layers _lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) class lowerCAmelCase_ ( __magic_name__ ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _lowerCAmelCase = {0: "batch"} _lowerCAmelCase = {0: "batch", 1: "past_decoder_sequence + sequence"} else: _lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} _lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _lowerCAmelCase , _lowerCAmelCase = self.num_layers for i in range(_lowerCAmelCase ): _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} else: _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = super().outputs else: _lowerCAmelCase = super(_lowerCAmelCase , self ).outputs if self.use_past: _lowerCAmelCase , _lowerCAmelCase = self.num_layers for i in range(_lowerCAmelCase ): _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Generate decoder inputs _lowerCAmelCase = seq_length if not self.use_past else 1 _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} _lowerCAmelCase = dict(**_lowerCAmelCase , **_lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape _lowerCAmelCase = common_inputs["decoder_input_ids"].shape[1] _lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads _lowerCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase = decoder_seq_length + 3 _lowerCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCAmelCase = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase )] , dim=1 ) _lowerCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCAmelCase , _lowerCAmelCase = self.num_layers _lowerCAmelCase = min(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = max(_lowerCAmelCase , _lowerCAmelCase ) - min_num_layers _lowerCAmelCase = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(_lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), ) ) # TODO: test this. _lowerCAmelCase = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(_lowerCAmelCase , _lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape # Not using the same length for past_key_values _lowerCAmelCase = seqlen + 2 _lowerCAmelCase , _lowerCAmelCase = self.num_layers _lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads _lowerCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase = common_inputs["attention_mask"].dtype _lowerCAmelCase = torch.cat( [common_inputs["attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase )] , dim=1 ) _lowerCAmelCase = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase ) ] return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCAmelCase = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCAmelCase = tokenizer.num_special_tokens_to_add(_lowerCAmelCase ) _lowerCAmelCase = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence _lowerCAmelCase = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCAmelCase = dict(tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) elif self.task == "causal-lm": _lowerCAmelCase = self._generate_dummy_inputs_for_causal_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) else: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = super()._flatten_past_key_values_(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCAmelCase = super(_lowerCAmelCase , self )._flatten_past_key_values_( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
18
1
'''simple docstring''' import re def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' return [char.split() for char in re.split(R"[^ a-z A-Z 0-9 \s]" , str_ )] def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase = split_input(str_ ) return "".join( ["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' try: _lowerCAmelCase = split_input(SCREAMING_SNAKE_CASE_ ) if upper: _lowerCAmelCase = "".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: _lowerCAmelCase = "".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' return to_simple_case(SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' try: _lowerCAmelCase = to_simple_case(SCREAMING_SNAKE_CASE_ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool ): '''simple docstring''' return to_complex_case(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , "_" ) def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool ): '''simple docstring''' return to_complex_case(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , "-" ) if __name__ == "__main__": __import__("doctest").testmod()
18
'''simple docstring''' import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" _SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" _SCREAMING_SNAKE_CASE = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def _snake_case ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: _lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in predictions] ) _lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in references] ) else: _lowerCAmelCase = np.asarray(_lowerCAmelCase ) _lowerCAmelCase = np.asarray(_lowerCAmelCase ) if ignore_case: _lowerCAmelCase = np.char.lower(_lowerCAmelCase ) _lowerCAmelCase = np.char.lower(_lowerCAmelCase ) if ignore_punctuation: _lowerCAmelCase = string.punctuation.maketrans("" , "" , string.punctuation ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) if ignore_numbers: _lowerCAmelCase = string.digits.maketrans("" , "" , string.digits ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _lowerCAmelCase = predictions == references return {"exact_match": np.mean(_lowerCAmelCase ) * 100}
18
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> None: warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
18
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> None: warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
18
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : str = field(default="language-modeling" ,metadata={"include_in_asdict_even_if_is_default": True} ) __lowerCamelCase : ClassVar[Features] = Features({"text": Value("string" )} ) __lowerCamelCase : ClassVar[Features] = Features({} ) __lowerCamelCase : str = "text" @property def _snake_case ( self ) -> Dict[str, str]: return {self.text_column: "text"}
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = "falcon" __lowerCamelCase : List[str] = ["past_key_values"] def __init__( self , _lowerCAmelCase=65024 , _lowerCAmelCase=4544 , _lowerCAmelCase=32 , _lowerCAmelCase=71 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=11 , _lowerCAmelCase=11 , **_lowerCAmelCase , ) -> Union[str, Any]: _lowerCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _lowerCAmelCase = kwargs.pop("n_embed" , _lowerCAmelCase ) _lowerCAmelCase = hidden_size if n_embed is None else n_embed _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = use_cache _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id _lowerCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _lowerCAmelCase = alibi _lowerCAmelCase = new_decoder_architecture _lowerCAmelCase = multi_query # Ignored when new_decoder_architecture is True _lowerCAmelCase = parallel_attn _lowerCAmelCase = bias super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) @property def _snake_case ( self ) -> Optional[Any]: return self.hidden_size // self.num_attention_heads @property def _snake_case ( self ) -> Optional[Any]: return not self.alibi
18
1
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : str = "vision-encoder-decoder" __lowerCamelCase : List[str] = True def __init__( self , **_lowerCAmelCase ) -> Union[str, Any]: super().__init__(**_lowerCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) _lowerCAmelCase = kwargs.pop("encoder" ) _lowerCAmelCase = encoder_config.pop("model_type" ) _lowerCAmelCase = kwargs.pop("decoder" ) _lowerCAmelCase = decoder_config.pop("model_type" ) _lowerCAmelCase = AutoConfig.for_model(_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = AutoConfig.for_model(_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = True @classmethod def _snake_case ( cls , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) -> PretrainedConfig: logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) _lowerCAmelCase = True _lowerCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = copy.deepcopy(self.__dict__ ) _lowerCAmelCase = self.encoder.to_dict() _lowerCAmelCase = self.decoder.to_dict() _lowerCAmelCase = self.__class__.model_type return output class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : str = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}} ) class lowerCAmelCase_ ( __magic_name__ ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: _lowerCAmelCase = OrderedDict() _lowerCAmelCase = {0: "batch", 1: "past_decoder_sequence + sequence"} _lowerCAmelCase = {0: "batch", 1: "past_decoder_sequence + sequence"} _lowerCAmelCase = {0: "batch", 1: "encoder_sequence"} return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: import torch _lowerCAmelCase = OrderedDict() _lowerCAmelCase = super().generate_dummy_inputs( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = dummy_input["input_ids"].shape _lowerCAmelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) _lowerCAmelCase = dummy_input.pop("input_ids" ) _lowerCAmelCase = dummy_input.pop("attention_mask" ) _lowerCAmelCase = torch.zeros(_lowerCAmelCase ) return common_inputs class lowerCAmelCase_ ( __magic_name__ ): @property def _snake_case ( self ) -> None: pass def _snake_case ( self , _lowerCAmelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = "default" ) -> OnnxConfig: _lowerCAmelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_lowerCAmelCase , _lowerCAmelCase )
18
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/deit-base-distilled-patch16-224": ( "https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Optional[int] = "deit" def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=16 , **_lowerCAmelCase , ) -> Dict: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = qkv_bias _lowerCAmelCase = encoder_stride class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self ) -> float: return 1E-4
18
1
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Dict = (UnCLIPScheduler,) def _snake_case ( self , **_lowerCAmelCase ) -> str: _lowerCAmelCase = { "num_train_timesteps": 1000, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**_lowerCAmelCase ) return config def _snake_case ( self ) -> List[str]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _snake_case ( self ) -> List[str]: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def _snake_case ( self ) -> Any: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _snake_case ( self ) -> str: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase , prev_timestep=_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(variance_type="fixed_small_log" ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0549625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9994987 ) ) < 1E-5 def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(variance_type="learned_range" ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCAmelCase ) - -10.1712790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCAmelCase ) - -5.7998052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCAmelCase ) - -0.0010011 < 1E-5 def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = scheduler.timesteps _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.2682495 ) < 1E-2 assert abs(result_mean.item() - 0.3284743 ) < 1E-3 def _snake_case ( self ) -> int: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) _lowerCAmelCase = scheduler.timesteps _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) if i + 1 == timesteps.shape[0]: _lowerCAmelCase = None else: _lowerCAmelCase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prev_timestep=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.2044983 ) < 1E-2 assert abs(result_mean.item() - 0.3362038 ) < 1E-3 def _snake_case ( self ) -> str: pass def _snake_case ( self ) -> List[str]: pass
18
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
18
1
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = (DDPMParallelScheduler,) def _snake_case ( self , **_lowerCAmelCase ) -> int: _lowerCAmelCase = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**_lowerCAmelCase ) return config def _snake_case ( self ) -> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def _snake_case ( self ) -> Any: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _snake_case ( self ) -> List[str]: self.check_over_configs(thresholding=_lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , ) def _snake_case ( self ) -> int: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _snake_case ( self ) -> Dict: for t in [0, 500, 999]: self.check_over_forward(time_step=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = self.dummy_sample_deter + 0.1 _lowerCAmelCase = self.dummy_sample_deter - 0.1 _lowerCAmelCase = samplea.shape[0] _lowerCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) _lowerCAmelCase = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase ) _lowerCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _lowerCAmelCase = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowerCAmelCase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowerCAmelCase ): if i == len(_lowerCAmelCase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowerCAmelCase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowerCAmelCase , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowerCAmelCase ) with self.assertRaises(_lowerCAmelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=_lowerCAmelCase , timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowerCAmelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=_lowerCAmelCase )
18
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : int = ["pixel_values"] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = IMAGENET_DEFAULT_MEAN , _lowerCAmelCase = IMAGENET_DEFAULT_STD , **_lowerCAmelCase , ) -> None: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = size if size is not None else {"shortest_edge": 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else {"height": 224, "width": 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = resample _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _lowerCAmelCase = int((256 / 224) * size["shortest_edge"] ) _lowerCAmelCase = get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = {"height": output_size[0], "width": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( _lowerCAmelCase , size=(size_dict["height"], size_dict["width"]) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ) -> BatchFeature: _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase = image_std if image_std is not None else self.image_std _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) _lowerCAmelCase = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _lowerCAmelCase = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: _lowerCAmelCase = [self.resize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_center_crop: _lowerCAmelCase = [self.center_crop(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_rescale: _lowerCAmelCase = [self.rescale(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_normalize: _lowerCAmelCase = [self.normalize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase = {"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
18
1
'''simple docstring''' import os import sys _SCREAMING_SNAKE_CASE = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) _SCREAMING_SNAKE_CASE = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __a(*SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' return AutoConfig.from_pretrained(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __a(*SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' return AutoTokenizer.from_pretrained(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @add_start_docstrings(AutoModel.__doc__ ) def __a(*SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' return AutoModel.from_pretrained(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __a(*SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __a(*SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __a(*SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "donut-swin" __lowerCamelCase : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , **_lowerCAmelCase , ) -> Optional[Any]: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
18
1
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ): __lowerCamelCase : Dict = 1 @register_to_config def __init__( self , _lowerCAmelCase=2000 , _lowerCAmelCase=0.1 , _lowerCAmelCase=20 , _lowerCAmelCase=1E-3 ) -> List[str]: _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Any: _lowerCAmelCase = torch.linspace(1 , self.config.sampling_eps , _lowerCAmelCase , device=_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[Any]: if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _lowerCAmelCase = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _lowerCAmelCase = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _lowerCAmelCase = std.flatten() while len(std.shape ) < len(score.shape ): _lowerCAmelCase = std.unsqueeze(-1 ) _lowerCAmelCase = -score / std # compute _lowerCAmelCase = -1.0 / len(self.timesteps ) _lowerCAmelCase = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _lowerCAmelCase = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _lowerCAmelCase = beta_t.unsqueeze(-1 ) _lowerCAmelCase = -0.5 * beta_t * x _lowerCAmelCase = torch.sqrt(_lowerCAmelCase ) _lowerCAmelCase = drift - diffusion**2 * score _lowerCAmelCase = x + drift * dt # add noise _lowerCAmelCase = randn_tensor(x.shape , layout=x.layout , generator=_lowerCAmelCase , device=x.device , dtype=x.dtype ) _lowerCAmelCase = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ) -> Optional[int]: return self.config.num_train_timesteps
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "swinv2" __lowerCamelCase : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=32 , **_lowerCAmelCase , ) -> Tuple: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) _lowerCAmelCase = (0, 0, 0, 0)
18
1
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=False , ) -> Tuple: _lowerCAmelCase = size if size is not None else {"height": 20, "width": 20} _lowerCAmelCase = crop_size if crop_size is not None else {"height": 18, "width": 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = do_reduce_labels def _snake_case ( self ) -> List[str]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __a(): '''simple docstring''' _lowerCAmelCase = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) _lowerCAmelCase = Image.open(dataset[0]["file"] ) _lowerCAmelCase = Image.open(dataset[1]["file"] ) return image, map def __a(): '''simple docstring''' _lowerCAmelCase = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) _lowerCAmelCase = Image.open(ds[0]["file"] ) _lowerCAmelCase = Image.open(ds[1]["file"] ) _lowerCAmelCase = Image.open(ds[2]["file"] ) _lowerCAmelCase = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ): __lowerCamelCase : int = BeitImageProcessor if is_vision_available() else None def _snake_case ( self ) -> List[str]: _lowerCAmelCase = BeitImageProcessingTester(self ) @property def _snake_case ( self ) -> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> str: _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "size" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "do_center_crop" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "center_crop" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "image_std" ) ) def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCAmelCase ) _lowerCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_lowerCAmelCase ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCAmelCase ) def _snake_case ( self ) -> Tuple: pass def _snake_case ( self ) -> Tuple: # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _snake_case ( self ) -> List[Any]: # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _snake_case ( self ) -> Any: # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _snake_case ( self ) -> Optional[Any]: # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) _lowerCAmelCase = [] for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , maps[0] , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test not batched input (PIL images) _lowerCAmelCase , _lowerCAmelCase = prepare_semantic_single_inputs() _lowerCAmelCase = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test batched input (PIL images) _lowerCAmelCase , _lowerCAmelCase = prepare_semantic_batch_inputs() _lowerCAmelCase = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) def _snake_case ( self ) -> Union[str, Any]: # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 _lowerCAmelCase , _lowerCAmelCase = prepare_semantic_single_inputs() _lowerCAmelCase = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 150 ) _lowerCAmelCase = True _lowerCAmelCase = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 )
18
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ): __lowerCamelCase : Optional[Any] = AutoencoderKL __lowerCamelCase : List[Any] = "sample" __lowerCamelCase : Tuple = 1e-2 @property def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = 4 _lowerCAmelCase = 3 _lowerCAmelCase = (32, 32) _lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCAmelCase ) return {"sample": image} @property def _snake_case ( self ) -> Any: return (3, 32, 32) @property def _snake_case ( self ) -> List[Any]: return (3, 32, 32) def _snake_case ( self ) -> str: _lowerCAmelCase = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def _snake_case ( self ) -> Optional[int]: pass def _snake_case ( self ) -> Any: pass @unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" ) def _snake_case ( self ) -> str: # enable deterministic behavior for gradient checkpointing _lowerCAmelCase , _lowerCAmelCase = self.prepare_init_args_and_inputs_for_common() _lowerCAmelCase = self.model_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) assert not model.is_gradient_checkpointing and model.training _lowerCAmelCase = model(**_lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() _lowerCAmelCase = torch.randn_like(_lowerCAmelCase ) _lowerCAmelCase = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing _lowerCAmelCase = self.model_class(**_lowerCAmelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_lowerCAmelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training _lowerCAmelCase = model_a(**_lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() _lowerCAmelCase = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) _lowerCAmelCase = dict(model.named_parameters() ) _lowerCAmelCase = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(_lowerCAmelCase ) _lowerCAmelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _snake_case ( self ) -> Dict: _lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) _lowerCAmelCase = model.to(_lowerCAmelCase ) model.eval() if torch_device == "mps": _lowerCAmelCase = torch.manual_seed(0 ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) _lowerCAmelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _lowerCAmelCase = image.to(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , sample_posterior=_lowerCAmelCase , generator=_lowerCAmelCase ).sample _lowerCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": _lowerCAmelCase = torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ] ) elif torch_device == "cpu": _lowerCAmelCase = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: _lowerCAmelCase = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(_lowerCAmelCase , _lowerCAmelCase , rtol=1E-2 ) ) @slow class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy''' def _snake_case ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _lowerCAmelCase=0 , _lowerCAmelCase=(4, 3, 512, 512) , _lowerCAmelCase=False ) -> Tuple: _lowerCAmelCase = torch.floataa if fpaa else torch.floataa _lowerCAmelCase = torch.from_numpy(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) ).to(_lowerCAmelCase ).to(_lowerCAmelCase ) return image def _snake_case ( self , _lowerCAmelCase="CompVis/stable-diffusion-v1-4" , _lowerCAmelCase=False ) -> Tuple: _lowerCAmelCase = "fp16" if fpaa else None _lowerCAmelCase = torch.floataa if fpaa else torch.floataa _lowerCAmelCase = AutoencoderKL.from_pretrained( _lowerCAmelCase , subfolder="vae" , torch_dtype=_lowerCAmelCase , revision=_lowerCAmelCase , ) model.to(_lowerCAmelCase ).eval() return model def _snake_case ( self , _lowerCAmelCase=0 ) -> str: if torch_device == "mps": return torch.manual_seed(_lowerCAmelCase ) return torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase ) _lowerCAmelCase = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] _lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> str: _lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] _lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def _snake_case ( self , _lowerCAmelCase ) -> List[str]: _lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def _snake_case ( self , _lowerCAmelCase ) -> Any: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase ) _lowerCAmelCase = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model.encode(_lowerCAmelCase ).latent_dist _lowerCAmelCase = dist.sample(generator=_lowerCAmelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] _lowerCAmelCase = sample[0, -1, -3:, -3:].flatten().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) _lowerCAmelCase = 3E-3 if torch_device != "mps" else 1E-2 assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=_lowerCAmelCase )
18
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = "mctct" def __init__( self , _lowerCAmelCase=8065 , _lowerCAmelCase=1536 , _lowerCAmelCase=36 , _lowerCAmelCase=6144 , _lowerCAmelCase=4 , _lowerCAmelCase=384 , _lowerCAmelCase=920 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.3 , _lowerCAmelCase="relu" , _lowerCAmelCase=0.02 , _lowerCAmelCase=0.3 , _lowerCAmelCase=0.3 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0.3 , _lowerCAmelCase=1 , _lowerCAmelCase=(7,) , _lowerCAmelCase=(3,) , _lowerCAmelCase=80 , _lowerCAmelCase=1 , _lowerCAmelCase=None , _lowerCAmelCase="sum" , _lowerCAmelCase=False , **_lowerCAmelCase , ) -> int: super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = intermediate_size _lowerCAmelCase = num_attention_heads _lowerCAmelCase = attention_head_dim _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = layerdrop _lowerCAmelCase = hidden_act _lowerCAmelCase = initializer_range _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = pad_token_id _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id _lowerCAmelCase = conv_glu_dim _lowerCAmelCase = conv_dropout _lowerCAmelCase = num_conv_layers _lowerCAmelCase = input_feat_per_channel _lowerCAmelCase = input_channels _lowerCAmelCase = conv_channels _lowerCAmelCase = ctc_loss_reduction _lowerCAmelCase = ctc_zero_infinity # prevents config testing fail with exporting to json _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel)` == `config.num_conv_layers` " f'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : str = "gpt_bigcode" __lowerCamelCase : Optional[int] = ["past_key_values"] __lowerCamelCase : List[str] = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _lowerCAmelCase=50257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=50256 , _lowerCAmelCase=50256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]: _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_embd _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = attention_softmax_in_fpaa _lowerCAmelCase = scale_attention_softmax_in_fpaa _lowerCAmelCase = multi_query _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
18
1
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : int = 1000 ): '''simple docstring''' _lowerCAmelCase = 1 _lowerCAmelCase = 0 for divide_by_number in range(SCREAMING_SNAKE_CASE_ , digit + 1 ): _lowerCAmelCase = [] _lowerCAmelCase = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = divide_by_number else: has_been_divided.append(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
18
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[Any] = "data2vec-audio" def __init__( self , _lowerCAmelCase=32 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase="gelu" , _lowerCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _lowerCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase=False , _lowerCAmelCase=16 , _lowerCAmelCase=19 , _lowerCAmelCase=5 , _lowerCAmelCase=0.05 , _lowerCAmelCase=10 , _lowerCAmelCase=2 , _lowerCAmelCase=0.0 , _lowerCAmelCase=10 , _lowerCAmelCase=0 , _lowerCAmelCase="sum" , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=256 , _lowerCAmelCase=(512, 512, 512, 512, 1500) , _lowerCAmelCase=(5, 3, 3, 1, 1) , _lowerCAmelCase=(1, 2, 3, 1, 1) , _lowerCAmelCase=512 , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=False , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Dict: super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = feat_extract_activation _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = conv_bias _lowerCAmelCase = num_conv_pos_embeddings _lowerCAmelCase = num_conv_pos_embedding_groups _lowerCAmelCase = conv_pos_kernel_size _lowerCAmelCase = len(self.conv_dim ) _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = feat_proj_dropout _lowerCAmelCase = final_dropout _lowerCAmelCase = layerdrop _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = vocab_size _lowerCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase = mask_time_prob _lowerCAmelCase = mask_time_length _lowerCAmelCase = mask_time_min_masks _lowerCAmelCase = mask_feature_prob _lowerCAmelCase = mask_feature_length _lowerCAmelCase = mask_feature_min_masks # ctc loss _lowerCAmelCase = ctc_loss_reduction _lowerCAmelCase = ctc_zero_infinity # adapter _lowerCAmelCase = add_adapter _lowerCAmelCase = adapter_kernel_size _lowerCAmelCase = adapter_stride _lowerCAmelCase = num_adapter_layers _lowerCAmelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = xvector_output_dim @property def _snake_case ( self ) -> str: return math.prod(self.conv_stride )
18
1
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def __a(SCREAMING_SNAKE_CASE_ : SplitDict ): '''simple docstring''' _lowerCAmelCase = split_dict._to_yaml_list() assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = SplitDict._from_yaml_list(SCREAMING_SNAKE_CASE_ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _lowerCAmelCase = None # the split name of split_dict takes over the name of the split info object _lowerCAmelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=SCREAMING_SNAKE_CASE_ ), SplitInfo(dataset_name="my_dataset" )] ) def __a(SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' _lowerCAmelCase = asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
18
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = (DDPMParallelScheduler,) def _snake_case ( self , **_lowerCAmelCase ) -> int: _lowerCAmelCase = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**_lowerCAmelCase ) return config def _snake_case ( self ) -> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def _snake_case ( self ) -> Any: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _snake_case ( self ) -> List[str]: self.check_over_configs(thresholding=_lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , ) def _snake_case ( self ) -> int: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _snake_case ( self ) -> Dict: for t in [0, 500, 999]: self.check_over_forward(time_step=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = self.dummy_sample_deter + 0.1 _lowerCAmelCase = self.dummy_sample_deter - 0.1 _lowerCAmelCase = samplea.shape[0] _lowerCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) _lowerCAmelCase = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase ) _lowerCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _lowerCAmelCase = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowerCAmelCase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowerCAmelCase ): if i == len(_lowerCAmelCase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowerCAmelCase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowerCAmelCase , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowerCAmelCase ) with self.assertRaises(_lowerCAmelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=_lowerCAmelCase , timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowerCAmelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=_lowerCAmelCase )
18
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model", }, "tokenizer_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json", }, } _SCREAMING_SNAKE_CASE = { "google/fnet-base": 5_12, "google/fnet-large": 5_12, } _SCREAMING_SNAKE_CASE = "▁" class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES __lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : int = ["input_ids", "token_type_ids"] __lowerCamelCase : List[Any] = FNetTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="<unk>" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , **_lowerCAmelCase , ) -> int: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowerCAmelCase = ( AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token ) super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , ) _lowerCAmelCase = do_lower_case _lowerCAmelCase = remove_space _lowerCAmelCase = keep_accents _lowerCAmelCase = vocab_file _lowerCAmelCase = False if not self.vocab_file else True def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(_lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
18
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "spiece.model"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<sep>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<cls>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=["<eop>", "<eod>"] , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: _lowerCAmelCase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) _lowerCAmelCase = 3 _lowerCAmelCase = do_lower_case _lowerCAmelCase = remove_space _lowerCAmelCase = keep_accents _lowerCAmelCase = vocab_file _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) _lowerCAmelCase = jieba _lowerCAmelCase = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _snake_case ( self ) -> Optional[int]: return len(self.sp_model ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__( self , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , _lowerCAmelCase ) -> str: if self.remove_space: _lowerCAmelCase = " ".join(inputs.strip().split() ) else: _lowerCAmelCase = inputs _lowerCAmelCase = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _lowerCAmelCase = unicodedata.normalize("NFKD" , _lowerCAmelCase ) _lowerCAmelCase = "".join([c for c in outputs if not unicodedata.combining(_lowerCAmelCase )] ) if self.do_lower_case: _lowerCAmelCase = outputs.lower() return outputs def _snake_case ( self , _lowerCAmelCase ) -> List[str]: _lowerCAmelCase = self.preprocess_text(_lowerCAmelCase ) _lowerCAmelCase = self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) _lowerCAmelCase = [] for piece in pieces: if len(_lowerCAmelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCAmelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase = cur_pieces[1:] else: _lowerCAmelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowerCAmelCase ) else: new_pieces.append(_lowerCAmelCase ) return new_pieces def _snake_case ( self , _lowerCAmelCase ) -> str: return self.sp_model.PieceToId(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]: return self.sp_model.IdToPiece(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = "".join(_lowerCAmelCase ).replace(_lowerCAmelCase , " " ).strip() return out_string def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is not None: return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] return ([0] * len(_lowerCAmelCase )) + [1, 1] def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(_lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , "wb" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,) def _snake_case ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: _lowerCAmelCase = super()._decode(*_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
18
1
'''simple docstring''' import gc import threading import time import psutil import torch class lowerCAmelCase_ : def __init__( self ) -> Union[str, Any]: _lowerCAmelCase = psutil.Process() _lowerCAmelCase = False def _snake_case ( self ) -> Any: _lowerCAmelCase = -1 while True: _lowerCAmelCase = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def _snake_case ( self ) -> Dict: _lowerCAmelCase = True _lowerCAmelCase = threading.Thread(target=self.peak_monitor ) _lowerCAmelCase = True self.thread.start() def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = False self.thread.join() return self.cpu_memory_peak _SCREAMING_SNAKE_CASE = PeakCPUMemory() def __a(): '''simple docstring''' _lowerCAmelCase = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _lowerCAmelCase = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _lowerCAmelCase = torch.cuda.memory_allocated(SCREAMING_SNAKE_CASE_ ) torch.cuda.reset_peak_memory_stats() return measures def __a(SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' _lowerCAmelCase = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem _lowerCAmelCase = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 _lowerCAmelCase = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _lowerCAmelCase = (torch.cuda.memory_allocated(SCREAMING_SNAKE_CASE_ ) - start_measures[str(SCREAMING_SNAKE_CASE_ )]) / 2**20 _lowerCAmelCase = (torch.cuda.max_memory_allocated(SCREAMING_SNAKE_CASE_ ) - start_measures[str(SCREAMING_SNAKE_CASE_ )]) / 2**20 return measures def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' print(F'''{description}:''' ) print(F'''- Time: {measures['time']:.2f}s''' ) for i in range(torch.cuda.device_count() ): print(F'''- GPU {i} allocated: {measures[str(SCREAMING_SNAKE_CASE_ )]:.2f}MiB''' ) _lowerCAmelCase = measures[F'''{i}-peak'''] print(F'''- GPU {i} peak: {peak:.2f}MiB''' ) print(F'''- CPU RAM allocated: {measures['cpu']:.2f}MiB''' ) print(F'''- CPU RAM peak: {measures['cpu-peak']:.2f}MiB''' )
18
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _SCREAMING_SNAKE_CASE = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" _SCREAMING_SNAKE_CASE = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" _SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def _snake_case ( self ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def _snake_case ( self ) -> Tuple: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="uniform_average" , _lowerCAmelCase=True ) -> Union[str, Any]: _lowerCAmelCase = mean_squared_error( _lowerCAmelCase , _lowerCAmelCase , sample_weight=_lowerCAmelCase , multioutput=_lowerCAmelCase , squared=_lowerCAmelCase ) return {"mse": mse}
18
1
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _SCREAMING_SNAKE_CASE = "\\n Text data.\n Second line of data." _SCREAMING_SNAKE_CASE = "file" @pytest.fixture(scope="session" ) def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _lowerCAmelCase = bytes(SCREAMING_SNAKE_CASE_ , "utf-8" ) with zstd.open(SCREAMING_SNAKE_CASE_ , "wb" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return path @pytest.fixture def __a(SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , SCREAMING_SNAKE_CASE_ ) , "w" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def __a(SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' _lowerCAmelCase = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _lowerCAmelCase = input_paths[compression_format] _lowerCAmelCase = tmp_path / "cache" _lowerCAmelCase = DownloadConfig(cache_dir=SCREAMING_SNAKE_CASE_ , extract_compressed_file=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = cached_path(SCREAMING_SNAKE_CASE_ , download_config=SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ ) as f: _lowerCAmelCase = f.read() with open(SCREAMING_SNAKE_CASE_ ) as f: _lowerCAmelCase = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' _lowerCAmelCase = "custom_cache" _lowerCAmelCase = "custom_extracted_dir" _lowerCAmelCase = tmp_path / "custom_extracted_path" if default_extracted: _lowerCAmelCase = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , SCREAMING_SNAKE_CASE_ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(SCREAMING_SNAKE_CASE_ ) ) _lowerCAmelCase = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _lowerCAmelCase = xz_file _lowerCAmelCase = ( DownloadConfig(extract_compressed_file=SCREAMING_SNAKE_CASE_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=SCREAMING_SNAKE_CASE_ ) ) _lowerCAmelCase = cached_path(SCREAMING_SNAKE_CASE_ , download_config=SCREAMING_SNAKE_CASE_ ) assert Path(SCREAMING_SNAKE_CASE_ ).parent.parts[-2:] == expected def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase = str(Path(SCREAMING_SNAKE_CASE_ ).resolve() ) assert cached_path(SCREAMING_SNAKE_CASE_ ) == text_file # relative path _lowerCAmelCase = str(Path(SCREAMING_SNAKE_CASE_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(SCREAMING_SNAKE_CASE_ ) == text_file def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path(SCREAMING_SNAKE_CASE_ ) # relative path _lowerCAmelCase = "./__missing_file__.txt" with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path(SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' _lowerCAmelCase = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(SCREAMING_SNAKE_CASE_ ) as f: _lowerCAmelCase = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def __a(): '''simple docstring''' with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_get("https://huggingface.co" , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(SCREAMING_SNAKE_CASE_ ): ftp_get("ftp://huggingface.co" , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(SCREAMING_SNAKE_CASE_ ): fsspec_get("s3://huggingface.co" , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): fsspec_head("s3://huggingface.co" )
18
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
18
1
'''simple docstring''' _SCREAMING_SNAKE_CASE = { 0: "0", 1: "1", 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7: "7", 8: "8", 9: "9", 10: "a", 11: "b", 12: "c", 13: "d", 14: "e", 15: "f", } def __a(SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' assert type(SCREAMING_SNAKE_CASE_ ) in (int, float) and decimal == int(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = "" _lowerCAmelCase = False if decimal < 0: _lowerCAmelCase = True decimal *= -1 while decimal > 0: _lowerCAmelCase , _lowerCAmelCase = divmod(SCREAMING_SNAKE_CASE_ , 16 ) _lowerCAmelCase = values[remainder] + hexadecimal _lowerCAmelCase = "0x" + hexadecimal if negative: _lowerCAmelCase = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
18
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : int | float | str , SCREAMING_SNAKE_CASE_ : int | float | str ): '''simple docstring''' if nth_term == "": return [""] _lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = [] for temp in range(int(SCREAMING_SNAKE_CASE_ ) ): series.append(F'''1 / {pow(temp + 1 , int(SCREAMING_SNAKE_CASE_ ) )}''' if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = int(input("Enter the last number (nth term) of the P-Series")) _SCREAMING_SNAKE_CASE = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
18
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase = SwinvaConfig() _lowerCAmelCase = swinva_name.split("_" ) _lowerCAmelCase = name_split[1] if "to" in name_split[3]: _lowerCAmelCase = int(name_split[3][-3:] ) else: _lowerCAmelCase = int(name_split[3] ) if "to" in name_split[2]: _lowerCAmelCase = int(name_split[2][-2:] ) else: _lowerCAmelCase = int(name_split[2][6:] ) if model_size == "tiny": _lowerCAmelCase = 96 _lowerCAmelCase = (2, 2, 6, 2) _lowerCAmelCase = (3, 6, 12, 24) elif model_size == "small": _lowerCAmelCase = 96 _lowerCAmelCase = (2, 2, 18, 2) _lowerCAmelCase = (3, 6, 12, 24) elif model_size == "base": _lowerCAmelCase = 128 _lowerCAmelCase = (2, 2, 18, 2) _lowerCAmelCase = (4, 8, 16, 32) else: _lowerCAmelCase = 192 _lowerCAmelCase = (2, 2, 18, 2) _lowerCAmelCase = (6, 12, 24, 48) if "to" in swinva_name: _lowerCAmelCase = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): _lowerCAmelCase = 21841 _lowerCAmelCase = "huggingface/label-files" _lowerCAmelCase = "imagenet-22k-id2label.json" _lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} else: _lowerCAmelCase = 1000 _lowerCAmelCase = "huggingface/label-files" _lowerCAmelCase = "imagenet-1k-id2label.json" _lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = img_size _lowerCAmelCase = num_classes _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = num_heads _lowerCAmelCase = window_size return config def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if "patch_embed.proj" in name: _lowerCAmelCase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: _lowerCAmelCase = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: _lowerCAmelCase = "encoder." + name if "attn.proj" in name: _lowerCAmelCase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: _lowerCAmelCase = name.replace("attn" , "attention.self" ) if "norm1" in name: _lowerCAmelCase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _lowerCAmelCase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _lowerCAmelCase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _lowerCAmelCase = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: _lowerCAmelCase = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: _lowerCAmelCase = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: _lowerCAmelCase = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: _lowerCAmelCase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": _lowerCAmelCase = "layernorm.weight" if name == "norm.bias": _lowerCAmelCase = "layernorm.bias" if "head" in name: _lowerCAmelCase = name.replace("head" , "classifier" ) else: _lowerCAmelCase = "swinv2." + name return name def __a(SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "mask" in key: continue elif "qkv" in key: _lowerCAmelCase = key.split("." ) _lowerCAmelCase = int(key_split[1] ) _lowerCAmelCase = int(key_split[3] ) _lowerCAmelCase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCAmelCase = val[:dim, :] _lowerCAmelCase = val[dim : dim * 2, :] _lowerCAmelCase = val[-dim:, :] else: _lowerCAmelCase = val[:dim] _lowerCAmelCase = val[ dim : dim * 2 ] _lowerCAmelCase = val[-dim:] else: _lowerCAmelCase = val return orig_state_dict def __a(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = timm.create_model(SCREAMING_SNAKE_CASE_ , pretrained=SCREAMING_SNAKE_CASE_ ) timm_model.eval() _lowerCAmelCase = get_swinva_config(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = SwinvaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.eval() _lowerCAmelCase = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) _lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) _lowerCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="pt" ) _lowerCAmelCase = timm_model(inputs["pixel_values"] ) _lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) print(F'''Saving model {swinva_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swinv2_name", default="swinv2_tiny_patch4_window8_256", type=str, help="Name of the Swinv2 timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
18
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] )
18
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _SCREAMING_SNAKE_CASE = { "configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"], "tokenization_biogpt": ["BioGptTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST", "BioGptForCausalLM", "BioGptForTokenClassification", "BioGptForSequenceClassification", "BioGptModel", "BioGptPreTrainedModel", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
18
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() _lowerCAmelCase = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) _lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict=None ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() _lowerCAmelCase = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) _lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = result.headers["Location"] _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F'''{artifact_name}.zip''' ) with open(SCREAMING_SNAKE_CASE_ , "wb" ) as fp: fp.write(response.content ) def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=None ): '''simple docstring''' _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE_ ) as f: for line in f: _lowerCAmelCase = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _lowerCAmelCase = line[: line.index(": " )] _lowerCAmelCase = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed _lowerCAmelCase = line[len("FAILED " ) :] failed_tests.append(SCREAMING_SNAKE_CASE_ ) elif filename == "job_name.txt": _lowerCAmelCase = line if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( F'''`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE_ )} for `errors` ''' F'''and {len(SCREAMING_SNAKE_CASE_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' " problem." ) _lowerCAmelCase = None if job_name and job_links: _lowerCAmelCase = job_links.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # A list with elements of the form (line of error, error, failed test) _lowerCAmelCase = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] return result def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = [] _lowerCAmelCase = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for p in os.listdir(SCREAMING_SNAKE_CASE_ ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE_ , job_links=SCREAMING_SNAKE_CASE_ ) ) return errors def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str=None ): '''simple docstring''' _lowerCAmelCase = Counter() counter.update([x[1] for x in logs] ) _lowerCAmelCase = counter.most_common() _lowerCAmelCase = {} for error, count in counts: if error_filter is None or error not in error_filter: _lowerCAmelCase = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} _lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def __a(SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' _lowerCAmelCase = test.split("::" )[0] if test.startswith("tests/models/" ): _lowerCAmelCase = test.split("/" )[2] else: _lowerCAmelCase = None return test def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs] _lowerCAmelCase = [x for x in logs if x[2] is not None] _lowerCAmelCase = {x[2] for x in logs} _lowerCAmelCase = {} for test in tests: _lowerCAmelCase = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _lowerCAmelCase = counter.most_common() _lowerCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _lowerCAmelCase = sum(error_counts.values() ) if n_errors > 0: _lowerCAmelCase = {"count": n_errors, "errors": error_counts} _lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase = "| no. | error | status |" _lowerCAmelCase = "|-:|:-|:-|" _lowerCAmelCase = [header, sep] for error in reduced_by_error: _lowerCAmelCase = reduced_by_error[error]["count"] _lowerCAmelCase = F'''| {count} | {error[:100]} | |''' lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase = "| model | no. of errors | major error | count |" _lowerCAmelCase = "|-:|-:|-:|-:|" _lowerCAmelCase = [header, sep] for model in reduced_by_model: _lowerCAmelCase = reduced_by_model[model]["count"] _lowerCAmelCase , _lowerCAmelCase = list(reduced_by_model[model]["errors"].items() )[0] _lowerCAmelCase = F'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _SCREAMING_SNAKE_CASE = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _SCREAMING_SNAKE_CASE = get_job_links(args.workflow_run_id, token=args.token) _SCREAMING_SNAKE_CASE = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _SCREAMING_SNAKE_CASE = k.find(" / ") _SCREAMING_SNAKE_CASE = k[index + len(" / ") :] _SCREAMING_SNAKE_CASE = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _SCREAMING_SNAKE_CASE = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _SCREAMING_SNAKE_CASE = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _SCREAMING_SNAKE_CASE = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = reduce_by_error(errors) _SCREAMING_SNAKE_CASE = reduce_by_model(errors) _SCREAMING_SNAKE_CASE = make_github_table(reduced_by_error) _SCREAMING_SNAKE_CASE = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
18
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : int = "levit" def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=3 , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=16 , _lowerCAmelCase=[128, 256, 384] , _lowerCAmelCase=[4, 8, 12] , _lowerCAmelCase=[4, 4, 4] , _lowerCAmelCase=[16, 16, 16] , _lowerCAmelCase=0 , _lowerCAmelCase=[2, 2, 2] , _lowerCAmelCase=[2, 2, 2] , _lowerCAmelCase=0.02 , **_lowerCAmelCase , ) -> Tuple: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = image_size _lowerCAmelCase = num_channels _lowerCAmelCase = kernel_size _lowerCAmelCase = stride _lowerCAmelCase = padding _lowerCAmelCase = hidden_sizes _lowerCAmelCase = num_attention_heads _lowerCAmelCase = depths _lowerCAmelCase = key_dim _lowerCAmelCase = drop_path_rate _lowerCAmelCase = patch_size _lowerCAmelCase = attention_ratio _lowerCAmelCase = mlp_ratio _lowerCAmelCase = initializer_range _lowerCAmelCase = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Tuple = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self ) -> float: return 1E-4
18
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = (DPMSolverSinglestepScheduler,) __lowerCamelCase : int = (("num_inference_steps", 25),) def _snake_case ( self , **_lowerCAmelCase ) -> Any: _lowerCAmelCase = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf" ), "variance_type": None, } config.update(**_lowerCAmelCase ) return config def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> List[Any]: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) _lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase ) new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase , _lowerCAmelCase = sample, sample for t in range(_lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self ) -> int: pass def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) _lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Tuple: if scheduler is None: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample return sample def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = 50 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults _lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 _lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _snake_case ( self ) -> str: self.check_over_configs(thresholding=_lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , algorithm_type="dpmsolver++" , solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , ) def _snake_case ( self ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , ) _lowerCAmelCase = self.full_loop( solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , ) assert not torch.isnan(_lowerCAmelCase ).any(), "Samples have nan numbers" def _snake_case ( self ) -> Optional[Any]: self.check_over_configs(lower_order_final=_lowerCAmelCase ) self.check_over_configs(lower_order_final=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: self.check_over_configs(lambda_min_clipped=-float("inf" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def _snake_case ( self ) -> str: self.check_over_configs(variance_type=_lowerCAmelCase ) self.check_over_configs(variance_type="learned_range" ) def _snake_case ( self ) -> int: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowerCAmelCase , time_step=0 ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.full_loop() _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.full_loop(use_karras_sigmas=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.full_loop(prediction_type="v_prediction" ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def _snake_case ( self ) -> Any: _lowerCAmelCase = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(thresholding=_lowerCAmelCase , dynamic_thresholding_ratio=0 ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa
18
1
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self ) -> Any: _lowerCAmelCase = 10 def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = [1, 2, 3, 4] _lowerCAmelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_lowerCAmelCase , self.block_size , 0 ) , _lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_lowerCAmelCase , self.block_size , 0 ) , _lowerCAmelCase ) def _snake_case ( self ) -> str: _lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_lowerCAmelCase , self.block_size , 0 ) , _lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." _lowerCAmelCase , _lowerCAmelCase = process_story(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , [] ) def _snake_case ( self ) -> Dict: _lowerCAmelCase = "" _lowerCAmelCase , _lowerCAmelCase = process_story(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , [] ) self.assertEqual(_lowerCAmelCase , [] ) def _snake_case ( self ) -> Dict: _lowerCAmelCase = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) _lowerCAmelCase , _lowerCAmelCase = process_story(_lowerCAmelCase ) _lowerCAmelCase = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = ["It was the best of times."] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = torch.tensor([1, 2, 3, 4] ) _lowerCAmelCase = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_lowerCAmelCase , 0 ).numpy() , expected.numpy() ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _lowerCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_lowerCAmelCase , 23 ).numpy() , expected.numpy() ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _lowerCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_lowerCAmelCase , 1 ).numpy() , expected.numpy() ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = 101 _lowerCAmelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _lowerCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _lowerCAmelCase = compute_token_type_ids(_lowerCAmelCase , _lowerCAmelCase ) np.testing.assert_array_equal(_lowerCAmelCase , _lowerCAmelCase )
18
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : list ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
18
1
'''simple docstring''' import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = "▁" _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ): __lowerCamelCase : Dict = BigBirdTokenizer __lowerCamelCase : Optional[Any] = BigBirdTokenizerFast __lowerCamelCase : Any = True __lowerCamelCase : Union[str, Any] = True def _snake_case ( self ) -> Any: super().setUp() _lowerCAmelCase = self.tokenizer_class(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = "<s>" _lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def _snake_case ( self ) -> Dict: _lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "[MASK]" ) self.assertEqual(len(_lowerCAmelCase ) , 1004 ) def _snake_case ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _snake_case ( self ) -> Optional[int]: if not self.test_rust_tokenizer: return _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = "I was born in 92000, and this is falsé." _lowerCAmelCase = tokenizer.tokenize(_lowerCAmelCase ) _lowerCAmelCase = rust_tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = tokenizer.encode(_lowerCAmelCase ) _lowerCAmelCase = rust_tokenizer.encode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> int: _lowerCAmelCase = BigBirdTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(_lowerCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [285, 46, 10, 170, 382] , ) _lowerCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _lowerCAmelCase = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _lowerCAmelCase = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _snake_case ( self ) -> Any: return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) @slow def _snake_case ( self ) -> Tuple: _lowerCAmelCase = "Hello World!" _lowerCAmelCase = [65, 18536, 2260, 101, 66] self.assertListEqual(_lowerCAmelCase , self.big_tokenizer.encode(_lowerCAmelCase ) ) @slow def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) # fmt: off _lowerCAmelCase = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_lowerCAmelCase , self.big_tokenizer.encode(_lowerCAmelCase ) ) @require_torch @slow def _snake_case ( self ) -> Any: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence _lowerCAmelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _lowerCAmelCase = " ".join(_lowerCAmelCase ) _lowerCAmelCase = self.big_tokenizer.encode_plus(_lowerCAmelCase , return_tensors="pt" , return_token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = BigBirdConfig(attention_type="original_full" ) _lowerCAmelCase = BigBirdModel(_lowerCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowerCAmelCase ) model(**_lowerCAmelCase ) @slow def _snake_case ( self ) -> int: _lowerCAmelCase = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) _lowerCAmelCase = tokenizer.decode(tokenizer("Paris is the [MASK]." ).input_ids ) self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]" ) @slow def _snake_case ( self ) -> Any: # fmt: off _lowerCAmelCase = {"input_ids": [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name="google/bigbird-roberta-base" , revision="215c99f1600e06f83acce68422f2035b2b5c3510" , )
18
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCAmelCase = cs.out[:-1] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) _lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase ) _lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase ) thread.start() _lowerCAmelCase = "" for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) _lowerCAmelCase = greedy_ids[:, input_ids.shape[1] :] _lowerCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_prompt=_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCAmelCase = cs.out[:-1] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Dict: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _lowerCAmelCase = AutoTokenizer.from_pretrained("distilgpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = torch.ones((1, 5) , device=_lowerCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=1 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _lowerCAmelCase = cs.out[:-1] # Remove the final "\n" _lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase , timeout=0.001 ) _lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = "" for new_text in streamer: streamer_text += new_text
18
1
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ): # picklable for multiprocessing '''simple docstring''' return x.sum() def __a(SCREAMING_SNAKE_CASE_ : List[Any] ): # picklable for multiprocessing '''simple docstring''' return i + 1 @dataclass class lowerCAmelCase_ : __lowerCamelCase : int __lowerCamelCase : str class lowerCAmelCase_ ( __magic_name__ ): def _snake_case ( self ) -> List[str]: _lowerCAmelCase = {} _lowerCAmelCase = [] _lowerCAmelCase = 1 _lowerCAmelCase = [1, 2] _lowerCAmelCase = {"a": 1, "b": 2} _lowerCAmelCase = {"a": [1, 2], "b": [3, 4]} _lowerCAmelCase = {"a": {"1": 1}, "b": 2} _lowerCAmelCase = {"a": 1, "b": 2, "c": 3, "d": 4} _lowerCAmelCase = {} _lowerCAmelCase = [] _lowerCAmelCase = 2 _lowerCAmelCase = [2, 3] _lowerCAmelCase = {"a": 2, "b": 3} _lowerCAmelCase = {"a": [2, 3], "b": [4, 5]} _lowerCAmelCase = {"a": {"1": 2}, "b": 3} _lowerCAmelCase = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) _lowerCAmelCase = 2 self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) _lowerCAmelCase = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} _lowerCAmelCase = {"a": 2, "b": 0, "c": 2} _lowerCAmelCase = { "a": np.eye(2 ).astype(_lowerCAmelCase ), "b": np.zeros(3 ).astype(_lowerCAmelCase ), "c": np.ones(2 ).astype(_lowerCAmelCase ), } self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , map_numpy=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowerCAmelCase , _lowerCAmelCase , map_numpy=_lowerCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_lowerCAmelCase , _lowerCAmelCase , map_numpy=_lowerCAmelCase , num_proc=_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowerCAmelCase , _lowerCAmelCase , map_numpy=_lowerCAmelCase , num_proc=_lowerCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_lowerCAmelCase ): # can't pickle a local lambda map_nested(lambda _lowerCAmelCase : x + 1 , _lowerCAmelCase , num_proc=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = {"a": 1, "b": 2} _lowerCAmelCase = {"a": 3, "b": 4} _lowerCAmelCase = {"a": 5, "b": 6} _lowerCAmelCase = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ) , _lowerCAmelCase ) def _snake_case ( self ) -> str: class lowerCAmelCase_ : __lowerCamelCase : Tuple = "bar" _lowerCAmelCase = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(_lowerCAmelCase , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: _lowerCAmelCase = {F'''{i}''': i for i in range(SCREAMING_SNAKE_CASE_ )} _lowerCAmelCase = map_nested(lambda SCREAMING_SNAKE_CASE_ : x + 10 , SCREAMING_SNAKE_CASE_ , num_proc=SCREAMING_SNAKE_CASE_ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class lowerCAmelCase_ ( __magic_name__ ): @require_tf def _snake_case ( self ) -> Optional[Any]: import tensorflow as tf from tensorflow.keras import layers _lowerCAmelCase = layers.Dense(2 ) def gen_random_output(): _lowerCAmelCase = tf.random.uniform((1, 3) ) return model(_lowerCAmelCase ).numpy() with temp_seed(42 , set_tensorflow=_lowerCAmelCase ): _lowerCAmelCase = gen_random_output() with temp_seed(42 , set_tensorflow=_lowerCAmelCase ): _lowerCAmelCase = gen_random_output() _lowerCAmelCase = gen_random_output() np.testing.assert_equal(_lowerCAmelCase , _lowerCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def _snake_case ( self ) -> Any: import torch def gen_random_output(): _lowerCAmelCase = torch.nn.Linear(3 , 2 ) _lowerCAmelCase = torch.rand(1 , 3 ) return model(_lowerCAmelCase ).detach().numpy() with temp_seed(42 , set_pytorch=_lowerCAmelCase ): _lowerCAmelCase = gen_random_output() with temp_seed(42 , set_pytorch=_lowerCAmelCase ): _lowerCAmelCase = gen_random_output() _lowerCAmelCase = gen_random_output() np.testing.assert_equal(_lowerCAmelCase , _lowerCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def _snake_case ( self ) -> Dict: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): _lowerCAmelCase = gen_random_output() with temp_seed(42 ): _lowerCAmelCase = gen_random_output() _lowerCAmelCase = gen_random_output() np.testing.assert_equal(_lowerCAmelCase , _lowerCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" , [{}] ) def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = NestedDataStructure(SCREAMING_SNAKE_CASE_ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def __a(SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase = NestedDataStructure(SCREAMING_SNAKE_CASE_ ).flatten() assert output == expected_output def __a(): '''simple docstring''' _lowerCAmelCase = A(x=1 , y="foobar" ) _lowerCAmelCase = {"x": 1, "y": "foobar"} assert asdict(SCREAMING_SNAKE_CASE_ ) == expected_output _lowerCAmelCase = {"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} _lowerCAmelCase = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(SCREAMING_SNAKE_CASE_ ) == expected_output with pytest.raises(SCREAMING_SNAKE_CASE_ ): asdict([1, A(x=10 , y="foo" )] ) def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' return text.split() def __a(SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def __a(): '''simple docstring''' with Pool(2 ) as pool: _lowerCAmelCase = list(iflatmap_unordered(SCREAMING_SNAKE_CASE_ , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(SCREAMING_SNAKE_CASE_ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _lowerCAmelCase = list(iflatmap_unordered(SCREAMING_SNAKE_CASE_ , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(SCREAMING_SNAKE_CASE_ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _lowerCAmelCase = [] for yield_time, content in iflatmap_unordered( SCREAMING_SNAKE_CASE_ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(SCREAMING_SNAKE_CASE_ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(SCREAMING_SNAKE_CASE_ ) == 4
18
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "blenderbot-small" __lowerCamelCase : Optional[Any] = ["past_key_values"] __lowerCamelCase : str = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , _lowerCAmelCase=50265 , _lowerCAmelCase=512 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="gelu" , _lowerCAmelCase=512 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=2 , **_lowerCAmelCase , ) -> Dict: _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = d_model _lowerCAmelCase = encoder_ffn_dim _lowerCAmelCase = encoder_layers _lowerCAmelCase = encoder_attention_heads _lowerCAmelCase = decoder_ffn_dim _lowerCAmelCase = decoder_layers _lowerCAmelCase = decoder_attention_heads _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = activation_function _lowerCAmelCase = init_std _lowerCAmelCase = encoder_layerdrop _lowerCAmelCase = decoder_layerdrop _lowerCAmelCase = use_cache _lowerCAmelCase = encoder_layers _lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) class lowerCAmelCase_ ( __magic_name__ ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _lowerCAmelCase = {0: "batch"} _lowerCAmelCase = {0: "batch", 1: "past_decoder_sequence + sequence"} else: _lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} _lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _lowerCAmelCase , _lowerCAmelCase = self.num_layers for i in range(_lowerCAmelCase ): _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} else: _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = super().outputs else: _lowerCAmelCase = super(_lowerCAmelCase , self ).outputs if self.use_past: _lowerCAmelCase , _lowerCAmelCase = self.num_layers for i in range(_lowerCAmelCase ): _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Generate decoder inputs _lowerCAmelCase = seq_length if not self.use_past else 1 _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} _lowerCAmelCase = dict(**_lowerCAmelCase , **_lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape _lowerCAmelCase = common_inputs["decoder_input_ids"].shape[1] _lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads _lowerCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase = decoder_seq_length + 3 _lowerCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCAmelCase = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase )] , dim=1 ) _lowerCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCAmelCase , _lowerCAmelCase = self.num_layers _lowerCAmelCase = min(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = max(_lowerCAmelCase , _lowerCAmelCase ) - min_num_layers _lowerCAmelCase = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(_lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), ) ) # TODO: test this. _lowerCAmelCase = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(_lowerCAmelCase , _lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape # Not using the same length for past_key_values _lowerCAmelCase = seqlen + 2 _lowerCAmelCase , _lowerCAmelCase = self.num_layers _lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads _lowerCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase = common_inputs["attention_mask"].dtype _lowerCAmelCase = torch.cat( [common_inputs["attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase )] , dim=1 ) _lowerCAmelCase = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase ) ] return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCAmelCase = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCAmelCase = tokenizer.num_special_tokens_to_add(_lowerCAmelCase ) _lowerCAmelCase = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence _lowerCAmelCase = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCAmelCase = dict(tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) elif self.task == "causal-lm": _lowerCAmelCase = self._generate_dummy_inputs_for_causal_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) else: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = super()._flatten_past_key_values_(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCAmelCase = super(_lowerCAmelCase , self )._flatten_past_key_values_( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
18
1
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative" ) elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
18
'''simple docstring''' import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" _SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" _SCREAMING_SNAKE_CASE = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def _snake_case ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: _lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in predictions] ) _lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in references] ) else: _lowerCAmelCase = np.asarray(_lowerCAmelCase ) _lowerCAmelCase = np.asarray(_lowerCAmelCase ) if ignore_case: _lowerCAmelCase = np.char.lower(_lowerCAmelCase ) _lowerCAmelCase = np.char.lower(_lowerCAmelCase ) if ignore_punctuation: _lowerCAmelCase = string.punctuation.maketrans("" , "" , string.punctuation ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) if ignore_numbers: _lowerCAmelCase = string.digits.maketrans("" , "" , string.digits ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _lowerCAmelCase = predictions == references return {"exact_match": np.mean(_lowerCAmelCase ) * 100}
18
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = (DPMSolverSinglestepScheduler,) __lowerCamelCase : int = (("num_inference_steps", 25),) def _snake_case ( self , **_lowerCAmelCase ) -> Any: _lowerCAmelCase = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf" ), "variance_type": None, } config.update(**_lowerCAmelCase ) return config def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> List[Any]: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) _lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase ) new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase , _lowerCAmelCase = sample, sample for t in range(_lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self ) -> int: pass def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) _lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Tuple: if scheduler is None: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample return sample def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = 50 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults _lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 _lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _snake_case ( self ) -> str: self.check_over_configs(thresholding=_lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , algorithm_type="dpmsolver++" , solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , ) def _snake_case ( self ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , ) _lowerCAmelCase = self.full_loop( solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , ) assert not torch.isnan(_lowerCAmelCase ).any(), "Samples have nan numbers" def _snake_case ( self ) -> Optional[Any]: self.check_over_configs(lower_order_final=_lowerCAmelCase ) self.check_over_configs(lower_order_final=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: self.check_over_configs(lambda_min_clipped=-float("inf" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def _snake_case ( self ) -> str: self.check_over_configs(variance_type=_lowerCAmelCase ) self.check_over_configs(variance_type="learned_range" ) def _snake_case ( self ) -> int: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowerCAmelCase , time_step=0 ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.full_loop() _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.full_loop(use_karras_sigmas=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.full_loop(prediction_type="v_prediction" ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def _snake_case ( self ) -> Any: _lowerCAmelCase = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(thresholding=_lowerCAmelCase , dynamic_thresholding_ratio=0 ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa
18
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> None: warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
18
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = "megatron-bert" def __init__( self , _lowerCAmelCase=29056 , _lowerCAmelCase=1024 , _lowerCAmelCase=24 , _lowerCAmelCase=16 , _lowerCAmelCase=4096 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0 , _lowerCAmelCase="absolute" , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Optional[int]: super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = "falcon" __lowerCamelCase : List[str] = ["past_key_values"] def __init__( self , _lowerCAmelCase=65024 , _lowerCAmelCase=4544 , _lowerCAmelCase=32 , _lowerCAmelCase=71 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=11 , _lowerCAmelCase=11 , **_lowerCAmelCase , ) -> Union[str, Any]: _lowerCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _lowerCAmelCase = kwargs.pop("n_embed" , _lowerCAmelCase ) _lowerCAmelCase = hidden_size if n_embed is None else n_embed _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = use_cache _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id _lowerCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _lowerCAmelCase = alibi _lowerCAmelCase = new_decoder_architecture _lowerCAmelCase = multi_query # Ignored when new_decoder_architecture is True _lowerCAmelCase = parallel_attn _lowerCAmelCase = bias super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) @property def _snake_case ( self ) -> Optional[Any]: return self.hidden_size // self.num_attention_heads @property def _snake_case ( self ) -> Optional[Any]: return not self.alibi
18
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any=False ): '''simple docstring''' _lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any]=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase = "" else: _lowerCAmelCase = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) _lowerCAmelCase = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase = in_proj_bias[: config.hidden_size] _lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase = in_proj_bias[-config.hidden_size :] def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' _lowerCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = val def __a(): '''simple docstring''' _lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __a(SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' _lowerCAmelCase = ViTConfig() _lowerCAmelCase = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCAmelCase = True _lowerCAmelCase = int(vit_name[-12:-10] ) _lowerCAmelCase = int(vit_name[-9:-6] ) else: _lowerCAmelCase = 1000 _lowerCAmelCase = "huggingface/label-files" _lowerCAmelCase = "imagenet-1k-id2label.json" _lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = int(vit_name[-6:-4] ) _lowerCAmelCase = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCAmelCase = 192 _lowerCAmelCase = 768 _lowerCAmelCase = 12 _lowerCAmelCase = 3 elif vit_name[9:].startswith("small" ): _lowerCAmelCase = 384 _lowerCAmelCase = 1536 _lowerCAmelCase = 12 _lowerCAmelCase = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCAmelCase = 768 _lowerCAmelCase = 2304 _lowerCAmelCase = 8 _lowerCAmelCase = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCAmelCase = 1024 _lowerCAmelCase = 4096 _lowerCAmelCase = 24 _lowerCAmelCase = 16 elif vit_name[4:].startswith("huge" ): _lowerCAmelCase = 1280 _lowerCAmelCase = 5120 _lowerCAmelCase = 32 _lowerCAmelCase = 16 # load original model from timm _lowerCAmelCase = timm.create_model(SCREAMING_SNAKE_CASE_ , pretrained=SCREAMING_SNAKE_CASE_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase = timm_model.state_dict() if base_model: remove_classification_head_(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCAmelCase = ViTModel(SCREAMING_SNAKE_CASE_ ).eval() else: _lowerCAmelCase = ViTForImageClassification(SCREAMING_SNAKE_CASE_ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCAmelCase = DeiTImageProcessor(size=config.image_size ) else: _lowerCAmelCase = ViTImageProcessor(size=config.image_size ) _lowerCAmelCase = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCAmelCase = encoding["pixel_values"] _lowerCAmelCase = model(SCREAMING_SNAKE_CASE_ ) if base_model: _lowerCAmelCase = timm_model.forward_features(SCREAMING_SNAKE_CASE_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(SCREAMING_SNAKE_CASE_ , outputs.pooler_output , atol=1e-3 ) else: _lowerCAmelCase = timm_model(SCREAMING_SNAKE_CASE_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE_ , outputs.logits , atol=1e-3 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
18
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/deit-base-distilled-patch16-224": ( "https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Optional[int] = "deit" def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=16 , **_lowerCAmelCase , ) -> Dict: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = qkv_bias _lowerCAmelCase = encoder_stride class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self ) -> float: return 1E-4
18
1
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _SCREAMING_SNAKE_CASE = imread(r"digital_image_processing/image_data/lena_small.jpg") _SCREAMING_SNAKE_CASE = cvtColor(img, COLOR_BGR2GRAY) def __a(): '''simple docstring''' _lowerCAmelCase = cn.convert_to_negative(SCREAMING_SNAKE_CASE_ ) # assert negative_img array for at least one True assert negative_img.any() def __a(): '''simple docstring''' with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(SCREAMING_SNAKE_CASE_ , 110 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def __a(): '''simple docstring''' _lowerCAmelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def __a(): '''simple docstring''' _lowerCAmelCase = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() _lowerCAmelCase = canny.canny(SCREAMING_SNAKE_CASE_ ) # assert canny array for at least one True assert canny_array.any() def __a(): '''simple docstring''' assert gg.gaussian_filter(SCREAMING_SNAKE_CASE_ , 5 , sigma=0.9 ).all() def __a(): '''simple docstring''' _lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) _lowerCAmelCase = conv.img_convolve(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) assert res.any() def __a(): '''simple docstring''' assert med.median_filter(SCREAMING_SNAKE_CASE_ , 3 ).any() def __a(): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = sob.sobel_filter(SCREAMING_SNAKE_CASE_ ) assert grad.any() and theta.any() def __a(): '''simple docstring''' _lowerCAmelCase = sp.make_sepia(SCREAMING_SNAKE_CASE_ , 20 ) assert sepia.all() def __a(SCREAMING_SNAKE_CASE_ : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' _lowerCAmelCase = bs.Burkes(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def __a(SCREAMING_SNAKE_CASE_ : str = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' _lowerCAmelCase = rs.NearestNeighbour(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def __a(): '''simple docstring''' _lowerCAmelCase = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. _lowerCAmelCase = imread(SCREAMING_SNAKE_CASE_ , 0 ) # Test for get_neighbors_pixel function() return not None _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = image[x_coordinate][y_coordinate] _lowerCAmelCase = lbp.get_neighbors_pixel( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): _lowerCAmelCase = lbp.local_binary_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert lbp_image.any()
18
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
18
1
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' try: with open(SCREAMING_SNAKE_CASE_ , "rb" ) as flax_state_f: _lowerCAmelCase = from_bytes(SCREAMING_SNAKE_CASE_ , flax_state_f.read() ) except UnpicklingError as e: try: with open(SCREAMING_SNAKE_CASE_ ) as f: if f.read().startswith("version" ): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please" " install git-lfs and run `git lfs install` followed by `git lfs pull` in the" " folder you cloned." ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'''Unable to convert {model_file} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights _lowerCAmelCase = flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE_ : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE_ ) ).values() if any(SCREAMING_SNAKE_CASE_ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) _lowerCAmelCase = jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = "" _lowerCAmelCase = flatten_dict(SCREAMING_SNAKE_CASE_ , sep="." ) _lowerCAmelCase = pt_model.state_dict() # keep track of unexpected & missing keys _lowerCAmelCase = [] _lowerCAmelCase = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _lowerCAmelCase = flax_key_tuple.split("." ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: _lowerCAmelCase = flax_key_tuple_array[:-1] + ["weight"] _lowerCAmelCase = jnp.transpose(SCREAMING_SNAKE_CASE_ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": _lowerCAmelCase = flax_key_tuple_array[:-1] + ["weight"] _lowerCAmelCase = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": _lowerCAmelCase = flax_key_tuple_array[:-1] + ["weight"] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = ( flax_key_tuple_string.replace("_0" , ".0" ) .replace("_1" , ".1" ) .replace("_2" , ".2" ) .replace("_3" , ".3" ) .replace("_4" , ".4" ) .replace("_5" , ".5" ) .replace("_6" , ".6" ) .replace("_7" , ".7" ) .replace("_8" , ".8" ) .replace("_9" , ".9" ) ) _lowerCAmelCase = ".".join(SCREAMING_SNAKE_CASE_ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict _lowerCAmelCase = np.asarray(SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) else flax_tensor _lowerCAmelCase = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE_ ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # re-transform missing_keys to list _lowerCAmelCase = list(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) if len(SCREAMING_SNAKE_CASE_ ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' " use it for predictions and inference." ) return pt_model
18
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : int = ["pixel_values"] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = IMAGENET_DEFAULT_MEAN , _lowerCAmelCase = IMAGENET_DEFAULT_STD , **_lowerCAmelCase , ) -> None: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = size if size is not None else {"shortest_edge": 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else {"height": 224, "width": 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = resample _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _lowerCAmelCase = int((256 / 224) * size["shortest_edge"] ) _lowerCAmelCase = get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = {"height": output_size[0], "width": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( _lowerCAmelCase , size=(size_dict["height"], size_dict["width"]) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ) -> BatchFeature: _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase = image_std if image_std is not None else self.image_std _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) _lowerCAmelCase = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _lowerCAmelCase = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: _lowerCAmelCase = [self.resize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_center_crop: _lowerCAmelCase = [self.center_crop(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_rescale: _lowerCAmelCase = [self.rescale(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_normalize: _lowerCAmelCase = [self.normalize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase = {"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
18
1
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() _lowerCAmelCase = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) _lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict=None ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() _lowerCAmelCase = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) _lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = result.headers["Location"] _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F'''{artifact_name}.zip''' ) with open(SCREAMING_SNAKE_CASE_ , "wb" ) as fp: fp.write(response.content ) def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=None ): '''simple docstring''' _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE_ ) as f: for line in f: _lowerCAmelCase = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _lowerCAmelCase = line[: line.index(": " )] _lowerCAmelCase = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed _lowerCAmelCase = line[len("FAILED " ) :] failed_tests.append(SCREAMING_SNAKE_CASE_ ) elif filename == "job_name.txt": _lowerCAmelCase = line if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( F'''`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE_ )} for `errors` ''' F'''and {len(SCREAMING_SNAKE_CASE_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' " problem." ) _lowerCAmelCase = None if job_name and job_links: _lowerCAmelCase = job_links.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # A list with elements of the form (line of error, error, failed test) _lowerCAmelCase = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] return result def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = [] _lowerCAmelCase = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for p in os.listdir(SCREAMING_SNAKE_CASE_ ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE_ , job_links=SCREAMING_SNAKE_CASE_ ) ) return errors def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str=None ): '''simple docstring''' _lowerCAmelCase = Counter() counter.update([x[1] for x in logs] ) _lowerCAmelCase = counter.most_common() _lowerCAmelCase = {} for error, count in counts: if error_filter is None or error not in error_filter: _lowerCAmelCase = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} _lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def __a(SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' _lowerCAmelCase = test.split("::" )[0] if test.startswith("tests/models/" ): _lowerCAmelCase = test.split("/" )[2] else: _lowerCAmelCase = None return test def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs] _lowerCAmelCase = [x for x in logs if x[2] is not None] _lowerCAmelCase = {x[2] for x in logs} _lowerCAmelCase = {} for test in tests: _lowerCAmelCase = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _lowerCAmelCase = counter.most_common() _lowerCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _lowerCAmelCase = sum(error_counts.values() ) if n_errors > 0: _lowerCAmelCase = {"count": n_errors, "errors": error_counts} _lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase = "| no. | error | status |" _lowerCAmelCase = "|-:|:-|:-|" _lowerCAmelCase = [header, sep] for error in reduced_by_error: _lowerCAmelCase = reduced_by_error[error]["count"] _lowerCAmelCase = F'''| {count} | {error[:100]} | |''' lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase = "| model | no. of errors | major error | count |" _lowerCAmelCase = "|-:|-:|-:|-:|" _lowerCAmelCase = [header, sep] for model in reduced_by_model: _lowerCAmelCase = reduced_by_model[model]["count"] _lowerCAmelCase , _lowerCAmelCase = list(reduced_by_model[model]["errors"].items() )[0] _lowerCAmelCase = F'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _SCREAMING_SNAKE_CASE = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _SCREAMING_SNAKE_CASE = get_job_links(args.workflow_run_id, token=args.token) _SCREAMING_SNAKE_CASE = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _SCREAMING_SNAKE_CASE = k.find(" / ") _SCREAMING_SNAKE_CASE = k[index + len(" / ") :] _SCREAMING_SNAKE_CASE = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _SCREAMING_SNAKE_CASE = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _SCREAMING_SNAKE_CASE = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _SCREAMING_SNAKE_CASE = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = reduce_by_error(errors) _SCREAMING_SNAKE_CASE = reduce_by_model(errors) _SCREAMING_SNAKE_CASE = make_github_table(reduced_by_error) _SCREAMING_SNAKE_CASE = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "donut-swin" __lowerCamelCase : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , **_lowerCAmelCase , ) -> Optional[Any]: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
18
1
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ): '''simple docstring''' if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release: # old versions of hfh don't url-encode the file path _lowerCAmelCase = quote(SCREAMING_SNAKE_CASE_ ) return hfh.hf_hub_url(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" , revision=SCREAMING_SNAKE_CASE_ )
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "swinv2" __lowerCamelCase : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=32 , **_lowerCAmelCase , ) -> Tuple: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) _lowerCAmelCase = (0, 0, 0, 0)
18
1
'''simple docstring''' import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Optional[Any] = ["input_values", "attention_mask"] def __init__( self , _lowerCAmelCase = 1 , _lowerCAmelCase = 16000 , _lowerCAmelCase = 0.0 , _lowerCAmelCase = False , _lowerCAmelCase = 80 , _lowerCAmelCase = 16 , _lowerCAmelCase = 64 , _lowerCAmelCase = "hann_window" , _lowerCAmelCase = 1.0 , _lowerCAmelCase = 80 , _lowerCAmelCase = 7600 , _lowerCAmelCase = 1E-10 , _lowerCAmelCase = 2 , _lowerCAmelCase = True , **_lowerCAmelCase , ) -> Optional[int]: super().__init__(feature_size=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , padding_value=_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = do_normalize _lowerCAmelCase = return_attention_mask _lowerCAmelCase = num_mel_bins _lowerCAmelCase = hop_length _lowerCAmelCase = win_length _lowerCAmelCase = win_function _lowerCAmelCase = frame_signal_scale _lowerCAmelCase = fmin _lowerCAmelCase = fmax _lowerCAmelCase = mel_floor _lowerCAmelCase = reduction_factor _lowerCAmelCase = win_length * sampling_rate // 1000 _lowerCAmelCase = hop_length * sampling_rate // 1000 _lowerCAmelCase = optimal_fft_length(self.sample_size ) _lowerCAmelCase = (self.n_fft // 2) + 1 _lowerCAmelCase = window_function(window_length=self.sample_size , name=self.win_function , periodic=_lowerCAmelCase ) _lowerCAmelCase = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="slaney" , mel_scale="slaney" , ) if frame_signal_scale != 1.0: warnings.warn( "The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers" , _lowerCAmelCase , ) if reduction_factor != 2.0: warnings.warn( "The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers" , _lowerCAmelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _snake_case ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: _lowerCAmelCase = np.array(_lowerCAmelCase , np.intaa ) _lowerCAmelCase = [] for vector, length in zip(_lowerCAmelCase , attention_mask.sum(-1 ) ): _lowerCAmelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _lowerCAmelCase = padding_value normed_input_values.append(_lowerCAmelCase ) else: _lowerCAmelCase = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def _snake_case ( self , _lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = spectrogram( _lowerCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="log10" , ) return log_mel_spec.T def __call__( self , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> BatchFeature: if audio is None and audio_target is None: raise ValueError("You must provide either `audio` or `audio_target` values." ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if audio is not None: _lowerCAmelCase = self._process_audio( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase , ) else: _lowerCAmelCase = None if audio_target is not None: _lowerCAmelCase = self._process_audio( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase , ) if inputs is None: return inputs_target else: _lowerCAmelCase = inputs_target["input_values"] _lowerCAmelCase = inputs_target.get("attention_mask" ) if decoder_attention_mask is not None: _lowerCAmelCase = decoder_attention_mask return inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> BatchFeature: _lowerCAmelCase = isinstance(_lowerCAmelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) _lowerCAmelCase = is_batched_numpy or ( isinstance(_lowerCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray(_lowerCAmelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_lowerCAmelCase , np.ndarray ): _lowerCAmelCase = np.asarray(_lowerCAmelCase , dtype=np.floataa ) elif isinstance(_lowerCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): _lowerCAmelCase = speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [speech] # needed to make pad() work on spectrogram inputs _lowerCAmelCase = self.feature_size # convert into correct format for padding if is_target: _lowerCAmelCase = [self._extract_mel_features(_lowerCAmelCase ) for waveform in speech] _lowerCAmelCase = BatchFeature({"input_values": features} ) _lowerCAmelCase = self.num_mel_bins else: _lowerCAmelCase = BatchFeature({"input_values": speech} ) _lowerCAmelCase = self.pad( _lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , **_lowerCAmelCase , ) _lowerCAmelCase = feature_size_hack # convert input values to correct format _lowerCAmelCase = padded_inputs["input_values"] if not isinstance(input_values[0] , np.ndarray ): _lowerCAmelCase = [np.asarray(_lowerCAmelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_lowerCAmelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): _lowerCAmelCase = [array.astype(np.floataa ) for array in input_values] elif isinstance(_lowerCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): _lowerCAmelCase = input_values.astype(np.floataa ) # convert attention_mask to correct format _lowerCAmelCase = padded_inputs.get("attention_mask" ) if attention_mask is not None: _lowerCAmelCase = [np.asarray(_lowerCAmelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: _lowerCAmelCase = ( attention_mask if self._get_padding_strategies(_lowerCAmelCase , max_length=_lowerCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) _lowerCAmelCase = self.zero_mean_unit_var_norm( padded_inputs["input_values"] , attention_mask=_lowerCAmelCase , padding_value=self.padding_value ) if return_tensors is not None: _lowerCAmelCase = padded_inputs.convert_to_tensors(_lowerCAmelCase ) return padded_inputs def _snake_case ( self ) -> Dict[str, Any]: _lowerCAmelCase = super().to_dict() # Don't serialize these as they are derived from the other properties. _lowerCAmelCase = ["window", "mel_filters", "sample_size", "sample_stride", "n_fft", "n_freqs"] for name in names: if name in output: del output[name] return output
18
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ): __lowerCamelCase : Optional[Any] = AutoencoderKL __lowerCamelCase : List[Any] = "sample" __lowerCamelCase : Tuple = 1e-2 @property def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = 4 _lowerCAmelCase = 3 _lowerCAmelCase = (32, 32) _lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCAmelCase ) return {"sample": image} @property def _snake_case ( self ) -> Any: return (3, 32, 32) @property def _snake_case ( self ) -> List[Any]: return (3, 32, 32) def _snake_case ( self ) -> str: _lowerCAmelCase = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def _snake_case ( self ) -> Optional[int]: pass def _snake_case ( self ) -> Any: pass @unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" ) def _snake_case ( self ) -> str: # enable deterministic behavior for gradient checkpointing _lowerCAmelCase , _lowerCAmelCase = self.prepare_init_args_and_inputs_for_common() _lowerCAmelCase = self.model_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) assert not model.is_gradient_checkpointing and model.training _lowerCAmelCase = model(**_lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() _lowerCAmelCase = torch.randn_like(_lowerCAmelCase ) _lowerCAmelCase = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing _lowerCAmelCase = self.model_class(**_lowerCAmelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_lowerCAmelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training _lowerCAmelCase = model_a(**_lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() _lowerCAmelCase = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) _lowerCAmelCase = dict(model.named_parameters() ) _lowerCAmelCase = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(_lowerCAmelCase ) _lowerCAmelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _snake_case ( self ) -> Dict: _lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) _lowerCAmelCase = model.to(_lowerCAmelCase ) model.eval() if torch_device == "mps": _lowerCAmelCase = torch.manual_seed(0 ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) _lowerCAmelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _lowerCAmelCase = image.to(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , sample_posterior=_lowerCAmelCase , generator=_lowerCAmelCase ).sample _lowerCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": _lowerCAmelCase = torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ] ) elif torch_device == "cpu": _lowerCAmelCase = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: _lowerCAmelCase = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(_lowerCAmelCase , _lowerCAmelCase , rtol=1E-2 ) ) @slow class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy''' def _snake_case ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _lowerCAmelCase=0 , _lowerCAmelCase=(4, 3, 512, 512) , _lowerCAmelCase=False ) -> Tuple: _lowerCAmelCase = torch.floataa if fpaa else torch.floataa _lowerCAmelCase = torch.from_numpy(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) ).to(_lowerCAmelCase ).to(_lowerCAmelCase ) return image def _snake_case ( self , _lowerCAmelCase="CompVis/stable-diffusion-v1-4" , _lowerCAmelCase=False ) -> Tuple: _lowerCAmelCase = "fp16" if fpaa else None _lowerCAmelCase = torch.floataa if fpaa else torch.floataa _lowerCAmelCase = AutoencoderKL.from_pretrained( _lowerCAmelCase , subfolder="vae" , torch_dtype=_lowerCAmelCase , revision=_lowerCAmelCase , ) model.to(_lowerCAmelCase ).eval() return model def _snake_case ( self , _lowerCAmelCase=0 ) -> str: if torch_device == "mps": return torch.manual_seed(_lowerCAmelCase ) return torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase ) _lowerCAmelCase = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] _lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> str: _lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] _lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def _snake_case ( self , _lowerCAmelCase ) -> List[str]: _lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def _snake_case ( self , _lowerCAmelCase ) -> Any: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase ) _lowerCAmelCase = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model.encode(_lowerCAmelCase ).latent_dist _lowerCAmelCase = dist.sample(generator=_lowerCAmelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] _lowerCAmelCase = sample[0, -1, -3:, -3:].flatten().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) _lowerCAmelCase = 3E-3 if torch_device != "mps" else 1E-2 assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=_lowerCAmelCase )
18
1
'''simple docstring''' import os def __a(SCREAMING_SNAKE_CASE_ : str = "input.txt" ): '''simple docstring''' with open(os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) as input_file: _lowerCAmelCase = [ [int(SCREAMING_SNAKE_CASE_ ) for element in line.split("," )] for line in input_file.readlines() ] _lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = len(matrix[0] ) _lowerCAmelCase = [[-1 for _ in range(SCREAMING_SNAKE_CASE_ )] for _ in range(SCREAMING_SNAKE_CASE_ )] for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = matrix[i][0] for j in range(1 , SCREAMING_SNAKE_CASE_ ): for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _lowerCAmelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : str = "gpt_bigcode" __lowerCamelCase : Optional[int] = ["past_key_values"] __lowerCamelCase : List[str] = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _lowerCAmelCase=50257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=50256 , _lowerCAmelCase=50256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]: _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_embd _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = attention_softmax_in_fpaa _lowerCAmelCase = scale_attention_softmax_in_fpaa _lowerCAmelCase = multi_query _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
18
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "openai/whisper-base" __lowerCamelCase : Optional[Any] = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __lowerCamelCase : Optional[Any] = "transcriber" __lowerCamelCase : int = WhisperProcessor __lowerCamelCase : Any = WhisperForConditionalGeneration __lowerCamelCase : Dict = ["audio"] __lowerCamelCase : str = ["text"] def _snake_case ( self , _lowerCAmelCase ) -> Union[str, Any]: return self.pre_processor(_lowerCAmelCase , return_tensors="pt" ).input_features def _snake_case ( self , _lowerCAmelCase ) -> int: return self.model.generate(inputs=_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> str: return self.pre_processor.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )[0]
18
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[Any] = "data2vec-audio" def __init__( self , _lowerCAmelCase=32 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase="gelu" , _lowerCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _lowerCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase=False , _lowerCAmelCase=16 , _lowerCAmelCase=19 , _lowerCAmelCase=5 , _lowerCAmelCase=0.05 , _lowerCAmelCase=10 , _lowerCAmelCase=2 , _lowerCAmelCase=0.0 , _lowerCAmelCase=10 , _lowerCAmelCase=0 , _lowerCAmelCase="sum" , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=256 , _lowerCAmelCase=(512, 512, 512, 512, 1500) , _lowerCAmelCase=(5, 3, 3, 1, 1) , _lowerCAmelCase=(1, 2, 3, 1, 1) , _lowerCAmelCase=512 , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=False , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Dict: super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = feat_extract_activation _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = conv_bias _lowerCAmelCase = num_conv_pos_embeddings _lowerCAmelCase = num_conv_pos_embedding_groups _lowerCAmelCase = conv_pos_kernel_size _lowerCAmelCase = len(self.conv_dim ) _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = feat_proj_dropout _lowerCAmelCase = final_dropout _lowerCAmelCase = layerdrop _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = vocab_size _lowerCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase = mask_time_prob _lowerCAmelCase = mask_time_length _lowerCAmelCase = mask_time_min_masks _lowerCAmelCase = mask_feature_prob _lowerCAmelCase = mask_feature_length _lowerCAmelCase = mask_feature_min_masks # ctc loss _lowerCAmelCase = ctc_loss_reduction _lowerCAmelCase = ctc_zero_infinity # adapter _lowerCAmelCase = add_adapter _lowerCAmelCase = adapter_kernel_size _lowerCAmelCase = adapter_stride _lowerCAmelCase = num_adapter_layers _lowerCAmelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = xvector_output_dim @property def _snake_case ( self ) -> str: return math.prod(self.conv_stride )
18
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = { "configuration_maskformer": ["MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "MaskFormerConfig"], "configuration_maskformer_swin": ["MaskFormerSwinConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["MaskFormerFeatureExtractor"] _SCREAMING_SNAKE_CASE = ["MaskFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "MaskFormerForInstanceSegmentation", "MaskFormerModel", "MaskFormerPreTrainedModel", ] _SCREAMING_SNAKE_CASE = [ "MaskFormerSwinBackbone", "MaskFormerSwinModel", "MaskFormerSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure)
18
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = (DDPMParallelScheduler,) def _snake_case ( self , **_lowerCAmelCase ) -> int: _lowerCAmelCase = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**_lowerCAmelCase ) return config def _snake_case ( self ) -> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def _snake_case ( self ) -> Any: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _snake_case ( self ) -> List[str]: self.check_over_configs(thresholding=_lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , ) def _snake_case ( self ) -> int: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _snake_case ( self ) -> Dict: for t in [0, 500, 999]: self.check_over_forward(time_step=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = self.dummy_sample_deter + 0.1 _lowerCAmelCase = self.dummy_sample_deter - 0.1 _lowerCAmelCase = samplea.shape[0] _lowerCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) _lowerCAmelCase = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase ) _lowerCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _lowerCAmelCase = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowerCAmelCase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowerCAmelCase ): if i == len(_lowerCAmelCase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowerCAmelCase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowerCAmelCase , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowerCAmelCase ) with self.assertRaises(_lowerCAmelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=_lowerCAmelCase , timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowerCAmelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=_lowerCAmelCase )
18
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[Any] = ["torch", "scipy"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch", "scipy"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch", "scipy"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch", "scipy"] )
18
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "spiece.model"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<sep>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<cls>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=["<eop>", "<eod>"] , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: _lowerCAmelCase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) _lowerCAmelCase = 3 _lowerCAmelCase = do_lower_case _lowerCAmelCase = remove_space _lowerCAmelCase = keep_accents _lowerCAmelCase = vocab_file _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) _lowerCAmelCase = jieba _lowerCAmelCase = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _snake_case ( self ) -> Optional[int]: return len(self.sp_model ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__( self , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , _lowerCAmelCase ) -> str: if self.remove_space: _lowerCAmelCase = " ".join(inputs.strip().split() ) else: _lowerCAmelCase = inputs _lowerCAmelCase = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _lowerCAmelCase = unicodedata.normalize("NFKD" , _lowerCAmelCase ) _lowerCAmelCase = "".join([c for c in outputs if not unicodedata.combining(_lowerCAmelCase )] ) if self.do_lower_case: _lowerCAmelCase = outputs.lower() return outputs def _snake_case ( self , _lowerCAmelCase ) -> List[str]: _lowerCAmelCase = self.preprocess_text(_lowerCAmelCase ) _lowerCAmelCase = self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) _lowerCAmelCase = [] for piece in pieces: if len(_lowerCAmelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCAmelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase = cur_pieces[1:] else: _lowerCAmelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowerCAmelCase ) else: new_pieces.append(_lowerCAmelCase ) return new_pieces def _snake_case ( self , _lowerCAmelCase ) -> str: return self.sp_model.PieceToId(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]: return self.sp_model.IdToPiece(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = "".join(_lowerCAmelCase ).replace(_lowerCAmelCase , " " ).strip() return out_string def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is not None: return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] return ([0] * len(_lowerCAmelCase )) + [1, 1] def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(_lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , "wb" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,) def _snake_case ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: _lowerCAmelCase = super()._decode(*_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
18
1
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = "AutoTokenizer" __lowerCamelCase : Tuple = ["tokenizer"] __lowerCamelCase : List[str] = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> int: super().__init__(_lowerCAmelCase ) _lowerCAmelCase = speaker_embeddings @classmethod def _snake_case ( cls , _lowerCAmelCase , _lowerCAmelCase="speaker_embeddings_path.json" , **_lowerCAmelCase ) -> List[Any]: if speaker_embeddings_dict_path is not None: _lowerCAmelCase = get_file_from_repo( _lowerCAmelCase , _lowerCAmelCase , subfolder=kwargs.pop("subfolder" , _lowerCAmelCase ) , cache_dir=kwargs.pop("cache_dir" , _lowerCAmelCase ) , force_download=kwargs.pop("force_download" , _lowerCAmelCase ) , proxies=kwargs.pop("proxies" , _lowerCAmelCase ) , resume_download=kwargs.pop("resume_download" , _lowerCAmelCase ) , local_files_only=kwargs.pop("local_files_only" , _lowerCAmelCase ) , use_auth_token=kwargs.pop("use_auth_token" , _lowerCAmelCase ) , revision=kwargs.pop("revision" , _lowerCAmelCase ) , ) if speaker_embeddings_path is None: logger.warning( f'''`{os.path.join(_lowerCAmelCase , _lowerCAmelCase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _lowerCAmelCase = None else: with open(_lowerCAmelCase ) as speaker_embeddings_json: _lowerCAmelCase = json.load(_lowerCAmelCase ) else: _lowerCAmelCase = None _lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) return cls(tokenizer=_lowerCAmelCase , speaker_embeddings=_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase="speaker_embeddings_path.json" , _lowerCAmelCase="speaker_embeddings" , _lowerCAmelCase = False , **_lowerCAmelCase , ) -> List[str]: if self.speaker_embeddings is not None: os.makedirs(os.path.join(_lowerCAmelCase , _lowerCAmelCase , "v2" ) , exist_ok=_lowerCAmelCase ) _lowerCAmelCase = {} _lowerCAmelCase = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _lowerCAmelCase = self._load_voice_preset(_lowerCAmelCase ) _lowerCAmelCase = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"] , _lowerCAmelCase , f'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=_lowerCAmelCase , ) _lowerCAmelCase = os.path.join(_lowerCAmelCase , f'''{prompt_key}_{key}.npy''' ) _lowerCAmelCase = tmp_dict with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , "w" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) super().save_pretrained(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase = None , **_lowerCAmelCase ) -> Dict: _lowerCAmelCase = self.speaker_embeddings[voice_preset] _lowerCAmelCase = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _lowerCAmelCase = get_file_from_repo( self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] , subfolder=kwargs.pop("subfolder" , _lowerCAmelCase ) , cache_dir=kwargs.pop("cache_dir" , _lowerCAmelCase ) , force_download=kwargs.pop("force_download" , _lowerCAmelCase ) , proxies=kwargs.pop("proxies" , _lowerCAmelCase ) , resume_download=kwargs.pop("resume_download" , _lowerCAmelCase ) , local_files_only=kwargs.pop("local_files_only" , _lowerCAmelCase ) , use_auth_token=kwargs.pop("use_auth_token" , _lowerCAmelCase ) , revision=kwargs.pop("revision" , _lowerCAmelCase ) , ) if path is None: raise ValueError( f'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _lowerCAmelCase = np.load(_lowerCAmelCase ) return voice_preset_dict def _snake_case ( self , _lowerCAmelCase = None ) -> Any: for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="pt" , _lowerCAmelCase=256 , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=False , **_lowerCAmelCase , ) -> List[str]: if voice_preset is not None and not isinstance(_lowerCAmelCase , _lowerCAmelCase ): if ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _lowerCAmelCase = self._load_voice_preset(_lowerCAmelCase ) else: if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and not voice_preset.endswith(".npz" ): _lowerCAmelCase = voice_preset + ".npz" _lowerCAmelCase = np.load(_lowerCAmelCase ) if voice_preset is not None: self._validate_voice_preset_dict(_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase ) _lowerCAmelCase = self.tokenizer( _lowerCAmelCase , return_tensors=_lowerCAmelCase , padding="max_length" , max_length=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , **_lowerCAmelCase , ) if voice_preset is not None: _lowerCAmelCase = voice_preset return encoded_text
18
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _SCREAMING_SNAKE_CASE = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" _SCREAMING_SNAKE_CASE = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" _SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def _snake_case ( self ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def _snake_case ( self ) -> Tuple: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="uniform_average" , _lowerCAmelCase=True ) -> Union[str, Any]: _lowerCAmelCase = mean_squared_error( _lowerCAmelCase , _lowerCAmelCase , sample_weight=_lowerCAmelCase , multioutput=_lowerCAmelCase , squared=_lowerCAmelCase ) return {"mse": mse}
18
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer _SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } _SCREAMING_SNAKE_CASE = { "google/electra-small-generator": 5_12, "google/electra-base-generator": 5_12, "google/electra-large-generator": 5_12, "google/electra-small-discriminator": 5_12, "google/electra-base-discriminator": 5_12, "google/electra-large-discriminator": 5_12, } _SCREAMING_SNAKE_CASE = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Dict = VOCAB_FILES_NAMES __lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[str] = PRETRAINED_INIT_CONFIGURATION __lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : List[Any] = ElectraTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> List[Any]: super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) _lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , _lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _lowerCAmelCase ) != tokenize_chinese_chars ): _lowerCAmelCase = getattr(_lowerCAmelCase , normalizer_state.pop("type" ) ) _lowerCAmelCase = do_lower_case _lowerCAmelCase = strip_accents _lowerCAmelCase = tokenize_chinese_chars _lowerCAmelCase = normalizer_class(**_lowerCAmelCase ) _lowerCAmelCase = do_lower_case def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> str: _lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: _lowerCAmelCase = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
18
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
18
1
'''simple docstring''' import argparse import os import re _SCREAMING_SNAKE_CASE = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict _SCREAMING_SNAKE_CASE = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings _SCREAMING_SNAKE_CASE = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"") def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : bool = False ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE_ , "r" , encoding="utf-8" ) as f: _lowerCAmelCase = f.read() _lowerCAmelCase = content.split("\n" ) _lowerCAmelCase = [] _lowerCAmelCase = 0 while line_idx < len(SCREAMING_SNAKE_CASE_ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: _lowerCAmelCase = len(re.search(R"^(\s*)\S" , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 _lowerCAmelCase = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": _lowerCAmelCase = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers _lowerCAmelCase = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : _re_identifier.search(SCREAMING_SNAKE_CASE_ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as f: f.write("\n".join(SCREAMING_SNAKE_CASE_ ) ) elif "\n".join(SCREAMING_SNAKE_CASE_ ) != content: return True def __a(SCREAMING_SNAKE_CASE_ : bool = False ): '''simple docstring''' _lowerCAmelCase = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for f in os.listdir(SCREAMING_SNAKE_CASE_ ) if f.endswith(".py" )] _lowerCAmelCase = [sort_auto_mapping(SCREAMING_SNAKE_CASE_ , overwrite=SCREAMING_SNAKE_CASE_ ) for fname in fnames] if not overwrite and any(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = [f for f, d in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if d] raise ValueError( F'''The following files have auto mappings that need sorting: {', '.join(SCREAMING_SNAKE_CASE_ )}. Run `make style` to fix''' " this." ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") _SCREAMING_SNAKE_CASE = parser.parse_args() sort_all_auto_mappings(not args.check_only)
18
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : int | float | str , SCREAMING_SNAKE_CASE_ : int | float | str ): '''simple docstring''' if nth_term == "": return [""] _lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = [] for temp in range(int(SCREAMING_SNAKE_CASE_ ) ): series.append(F'''1 / {pow(temp + 1 , int(SCREAMING_SNAKE_CASE_ ) )}''' if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = int(input("Enter the last number (nth term) of the P-Series")) _SCREAMING_SNAKE_CASE = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
18
1
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __a(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int]=() , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Optional[Any]="no" , SCREAMING_SNAKE_CASE_ : Any="29500" ): '''simple docstring''' _lowerCAmelCase = False _lowerCAmelCase = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): _lowerCAmelCase = True elif "IPython" in sys.modules: _lowerCAmelCase = "google.colab" in str(sys.modules["IPython"].get_ipython() ) try: _lowerCAmelCase = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" , SCREAMING_SNAKE_CASE_ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: _lowerCAmelCase = 8 _lowerCAmelCase = PrepareForLaunch(SCREAMING_SNAKE_CASE_ , distributed_type="TPU" ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , nprocs=SCREAMING_SNAKE_CASE_ , start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*SCREAMING_SNAKE_CASE_ ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=SCREAMING_SNAKE_CASE_ , master_addr="127.0.01" , master_port=SCREAMING_SNAKE_CASE_ , mixed_precision=SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = PrepareForLaunch(SCREAMING_SNAKE_CASE_ , distributed_type="MULTI_GPU" ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , nprocs=SCREAMING_SNAKE_CASE_ , start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): _lowerCAmelCase = "1" print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int]=() , SCREAMING_SNAKE_CASE_ : List[str]=2 ): '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=SCREAMING_SNAKE_CASE_ , master_addr="127.0.01" , master_port="29500" , accelerate_mixed_precision="no" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="yes" , ): _lowerCAmelCase = PrepareForLaunch(SCREAMING_SNAKE_CASE_ , debug=SCREAMING_SNAKE_CASE_ ) start_processes(SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , nprocs=SCREAMING_SNAKE_CASE_ , start_method="fork" )
18
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] )
18
1
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def __a(SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' _lowerCAmelCase = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: _lowerCAmelCase = 128 elif "12-12" in model_name: _lowerCAmelCase = 12 _lowerCAmelCase = 12 elif "14-14" in model_name: _lowerCAmelCase = 14 _lowerCAmelCase = 14 elif "16-16" in model_name: _lowerCAmelCase = 16 _lowerCAmelCase = 16 else: raise ValueError("Model not supported" ) _lowerCAmelCase = "huggingface/label-files" if "speech-commands" in model_name: _lowerCAmelCase = 35 _lowerCAmelCase = "speech-commands-v2-id2label.json" else: _lowerCAmelCase = 527 _lowerCAmelCase = "audioset-id2label.json" _lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' if "module.v" in name: _lowerCAmelCase = name.replace("module.v" , "audio_spectrogram_transformer" ) if "cls_token" in name: _lowerCAmelCase = name.replace("cls_token" , "embeddings.cls_token" ) if "dist_token" in name: _lowerCAmelCase = name.replace("dist_token" , "embeddings.distillation_token" ) if "pos_embed" in name: _lowerCAmelCase = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: _lowerCAmelCase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) # transformer blocks if "blocks" in name: _lowerCAmelCase = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: _lowerCAmelCase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: _lowerCAmelCase = name.replace("attn" , "attention.self" ) if "norm1" in name: _lowerCAmelCase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _lowerCAmelCase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _lowerCAmelCase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _lowerCAmelCase = name.replace("mlp.fc2" , "output.dense" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: _lowerCAmelCase = name.replace("audio_spectrogram_transformer.norm" , "audio_spectrogram_transformer.layernorm" ) # classifier head if "module.mlp_head.0" in name: _lowerCAmelCase = name.replace("module.mlp_head.0" , "classifier.layernorm" ) if "module.mlp_head.1" in name: _lowerCAmelCase = name.replace("module.mlp_head.1" , "classifier.dense" ) return name def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: _lowerCAmelCase = key.split("." ) _lowerCAmelCase = int(key_split[3] ) _lowerCAmelCase = config.hidden_size if "weight" in key: _lowerCAmelCase = val[:dim, :] _lowerCAmelCase = val[dim : dim * 2, :] _lowerCAmelCase = val[-dim:, :] else: _lowerCAmelCase = val[:dim] _lowerCAmelCase = val[dim : dim * 2] _lowerCAmelCase = val[-dim:] else: _lowerCAmelCase = val return orig_state_dict def __a(SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' _lowerCAmelCase = [ "module.v.head.weight", "module.v.head.bias", "module.v.head_dist.weight", "module.v.head_dist.bias", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int]=False ): '''simple docstring''' _lowerCAmelCase = get_audio_spectrogram_transformer_config(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = { "ast-finetuned-audioset-10-10-0.4593": ( "https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.450": ( "https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448": ( "https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448-v2": ( "https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1" ), "ast-finetuned-audioset-12-12-0.447": ( "https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1" ), "ast-finetuned-audioset-14-14-0.443": ( "https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1" ), "ast-finetuned-audioset-16-16-0.442": ( "https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1" ), "ast-finetuned-speech-commands-v2": ( "https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1" ), } # load original state_dict _lowerCAmelCase = model_name_to_url[model_name] _lowerCAmelCase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location="cpu" ) # remove some keys remove_keys(SCREAMING_SNAKE_CASE_ ) # rename some keys _lowerCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load 🤗 model _lowerCAmelCase = ASTForAudioClassification(SCREAMING_SNAKE_CASE_ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 _lowerCAmelCase = -4.267_7393 if "speech-commands" not in model_name else -6.84_5978 _lowerCAmelCase = 4.568_9974 if "speech-commands" not in model_name else 5.565_4526 _lowerCAmelCase = 1024 if "speech-commands" not in model_name else 128 _lowerCAmelCase = ASTFeatureExtractor(mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) if "speech-commands" in model_name: _lowerCAmelCase = load_dataset("speech_commands" , "v0.02" , split="validation" ) _lowerCAmelCase = dataset[0]["audio"]["array"] else: _lowerCAmelCase = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" , ) _lowerCAmelCase , _lowerCAmelCase = torchaudio.load(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = waveform.squeeze().numpy() _lowerCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=16000 , return_tensors="pt" ) # forward pass _lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": _lowerCAmelCase = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": _lowerCAmelCase = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": _lowerCAmelCase = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": _lowerCAmelCase = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": _lowerCAmelCase = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": _lowerCAmelCase = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": _lowerCAmelCase = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": _lowerCAmelCase = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError("Unknown model name" ) if not torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ): raise ValueError("Logits don't match" ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print("Pushing model and feature extractor to the hub..." ) model.push_to_hub(F'''MIT/{model_name}''' ) feature_extractor.push_to_hub(F'''MIT/{model_name}''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="ast-finetuned-audioset-10-10-0.4593", type=str, help="Name of the Audio Spectrogram Transformer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
18
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() _lowerCAmelCase = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) _lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict=None ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() _lowerCAmelCase = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) _lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = result.headers["Location"] _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F'''{artifact_name}.zip''' ) with open(SCREAMING_SNAKE_CASE_ , "wb" ) as fp: fp.write(response.content ) def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=None ): '''simple docstring''' _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE_ ) as f: for line in f: _lowerCAmelCase = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _lowerCAmelCase = line[: line.index(": " )] _lowerCAmelCase = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed _lowerCAmelCase = line[len("FAILED " ) :] failed_tests.append(SCREAMING_SNAKE_CASE_ ) elif filename == "job_name.txt": _lowerCAmelCase = line if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( F'''`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE_ )} for `errors` ''' F'''and {len(SCREAMING_SNAKE_CASE_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' " problem." ) _lowerCAmelCase = None if job_name and job_links: _lowerCAmelCase = job_links.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # A list with elements of the form (line of error, error, failed test) _lowerCAmelCase = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] return result def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = [] _lowerCAmelCase = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for p in os.listdir(SCREAMING_SNAKE_CASE_ ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE_ , job_links=SCREAMING_SNAKE_CASE_ ) ) return errors def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str=None ): '''simple docstring''' _lowerCAmelCase = Counter() counter.update([x[1] for x in logs] ) _lowerCAmelCase = counter.most_common() _lowerCAmelCase = {} for error, count in counts: if error_filter is None or error not in error_filter: _lowerCAmelCase = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} _lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def __a(SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' _lowerCAmelCase = test.split("::" )[0] if test.startswith("tests/models/" ): _lowerCAmelCase = test.split("/" )[2] else: _lowerCAmelCase = None return test def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs] _lowerCAmelCase = [x for x in logs if x[2] is not None] _lowerCAmelCase = {x[2] for x in logs} _lowerCAmelCase = {} for test in tests: _lowerCAmelCase = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _lowerCAmelCase = counter.most_common() _lowerCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _lowerCAmelCase = sum(error_counts.values() ) if n_errors > 0: _lowerCAmelCase = {"count": n_errors, "errors": error_counts} _lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase = "| no. | error | status |" _lowerCAmelCase = "|-:|:-|:-|" _lowerCAmelCase = [header, sep] for error in reduced_by_error: _lowerCAmelCase = reduced_by_error[error]["count"] _lowerCAmelCase = F'''| {count} | {error[:100]} | |''' lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase = "| model | no. of errors | major error | count |" _lowerCAmelCase = "|-:|-:|-:|-:|" _lowerCAmelCase = [header, sep] for model in reduced_by_model: _lowerCAmelCase = reduced_by_model[model]["count"] _lowerCAmelCase , _lowerCAmelCase = list(reduced_by_model[model]["errors"].items() )[0] _lowerCAmelCase = F'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _SCREAMING_SNAKE_CASE = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _SCREAMING_SNAKE_CASE = get_job_links(args.workflow_run_id, token=args.token) _SCREAMING_SNAKE_CASE = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _SCREAMING_SNAKE_CASE = k.find(" / ") _SCREAMING_SNAKE_CASE = k[index + len(" / ") :] _SCREAMING_SNAKE_CASE = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _SCREAMING_SNAKE_CASE = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _SCREAMING_SNAKE_CASE = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _SCREAMING_SNAKE_CASE = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = reduce_by_error(errors) _SCREAMING_SNAKE_CASE = reduce_by_model(errors) _SCREAMING_SNAKE_CASE = make_github_table(reduced_by_error) _SCREAMING_SNAKE_CASE = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
18
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] )
18
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = (DPMSolverSinglestepScheduler,) __lowerCamelCase : int = (("num_inference_steps", 25),) def _snake_case ( self , **_lowerCAmelCase ) -> Any: _lowerCAmelCase = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf" ), "variance_type": None, } config.update(**_lowerCAmelCase ) return config def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> List[Any]: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) _lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase ) new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase , _lowerCAmelCase = sample, sample for t in range(_lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self ) -> int: pass def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) _lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Tuple: if scheduler is None: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample return sample def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = 50 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults _lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 _lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _snake_case ( self ) -> str: self.check_over_configs(thresholding=_lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , algorithm_type="dpmsolver++" , solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , ) def _snake_case ( self ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , ) _lowerCAmelCase = self.full_loop( solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , ) assert not torch.isnan(_lowerCAmelCase ).any(), "Samples have nan numbers" def _snake_case ( self ) -> Optional[Any]: self.check_over_configs(lower_order_final=_lowerCAmelCase ) self.check_over_configs(lower_order_final=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: self.check_over_configs(lambda_min_clipped=-float("inf" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def _snake_case ( self ) -> str: self.check_over_configs(variance_type=_lowerCAmelCase ) self.check_over_configs(variance_type="learned_range" ) def _snake_case ( self ) -> int: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowerCAmelCase , time_step=0 ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.full_loop() _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.full_loop(use_karras_sigmas=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.full_loop(prediction_type="v_prediction" ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def _snake_case ( self ) -> Any: _lowerCAmelCase = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(thresholding=_lowerCAmelCase , dynamic_thresholding_ratio=0 ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa
18
1
'''simple docstring''' import random def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = num - 1 _lowerCAmelCase = 0 while s % 2 == 0: _lowerCAmelCase = s // 2 t += 1 for _ in range(5 ): _lowerCAmelCase = random.randrange(2 , num - 1 ) _lowerCAmelCase = pow(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if v != 1: _lowerCAmelCase = 0 while v != (num - 1): if i == t - 1: return False else: _lowerCAmelCase = i + 1 _lowerCAmelCase = (v**2) % num return True def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if num < 2: return False _lowerCAmelCase = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : int = 1024 ): '''simple docstring''' while True: _lowerCAmelCase = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(SCREAMING_SNAKE_CASE_ ): return num if __name__ == "__main__": _SCREAMING_SNAKE_CASE = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
18
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : list ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
18
1
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : int = ["pixel_values"] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = IMAGENET_DEFAULT_MEAN , _lowerCAmelCase = IMAGENET_DEFAULT_STD , **_lowerCAmelCase , ) -> None: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = size if size is not None else {"shortest_edge": 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else {"height": 224, "width": 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = resample _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _lowerCAmelCase = int((256 / 224) * size["shortest_edge"] ) _lowerCAmelCase = get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = {"height": output_size[0], "width": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( _lowerCAmelCase , size=(size_dict["height"], size_dict["width"]) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ) -> BatchFeature: _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase = image_std if image_std is not None else self.image_std _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) _lowerCAmelCase = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _lowerCAmelCase = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: _lowerCAmelCase = [self.resize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_center_crop: _lowerCAmelCase = [self.center_crop(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_rescale: _lowerCAmelCase = [self.rescale(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_normalize: _lowerCAmelCase = [self.normalize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase = {"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
18
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCAmelCase = cs.out[:-1] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) _lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase ) _lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase ) thread.start() _lowerCAmelCase = "" for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) _lowerCAmelCase = greedy_ids[:, input_ids.shape[1] :] _lowerCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_prompt=_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCAmelCase = cs.out[:-1] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Dict: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _lowerCAmelCase = AutoTokenizer.from_pretrained("distilgpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = torch.ones((1, 5) , device=_lowerCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=1 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _lowerCAmelCase = cs.out[:-1] # Remove the final "\n" _lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase , timeout=0.001 ) _lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = "" for new_text in streamer: streamer_text += new_text
18
1
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ): __lowerCamelCase : int = PegasusTokenizer __lowerCamelCase : Union[str, Any] = PegasusTokenizerFast __lowerCamelCase : Tuple = True __lowerCamelCase : Dict = True def _snake_case ( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase = PegasusTokenizer(_lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _snake_case ( self ) -> Optional[int]: return PegasusTokenizer.from_pretrained("google/pegasus-large" ) def _snake_case ( self , **_lowerCAmelCase ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> str: return ("This is a test", "This is a test") def _snake_case ( self ) -> str: _lowerCAmelCase = "</s>" _lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "</s>" ) self.assertEqual(vocab_keys[-1] , "v" ) self.assertEqual(len(_lowerCAmelCase ) , 1103 ) def _snake_case ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _lowerCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname ) _lowerCAmelCase = ( "Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important" " </s> <pad> <pad> <pad>" ) _lowerCAmelCase = rust_tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids[0] _lowerCAmelCase = py_tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Dict: _lowerCAmelCase = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _lowerCAmelCase = "<mask_1> To ensure a <mask_2> flow of bank resolutions." _lowerCAmelCase = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] _lowerCAmelCase = tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase ).input_ids[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> int: _lowerCAmelCase = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _lowerCAmelCase = "To ensure a smooth flow of bank resolutions." _lowerCAmelCase = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] _lowerCAmelCase = tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase ).input_ids[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = ["This is going to be way too long." * 150, "short example"] _lowerCAmelCase = ["not super long but more than 5 tokens", "tiny"] _lowerCAmelCase = self._large_tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors="pt" ) _lowerCAmelCase = self._large_tokenizer( text_target=_lowerCAmelCase , max_length=5 , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors="pt" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_lowerCAmelCase ) == 2 # input_ids, attention_mask. @slow def _snake_case ( self ) -> Dict: # fmt: off _lowerCAmelCase = {"input_ids": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name="google/bigbird-pegasus-large-arxiv" , revision="ba85d0851d708441f91440d509690f1ab6353415" , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ): __lowerCamelCase : Optional[Any] = PegasusTokenizer __lowerCamelCase : str = PegasusTokenizerFast __lowerCamelCase : List[Any] = True __lowerCamelCase : int = True def _snake_case ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase = PegasusTokenizer(_lowerCAmelCase , offset=0 , mask_token_sent=_lowerCAmelCase , mask_token="[MASK]" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _snake_case ( self ) -> List[Any]: return PegasusTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv" ) def _snake_case ( self , **_lowerCAmelCase ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> Dict: return ("This is a test", "This is a test") def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _lowerCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname ) _lowerCAmelCase = ( "Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>" " <pad> <pad> <pad>" ) _lowerCAmelCase = rust_tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids[0] _lowerCAmelCase = py_tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) @require_torch def _snake_case ( self ) -> str: _lowerCAmelCase = ["This is going to be way too long." * 1000, "short example"] _lowerCAmelCase = ["not super long but more than 5 tokens", "tiny"] _lowerCAmelCase = self._large_tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors="pt" ) _lowerCAmelCase = self._large_tokenizer( text_target=_lowerCAmelCase , max_length=5 , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors="pt" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_lowerCAmelCase ) == 2 # input_ids, attention_mask. def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = ( "This is an example string that is used to test the original TF implementation against the HF" " implementation" ) _lowerCAmelCase = self._large_tokenizer(_lowerCAmelCase ).input_ids self.assertListEqual( _lowerCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
18
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "blenderbot-small" __lowerCamelCase : Optional[Any] = ["past_key_values"] __lowerCamelCase : str = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , _lowerCAmelCase=50265 , _lowerCAmelCase=512 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="gelu" , _lowerCAmelCase=512 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=2 , **_lowerCAmelCase , ) -> Dict: _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = d_model _lowerCAmelCase = encoder_ffn_dim _lowerCAmelCase = encoder_layers _lowerCAmelCase = encoder_attention_heads _lowerCAmelCase = decoder_ffn_dim _lowerCAmelCase = decoder_layers _lowerCAmelCase = decoder_attention_heads _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = activation_function _lowerCAmelCase = init_std _lowerCAmelCase = encoder_layerdrop _lowerCAmelCase = decoder_layerdrop _lowerCAmelCase = use_cache _lowerCAmelCase = encoder_layers _lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) class lowerCAmelCase_ ( __magic_name__ ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _lowerCAmelCase = {0: "batch"} _lowerCAmelCase = {0: "batch", 1: "past_decoder_sequence + sequence"} else: _lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} _lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _lowerCAmelCase , _lowerCAmelCase = self.num_layers for i in range(_lowerCAmelCase ): _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} else: _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = super().outputs else: _lowerCAmelCase = super(_lowerCAmelCase , self ).outputs if self.use_past: _lowerCAmelCase , _lowerCAmelCase = self.num_layers for i in range(_lowerCAmelCase ): _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Generate decoder inputs _lowerCAmelCase = seq_length if not self.use_past else 1 _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} _lowerCAmelCase = dict(**_lowerCAmelCase , **_lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape _lowerCAmelCase = common_inputs["decoder_input_ids"].shape[1] _lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads _lowerCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase = decoder_seq_length + 3 _lowerCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCAmelCase = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase )] , dim=1 ) _lowerCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCAmelCase , _lowerCAmelCase = self.num_layers _lowerCAmelCase = min(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = max(_lowerCAmelCase , _lowerCAmelCase ) - min_num_layers _lowerCAmelCase = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(_lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), ) ) # TODO: test this. _lowerCAmelCase = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(_lowerCAmelCase , _lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape # Not using the same length for past_key_values _lowerCAmelCase = seqlen + 2 _lowerCAmelCase , _lowerCAmelCase = self.num_layers _lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads _lowerCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase = common_inputs["attention_mask"].dtype _lowerCAmelCase = torch.cat( [common_inputs["attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase )] , dim=1 ) _lowerCAmelCase = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase ) ] return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCAmelCase = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCAmelCase = tokenizer.num_special_tokens_to_add(_lowerCAmelCase ) _lowerCAmelCase = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence _lowerCAmelCase = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCAmelCase = dict(tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) elif self.task == "causal-lm": _lowerCAmelCase = self._generate_dummy_inputs_for_causal_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) else: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = super()._flatten_past_key_values_(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCAmelCase = super(_lowerCAmelCase , self )._flatten_past_key_values_( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
18
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ): '''simple docstring''' _lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" _lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def __a(SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase = "" else: _lowerCAmelCase = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) _lowerCAmelCase = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase = in_proj_bias[: config.hidden_size] _lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase = in_proj_bias[-config.hidden_size :] def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = val def __a(): '''simple docstring''' _lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = DeiTConfig() # all deit models have fine-tuned heads _lowerCAmelCase = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size _lowerCAmelCase = 1000 _lowerCAmelCase = "huggingface/label-files" _lowerCAmelCase = "imagenet-1k-id2label.json" _lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = int(deit_name[-6:-4] ) _lowerCAmelCase = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): _lowerCAmelCase = 192 _lowerCAmelCase = 768 _lowerCAmelCase = 12 _lowerCAmelCase = 3 elif deit_name[9:].startswith("small" ): _lowerCAmelCase = 384 _lowerCAmelCase = 1536 _lowerCAmelCase = 12 _lowerCAmelCase = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): _lowerCAmelCase = 1024 _lowerCAmelCase = 4096 _lowerCAmelCase = 24 _lowerCAmelCase = 16 # load original model from timm _lowerCAmelCase = timm.create_model(SCREAMING_SNAKE_CASE_ , pretrained=SCREAMING_SNAKE_CASE_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase = timm_model.state_dict() _lowerCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load HuggingFace model _lowerCAmelCase = DeiTForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE_ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by DeiTImageProcessor _lowerCAmelCase = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 _lowerCAmelCase = DeiTImageProcessor(size=SCREAMING_SNAKE_CASE_ , crop_size=config.image_size ) _lowerCAmelCase = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCAmelCase = encoding["pixel_values"] _lowerCAmelCase = model(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = timm_model(SCREAMING_SNAKE_CASE_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE_ , outputs.logits , atol=1e-3 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
18
'''simple docstring''' import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" _SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" _SCREAMING_SNAKE_CASE = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def _snake_case ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: _lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in predictions] ) _lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in references] ) else: _lowerCAmelCase = np.asarray(_lowerCAmelCase ) _lowerCAmelCase = np.asarray(_lowerCAmelCase ) if ignore_case: _lowerCAmelCase = np.char.lower(_lowerCAmelCase ) _lowerCAmelCase = np.char.lower(_lowerCAmelCase ) if ignore_punctuation: _lowerCAmelCase = string.punctuation.maketrans("" , "" , string.punctuation ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) if ignore_numbers: _lowerCAmelCase = string.digits.maketrans("" , "" , string.digits ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _lowerCAmelCase = predictions == references return {"exact_match": np.mean(_lowerCAmelCase ) * 100}
18
1
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : list ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
18
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> None: warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
18
1
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[Any] = "data2vec-audio" def __init__( self , _lowerCAmelCase=32 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase="gelu" , _lowerCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _lowerCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase=False , _lowerCAmelCase=16 , _lowerCAmelCase=19 , _lowerCAmelCase=5 , _lowerCAmelCase=0.05 , _lowerCAmelCase=10 , _lowerCAmelCase=2 , _lowerCAmelCase=0.0 , _lowerCAmelCase=10 , _lowerCAmelCase=0 , _lowerCAmelCase="sum" , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=256 , _lowerCAmelCase=(512, 512, 512, 512, 1500) , _lowerCAmelCase=(5, 3, 3, 1, 1) , _lowerCAmelCase=(1, 2, 3, 1, 1) , _lowerCAmelCase=512 , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=False , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Dict: super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = feat_extract_activation _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = conv_bias _lowerCAmelCase = num_conv_pos_embeddings _lowerCAmelCase = num_conv_pos_embedding_groups _lowerCAmelCase = conv_pos_kernel_size _lowerCAmelCase = len(self.conv_dim ) _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = feat_proj_dropout _lowerCAmelCase = final_dropout _lowerCAmelCase = layerdrop _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = vocab_size _lowerCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase = mask_time_prob _lowerCAmelCase = mask_time_length _lowerCAmelCase = mask_time_min_masks _lowerCAmelCase = mask_feature_prob _lowerCAmelCase = mask_feature_length _lowerCAmelCase = mask_feature_min_masks # ctc loss _lowerCAmelCase = ctc_loss_reduction _lowerCAmelCase = ctc_zero_infinity # adapter _lowerCAmelCase = add_adapter _lowerCAmelCase = adapter_kernel_size _lowerCAmelCase = adapter_stride _lowerCAmelCase = num_adapter_layers _lowerCAmelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = xvector_output_dim @property def _snake_case ( self ) -> str: return math.prod(self.conv_stride )
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = "falcon" __lowerCamelCase : List[str] = ["past_key_values"] def __init__( self , _lowerCAmelCase=65024 , _lowerCAmelCase=4544 , _lowerCAmelCase=32 , _lowerCAmelCase=71 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=11 , _lowerCAmelCase=11 , **_lowerCAmelCase , ) -> Union[str, Any]: _lowerCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _lowerCAmelCase = kwargs.pop("n_embed" , _lowerCAmelCase ) _lowerCAmelCase = hidden_size if n_embed is None else n_embed _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = use_cache _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id _lowerCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _lowerCAmelCase = alibi _lowerCAmelCase = new_decoder_architecture _lowerCAmelCase = multi_query # Ignored when new_decoder_architecture is True _lowerCAmelCase = parallel_attn _lowerCAmelCase = bias super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) @property def _snake_case ( self ) -> Optional[Any]: return self.hidden_size // self.num_attention_heads @property def _snake_case ( self ) -> Optional[Any]: return not self.alibi
18
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __a(SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE_ ) as metadata_file: _lowerCAmelCase = json.load(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = LukeConfig(use_entity_aware_attention=SCREAMING_SNAKE_CASE_ , **metadata["model_config"] ) # Load in the weights from the checkpoint_path _lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location="cpu" )["module"] # Load the entity vocab file _lowerCAmelCase = load_original_entity_vocab(SCREAMING_SNAKE_CASE_ ) # add an entry for [MASK2] _lowerCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _lowerCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks _lowerCAmelCase = AddedToken("<ent>" , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = AddedToken("<ent2>" , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , "tokenizer_config.json" ) , "r" ) as f: _lowerCAmelCase = json.load(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = "MLukeTokenizer" with open(os.path.join(SCREAMING_SNAKE_CASE_ , "tokenizer_config.json" ) , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Initialize the embeddings of the special tokens _lowerCAmelCase = tokenizer.convert_tokens_to_ids(["@"] )[0] _lowerCAmelCase = tokenizer.convert_tokens_to_ids(["#"] )[0] _lowerCAmelCase = state_dict["embeddings.word_embeddings.weight"] _lowerCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _lowerCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _lowerCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _lowerCAmelCase = state_dict[bias_name] _lowerCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _lowerCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _lowerCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _lowerCAmelCase = F'''encoder.layer.{layer_index}.attention.self.''' _lowerCAmelCase = state_dict[prefix + matrix_name] _lowerCAmelCase = state_dict[prefix + matrix_name] _lowerCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _lowerCAmelCase = state_dict["entity_embeddings.entity_embeddings.weight"] _lowerCAmelCase = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) _lowerCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _lowerCAmelCase = state_dict["entity_predictions.bias"] _lowerCAmelCase = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) _lowerCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _lowerCAmelCase = LukeForMaskedLM(config=SCREAMING_SNAKE_CASE_ ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) _lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): _lowerCAmelCase = state_dict[key] else: _lowerCAmelCase = state_dict[key] _lowerCAmelCase , _lowerCAmelCase = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) if set(SCREAMING_SNAKE_CASE_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(SCREAMING_SNAKE_CASE_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _lowerCAmelCase = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , task="entity_classification" ) _lowerCAmelCase = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." _lowerCAmelCase = (0, 9) _lowerCAmelCase = tokenizer(SCREAMING_SNAKE_CASE_ , entity_spans=[span] , return_tensors="pt" ) _lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _lowerCAmelCase = torch.Size((1, 33, 768) ) _lowerCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _lowerCAmelCase = torch.Size((1, 1, 768) ) _lowerCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction _lowerCAmelCase = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = "Tokyo is the capital of <mask>." _lowerCAmelCase = (24, 30) _lowerCAmelCase = tokenizer(SCREAMING_SNAKE_CASE_ , entity_spans=[span] , return_tensors="pt" ) _lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = encoding["input_ids"][0].tolist() _lowerCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) _lowerCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = outputs.entity_logits[0][0].argmax().item() _lowerCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(SCREAMING_SNAKE_CASE_ ) ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' _lowerCAmelCase = ["[MASK]", "[PAD]", "[UNK]"] _lowerCAmelCase = [json.loads(SCREAMING_SNAKE_CASE_ ) for line in open(SCREAMING_SNAKE_CASE_ )] _lowerCAmelCase = {} for entry in data: _lowerCAmelCase = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _lowerCAmelCase = entity_id break _lowerCAmelCase = F'''{language}:{entity_name}''' _lowerCAmelCase = entity_id return new_mapping if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
18
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/deit-base-distilled-patch16-224": ( "https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Optional[int] = "deit" def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=16 , **_lowerCAmelCase , ) -> Dict: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = qkv_bias _lowerCAmelCase = encoder_stride class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self ) -> float: return 1E-4
18
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
18
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
18
1
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(__magic_name__ ) class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , **_lowerCAmelCase ) -> List[Any]: super().__init__(**_lowerCAmelCase ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self , _lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , **_lowerCAmelCase ) -> Any: _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs["hypothesis_template"] return preprocess_params, {}, {} def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="This is a sound of {}." ) -> List[str]: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): if audio.startswith("http://" ) or audio.startswith("https://" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _lowerCAmelCase = requests.get(_lowerCAmelCase ).content else: with open(_lowerCAmelCase , "rb" ) as f: _lowerCAmelCase = f.read() if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = ffmpeg_read(_lowerCAmelCase , self.feature_extractor.sampling_rate ) if not isinstance(_lowerCAmelCase , np.ndarray ): raise ValueError("We expect a numpy ndarray as input" ) if len(audio.shape ) != 1: raise ValueError("We expect a single channel audio input for ZeroShotAudioClassificationPipeline" ) _lowerCAmelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="pt" ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(_lowerCAmelCase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework , padding=_lowerCAmelCase ) _lowerCAmelCase = [text_inputs] return inputs def _snake_case ( self , _lowerCAmelCase ) -> List[Any]: _lowerCAmelCase = model_inputs.pop("candidate_labels" ) _lowerCAmelCase = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , _lowerCAmelCase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_audio, } return model_outputs def _snake_case ( self , _lowerCAmelCase ) -> str: _lowerCAmelCase = model_outputs.pop("candidate_labels" ) _lowerCAmelCase = model_outputs["logits"][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=0 ) _lowerCAmelCase = probs.tolist() else: raise ValueError("`tf` framework not supported." ) _lowerCAmelCase = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(_lowerCAmelCase , _lowerCAmelCase ) , key=lambda _lowerCAmelCase : -x[0] ) ] return result
18
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : int = ["pixel_values"] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = IMAGENET_DEFAULT_MEAN , _lowerCAmelCase = IMAGENET_DEFAULT_STD , **_lowerCAmelCase , ) -> None: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = size if size is not None else {"shortest_edge": 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else {"height": 224, "width": 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = resample _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _lowerCAmelCase = int((256 / 224) * size["shortest_edge"] ) _lowerCAmelCase = get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = {"height": output_size[0], "width": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( _lowerCAmelCase , size=(size_dict["height"], size_dict["width"]) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ) -> BatchFeature: _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase = image_std if image_std is not None else self.image_std _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) _lowerCAmelCase = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _lowerCAmelCase = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: _lowerCAmelCase = [self.resize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_center_crop: _lowerCAmelCase = [self.center_crop(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_rescale: _lowerCAmelCase = [self.rescale(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_normalize: _lowerCAmelCase = [self.normalize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase = {"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
18
1
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _lowerCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _lowerCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] _lowerCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "donut-swin" __lowerCamelCase : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , **_lowerCAmelCase , ) -> Optional[Any]: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
18
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "blenderbot-small" __lowerCamelCase : Optional[Any] = ["past_key_values"] __lowerCamelCase : str = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , _lowerCAmelCase=50265 , _lowerCAmelCase=512 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="gelu" , _lowerCAmelCase=512 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=2 , **_lowerCAmelCase , ) -> Dict: _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = d_model _lowerCAmelCase = encoder_ffn_dim _lowerCAmelCase = encoder_layers _lowerCAmelCase = encoder_attention_heads _lowerCAmelCase = decoder_ffn_dim _lowerCAmelCase = decoder_layers _lowerCAmelCase = decoder_attention_heads _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = activation_function _lowerCAmelCase = init_std _lowerCAmelCase = encoder_layerdrop _lowerCAmelCase = decoder_layerdrop _lowerCAmelCase = use_cache _lowerCAmelCase = encoder_layers _lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) class lowerCAmelCase_ ( __magic_name__ ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _lowerCAmelCase = {0: "batch"} _lowerCAmelCase = {0: "batch", 1: "past_decoder_sequence + sequence"} else: _lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} _lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _lowerCAmelCase , _lowerCAmelCase = self.num_layers for i in range(_lowerCAmelCase ): _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} else: _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = super().outputs else: _lowerCAmelCase = super(_lowerCAmelCase , self ).outputs if self.use_past: _lowerCAmelCase , _lowerCAmelCase = self.num_layers for i in range(_lowerCAmelCase ): _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Generate decoder inputs _lowerCAmelCase = seq_length if not self.use_past else 1 _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} _lowerCAmelCase = dict(**_lowerCAmelCase , **_lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape _lowerCAmelCase = common_inputs["decoder_input_ids"].shape[1] _lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads _lowerCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase = decoder_seq_length + 3 _lowerCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCAmelCase = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase )] , dim=1 ) _lowerCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCAmelCase , _lowerCAmelCase = self.num_layers _lowerCAmelCase = min(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = max(_lowerCAmelCase , _lowerCAmelCase ) - min_num_layers _lowerCAmelCase = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(_lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), ) ) # TODO: test this. _lowerCAmelCase = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(_lowerCAmelCase , _lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape # Not using the same length for past_key_values _lowerCAmelCase = seqlen + 2 _lowerCAmelCase , _lowerCAmelCase = self.num_layers _lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads _lowerCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase = common_inputs["attention_mask"].dtype _lowerCAmelCase = torch.cat( [common_inputs["attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase )] , dim=1 ) _lowerCAmelCase = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase ) ] return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCAmelCase = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCAmelCase = tokenizer.num_special_tokens_to_add(_lowerCAmelCase ) _lowerCAmelCase = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence _lowerCAmelCase = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCAmelCase = dict(tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) elif self.task == "causal-lm": _lowerCAmelCase = self._generate_dummy_inputs_for_causal_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) else: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = super()._flatten_past_key_values_(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCAmelCase = super(_lowerCAmelCase , self )._flatten_past_key_values_( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "swinv2" __lowerCamelCase : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=32 , **_lowerCAmelCase , ) -> Tuple: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) _lowerCAmelCase = (0, 0, 0, 0)
18
1
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "encodec" def __init__( self , _lowerCAmelCase=[1.5, 3.0, 6.0, 12.0, 24.0] , _lowerCAmelCase=24000 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=128 , _lowerCAmelCase=32 , _lowerCAmelCase=1 , _lowerCAmelCase=[8, 5, 4, 2] , _lowerCAmelCase="weight_norm" , _lowerCAmelCase=7 , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=True , _lowerCAmelCase="reflect" , _lowerCAmelCase=2 , _lowerCAmelCase=2 , _lowerCAmelCase=1.0 , _lowerCAmelCase=1024 , _lowerCAmelCase=None , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Any: _lowerCAmelCase = target_bandwidths _lowerCAmelCase = sampling_rate _lowerCAmelCase = audio_channels _lowerCAmelCase = normalize _lowerCAmelCase = chunk_length_s _lowerCAmelCase = overlap _lowerCAmelCase = hidden_size _lowerCAmelCase = num_filters _lowerCAmelCase = num_residual_layers _lowerCAmelCase = upsampling_ratios _lowerCAmelCase = norm_type _lowerCAmelCase = kernel_size _lowerCAmelCase = last_kernel_size _lowerCAmelCase = residual_kernel_size _lowerCAmelCase = dilation_growth_rate _lowerCAmelCase = use_causal_conv _lowerCAmelCase = pad_mode _lowerCAmelCase = compress _lowerCAmelCase = num_lstm_layers _lowerCAmelCase = trim_right_ratio _lowerCAmelCase = codebook_size _lowerCAmelCase = codebook_dim if codebook_dim is not None else hidden_size _lowerCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**_lowerCAmelCase ) @property def _snake_case ( self ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _snake_case ( self ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def _snake_case ( self ) -> int: _lowerCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def _snake_case ( self ) -> int: return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
18
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ): __lowerCamelCase : Optional[Any] = AutoencoderKL __lowerCamelCase : List[Any] = "sample" __lowerCamelCase : Tuple = 1e-2 @property def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = 4 _lowerCAmelCase = 3 _lowerCAmelCase = (32, 32) _lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCAmelCase ) return {"sample": image} @property def _snake_case ( self ) -> Any: return (3, 32, 32) @property def _snake_case ( self ) -> List[Any]: return (3, 32, 32) def _snake_case ( self ) -> str: _lowerCAmelCase = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def _snake_case ( self ) -> Optional[int]: pass def _snake_case ( self ) -> Any: pass @unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" ) def _snake_case ( self ) -> str: # enable deterministic behavior for gradient checkpointing _lowerCAmelCase , _lowerCAmelCase = self.prepare_init_args_and_inputs_for_common() _lowerCAmelCase = self.model_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) assert not model.is_gradient_checkpointing and model.training _lowerCAmelCase = model(**_lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() _lowerCAmelCase = torch.randn_like(_lowerCAmelCase ) _lowerCAmelCase = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing _lowerCAmelCase = self.model_class(**_lowerCAmelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_lowerCAmelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training _lowerCAmelCase = model_a(**_lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() _lowerCAmelCase = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) _lowerCAmelCase = dict(model.named_parameters() ) _lowerCAmelCase = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(_lowerCAmelCase ) _lowerCAmelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _snake_case ( self ) -> Dict: _lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) _lowerCAmelCase = model.to(_lowerCAmelCase ) model.eval() if torch_device == "mps": _lowerCAmelCase = torch.manual_seed(0 ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) _lowerCAmelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _lowerCAmelCase = image.to(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , sample_posterior=_lowerCAmelCase , generator=_lowerCAmelCase ).sample _lowerCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": _lowerCAmelCase = torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ] ) elif torch_device == "cpu": _lowerCAmelCase = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: _lowerCAmelCase = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(_lowerCAmelCase , _lowerCAmelCase , rtol=1E-2 ) ) @slow class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy''' def _snake_case ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _lowerCAmelCase=0 , _lowerCAmelCase=(4, 3, 512, 512) , _lowerCAmelCase=False ) -> Tuple: _lowerCAmelCase = torch.floataa if fpaa else torch.floataa _lowerCAmelCase = torch.from_numpy(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) ).to(_lowerCAmelCase ).to(_lowerCAmelCase ) return image def _snake_case ( self , _lowerCAmelCase="CompVis/stable-diffusion-v1-4" , _lowerCAmelCase=False ) -> Tuple: _lowerCAmelCase = "fp16" if fpaa else None _lowerCAmelCase = torch.floataa if fpaa else torch.floataa _lowerCAmelCase = AutoencoderKL.from_pretrained( _lowerCAmelCase , subfolder="vae" , torch_dtype=_lowerCAmelCase , revision=_lowerCAmelCase , ) model.to(_lowerCAmelCase ).eval() return model def _snake_case ( self , _lowerCAmelCase=0 ) -> str: if torch_device == "mps": return torch.manual_seed(_lowerCAmelCase ) return torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase ) _lowerCAmelCase = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] _lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> str: _lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] _lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def _snake_case ( self , _lowerCAmelCase ) -> List[str]: _lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def _snake_case ( self , _lowerCAmelCase ) -> Any: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase ) _lowerCAmelCase = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model.encode(_lowerCAmelCase ).latent_dist _lowerCAmelCase = dist.sample(generator=_lowerCAmelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] _lowerCAmelCase = sample[0, -1, -3:, -3:].flatten().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) _lowerCAmelCase = 3E-3 if torch_device != "mps" else 1E-2 assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=_lowerCAmelCase )
18
1
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # TODO Update this _SCREAMING_SNAKE_CASE = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = "esm" def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1026 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase="absolute" , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Optional[int]: super().__init__(pad_token_id=_lowerCAmelCase , mask_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = emb_layer_norm_before _lowerCAmelCase = token_dropout _lowerCAmelCase = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) _lowerCAmelCase = EsmFoldConfig() elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = EsmFoldConfig(**_lowerCAmelCase ) _lowerCAmelCase = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) _lowerCAmelCase = get_default_vocab_list() else: _lowerCAmelCase = vocab_list else: _lowerCAmelCase = None _lowerCAmelCase = None if self.esmfold_config is not None and getattr(self.esmfold_config , "use_esm_attn_map" , _lowerCAmelCase ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = super().to_dict() if isinstance(self.esmfold_config , _lowerCAmelCase ): _lowerCAmelCase = self.esmfold_config.to_dict() return output @dataclass class lowerCAmelCase_ : __lowerCamelCase : str = None __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : bool = False __lowerCamelCase : bool = False __lowerCamelCase : float = 0 __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : int = 128 __lowerCamelCase : "TrunkConfig" = None def _snake_case ( self ) -> Tuple: if self.trunk is None: _lowerCAmelCase = TrunkConfig() elif isinstance(self.trunk , _lowerCAmelCase ): _lowerCAmelCase = TrunkConfig(**self.trunk ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = asdict(self ) _lowerCAmelCase = self.trunk.to_dict() return output @dataclass class lowerCAmelCase_ : __lowerCamelCase : int = 48 __lowerCamelCase : int = 1_024 __lowerCamelCase : int = 128 __lowerCamelCase : int = 32 __lowerCamelCase : int = 32 __lowerCamelCase : int = 32 __lowerCamelCase : float = 0 __lowerCamelCase : float = 0 __lowerCamelCase : bool = False __lowerCamelCase : int = 4 __lowerCamelCase : Optional[int] = 128 __lowerCamelCase : "StructureModuleConfig" = None def _snake_case ( self ) -> List[Any]: if self.structure_module is None: _lowerCAmelCase = StructureModuleConfig() elif isinstance(self.structure_module , _lowerCAmelCase ): _lowerCAmelCase = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) _lowerCAmelCase = self.sequence_state_dim // self.sequence_head_width _lowerCAmelCase = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = asdict(self ) _lowerCAmelCase = self.structure_module.to_dict() return output @dataclass class lowerCAmelCase_ : __lowerCamelCase : int = 384 __lowerCamelCase : int = 128 __lowerCamelCase : int = 16 __lowerCamelCase : int = 128 __lowerCamelCase : int = 12 __lowerCamelCase : int = 4 __lowerCamelCase : int = 8 __lowerCamelCase : float = 0.1 __lowerCamelCase : int = 8 __lowerCamelCase : int = 1 __lowerCamelCase : int = 2 __lowerCamelCase : int = 7 __lowerCamelCase : int = 10 __lowerCamelCase : float = 1e-8 __lowerCamelCase : float = 1e5 def _snake_case ( self ) -> Union[str, Any]: return asdict(self ) def __a(): '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : str = "gpt_bigcode" __lowerCamelCase : Optional[int] = ["past_key_values"] __lowerCamelCase : List[str] = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _lowerCAmelCase=50257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=50256 , _lowerCAmelCase=50256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]: _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_embd _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = attention_softmax_in_fpaa _lowerCAmelCase = scale_attention_softmax_in_fpaa _lowerCAmelCase = multi_query _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
18
1
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __a(): '''simple docstring''' _lowerCAmelCase = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } _lowerCAmelCase = Dataset.from_dict(SCREAMING_SNAKE_CASE_ ) return dataset class lowerCAmelCase_ ( __magic_name__ ): def _snake_case ( self ) -> List[str]: _lowerCAmelCase = get_dataset() _lowerCAmelCase = make_duplicate_clusters(_lowerCAmelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _snake_case ( self ) -> Dict: _lowerCAmelCase = get_dataset() _lowerCAmelCase , _lowerCAmelCase = deduplicate_dataset(_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 2 ) print(_lowerCAmelCase ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , _lowerCAmelCase )
18
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[Any] = "data2vec-audio" def __init__( self , _lowerCAmelCase=32 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase="gelu" , _lowerCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _lowerCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase=False , _lowerCAmelCase=16 , _lowerCAmelCase=19 , _lowerCAmelCase=5 , _lowerCAmelCase=0.05 , _lowerCAmelCase=10 , _lowerCAmelCase=2 , _lowerCAmelCase=0.0 , _lowerCAmelCase=10 , _lowerCAmelCase=0 , _lowerCAmelCase="sum" , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=256 , _lowerCAmelCase=(512, 512, 512, 512, 1500) , _lowerCAmelCase=(5, 3, 3, 1, 1) , _lowerCAmelCase=(1, 2, 3, 1, 1) , _lowerCAmelCase=512 , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=False , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Dict: super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = feat_extract_activation _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = conv_bias _lowerCAmelCase = num_conv_pos_embeddings _lowerCAmelCase = num_conv_pos_embedding_groups _lowerCAmelCase = conv_pos_kernel_size _lowerCAmelCase = len(self.conv_dim ) _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = feat_proj_dropout _lowerCAmelCase = final_dropout _lowerCAmelCase = layerdrop _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = vocab_size _lowerCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase = mask_time_prob _lowerCAmelCase = mask_time_length _lowerCAmelCase = mask_time_min_masks _lowerCAmelCase = mask_feature_prob _lowerCAmelCase = mask_feature_length _lowerCAmelCase = mask_feature_min_masks # ctc loss _lowerCAmelCase = ctc_loss_reduction _lowerCAmelCase = ctc_zero_infinity # adapter _lowerCAmelCase = add_adapter _lowerCAmelCase = adapter_kernel_size _lowerCAmelCase = adapter_stride _lowerCAmelCase = num_adapter_layers _lowerCAmelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = xvector_output_dim @property def _snake_case ( self ) -> str: return math.prod(self.conv_stride )
18
1
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any]=0.999 , SCREAMING_SNAKE_CASE_ : List[str]="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ : List[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ : str ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _lowerCAmelCase = [] for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = i / num_diffusion_timesteps _lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) return torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ): __lowerCamelCase : Optional[Any] = [e.name for e in KarrasDiffusionSchedulers] __lowerCamelCase : Any = 2 @register_to_config def __init__( self , _lowerCAmelCase = 1000 , _lowerCAmelCase = 0.00085 , _lowerCAmelCase = 0.012 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = 1.0 , _lowerCAmelCase = "linspace" , _lowerCAmelCase = 0 , ) -> Union[str, Any]: if trained_betas is not None: _lowerCAmelCase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCAmelCase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase , alpha_transform_type="cosine" ) elif beta_schedule == "exp": _lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase , alpha_transform_type="exp" ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) _lowerCAmelCase = 1.0 - self.betas _lowerCAmelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = use_karras_sigmas def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[str]: if schedule_timesteps is None: _lowerCAmelCase = self.timesteps _lowerCAmelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowerCAmelCase = 1 if len(_lowerCAmelCase ) > 1 else 0 else: _lowerCAmelCase = timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase ) else timestep _lowerCAmelCase = self._index_counter[timestep_int] return indices[pos].item() @property def _snake_case ( self ) -> Union[str, Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , ) -> torch.FloatTensor: _lowerCAmelCase = self.index_for_timestep(_lowerCAmelCase ) _lowerCAmelCase = self.sigmas[step_index] _lowerCAmelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , ) -> Any: _lowerCAmelCase = num_inference_steps _lowerCAmelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowerCAmelCase = np.linspace(0 , num_train_timesteps - 1 , _lowerCAmelCase , dtype=_lowerCAmelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowerCAmelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(_lowerCAmelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowerCAmelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase = (np.arange(_lowerCAmelCase , 0 , -step_ratio )).round().copy().astype(_lowerCAmelCase ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) _lowerCAmelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowerCAmelCase = np.log(_lowerCAmelCase ) _lowerCAmelCase = np.interp(_lowerCAmelCase , np.arange(0 , len(_lowerCAmelCase ) ) , _lowerCAmelCase ) if self.config.use_karras_sigmas: _lowerCAmelCase = self._convert_to_karras(in_sigmas=_lowerCAmelCase , num_inference_steps=self.num_inference_steps ) _lowerCAmelCase = np.array([self._sigma_to_t(_lowerCAmelCase , _lowerCAmelCase ) for sigma in sigmas] ) _lowerCAmelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(device=_lowerCAmelCase ) _lowerCAmelCase = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ) _lowerCAmelCase = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_lowerCAmelCase ).startswith("mps" ): # mps does not support float64 _lowerCAmelCase = timesteps.to(_lowerCAmelCase , dtype=torch.floataa ) else: _lowerCAmelCase = timesteps.to(device=_lowerCAmelCase ) # empty dt and derivative _lowerCAmelCase = None _lowerCAmelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowerCAmelCase = defaultdict(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: # get log sigma _lowerCAmelCase = np.log(_lowerCAmelCase ) # get distribution _lowerCAmelCase = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _lowerCAmelCase = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _lowerCAmelCase = low_idx + 1 _lowerCAmelCase = log_sigmas[low_idx] _lowerCAmelCase = log_sigmas[high_idx] # interpolate sigmas _lowerCAmelCase = (low - log_sigma) / (low - high) _lowerCAmelCase = np.clip(_lowerCAmelCase , 0 , 1 ) # transform interpolation to time range _lowerCAmelCase = (1 - w) * low_idx + w * high_idx _lowerCAmelCase = t.reshape(sigma.shape ) return t def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> torch.FloatTensor: _lowerCAmelCase = in_sigmas[-1].item() _lowerCAmelCase = in_sigmas[0].item() _lowerCAmelCase = 7.0 # 7.0 is the value used in the paper _lowerCAmelCase = np.linspace(0 , 1 , _lowerCAmelCase ) _lowerCAmelCase = sigma_min ** (1 / rho) _lowerCAmelCase = sigma_max ** (1 / rho) _lowerCAmelCase = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _snake_case ( self ) -> Tuple: return self.dt is None def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: _lowerCAmelCase = self.index_for_timestep(_lowerCAmelCase ) # advance index counter by 1 _lowerCAmelCase = timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowerCAmelCase = self.sigmas[step_index] _lowerCAmelCase = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _lowerCAmelCase = self.sigmas[step_index - 1] _lowerCAmelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowerCAmelCase = 0 _lowerCAmelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowerCAmelCase = sigma_hat if self.state_in_first_order else sigma_next _lowerCAmelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowerCAmelCase = sigma_hat if self.state_in_first_order else sigma_next _lowerCAmelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _lowerCAmelCase = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: _lowerCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowerCAmelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowerCAmelCase = sigma_next - sigma_hat # store for 2nd order step _lowerCAmelCase = derivative _lowerCAmelCase = dt _lowerCAmelCase = sample else: # 2. 2nd order / Heun's method _lowerCAmelCase = (sample - pred_original_sample) / sigma_next _lowerCAmelCase = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _lowerCAmelCase = self.dt _lowerCAmelCase = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _lowerCAmelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_lowerCAmelCase ): # mps does not support float64 _lowerCAmelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _lowerCAmelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _lowerCAmelCase = self.timesteps.to(original_samples.device ) _lowerCAmelCase = timesteps.to(original_samples.device ) _lowerCAmelCase = [self.index_for_timestep(_lowerCAmelCase , _lowerCAmelCase ) for t in timesteps] _lowerCAmelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowerCAmelCase = sigma.unsqueeze(-1 ) _lowerCAmelCase = original_samples + noise * sigma return noisy_samples def __len__( self ) -> List[str]: return self.config.num_train_timesteps
18
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = (DDPMParallelScheduler,) def _snake_case ( self , **_lowerCAmelCase ) -> int: _lowerCAmelCase = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**_lowerCAmelCase ) return config def _snake_case ( self ) -> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def _snake_case ( self ) -> Any: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _snake_case ( self ) -> List[str]: self.check_over_configs(thresholding=_lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , ) def _snake_case ( self ) -> int: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _snake_case ( self ) -> Dict: for t in [0, 500, 999]: self.check_over_forward(time_step=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = self.dummy_sample_deter + 0.1 _lowerCAmelCase = self.dummy_sample_deter - 0.1 _lowerCAmelCase = samplea.shape[0] _lowerCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) _lowerCAmelCase = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase ) _lowerCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _lowerCAmelCase = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowerCAmelCase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowerCAmelCase ): if i == len(_lowerCAmelCase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowerCAmelCase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowerCAmelCase , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowerCAmelCase ) with self.assertRaises(_lowerCAmelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=_lowerCAmelCase , timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowerCAmelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=_lowerCAmelCase )
18
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig _SCREAMING_SNAKE_CASE = { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json", } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Dict = "albert" def __init__( self , _lowerCAmelCase=30000 , _lowerCAmelCase=128 , _lowerCAmelCase=4096 , _lowerCAmelCase=12 , _lowerCAmelCase=1 , _lowerCAmelCase=64 , _lowerCAmelCase=16384 , _lowerCAmelCase=1 , _lowerCAmelCase="gelu_new" , _lowerCAmelCase=0 , _lowerCAmelCase=0 , _lowerCAmelCase=512 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0.1 , _lowerCAmelCase="absolute" , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , **_lowerCAmelCase , ) -> str: super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = embedding_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_hidden_groups _lowerCAmelCase = num_attention_heads _lowerCAmelCase = inner_group_num _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = classifier_dropout_prob _lowerCAmelCase = position_embedding_type class lowerCAmelCase_ ( __magic_name__ ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
18
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "spiece.model"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<sep>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<cls>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=["<eop>", "<eod>"] , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: _lowerCAmelCase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) _lowerCAmelCase = 3 _lowerCAmelCase = do_lower_case _lowerCAmelCase = remove_space _lowerCAmelCase = keep_accents _lowerCAmelCase = vocab_file _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) _lowerCAmelCase = jieba _lowerCAmelCase = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _snake_case ( self ) -> Optional[int]: return len(self.sp_model ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__( self , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , _lowerCAmelCase ) -> str: if self.remove_space: _lowerCAmelCase = " ".join(inputs.strip().split() ) else: _lowerCAmelCase = inputs _lowerCAmelCase = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _lowerCAmelCase = unicodedata.normalize("NFKD" , _lowerCAmelCase ) _lowerCAmelCase = "".join([c for c in outputs if not unicodedata.combining(_lowerCAmelCase )] ) if self.do_lower_case: _lowerCAmelCase = outputs.lower() return outputs def _snake_case ( self , _lowerCAmelCase ) -> List[str]: _lowerCAmelCase = self.preprocess_text(_lowerCAmelCase ) _lowerCAmelCase = self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) _lowerCAmelCase = [] for piece in pieces: if len(_lowerCAmelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCAmelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase = cur_pieces[1:] else: _lowerCAmelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowerCAmelCase ) else: new_pieces.append(_lowerCAmelCase ) return new_pieces def _snake_case ( self , _lowerCAmelCase ) -> str: return self.sp_model.PieceToId(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]: return self.sp_model.IdToPiece(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = "".join(_lowerCAmelCase ).replace(_lowerCAmelCase , " " ).strip() return out_string def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is not None: return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] return ([0] * len(_lowerCAmelCase )) + [1, 1] def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(_lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , "wb" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,) def _snake_case ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: _lowerCAmelCase = super()._decode(*_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
18
1
'''simple docstring''' import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @dataclass class lowerCAmelCase_ : __lowerCamelCase : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) __lowerCamelCase : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) __lowerCamelCase : int = field( default=128 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) __lowerCamelCase : bool = field( default=__magic_name__ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.task_name.lower() class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[Any] = "train" __lowerCamelCase : Tuple = "dev" __lowerCamelCase : int = "test" class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : GlueDataTrainingArguments __lowerCamelCase : str __lowerCamelCase : List[InputFeatures] def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = Split.train , _lowerCAmelCase = None , ) -> Union[str, Any]: warnings.warn( "This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" , _lowerCAmelCase , ) _lowerCAmelCase = args _lowerCAmelCase = glue_processors[args.task_name]() _lowerCAmelCase = glue_output_modes[args.task_name] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: _lowerCAmelCase = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) # Load data features from cache or dataset file _lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) _lowerCAmelCase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) _lowerCAmelCase , _lowerCAmelCase = label_list[2], label_list[1] _lowerCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + ".lock" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: _lowerCAmelCase = time.time() _lowerCAmelCase = torch.load(_lowerCAmelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: _lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: _lowerCAmelCase = self.processor.get_test_examples(args.data_dir ) else: _lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: _lowerCAmelCase = examples[:limit_length] _lowerCAmelCase = glue_convert_examples_to_features( _lowerCAmelCase , _lowerCAmelCase , max_length=args.max_seq_length , label_list=_lowerCAmelCase , output_mode=self.output_mode , ) _lowerCAmelCase = time.time() torch.save(self.features , _lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> List[str]: return len(self.features ) def __getitem__( self , _lowerCAmelCase ) -> InputFeatures: return self.features[i] def _snake_case ( self ) -> Optional[Any]: return self.label_list
18
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _SCREAMING_SNAKE_CASE = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" _SCREAMING_SNAKE_CASE = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" _SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def _snake_case ( self ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def _snake_case ( self ) -> Tuple: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="uniform_average" , _lowerCAmelCase=True ) -> Union[str, Any]: _lowerCAmelCase = mean_squared_error( _lowerCAmelCase , _lowerCAmelCase , sample_weight=_lowerCAmelCase , multioutput=_lowerCAmelCase , squared=_lowerCAmelCase ) return {"mse": mse}
18
1
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : int = 0 ): '''simple docstring''' _lowerCAmelCase = length or len(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _lowerCAmelCase , _lowerCAmelCase = list_data[i + 1], list_data[i] _lowerCAmelCase = True return list_data if not swapped else bubble_sort(SCREAMING_SNAKE_CASE_ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
18
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
18
1
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : list[int | float] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE_ ) == 0: raise ValueError("find_max() arg is an empty sequence" ) if ( left >= len(SCREAMING_SNAKE_CASE_ ) or left < -len(SCREAMING_SNAKE_CASE_ ) or right >= len(SCREAMING_SNAKE_CASE_ ) or right < -len(SCREAMING_SNAKE_CASE_ ) ): raise IndexError("list index out of range" ) if left == right: return nums[left] _lowerCAmelCase = (left + right) >> 1 # the middle _lowerCAmelCase = find_max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # find max in range[left, mid] _lowerCAmelCase = find_max(SCREAMING_SNAKE_CASE_ , mid + 1 , SCREAMING_SNAKE_CASE_ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
18
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : int | float | str , SCREAMING_SNAKE_CASE_ : int | float | str ): '''simple docstring''' if nth_term == "": return [""] _lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = [] for temp in range(int(SCREAMING_SNAKE_CASE_ ) ): series.append(F'''1 / {pow(temp + 1 , int(SCREAMING_SNAKE_CASE_ ) )}''' if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = int(input("Enter the last number (nth term) of the P-Series")) _SCREAMING_SNAKE_CASE = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
18
1
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowerCAmelCase_ ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self , _lowerCAmelCase=None , **_lowerCAmelCase ) -> int: super().__init__(features=_lowerCAmelCase ) _lowerCAmelCase = torch_tensor_kwargs import torch # noqa import torch at initialization def _snake_case ( self , _lowerCAmelCase ) -> str: import torch if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and column: if all( isinstance(_lowerCAmelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(_lowerCAmelCase ) return column def _snake_case ( self , _lowerCAmelCase ) -> Union[str, Any]: import torch if isinstance(_lowerCAmelCase , (str, bytes, type(_lowerCAmelCase )) ): return value elif isinstance(_lowerCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _lowerCAmelCase = {} if isinstance(_lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): _lowerCAmelCase = {"dtype": torch.intaa} elif isinstance(_lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _lowerCAmelCase = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_lowerCAmelCase , PIL.Image.Image ): _lowerCAmelCase = np.asarray(_lowerCAmelCase ) return torch.tensor(_lowerCAmelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def _snake_case ( self , _lowerCAmelCase ) -> str: import torch # support for torch, tf, jax etc. if hasattr(_lowerCAmelCase , "__array__" ) and not isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_lowerCAmelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_lowerCAmelCase ) for substruct in data_struct] ) elif isinstance(_lowerCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_lowerCAmelCase ) for substruct in data_struct] ) return self._tensorize(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> Union[str, Any]: return map_nested(self._recursive_tensorize , _lowerCAmelCase , map_list=_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> Mapping: _lowerCAmelCase = self.numpy_arrow_extractor().extract_row(_lowerCAmelCase ) _lowerCAmelCase = self.python_features_decoder.decode_row(_lowerCAmelCase ) return self.recursive_tensorize(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> "torch.Tensor": _lowerCAmelCase = self.numpy_arrow_extractor().extract_column(_lowerCAmelCase ) _lowerCAmelCase = self.python_features_decoder.decode_column(_lowerCAmelCase , pa_table.column_names[0] ) _lowerCAmelCase = self.recursive_tensorize(_lowerCAmelCase ) _lowerCAmelCase = self._consolidate(_lowerCAmelCase ) return column def _snake_case ( self , _lowerCAmelCase ) -> Mapping: _lowerCAmelCase = self.numpy_arrow_extractor().extract_batch(_lowerCAmelCase ) _lowerCAmelCase = self.python_features_decoder.decode_batch(_lowerCAmelCase ) _lowerCAmelCase = self.recursive_tensorize(_lowerCAmelCase ) for column_name in batch: _lowerCAmelCase = self._consolidate(batch[column_name] ) return batch
18
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] )
18
1
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _SCREAMING_SNAKE_CASE = "true" def __a(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str=82 , SCREAMING_SNAKE_CASE_ : Dict=16 ): '''simple docstring''' set_seed(42 ) _lowerCAmelCase = RegressionModel() _lowerCAmelCase = deepcopy(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = RegressionDataset(length=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = DataLoader(SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) model.to(accelerator.device ) _lowerCAmelCase , _lowerCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return model, ddp_model, dataloader def __a(SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : int=False ): '''simple docstring''' _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) _lowerCAmelCase = load_dataset("glue" , "mrpc" , split="validation" ) def tokenize_function(SCREAMING_SNAKE_CASE_ : List[str] ): _lowerCAmelCase = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs with accelerator.main_process_first(): _lowerCAmelCase = dataset.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=["idx", "sentence1", "sentence2"] , ) _lowerCAmelCase = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(SCREAMING_SNAKE_CASE_ : str ): if use_longest: return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding="longest" , return_tensors="pt" ) return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding="max_length" , max_length=128 , return_tensors="pt" ) return DataLoader(SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=16 ) def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' _lowerCAmelCase = Accelerator(dispatch_batches=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = get_dataloader(SCREAMING_SNAKE_CASE_ , not dispatch_batches ) _lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase , _lowerCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' _lowerCAmelCase = [] for batch in dataloader: _lowerCAmelCase , _lowerCAmelCase = batch.values() with torch.no_grad(): _lowerCAmelCase = model(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase , _lowerCAmelCase = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) _lowerCAmelCase , _lowerCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(SCREAMING_SNAKE_CASE_ ) targs.append(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase , _lowerCAmelCase = torch.cat(SCREAMING_SNAKE_CASE_ ), torch.cat(SCREAMING_SNAKE_CASE_ ) return logits, targs def __a(SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : List[Any]=82 , SCREAMING_SNAKE_CASE_ : Optional[int]=False , SCREAMING_SNAKE_CASE_ : List[Any]=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=16 ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = get_basic_setup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase , _lowerCAmelCase = generate_predictions(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert ( len(SCREAMING_SNAKE_CASE_ ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(SCREAMING_SNAKE_CASE_ )}''' def __a(SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False ): '''simple docstring''' _lowerCAmelCase = evaluate.load("glue" , "mrpc" ) _lowerCAmelCase , _lowerCAmelCase = get_mrpc_setup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # First do baseline _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = setup["no"] model.to(SCREAMING_SNAKE_CASE_ ) model.eval() for batch in dataloader: batch.to(SCREAMING_SNAKE_CASE_ ) with torch.inference_mode(): _lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE_ , references=batch["labels"] ) _lowerCAmelCase = metric.compute() # Then do distributed _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): _lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = outputs.logits.argmax(dim=-1 ) _lowerCAmelCase = batch["labels"] _lowerCAmelCase , _lowerCAmelCase = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def __a(): '''simple docstring''' _lowerCAmelCase = Accelerator(split_batches=SCREAMING_SNAKE_CASE_ , dispatch_batches=SCREAMING_SNAKE_CASE_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: _lowerCAmelCase = Accelerator(split_batches=SCREAMING_SNAKE_CASE_ , dispatch_batches=SCREAMING_SNAKE_CASE_ ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(SCREAMING_SNAKE_CASE_ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) _lowerCAmelCase = Accelerator() test_torch_metrics(SCREAMING_SNAKE_CASE_ , 512 ) accelerator.state._reset_state() def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
18
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() _lowerCAmelCase = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) _lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict=None ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() _lowerCAmelCase = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) _lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = result.headers["Location"] _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F'''{artifact_name}.zip''' ) with open(SCREAMING_SNAKE_CASE_ , "wb" ) as fp: fp.write(response.content ) def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=None ): '''simple docstring''' _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE_ ) as f: for line in f: _lowerCAmelCase = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _lowerCAmelCase = line[: line.index(": " )] _lowerCAmelCase = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed _lowerCAmelCase = line[len("FAILED " ) :] failed_tests.append(SCREAMING_SNAKE_CASE_ ) elif filename == "job_name.txt": _lowerCAmelCase = line if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( F'''`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE_ )} for `errors` ''' F'''and {len(SCREAMING_SNAKE_CASE_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' " problem." ) _lowerCAmelCase = None if job_name and job_links: _lowerCAmelCase = job_links.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # A list with elements of the form (line of error, error, failed test) _lowerCAmelCase = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] return result def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = [] _lowerCAmelCase = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for p in os.listdir(SCREAMING_SNAKE_CASE_ ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE_ , job_links=SCREAMING_SNAKE_CASE_ ) ) return errors def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str=None ): '''simple docstring''' _lowerCAmelCase = Counter() counter.update([x[1] for x in logs] ) _lowerCAmelCase = counter.most_common() _lowerCAmelCase = {} for error, count in counts: if error_filter is None or error not in error_filter: _lowerCAmelCase = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} _lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def __a(SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' _lowerCAmelCase = test.split("::" )[0] if test.startswith("tests/models/" ): _lowerCAmelCase = test.split("/" )[2] else: _lowerCAmelCase = None return test def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs] _lowerCAmelCase = [x for x in logs if x[2] is not None] _lowerCAmelCase = {x[2] for x in logs} _lowerCAmelCase = {} for test in tests: _lowerCAmelCase = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _lowerCAmelCase = counter.most_common() _lowerCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _lowerCAmelCase = sum(error_counts.values() ) if n_errors > 0: _lowerCAmelCase = {"count": n_errors, "errors": error_counts} _lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase = "| no. | error | status |" _lowerCAmelCase = "|-:|:-|:-|" _lowerCAmelCase = [header, sep] for error in reduced_by_error: _lowerCAmelCase = reduced_by_error[error]["count"] _lowerCAmelCase = F'''| {count} | {error[:100]} | |''' lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase = "| model | no. of errors | major error | count |" _lowerCAmelCase = "|-:|-:|-:|-:|" _lowerCAmelCase = [header, sep] for model in reduced_by_model: _lowerCAmelCase = reduced_by_model[model]["count"] _lowerCAmelCase , _lowerCAmelCase = list(reduced_by_model[model]["errors"].items() )[0] _lowerCAmelCase = F'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _SCREAMING_SNAKE_CASE = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _SCREAMING_SNAKE_CASE = get_job_links(args.workflow_run_id, token=args.token) _SCREAMING_SNAKE_CASE = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _SCREAMING_SNAKE_CASE = k.find(" / ") _SCREAMING_SNAKE_CASE = k[index + len(" / ") :] _SCREAMING_SNAKE_CASE = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _SCREAMING_SNAKE_CASE = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _SCREAMING_SNAKE_CASE = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _SCREAMING_SNAKE_CASE = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = reduce_by_error(errors) _SCREAMING_SNAKE_CASE = reduce_by_model(errors) _SCREAMING_SNAKE_CASE = make_github_table(reduced_by_error) _SCREAMING_SNAKE_CASE = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
18
1
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class lowerCAmelCase_ ( __magic_name__ ): def __lt__( self , _lowerCAmelCase ) -> List[Any]: return self[-1] < other[-1] def __eq__( self , _lowerCAmelCase ) -> List[str]: return self[-1] == other[-1] def __a(SCREAMING_SNAKE_CASE_ : list ): '''simple docstring''' _lowerCAmelCase = [] # sort into stacks for element in collection: _lowerCAmelCase = Stack([element] ) _lowerCAmelCase = bisect_left(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if i != len(SCREAMING_SNAKE_CASE_ ): stacks[i].append(SCREAMING_SNAKE_CASE_ ) else: stacks.append(SCREAMING_SNAKE_CASE_ ) # use a heap-based merge to merge stack efficiently _lowerCAmelCase = merge(*(reversed(SCREAMING_SNAKE_CASE_ ) for stack in stacks) ) return collection if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input("Enter numbers separated by a comma:\n").strip() _SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(",")] print(patience_sort(unsorted))
18
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = (DPMSolverSinglestepScheduler,) __lowerCamelCase : int = (("num_inference_steps", 25),) def _snake_case ( self , **_lowerCAmelCase ) -> Any: _lowerCAmelCase = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf" ), "variance_type": None, } config.update(**_lowerCAmelCase ) return config def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> List[Any]: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) _lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase ) new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase , _lowerCAmelCase = sample, sample for t in range(_lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self ) -> int: pass def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) _lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Tuple: if scheduler is None: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample return sample def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = 50 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults _lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 _lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _snake_case ( self ) -> str: self.check_over_configs(thresholding=_lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , algorithm_type="dpmsolver++" , solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , ) def _snake_case ( self ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , ) _lowerCAmelCase = self.full_loop( solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , ) assert not torch.isnan(_lowerCAmelCase ).any(), "Samples have nan numbers" def _snake_case ( self ) -> Optional[Any]: self.check_over_configs(lower_order_final=_lowerCAmelCase ) self.check_over_configs(lower_order_final=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: self.check_over_configs(lambda_min_clipped=-float("inf" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def _snake_case ( self ) -> str: self.check_over_configs(variance_type=_lowerCAmelCase ) self.check_over_configs(variance_type="learned_range" ) def _snake_case ( self ) -> int: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowerCAmelCase , time_step=0 ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.full_loop() _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.full_loop(use_karras_sigmas=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.full_loop(prediction_type="v_prediction" ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def _snake_case ( self ) -> Any: _lowerCAmelCase = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(thresholding=_lowerCAmelCase , dynamic_thresholding_ratio=0 ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa
18
1