code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import numpy as np
def __a(SCREAMING_SNAKE_CASE_ : np.array ):
'''simple docstring'''
return 1 / (1 + np.exp(-vector ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 18 |
'''simple docstring'''
from __future__ import annotations
def __a(SCREAMING_SNAKE_CASE_ : list ):
'''simple docstring'''
if not nums:
raise ValueError("List is empty" )
return sum(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 18 | 1 |
'''simple docstring'''
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
_SCREAMING_SNAKE_CASE = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n"
_SCREAMING_SNAKE_CASE = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n"
_SCREAMING_SNAKE_CASE = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
def _snake_case ( self ) -> Union[str, Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[
"https://arxiv.org/abs/2102.01454",
"https://github.com/krishnap25/mauve",
] , )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="auto" , _lowerCAmelCase=-1 , _lowerCAmelCase=0.9 , _lowerCAmelCase=5 , _lowerCAmelCase=500 , _lowerCAmelCase="gpt2-large" , _lowerCAmelCase=-1 , _lowerCAmelCase=1024 , _lowerCAmelCase=25 , _lowerCAmelCase=5 , _lowerCAmelCase=True , _lowerCAmelCase=25 , ) -> Optional[int]:
_lowerCAmelCase = compute_mauve(
p_text=_lowerCAmelCase , q_text=_lowerCAmelCase , p_features=_lowerCAmelCase , q_features=_lowerCAmelCase , p_tokens=_lowerCAmelCase , q_tokens=_lowerCAmelCase , num_buckets=_lowerCAmelCase , pca_max_data=_lowerCAmelCase , kmeans_explained_var=_lowerCAmelCase , kmeans_num_redo=_lowerCAmelCase , kmeans_max_iter=_lowerCAmelCase , featurize_model_name=_lowerCAmelCase , device_id=_lowerCAmelCase , max_text_length=_lowerCAmelCase , divergence_curve_discretization_size=_lowerCAmelCase , mauve_scaling_factor=_lowerCAmelCase , verbose=_lowerCAmelCase , seed=_lowerCAmelCase , )
return out
| 18 |
'''simple docstring'''
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
_lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase )
_lowerCAmelCase = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
_lowerCAmelCase = TextStreamer(_lowerCAmelCase )
model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
_lowerCAmelCase = cs.out[:-1]
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
_lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase )
_lowerCAmelCase = tokenizer.decode(greedy_ids[0] )
_lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase )
_lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
_lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase )
thread.start()
_lowerCAmelCase = ""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
_lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase )
_lowerCAmelCase = greedy_ids[:, input_ids.shape[1] :]
_lowerCAmelCase = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
_lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_prompt=_lowerCAmelCase )
model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
_lowerCAmelCase = cs.out[:-1]
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> Dict:
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
_lowerCAmelCase = AutoTokenizer.from_pretrained("distilgpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = torch.ones((1, 5) , device=_lowerCAmelCase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
_lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )
model.generate(_lowerCAmelCase , max_new_tokens=1 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
_lowerCAmelCase = cs.out[:-1] # Remove the final "\n"
_lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="pt" )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
_lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase , timeout=0.001 )
_lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
_lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(_lowerCAmelCase ):
_lowerCAmelCase = ""
for new_text in streamer:
streamer_text += new_text
| 18 | 1 |
'''simple docstring'''
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json",
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : List[str] = "umt5"
__lowerCamelCase : List[Any] = ["past_key_values"]
def __init__( self , _lowerCAmelCase=250112 , _lowerCAmelCase=512 , _lowerCAmelCase=64 , _lowerCAmelCase=1024 , _lowerCAmelCase=8 , _lowerCAmelCase=None , _lowerCAmelCase=6 , _lowerCAmelCase=32 , _lowerCAmelCase=128 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-6 , _lowerCAmelCase=1.0 , _lowerCAmelCase="gated-gelu" , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="T5Tokenizer" , _lowerCAmelCase=True , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , **_lowerCAmelCase , ) -> Dict:
super().__init__(
is_encoder_decoder=_lowerCAmelCase , tokenizer_class=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
_lowerCAmelCase = vocab_size
_lowerCAmelCase = d_model
_lowerCAmelCase = d_kv
_lowerCAmelCase = d_ff
_lowerCAmelCase = num_layers
_lowerCAmelCase = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
_lowerCAmelCase = num_heads
_lowerCAmelCase = relative_attention_num_buckets
_lowerCAmelCase = relative_attention_max_distance
_lowerCAmelCase = dropout_rate
_lowerCAmelCase = layer_norm_epsilon
_lowerCAmelCase = initializer_factor
_lowerCAmelCase = feed_forward_proj
_lowerCAmelCase = use_cache
_lowerCAmelCase = self.feed_forward_proj.split("-" )
_lowerCAmelCase = act_info[-1]
_lowerCAmelCase = act_info[0] == "gated"
if len(_lowerCAmelCase ) > 1 and act_info[0] != "gated" or len(_lowerCAmelCase ) > 2:
raise ValueError(
f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'''
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
"'gated-gelu' or 'relu'" )
if feed_forward_proj == "gated-gelu":
_lowerCAmelCase = "gelu_new"
@property
def _snake_case ( self ) -> Optional[Any]:
return self.d_model
@property
def _snake_case ( self ) -> Tuple:
return self.num_heads
@property
def _snake_case ( self ) -> str:
return self.num_layers
class lowerCAmelCase_ ( __magic_name__ ):
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
_lowerCAmelCase = {
"input_ids": {0: "batch", 1: "encoder_sequence"},
"attention_mask": {0: "batch", 1: "encoder_sequence"},
}
if self.use_past:
_lowerCAmelCase = "past_encoder_sequence + sequence"
_lowerCAmelCase = {0: "batch"}
_lowerCAmelCase = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
_lowerCAmelCase = {0: "batch", 1: "decoder_sequence"}
_lowerCAmelCase = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(_lowerCAmelCase , direction="inputs" )
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def _snake_case ( self ) -> int:
return 13
@property
def _snake_case ( self ) -> float:
return 5E-4
| 18 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json",
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Union[str, Any] = "blenderbot-small"
__lowerCamelCase : Optional[Any] = ["past_key_values"]
__lowerCamelCase : str = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , _lowerCAmelCase=50265 , _lowerCAmelCase=512 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="gelu" , _lowerCAmelCase=512 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=2 , **_lowerCAmelCase , ) -> Dict:
_lowerCAmelCase = vocab_size
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = d_model
_lowerCAmelCase = encoder_ffn_dim
_lowerCAmelCase = encoder_layers
_lowerCAmelCase = encoder_attention_heads
_lowerCAmelCase = decoder_ffn_dim
_lowerCAmelCase = decoder_layers
_lowerCAmelCase = decoder_attention_heads
_lowerCAmelCase = dropout
_lowerCAmelCase = attention_dropout
_lowerCAmelCase = activation_dropout
_lowerCAmelCase = activation_function
_lowerCAmelCase = init_std
_lowerCAmelCase = encoder_layerdrop
_lowerCAmelCase = decoder_layerdrop
_lowerCAmelCase = use_cache
_lowerCAmelCase = encoder_layers
_lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
class lowerCAmelCase_ ( __magic_name__ ):
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_lowerCAmelCase = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
_lowerCAmelCase = {0: "batch"}
_lowerCAmelCase = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
_lowerCAmelCase = {0: "batch", 1: "decoder_sequence"}
_lowerCAmelCase = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(_lowerCAmelCase , direction="inputs" )
elif self.task == "causal-lm":
# TODO: figure this case out.
_lowerCAmelCase = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
_lowerCAmelCase , _lowerCAmelCase = self.num_layers
for i in range(_lowerCAmelCase ):
_lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"}
_lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"}
else:
_lowerCAmelCase = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
] )
return common_inputs
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_lowerCAmelCase = super().outputs
else:
_lowerCAmelCase = super(_lowerCAmelCase , self ).outputs
if self.use_past:
_lowerCAmelCase , _lowerCAmelCase = self.num_layers
for i in range(_lowerCAmelCase ):
_lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"}
_lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]:
_lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Generate decoder inputs
_lowerCAmelCase = seq_length if not self.use_past else 1
_lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()}
_lowerCAmelCase = dict(**_lowerCAmelCase , **_lowerCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
_lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape
_lowerCAmelCase = common_inputs["decoder_input_ids"].shape[1]
_lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads
_lowerCAmelCase = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_lowerCAmelCase = decoder_seq_length + 3
_lowerCAmelCase = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
_lowerCAmelCase = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase )] , dim=1 )
_lowerCAmelCase = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
_lowerCAmelCase , _lowerCAmelCase = self.num_layers
_lowerCAmelCase = min(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = max(_lowerCAmelCase , _lowerCAmelCase ) - min_num_layers
_lowerCAmelCase = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(_lowerCAmelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(_lowerCAmelCase ),
torch.zeros(_lowerCAmelCase ),
torch.zeros(_lowerCAmelCase ),
torch.zeros(_lowerCAmelCase ),
) )
# TODO: test this.
_lowerCAmelCase = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(_lowerCAmelCase , _lowerCAmelCase ):
common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) )
return common_inputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]:
_lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
_lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
_lowerCAmelCase = seqlen + 2
_lowerCAmelCase , _lowerCAmelCase = self.num_layers
_lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads
_lowerCAmelCase = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_lowerCAmelCase = common_inputs["attention_mask"].dtype
_lowerCAmelCase = torch.cat(
[common_inputs["attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase )] , dim=1 )
_lowerCAmelCase = [
(torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase )
]
return common_inputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
_lowerCAmelCase = compute_effective_axis_dimension(
_lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
_lowerCAmelCase = tokenizer.num_special_tokens_to_add(_lowerCAmelCase )
_lowerCAmelCase = compute_effective_axis_dimension(
_lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase )
# Generate dummy inputs according to compute batch and sequence
_lowerCAmelCase = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size
_lowerCAmelCase = dict(tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) )
return common_inputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
_lowerCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
elif self.task == "causal-lm":
_lowerCAmelCase = self._generate_dummy_inputs_for_causal_lm(
_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
else:
_lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
return common_inputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict:
if self.task in ["default", "seq2seq-lm"]:
_lowerCAmelCase = super()._flatten_past_key_values_(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
else:
_lowerCAmelCase = super(_lowerCAmelCase , self )._flatten_past_key_values_(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel
if is_vision_available():
from transformers import MaskFormerImageProcessor
if is_vision_available():
from PIL import Image
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=10 , _lowerCAmelCase=3 , _lowerCAmelCase=32 * 4 , _lowerCAmelCase=32 * 6 , _lowerCAmelCase=4 , _lowerCAmelCase=32 , ) -> Tuple:
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = is_training
_lowerCAmelCase = use_auxiliary_loss
_lowerCAmelCase = num_queries
_lowerCAmelCase = num_channels
_lowerCAmelCase = min_size
_lowerCAmelCase = max_size
_lowerCAmelCase = num_labels
_lowerCAmelCase = mask_feature_size
def _snake_case ( self ) -> int:
_lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
_lowerCAmelCase )
_lowerCAmelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCAmelCase )
_lowerCAmelCase = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCAmelCase ) > 0.5
).float()
_lowerCAmelCase = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCAmelCase ) > 0.5).long()
_lowerCAmelCase = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def _snake_case ( self ) -> Optional[Any]:
return MaskFormerConfig.from_backbone_and_decoder_configs(
backbone_config=SwinConfig(
depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig(
decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , )
def _snake_case ( self ) -> int:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.prepare_config_and_inputs()
_lowerCAmelCase = {"pixel_values": pixel_values, "pixel_mask": pixel_mask}
return config, inputs_dict
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = output.encoder_hidden_states
_lowerCAmelCase = output.pixel_decoder_hidden_states
_lowerCAmelCase = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(_lowerCAmelCase ) , config.decoder_config.decoder_layers )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> List[str]:
with torch.no_grad():
_lowerCAmelCase = MaskFormerModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase , output_hidden_states=_lowerCAmelCase )
# the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the
# encoder and pixel decoder
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict:
_lowerCAmelCase = MaskFormerForInstanceSegmentation(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
def comm_check_on_output(_lowerCAmelCase ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
_lowerCAmelCase = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase )
comm_check_on_output(_lowerCAmelCase )
_lowerCAmelCase = model(
pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase )
comm_check_on_output(_lowerCAmelCase )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ):
__lowerCamelCase : List[str] = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else ()
__lowerCamelCase : List[str] = (
{"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation}
if is_torch_available()
else {}
)
__lowerCamelCase : Any = False
__lowerCamelCase : List[str] = False
__lowerCamelCase : Union[str, Any] = False
__lowerCamelCase : int = False
def _snake_case ( self ) -> Any:
_lowerCAmelCase = MaskFormerModelTester(self )
_lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase )
def _snake_case ( self ) -> Tuple:
self.config_tester.run_common_tests()
def _snake_case ( self ) -> int:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase )
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_lowerCAmelCase )
@unittest.skip(reason="MaskFormer does not use inputs_embeds" )
def _snake_case ( self ) -> List[Any]:
pass
@unittest.skip(reason="MaskFormer does not have a get_input_embeddings method" )
def _snake_case ( self ) -> Any:
pass
@unittest.skip(reason="MaskFormer is not a generative model" )
def _snake_case ( self ) -> Tuple:
pass
@unittest.skip(reason="MaskFormer does not use token embeddings" )
def _snake_case ( self ) -> str:
pass
@require_torch_multi_gpu
@unittest.skip(
reason="MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`" )
def _snake_case ( self ) -> Union[str, Any]:
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def _snake_case ( self ) -> Optional[int]:
pass
def _snake_case ( self ) -> Dict:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase = model_class(_lowerCAmelCase )
_lowerCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase = [*signature.parameters.keys()]
_lowerCAmelCase = ["pixel_values"]
self.assertListEqual(arg_names[:1] , _lowerCAmelCase )
@slow
def _snake_case ( self ) -> Dict:
for model_name in ["facebook/maskformer-swin-small-coco"]:
_lowerCAmelCase = MaskFormerModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = (self.model_tester.min_size,) * 2
_lowerCAmelCase = {
"pixel_values": torch.randn((2, 3, *size) , device=_lowerCAmelCase ),
"mask_labels": torch.randn((2, 10, *size) , device=_lowerCAmelCase ),
"class_labels": torch.zeros(2 , 10 , device=_lowerCAmelCase ).long(),
}
_lowerCAmelCase = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_lowerCAmelCase )
_lowerCAmelCase = model(**_lowerCAmelCase )
self.assertTrue(outputs.loss is not None )
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase )
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase = model_class(_lowerCAmelCase ).to(_lowerCAmelCase )
_lowerCAmelCase = model(**_lowerCAmelCase , output_attentions=_lowerCAmelCase )
self.assertTrue(outputs.attentions is not None )
def _snake_case ( self ) -> Optional[Any]:
if not self.model_tester.is_training:
return
# only MaskFormerForInstanceSegmentation has the loss
_lowerCAmelCase = self.all_model_classes[1]
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
_lowerCAmelCase = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.train()
_lowerCAmelCase = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ).loss
loss.backward()
def _snake_case ( self ) -> Any:
# only MaskFormerForInstanceSegmentation has the loss
_lowerCAmelCase = self.all_model_classes[1]
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
_lowerCAmelCase = True
_lowerCAmelCase = True
_lowerCAmelCase = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.train()
_lowerCAmelCase = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase )
_lowerCAmelCase = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
_lowerCAmelCase = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
# we requires_grad=True in inputs_embeds (line 2152), the original implementation don't
_lowerCAmelCase = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
_lowerCAmelCase = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=_lowerCAmelCase )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
_SCREAMING_SNAKE_CASE = 1e-4
def __a():
'''simple docstring'''
_lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_vision
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
@cached_property
def _snake_case ( self ) -> Tuple:
return (
MaskFormerImageProcessor.from_pretrained("facebook/maskformer-swin-small-coco" )
if is_vision_available()
else None
)
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = MaskFormerModel.from_pretrained("facebook/maskformer-swin-small-coco" ).to(_lowerCAmelCase )
_lowerCAmelCase = self.default_image_processor
_lowerCAmelCase = prepare_img()
_lowerCAmelCase = image_processor(_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase )
_lowerCAmelCase = inputs["pixel_values"].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(_lowerCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
_lowerCAmelCase = model(**_lowerCAmelCase )
_lowerCAmelCase = torch.tensor(
[[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(_lowerCAmelCase )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) )
_lowerCAmelCase = torch.tensor(
[[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(_lowerCAmelCase )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) )
_lowerCAmelCase = torch.tensor(
[[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(_lowerCAmelCase )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) )
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = (
MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" )
.to(_lowerCAmelCase )
.eval()
)
_lowerCAmelCase = self.default_image_processor
_lowerCAmelCase = prepare_img()
_lowerCAmelCase = image_processor(_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase )
_lowerCAmelCase = inputs["pixel_values"].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(_lowerCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
_lowerCAmelCase = model(**_lowerCAmelCase )
# masks_queries_logits
_lowerCAmelCase = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
_lowerCAmelCase = [
[-1.3737124, -1.7724937, -1.9364233],
[-1.5977281, -1.9867939, -2.1523695],
[-1.5795398, -1.9269832, -2.093942],
]
_lowerCAmelCase = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) )
# class_queries_logits
_lowerCAmelCase = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
_lowerCAmelCase = torch.tensor(
[
[1.6512E00, -5.2572E00, -3.3519E00],
[3.6169E-02, -5.9025E00, -2.9313E00],
[1.0766E-04, -7.7630E00, -5.1263E00],
] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) )
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = (
MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-resnet101-coco-stuff" )
.to(_lowerCAmelCase )
.eval()
)
_lowerCAmelCase = self.default_image_processor
_lowerCAmelCase = prepare_img()
_lowerCAmelCase = image_processor(_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase )
_lowerCAmelCase = inputs["pixel_values"].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(_lowerCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
_lowerCAmelCase = model(**_lowerCAmelCase )
# masks_queries_logits
_lowerCAmelCase = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
_lowerCAmelCase = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]]
_lowerCAmelCase = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) )
# class_queries_logits
_lowerCAmelCase = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
_lowerCAmelCase = torch.tensor(
[[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) )
def _snake_case ( self ) -> Tuple:
_lowerCAmelCase = (
MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" )
.to(_lowerCAmelCase )
.eval()
)
_lowerCAmelCase = self.default_image_processor
_lowerCAmelCase = image_processor(
[np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , )
_lowerCAmelCase = inputs["pixel_values"].to(_lowerCAmelCase )
_lowerCAmelCase = [el.to(_lowerCAmelCase ) for el in inputs["mask_labels"]]
_lowerCAmelCase = [el.to(_lowerCAmelCase ) for el in inputs["class_labels"]]
with torch.no_grad():
_lowerCAmelCase = model(**_lowerCAmelCase )
self.assertTrue(outputs.loss is not None )
| 18 |
'''simple docstring'''
import re
import string
import numpy as np
import datasets
_SCREAMING_SNAKE_CASE = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n"
_SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n"
_SCREAMING_SNAKE_CASE = "\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
def _snake_case ( self ) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , reference_urls=[] , )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , ) -> str:
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
_lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in predictions] )
_lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in references] )
else:
_lowerCAmelCase = np.asarray(_lowerCAmelCase )
_lowerCAmelCase = np.asarray(_lowerCAmelCase )
if ignore_case:
_lowerCAmelCase = np.char.lower(_lowerCAmelCase )
_lowerCAmelCase = np.char.lower(_lowerCAmelCase )
if ignore_punctuation:
_lowerCAmelCase = string.punctuation.maketrans("" , "" , string.punctuation )
_lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase )
_lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase )
if ignore_numbers:
_lowerCAmelCase = string.digits.maketrans("" , "" , string.digits )
_lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase )
_lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase )
_lowerCAmelCase = predictions == references
return {"exact_match": np.mean(_lowerCAmelCase ) * 100}
| 18 | 1 |
'''simple docstring'''
from sklearn.metrics import fa_score
import datasets
_SCREAMING_SNAKE_CASE = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n"
_SCREAMING_SNAKE_CASE = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n"
_SCREAMING_SNAKE_CASE = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
def _snake_case ( self ) -> Dict:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("int32" ) ),
"references": datasets.Sequence(datasets.Value("int32" ) ),
}
if self.config_name == "multilabel"
else {
"predictions": datasets.Value("int32" ),
"references": datasets.Value("int32" ),
} ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] , )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=1 , _lowerCAmelCase="binary" , _lowerCAmelCase=None ) -> Optional[Any]:
_lowerCAmelCase = fa_score(
_lowerCAmelCase , _lowerCAmelCase , labels=_lowerCAmelCase , pos_label=_lowerCAmelCase , average=_lowerCAmelCase , sample_weight=_lowerCAmelCase )
return {"f1": float(_lowerCAmelCase ) if score.size == 1 else score}
| 18 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class lowerCAmelCase_ ( __magic_name__ ):
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> None:
warnings.warn(
"The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use YolosImageProcessor instead." , _lowerCAmelCase , )
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
_lowerCAmelCase = 1 # To kept the Calculated Value
# Since C(n, k) = C(n, n-k)
if k > (n - k):
_lowerCAmelCase = n - k
# Calculate C(n,k)
for i in range(SCREAMING_SNAKE_CASE_ ):
result *= n - i
result //= i + 1
return result
def __a(SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
return binomial_coefficient(2 * node_count , SCREAMING_SNAKE_CASE_ ) // (node_count + 1)
def __a(SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
if n < 0:
raise ValueError("factorial() not defined for negative values" )
_lowerCAmelCase = 1
for i in range(1 , n + 1 ):
result *= i
return result
def __a(SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
return catalan_number(SCREAMING_SNAKE_CASE_ ) * factorial(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = int(input("Enter the number of nodes: ").strip() or 0)
if node_count <= 0:
raise ValueError("We need some nodes to work with.")
print(
f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} '''
f'''binary trees and {catalan_number(node_count)} binary search trees.'''
)
| 18 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Any = "falcon"
__lowerCamelCase : List[str] = ["past_key_values"]
def __init__( self , _lowerCAmelCase=65024 , _lowerCAmelCase=4544 , _lowerCAmelCase=32 , _lowerCAmelCase=71 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=11 , _lowerCAmelCase=11 , **_lowerCAmelCase , ) -> Union[str, Any]:
_lowerCAmelCase = vocab_size
# Backward compatibility with n_embed kwarg
_lowerCAmelCase = kwargs.pop("n_embed" , _lowerCAmelCase )
_lowerCAmelCase = hidden_size if n_embed is None else n_embed
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = layer_norm_epsilon
_lowerCAmelCase = initializer_range
_lowerCAmelCase = use_cache
_lowerCAmelCase = hidden_dropout
_lowerCAmelCase = attention_dropout
_lowerCAmelCase = bos_token_id
_lowerCAmelCase = eos_token_id
_lowerCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads
_lowerCAmelCase = alibi
_lowerCAmelCase = new_decoder_architecture
_lowerCAmelCase = multi_query # Ignored when new_decoder_architecture is True
_lowerCAmelCase = parallel_attn
_lowerCAmelCase = bias
super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
@property
def _snake_case ( self ) -> Optional[Any]:
return self.hidden_size // self.num_attention_heads
@property
def _snake_case ( self ) -> Optional[Any]:
return not self.alibi
| 18 | 1 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 18 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"facebook/deit-base-distilled-patch16-224": (
"https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json"
),
# See all DeiT models at https://huggingface.co/models?filter=deit
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Optional[int] = "deit"
def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=16 , **_lowerCAmelCase , ) -> Dict:
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = initializer_range
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = qkv_bias
_lowerCAmelCase = encoder_stride
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : List[str] = version.parse("1.11" )
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self ) -> float:
return 1E-4
| 18 | 1 |
'''simple docstring'''
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class lowerCAmelCase_ ( unittest.TestCase ):
def _snake_case ( self ) -> List[Any]:
# A mock response for an HTTP head request to emulate server down
_lowerCAmelCase = mock.Mock()
_lowerCAmelCase = 500
_lowerCAmelCase = {}
_lowerCAmelCase = HTTPError
_lowerCAmelCase = {}
# Download this model to make sure it's in the cache.
_lowerCAmelCase = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("requests.Session.request" , return_value=_lowerCAmelCase ) as mock_head:
_lowerCAmelCase = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def _snake_case ( self ) -> Union[str, Any]:
# A mock response for an HTTP head request to emulate server down
_lowerCAmelCase = mock.Mock()
_lowerCAmelCase = 500
_lowerCAmelCase = {}
_lowerCAmelCase = HTTPError
_lowerCAmelCase = {}
# Download this model to make sure it's in the cache.
_lowerCAmelCase = GPTaTokenizerFast.from_pretrained("gpt2" )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("requests.Session.request" , return_value=_lowerCAmelCase ) as mock_head:
_lowerCAmelCase = GPTaTokenizerFast.from_pretrained("gpt2" )
# This check we did call the fake head request
mock_head.assert_called()
def _snake_case ( self ) -> str:
# This test is for deprecated behavior and can be removed in v5
try:
_lowerCAmelCase = tempfile.mktemp()
with open(_lowerCAmelCase , "wb" ) as f:
http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" , _lowerCAmelCase )
_lowerCAmelCase = AlbertTokenizer.from_pretrained(_lowerCAmelCase )
finally:
os.remove(_lowerCAmelCase )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile("tokenizer.json" ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open("tokenizer.json" , "wb" ) as f:
http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" , _lowerCAmelCase )
_lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size , 1000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove("tokenizer.json" )
def _snake_case ( self ) -> Tuple:
# This test is for deprecated behavior and can be removed in v5
_lowerCAmelCase = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" )
@is_staging_test
class lowerCAmelCase_ ( unittest.TestCase ):
__lowerCamelCase : Tuple = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
@classmethod
def _snake_case ( cls ) -> Dict:
_lowerCAmelCase = TOKEN
HfFolder.save_token(_lowerCAmelCase )
@classmethod
def _snake_case ( cls ) -> Any:
try:
delete_repo(token=cls._token , repo_id="test-tokenizer" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-tokenizer-org" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="test-dynamic-tokenizer" )
except HTTPError:
pass
def _snake_case ( self ) -> Tuple:
with tempfile.TemporaryDirectory() as tmp_dir:
_lowerCAmelCase = os.path.join(_lowerCAmelCase , "vocab.txt" )
with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) )
_lowerCAmelCase = BertTokenizer(_lowerCAmelCase )
tokenizer.push_to_hub("test-tokenizer" , use_auth_token=self._token )
_lowerCAmelCase = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id="test-tokenizer" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_lowerCAmelCase , repo_id="test-tokenizer" , push_to_hub=_lowerCAmelCase , use_auth_token=self._token )
_lowerCAmelCase = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
def _snake_case ( self ) -> Any:
with tempfile.TemporaryDirectory() as tmp_dir:
_lowerCAmelCase = os.path.join(_lowerCAmelCase , "vocab.txt" )
with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) )
_lowerCAmelCase = BertTokenizer(_lowerCAmelCase )
tokenizer.push_to_hub("valid_org/test-tokenizer-org" , use_auth_token=self._token )
_lowerCAmelCase = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-tokenizer-org" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
_lowerCAmelCase , repo_id="valid_org/test-tokenizer-org" , push_to_hub=_lowerCAmelCase , use_auth_token=self._token )
_lowerCAmelCase = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
@require_tokenizers
def _snake_case ( self ) -> int:
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
_lowerCAmelCase = os.path.join(_lowerCAmelCase , "vocab.txt" )
with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) )
_lowerCAmelCase = CustomTokenizer(_lowerCAmelCase )
# No fast custom tokenizer
tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token )
_lowerCAmelCase = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=_lowerCAmelCase )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
_lowerCAmelCase = os.path.join(_lowerCAmelCase , "vocab.txt" )
with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) )
_lowerCAmelCase = BertTokenizerFast.from_pretrained(_lowerCAmelCase )
bert_tokenizer.save_pretrained(_lowerCAmelCase )
_lowerCAmelCase = CustomTokenizerFast.from_pretrained(_lowerCAmelCase )
tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token )
_lowerCAmelCase = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=_lowerCAmelCase )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizerFast" )
_lowerCAmelCase = AutoTokenizer.from_pretrained(
f'''{USER}/test-dynamic-tokenizer''' , use_fast=_lowerCAmelCase , trust_remote_code=_lowerCAmelCase )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" )
class lowerCAmelCase_ ( unittest.TestCase ):
def _snake_case ( self ) -> str:
_lowerCAmelCase = Trie()
trie.add("Hello 友達" )
self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} )
trie.add("Hello" )
trie.data
self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = Trie()
self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS] This is a extra_id_100"] )
trie.add("[CLS]" )
trie.add("extra_id_1" )
trie.add("extra_id_100" )
self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS]", " This is a ", "extra_id_100"] )
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = Trie()
trie.add("A" )
self.assertEqual(trie.split("ABC" ) , ["A", "BC"] )
self.assertEqual(trie.split("BCA" ) , ["BC", "A"] )
def _snake_case ( self ) -> Any:
_lowerCAmelCase = Trie()
trie.add("TOKEN]" )
trie.add("[SPECIAL_TOKEN]" )
self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = Trie()
trie.add("A" )
trie.add("P" )
trie.add("[SPECIAL_TOKEN]" )
self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] )
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = Trie()
trie.add("AB" )
trie.add("B" )
trie.add("C" )
self.assertEqual(trie.split("ABC" ) , ["AB", "C"] )
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase = Trie()
trie.add("ABC" )
trie.add("B" )
trie.add("CD" )
self.assertEqual(trie.split("ABCD" ) , ["ABC", "D"] )
def _snake_case ( self ) -> Any:
# Even if the offsets are wrong, we necessarily output correct string
# parts.
_lowerCAmelCase = Trie()
_lowerCAmelCase = trie.cut_text("ABC" , [0, 0, 2, 1, 2, 3] )
self.assertEqual(_lowerCAmelCase , ["AB", "C"] )
| 18 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_SCREAMING_SNAKE_CASE = {
"configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"],
"feature_extraction_mctct": ["MCTCTFeatureExtractor"],
"processing_mctct": ["MCTCTProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MCTCTForCTC",
"MCTCTModel",
"MCTCTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 18 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"facebook/deit-base-distilled-patch16-224": (
"https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json"
),
# See all DeiT models at https://huggingface.co/models?filter=deit
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Optional[int] = "deit"
def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=16 , **_lowerCAmelCase , ) -> Dict:
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = initializer_range
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = qkv_bias
_lowerCAmelCase = encoder_stride
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : List[str] = version.parse("1.11" )
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self ) -> float:
return 1E-4
| 18 |
'''simple docstring'''
from typing import Dict, Iterable, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : int = ["pixel_values"]
def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = IMAGENET_DEFAULT_MEAN , _lowerCAmelCase = IMAGENET_DEFAULT_STD , **_lowerCAmelCase , ) -> None:
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = size if size is not None else {"shortest_edge": 224}
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
_lowerCAmelCase = crop_size if crop_size is not None else {"height": 224, "width": 224}
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" )
_lowerCAmelCase = do_resize
_lowerCAmelCase = size
_lowerCAmelCase = resample
_lowerCAmelCase = do_center_crop
_lowerCAmelCase = crop_size
_lowerCAmelCase = do_rescale
_lowerCAmelCase = rescale_factor
_lowerCAmelCase = do_normalize
_lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
_lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray:
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
# size_dict is a dict with either keys "height" and "width" or "shortest_edge"
if "shortest_edge" in size:
_lowerCAmelCase = int((256 / 224) * size["shortest_edge"] )
_lowerCAmelCase = get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase )
_lowerCAmelCase = {"height": output_size[0], "width": output_size[1]}
if "height" not in size_dict or "width" not in size_dict:
raise ValueError(
f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' )
return resize(
_lowerCAmelCase , size=(size_dict["height"], size_dict["width"]) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray:
_lowerCAmelCase = get_size_dict(_lowerCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray:
return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray:
return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ) -> BatchFeature:
_lowerCAmelCase = do_resize if do_resize is not None else self.do_resize
_lowerCAmelCase = resample if resample is not None else self.resample
_lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
_lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
_lowerCAmelCase = image_mean if image_mean is not None else self.image_mean
_lowerCAmelCase = image_std if image_std is not None else self.image_std
_lowerCAmelCase = size if size is not None else self.size
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
_lowerCAmelCase = crop_size if crop_size is not None else self.crop_size
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" )
_lowerCAmelCase = make_list_of_images(_lowerCAmelCase )
if not valid_images(_lowerCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
_lowerCAmelCase = [to_numpy_array(_lowerCAmelCase ) for image in images]
if do_resize:
_lowerCAmelCase = [self.resize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images]
if do_center_crop:
_lowerCAmelCase = [self.center_crop(_lowerCAmelCase , _lowerCAmelCase ) for image in images]
if do_rescale:
_lowerCAmelCase = [self.rescale(_lowerCAmelCase , _lowerCAmelCase ) for image in images]
if do_normalize:
_lowerCAmelCase = [self.normalize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images]
_lowerCAmelCase = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images]
_lowerCAmelCase = {"pixel_values": images}
return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def __a(SCREAMING_SNAKE_CASE_ : NDArray[floataa] , SCREAMING_SNAKE_CASE_ : NDArray[floataa] , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int , ):
'''simple docstring'''
_lowerCAmelCase , _lowerCAmelCase = coefficient_matrix.shape
_lowerCAmelCase , _lowerCAmelCase = constant_matrix.shape
if rowsa != colsa:
_lowerCAmelCase = F'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}'''
raise ValueError(SCREAMING_SNAKE_CASE_ )
if colsa != 1:
_lowerCAmelCase = F'''Constant matrix must be nx1 but received {rowsa}x{colsa}'''
raise ValueError(SCREAMING_SNAKE_CASE_ )
if rowsa != rowsa:
_lowerCAmelCase = (
"Coefficient and constant matrices dimensions must be nxn and nx1 but "
F'''received {rowsa}x{colsa} and {rowsa}x{colsa}'''
)
raise ValueError(SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) != rowsa:
_lowerCAmelCase = (
"Number of initial values must be equal to number of rows in coefficient "
F'''matrix but received {len(SCREAMING_SNAKE_CASE_ )} and {rowsa}'''
)
raise ValueError(SCREAMING_SNAKE_CASE_ )
if iterations <= 0:
raise ValueError("Iterations must be at least 1" )
_lowerCAmelCase = np.concatenate(
(coefficient_matrix, constant_matrix) , axis=1 )
_lowerCAmelCase , _lowerCAmelCase = table.shape
strictly_diagonally_dominant(SCREAMING_SNAKE_CASE_ )
# Iterates the whole matrix for given number of times
for _ in range(SCREAMING_SNAKE_CASE_ ):
_lowerCAmelCase = []
for row in range(SCREAMING_SNAKE_CASE_ ):
_lowerCAmelCase = 0
for col in range(SCREAMING_SNAKE_CASE_ ):
if col == row:
_lowerCAmelCase = table[row][col]
elif col == cols - 1:
_lowerCAmelCase = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
_lowerCAmelCase = (temp + val) / denom
new_val.append(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = new_val
return [float(SCREAMING_SNAKE_CASE_ ) for i in new_val]
def __a(SCREAMING_SNAKE_CASE_ : NDArray[floataa] ):
'''simple docstring'''
_lowerCAmelCase , _lowerCAmelCase = table.shape
_lowerCAmelCase = True
for i in range(0 , SCREAMING_SNAKE_CASE_ ):
_lowerCAmelCase = 0
for j in range(0 , cols - 1 ):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError("Coefficient matrix is not strictly diagonally dominant" )
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()
| 18 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json",
# See all Donut models at https://huggingface.co/models?filter=donut-swin
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Union[str, Any] = "donut-swin"
__lowerCamelCase : int = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , **_lowerCAmelCase , ) -> Optional[Any]:
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = embed_dim
_lowerCAmelCase = depths
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = num_heads
_lowerCAmelCase = window_size
_lowerCAmelCase = mlp_ratio
_lowerCAmelCase = qkv_bias
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = drop_path_rate
_lowerCAmelCase = hidden_act
_lowerCAmelCase = use_absolute_embeddings
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
| 18 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_SCREAMING_SNAKE_CASE = {
"configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"],
"convert_funnel_original_tf_checkpoint_to_pytorch": [],
"tokenization_funnel": ["FunnelTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ["FunnelTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
"FunnelBaseModel",
"FunnelForMaskedLM",
"FunnelForMultipleChoice",
"FunnelForPreTraining",
"FunnelForQuestionAnswering",
"FunnelForSequenceClassification",
"FunnelForTokenClassification",
"FunnelModel",
"FunnelPreTrainedModel",
"load_tf_weights_in_funnel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFFunnelBaseModel",
"TFFunnelForMaskedLM",
"TFFunnelForMultipleChoice",
"TFFunnelForPreTraining",
"TFFunnelForQuestionAnswering",
"TFFunnelForSequenceClassification",
"TFFunnelForTokenClassification",
"TFFunnelModel",
"TFFunnelPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig
from .tokenization_funnel import FunnelTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_funnel_fast import FunnelTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_funnel import (
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
FunnelBaseModel,
FunnelForMaskedLM,
FunnelForMultipleChoice,
FunnelForPreTraining,
FunnelForQuestionAnswering,
FunnelForSequenceClassification,
FunnelForTokenClassification,
FunnelModel,
FunnelPreTrainedModel,
load_tf_weights_in_funnel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_funnel import (
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
TFFunnelPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 18 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"microsoft/swinv2-tiny-patch4-window8-256": (
"https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json"
),
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Union[str, Any] = "swinv2"
__lowerCamelCase : int = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=32 , **_lowerCAmelCase , ) -> Tuple:
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = embed_dim
_lowerCAmelCase = depths
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = num_heads
_lowerCAmelCase = window_size
_lowerCAmelCase = mlp_ratio
_lowerCAmelCase = qkv_bias
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = drop_path_rate
_lowerCAmelCase = hidden_act
_lowerCAmelCase = use_absolute_embeddings
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = initializer_range
_lowerCAmelCase = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
_lowerCAmelCase = (0, 0, 0, 0)
| 18 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json",
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : str = "gpt_bigcode"
__lowerCamelCase : Optional[int] = ["past_key_values"]
__lowerCamelCase : List[str] = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , _lowerCAmelCase=50257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=50256 , _lowerCAmelCase=50256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]:
_lowerCAmelCase = vocab_size
_lowerCAmelCase = n_positions
_lowerCAmelCase = n_embd
_lowerCAmelCase = n_layer
_lowerCAmelCase = n_head
_lowerCAmelCase = n_inner
_lowerCAmelCase = activation_function
_lowerCAmelCase = resid_pdrop
_lowerCAmelCase = embd_pdrop
_lowerCAmelCase = attn_pdrop
_lowerCAmelCase = layer_norm_epsilon
_lowerCAmelCase = initializer_range
_lowerCAmelCase = scale_attn_weights
_lowerCAmelCase = use_cache
_lowerCAmelCase = attention_softmax_in_fpaa
_lowerCAmelCase = scale_attention_softmax_in_fpaa
_lowerCAmelCase = multi_query
_lowerCAmelCase = bos_token_id
_lowerCAmelCase = eos_token_id
super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
| 18 |
'''simple docstring'''
import gc
import unittest
import torch
from parameterized import parameterized
from diffusers import AutoencoderKL
from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ):
__lowerCamelCase : Optional[Any] = AutoencoderKL
__lowerCamelCase : List[Any] = "sample"
__lowerCamelCase : Tuple = 1e-2
@property
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = 4
_lowerCAmelCase = 3
_lowerCAmelCase = (32, 32)
_lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCAmelCase )
return {"sample": image}
@property
def _snake_case ( self ) -> Any:
return (3, 32, 32)
@property
def _snake_case ( self ) -> List[Any]:
return (3, 32, 32)
def _snake_case ( self ) -> str:
_lowerCAmelCase = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
}
_lowerCAmelCase = self.dummy_input
return init_dict, inputs_dict
def _snake_case ( self ) -> Optional[int]:
pass
def _snake_case ( self ) -> Any:
pass
@unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" )
def _snake_case ( self ) -> str:
# enable deterministic behavior for gradient checkpointing
_lowerCAmelCase , _lowerCAmelCase = self.prepare_init_args_and_inputs_for_common()
_lowerCAmelCase = self.model_class(**_lowerCAmelCase )
model.to(_lowerCAmelCase )
assert not model.is_gradient_checkpointing and model.training
_lowerCAmelCase = model(**_lowerCAmelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
_lowerCAmelCase = torch.randn_like(_lowerCAmelCase )
_lowerCAmelCase = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
_lowerCAmelCase = self.model_class(**_lowerCAmelCase )
# clone model
model_a.load_state_dict(model.state_dict() )
model_a.to(_lowerCAmelCase )
model_a.enable_gradient_checkpointing()
assert model_a.is_gradient_checkpointing and model_a.training
_lowerCAmelCase = model_a(**_lowerCAmelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_a.zero_grad()
_lowerCAmelCase = (out_a - labels).mean()
loss_a.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_a).abs() < 1E-5 )
_lowerCAmelCase = dict(model.named_parameters() )
_lowerCAmelCase = dict(model_a.named_parameters() )
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) )
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase , _lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
self.assertEqual(len(loading_info["missing_keys"] ) , 0 )
model.to(_lowerCAmelCase )
_lowerCAmelCase = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" )
_lowerCAmelCase = model.to(_lowerCAmelCase )
model.eval()
if torch_device == "mps":
_lowerCAmelCase = torch.manual_seed(0 )
else:
_lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 )
_lowerCAmelCase = torch.randn(
1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , )
_lowerCAmelCase = image.to(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase , sample_posterior=_lowerCAmelCase , generator=_lowerCAmelCase ).sample
_lowerCAmelCase = output[0, -1, -3:, -3:].flatten().cpu()
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device == "mps":
_lowerCAmelCase = torch.tensor(
[
-4.0078E-01,
-3.8323E-04,
-1.2681E-01,
-1.1462E-01,
2.0095E-01,
1.0893E-01,
-8.8247E-02,
-3.0361E-01,
-9.8644E-03,
] )
elif torch_device == "cpu":
_lowerCAmelCase = torch.tensor(
[-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] )
else:
_lowerCAmelCase = torch.tensor(
[-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] )
self.assertTrue(torch_all_close(_lowerCAmelCase , _lowerCAmelCase , rtol=1E-2 ) )
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]:
return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy'''
def _snake_case ( self ) -> List[str]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self , _lowerCAmelCase=0 , _lowerCAmelCase=(4, 3, 512, 512) , _lowerCAmelCase=False ) -> Tuple:
_lowerCAmelCase = torch.floataa if fpaa else torch.floataa
_lowerCAmelCase = torch.from_numpy(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) ).to(_lowerCAmelCase ).to(_lowerCAmelCase )
return image
def _snake_case ( self , _lowerCAmelCase="CompVis/stable-diffusion-v1-4" , _lowerCAmelCase=False ) -> Tuple:
_lowerCAmelCase = "fp16" if fpaa else None
_lowerCAmelCase = torch.floataa if fpaa else torch.floataa
_lowerCAmelCase = AutoencoderKL.from_pretrained(
_lowerCAmelCase , subfolder="vae" , torch_dtype=_lowerCAmelCase , revision=_lowerCAmelCase , )
model.to(_lowerCAmelCase ).eval()
return model
def _snake_case ( self , _lowerCAmelCase=0 ) -> str:
if torch_device == "mps":
return torch.manual_seed(_lowerCAmelCase )
return torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase )
@parameterized.expand(
[
# fmt: off
[33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
[47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
# fmt: on
] )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase )
_lowerCAmelCase = self.get_generator(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample
assert sample.shape == image.shape
_lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu()
_lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 )
@parameterized.expand(
[
# fmt: off
[33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]],
[47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]],
# fmt: on
] )
@require_torch_gpu
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase )
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , fpaa=_lowerCAmelCase )
_lowerCAmelCase = self.get_generator(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample
assert sample.shape == image.shape
_lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu()
_lowerCAmelCase = torch.tensor(_lowerCAmelCase )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
[47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
# fmt: on
] )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase ).sample
assert sample.shape == image.shape
_lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu()
_lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 )
@parameterized.expand(
[
# fmt: off
[13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]],
[37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]],
# fmt: on
] )
@require_torch_gpu
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) )
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
_lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().cpu()
_lowerCAmelCase = torch.tensor(_lowerCAmelCase )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 )
@parameterized.expand(
[
# fmt: off
[27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]],
[16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]],
# fmt: on
] )
@require_torch_gpu
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> str:
_lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase )
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
_lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu()
_lowerCAmelCase = torch.tensor(_lowerCAmelCase )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=5E-3 )
@parameterized.expand([(13,), (16,), (27,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." )
def _snake_case ( self , _lowerCAmelCase ) -> List[str]:
_lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase )
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-1 )
@parameterized.expand([(13,), (16,), (37,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." )
def _snake_case ( self , _lowerCAmelCase ) -> Any:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) )
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
[47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
# fmt: on
] )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase )
_lowerCAmelCase = self.get_generator(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model.encode(_lowerCAmelCase ).latent_dist
_lowerCAmelCase = dist.sample(generator=_lowerCAmelCase )
assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
_lowerCAmelCase = sample[0, -1, -3:, -3:].flatten().cpu()
_lowerCAmelCase = torch.tensor(_lowerCAmelCase )
_lowerCAmelCase = 3E-3 if torch_device != "mps" else 1E-2
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=_lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : str = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[Any] = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[Any] = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[int] = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : str = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Tuple = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : str = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Tuple = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[Any] = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Tuple = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[int] = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Tuple = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Tuple = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[Any] = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[Any] = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Tuple = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Tuple = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : str = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Tuple = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["sentencepiece"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["sentencepiece"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["sentencepiece"] )
| 18 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json",
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : str = "gpt_bigcode"
__lowerCamelCase : Optional[int] = ["past_key_values"]
__lowerCamelCase : List[str] = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , _lowerCAmelCase=50257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=50256 , _lowerCAmelCase=50256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]:
_lowerCAmelCase = vocab_size
_lowerCAmelCase = n_positions
_lowerCAmelCase = n_embd
_lowerCAmelCase = n_layer
_lowerCAmelCase = n_head
_lowerCAmelCase = n_inner
_lowerCAmelCase = activation_function
_lowerCAmelCase = resid_pdrop
_lowerCAmelCase = embd_pdrop
_lowerCAmelCase = attn_pdrop
_lowerCAmelCase = layer_norm_epsilon
_lowerCAmelCase = initializer_range
_lowerCAmelCase = scale_attn_weights
_lowerCAmelCase = use_cache
_lowerCAmelCase = attention_softmax_in_fpaa
_lowerCAmelCase = scale_attention_softmax_in_fpaa
_lowerCAmelCase = multi_query
_lowerCAmelCase = bos_token_id
_lowerCAmelCase = eos_token_id
super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import EsmConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers.models.esm.modeling_tf_esm import (
TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
TFEsmModel,
)
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , ) -> Optional[Any]:
_lowerCAmelCase = parent
_lowerCAmelCase = 13
_lowerCAmelCase = 7
_lowerCAmelCase = True
_lowerCAmelCase = True
_lowerCAmelCase = True
_lowerCAmelCase = 99
_lowerCAmelCase = 32
_lowerCAmelCase = 2
_lowerCAmelCase = 4
_lowerCAmelCase = 37
_lowerCAmelCase = "gelu"
_lowerCAmelCase = 0.1
_lowerCAmelCase = 0.1
_lowerCAmelCase = 512
_lowerCAmelCase = 16
_lowerCAmelCase = 2
_lowerCAmelCase = 0.02
_lowerCAmelCase = 3
_lowerCAmelCase = 4
_lowerCAmelCase = None
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowerCAmelCase = None
if self.use_input_mask:
_lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase = None
_lowerCAmelCase = None
_lowerCAmelCase = None
if self.use_labels:
_lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
_lowerCAmelCase = EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _snake_case ( self ) -> str:
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) = self.prepare_config_and_inputs()
_lowerCAmelCase = True
_lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Any:
_lowerCAmelCase = TFEsmModel(config=_lowerCAmelCase )
_lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask}
_lowerCAmelCase = model(_lowerCAmelCase )
_lowerCAmelCase = [input_ids, input_mask]
_lowerCAmelCase = model(_lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> Union[str, Any]:
_lowerCAmelCase = True
_lowerCAmelCase = TFEsmModel(config=_lowerCAmelCase )
_lowerCAmelCase = {
"input_ids": input_ids,
"attention_mask": input_mask,
"encoder_hidden_states": encoder_hidden_states,
"encoder_attention_mask": encoder_attention_mask,
}
_lowerCAmelCase = model(_lowerCAmelCase )
_lowerCAmelCase = [input_ids, input_mask]
_lowerCAmelCase = model(_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase )
# Also check the case where encoder outputs are not passed
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]:
_lowerCAmelCase = TFEsmForMaskedLM(config=_lowerCAmelCase )
_lowerCAmelCase = model([input_ids, input_mask] )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str:
_lowerCAmelCase = self.num_labels
_lowerCAmelCase = TFEsmForTokenClassification(config=_lowerCAmelCase )
_lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask}
_lowerCAmelCase = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) = config_and_inputs
_lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ):
__lowerCamelCase : Tuple = (
(
TFEsmModel,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
)
if is_tf_available()
else ()
)
__lowerCamelCase : Any = (
{
"feature-extraction": TFEsmModel,
"fill-mask": TFEsmForMaskedLM,
"text-classification": TFEsmForSequenceClassification,
"token-classification": TFEsmForTokenClassification,
"zero-shot": TFEsmForSequenceClassification,
}
if is_tf_available()
else {}
)
__lowerCamelCase : List[Any] = False
__lowerCamelCase : int = False
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase = TFEsmModelTester(self )
_lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 )
def _snake_case ( self ) -> List[str]:
self.config_tester.run_common_tests()
def _snake_case ( self ) -> int:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def _snake_case ( self ) -> int:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*_lowerCAmelCase )
def _snake_case ( self ) -> int:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase )
@slow
def _snake_case ( self ) -> Optional[int]:
for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase = TFEsmModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
@unittest.skip("Protein models do not support embedding resizing." )
def _snake_case ( self ) -> Dict:
pass
@unittest.skip("Protein models do not support embedding resizing." )
def _snake_case ( self ) -> Dict:
pass
def _snake_case ( self ) -> Tuple:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase = model_class(_lowerCAmelCase )
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer )
if model_class is TFEsmForMaskedLM:
# Output embedding test differs from the main test because they're a matrix, not a layer
_lowerCAmelCase = model.get_bias()
assert isinstance(_lowerCAmelCase , _lowerCAmelCase )
for k, v in name.items():
assert isinstance(_lowerCAmelCase , tf.Variable )
else:
_lowerCAmelCase = model.get_output_embeddings()
assert x is None
_lowerCAmelCase = model.get_bias()
assert name is None
@require_tf
class lowerCAmelCase_ ( unittest.TestCase ):
@slow
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" )
_lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] )
_lowerCAmelCase = model(_lowerCAmelCase )[0]
_lowerCAmelCase = [1, 6, 33]
self.assertEqual(list(output.numpy().shape ) , _lowerCAmelCase )
# compare the actual values for a slice.
_lowerCAmelCase = tf.constant(
[
[
[8.921518, -10.589814, -6.4671307],
[-6.3967156, -13.911377, -1.1211915],
[-7.781247, -13.951557, -3.740592],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) )
@slow
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" )
_lowerCAmelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
_lowerCAmelCase = model(_lowerCAmelCase )[0]
# compare the actual values for a slice.
_lowerCAmelCase = tf.constant(
[
[
[0.14443092, 0.54125327, 0.3247739],
[0.30340484, 0.00526676, 0.31077722],
[0.32278043, -0.24987096, 0.3414628],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 18 |
'''simple docstring'''
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json",
# See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : List[Any] = "data2vec-audio"
def __init__( self , _lowerCAmelCase=32 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase="gelu" , _lowerCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _lowerCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase=False , _lowerCAmelCase=16 , _lowerCAmelCase=19 , _lowerCAmelCase=5 , _lowerCAmelCase=0.05 , _lowerCAmelCase=10 , _lowerCAmelCase=2 , _lowerCAmelCase=0.0 , _lowerCAmelCase=10 , _lowerCAmelCase=0 , _lowerCAmelCase="sum" , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=256 , _lowerCAmelCase=(512, 512, 512, 512, 1500) , _lowerCAmelCase=(5, 3, 3, 1, 1) , _lowerCAmelCase=(1, 2, 3, 1, 1) , _lowerCAmelCase=512 , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=False , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Dict:
super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase )
_lowerCAmelCase = hidden_size
_lowerCAmelCase = feat_extract_activation
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = conv_bias
_lowerCAmelCase = num_conv_pos_embeddings
_lowerCAmelCase = num_conv_pos_embedding_groups
_lowerCAmelCase = conv_pos_kernel_size
_lowerCAmelCase = len(self.conv_dim )
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = hidden_dropout
_lowerCAmelCase = attention_dropout
_lowerCAmelCase = activation_dropout
_lowerCAmelCase = feat_proj_dropout
_lowerCAmelCase = final_dropout
_lowerCAmelCase = layerdrop
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = initializer_range
_lowerCAmelCase = vocab_size
_lowerCAmelCase = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_lowerCAmelCase = mask_time_prob
_lowerCAmelCase = mask_time_length
_lowerCAmelCase = mask_time_min_masks
_lowerCAmelCase = mask_feature_prob
_lowerCAmelCase = mask_feature_length
_lowerCAmelCase = mask_feature_min_masks
# ctc loss
_lowerCAmelCase = ctc_loss_reduction
_lowerCAmelCase = ctc_zero_infinity
# adapter
_lowerCAmelCase = add_adapter
_lowerCAmelCase = adapter_kernel_size
_lowerCAmelCase = adapter_stride
_lowerCAmelCase = num_adapter_layers
_lowerCAmelCase = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
_lowerCAmelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = xvector_output_dim
@property
def _snake_case ( self ) -> str:
return math.prod(self.conv_stride )
| 18 | 1 |
'''simple docstring'''
from sklearn.metrics import mean_squared_error
import datasets
_SCREAMING_SNAKE_CASE = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n"
_SCREAMING_SNAKE_CASE = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n"
_SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
def _snake_case ( self ) -> Dict:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"
] , )
def _snake_case ( self ) -> Tuple:
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("float" ) ),
"references": datasets.Sequence(datasets.Value("float" ) ),
}
else:
return {
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
}
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="uniform_average" , _lowerCAmelCase=True ) -> Union[str, Any]:
_lowerCAmelCase = mean_squared_error(
_lowerCAmelCase , _lowerCAmelCase , sample_weight=_lowerCAmelCase , multioutput=_lowerCAmelCase , squared=_lowerCAmelCase )
return {"mse": mse}
| 18 |
'''simple docstring'''
import torch
from diffusers import DDPMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Any = (DDPMParallelScheduler,)
def _snake_case ( self , **_lowerCAmelCase ) -> int:
_lowerCAmelCase = {
"num_train_timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"variance_type": "fixed_small",
"clip_sample": True,
}
config.update(**_lowerCAmelCase )
return config
def _snake_case ( self ) -> List[Any]:
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=_lowerCAmelCase )
def _snake_case ( self ) -> List[Any]:
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase )
def _snake_case ( self ) -> Any:
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_lowerCAmelCase )
def _snake_case ( self ) -> Optional[Any]:
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=_lowerCAmelCase )
def _snake_case ( self ) -> Optional[int]:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_lowerCAmelCase )
def _snake_case ( self ) -> List[str]:
self.check_over_configs(thresholding=_lowerCAmelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , )
def _snake_case ( self ) -> int:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=_lowerCAmelCase )
def _snake_case ( self ) -> Dict:
for t in [0, 500, 999]:
self.check_over_forward(time_step=_lowerCAmelCase )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5
def _snake_case ( self ) -> Tuple:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
_lowerCAmelCase = self.dummy_sample_deter + 0.1
_lowerCAmelCase = self.dummy_sample_deter - 0.1
_lowerCAmelCase = samplea.shape[0]
_lowerCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 )
_lowerCAmelCase = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase )
_lowerCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
_lowerCAmelCase = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) )
_lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 1153.1833 ) < 1E-2
assert abs(result_mean.item() - 0.5005 ) < 1E-3
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
_lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(_lowerCAmelCase ) ):
# 1. predict noise residual
_lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase )
# 2. predict previous mean of sample x_t-1
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample
_lowerCAmelCase = pred_prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 258.9606 ) < 1E-2
assert abs(result_mean.item() - 0.3372 ) < 1E-3
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" )
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
_lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(_lowerCAmelCase ) ):
# 1. predict noise residual
_lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase )
# 2. predict previous mean of sample x_t-1
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample
_lowerCAmelCase = pred_prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 202.0296 ) < 1E-2
assert abs(result_mean.item() - 0.2631 ) < 1E-3
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=_lowerCAmelCase )
_lowerCAmelCase = scheduler.timesteps
for i, timestep in enumerate(_lowerCAmelCase ):
if i == len(_lowerCAmelCase ) - 1:
_lowerCAmelCase = -1
else:
_lowerCAmelCase = timesteps[i + 1]
_lowerCAmelCase = scheduler.previous_timestep(_lowerCAmelCase )
_lowerCAmelCase = prev_t.item()
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> Any:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = [100, 87, 50, 51, 0]
with self.assertRaises(_lowerCAmelCase , msg="`custom_timesteps` must be in descending order." ):
scheduler.set_timesteps(timesteps=_lowerCAmelCase )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = [100, 87, 50, 1, 0]
_lowerCAmelCase = len(_lowerCAmelCase )
with self.assertRaises(_lowerCAmelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ):
scheduler.set_timesteps(num_inference_steps=_lowerCAmelCase , timesteps=_lowerCAmelCase )
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_lowerCAmelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ):
scheduler.set_timesteps(timesteps=_lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
_SCREAMING_SNAKE_CASE = None
try:
import msvcrt
except ImportError:
_SCREAMING_SNAKE_CASE = None
try:
import fcntl
except ImportError:
_SCREAMING_SNAKE_CASE = None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
_SCREAMING_SNAKE_CASE = OSError
# Data
# ------------------------------------------------
_SCREAMING_SNAKE_CASE = [
"Timeout",
"BaseFileLock",
"WindowsFileLock",
"UnixFileLock",
"SoftFileLock",
"FileLock",
]
_SCREAMING_SNAKE_CASE = "3.0.12"
_SCREAMING_SNAKE_CASE = None
def __a():
'''simple docstring'''
global _logger
_lowerCAmelCase = _logger or logging.getLogger(__name__ )
return _logger
class lowerCAmelCase_ ( __magic_name__ ):
def __init__( self , _lowerCAmelCase ) -> Any:
_lowerCAmelCase = lock_file
return None
def __str__( self ) -> Union[str, Any]:
_lowerCAmelCase = f'''The file lock \'{self.lock_file}\' could not be acquired.'''
return temp
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = lock
return None
def __enter__( self ) -> Union[str, Any]:
return self.lock
def __exit__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple:
self.lock.release()
return None
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=-1 , _lowerCAmelCase=None ) -> List[str]:
_lowerCAmelCase = max_filename_length if max_filename_length is not None else 255
# Hash the filename if it's too long
_lowerCAmelCase = self.hash_filename_if_too_long(_lowerCAmelCase , _lowerCAmelCase )
# The path to the lock file.
_lowerCAmelCase = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
_lowerCAmelCase = None
# The default timeout value.
_lowerCAmelCase = timeout
# We use this lock primarily for the lock counter.
_lowerCAmelCase = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
_lowerCAmelCase = 0
return None
@property
def _snake_case ( self ) -> Tuple:
return self._lock_file
@property
def _snake_case ( self ) -> List[Any]:
return self._timeout
@timeout.setter
def _snake_case ( self , _lowerCAmelCase ) -> Tuple:
_lowerCAmelCase = float(_lowerCAmelCase )
return None
def _snake_case ( self ) -> Dict:
raise NotImplementedError()
def _snake_case ( self ) -> Dict:
raise NotImplementedError()
@property
def _snake_case ( self ) -> List[str]:
return self._lock_file_fd is not None
def _snake_case ( self , _lowerCAmelCase=None , _lowerCAmelCase=0.05 ) -> int:
# Use the default timeout, if no timeout is provided.
if timeout is None:
_lowerCAmelCase = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
_lowerCAmelCase = id(self )
_lowerCAmelCase = self._lock_file
_lowerCAmelCase = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(f'''Attempting to acquire lock {lock_id} on {lock_filename}''' )
self._acquire()
if self.is_locked:
logger().debug(f'''Lock {lock_id} acquired on {lock_filename}''' )
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(f'''Timeout on acquiring lock {lock_id} on {lock_filename}''' )
raise Timeout(self._lock_file )
else:
logger().debug(
f'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' )
time.sleep(_lowerCAmelCase )
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
_lowerCAmelCase = max(0 , self._lock_counter - 1 )
raise
return _Acquire_ReturnProxy(lock=self )
def _snake_case ( self , _lowerCAmelCase=False ) -> int:
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
_lowerCAmelCase = id(self )
_lowerCAmelCase = self._lock_file
logger().debug(f'''Attempting to release lock {lock_id} on {lock_filename}''' )
self._release()
_lowerCAmelCase = 0
logger().debug(f'''Lock {lock_id} released on {lock_filename}''' )
return None
def __enter__( self ) -> List[str]:
self.acquire()
return self
def __exit__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple:
self.release()
return None
def __del__( self ) -> int:
self.release(force=_lowerCAmelCase )
return None
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> str:
_lowerCAmelCase = os.path.basename(_lowerCAmelCase )
if len(_lowerCAmelCase ) > max_length and max_length > 0:
_lowerCAmelCase = os.path.dirname(_lowerCAmelCase )
_lowerCAmelCase = str(hash(_lowerCAmelCase ) )
_lowerCAmelCase = filename[: max_length - len(_lowerCAmelCase ) - 8] + "..." + hashed_filename + ".lock"
return os.path.join(_lowerCAmelCase , _lowerCAmelCase )
else:
return path
class lowerCAmelCase_ ( __magic_name__ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=-1 , _lowerCAmelCase=None ) -> int:
from .file_utils import relative_to_absolute_path
super().__init__(_lowerCAmelCase , timeout=_lowerCAmelCase , max_filename_length=_lowerCAmelCase )
_lowerCAmelCase = "\\\\?\\" + relative_to_absolute_path(self.lock_file )
def _snake_case ( self ) -> Tuple:
_lowerCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
_lowerCAmelCase = os.open(self._lock_file , _lowerCAmelCase )
except OSError:
pass
else:
try:
msvcrt.locking(_lowerCAmelCase , msvcrt.LK_NBLCK , 1 )
except OSError:
os.close(_lowerCAmelCase )
else:
_lowerCAmelCase = fd
return None
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = self._lock_file_fd
_lowerCAmelCase = None
msvcrt.locking(_lowerCAmelCase , msvcrt.LK_UNLCK , 1 )
os.close(_lowerCAmelCase )
try:
os.remove(self._lock_file )
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
class lowerCAmelCase_ ( __magic_name__ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=-1 , _lowerCAmelCase=None ) -> Any:
_lowerCAmelCase = os.statvfs(os.path.dirname(_lowerCAmelCase ) ).f_namemax
super().__init__(_lowerCAmelCase , timeout=_lowerCAmelCase , max_filename_length=_lowerCAmelCase )
def _snake_case ( self ) -> Any:
_lowerCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC
_lowerCAmelCase = os.open(self._lock_file , _lowerCAmelCase )
try:
fcntl.flock(_lowerCAmelCase , fcntl.LOCK_EX | fcntl.LOCK_NB )
except OSError:
os.close(_lowerCAmelCase )
else:
_lowerCAmelCase = fd
return None
def _snake_case ( self ) -> int:
# Do not remove the lockfile:
#
# https://github.com/benediktschmitt/py-filelock/issues/31
# https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition
_lowerCAmelCase = self._lock_file_fd
_lowerCAmelCase = None
fcntl.flock(_lowerCAmelCase , fcntl.LOCK_UN )
os.close(_lowerCAmelCase )
return None
class lowerCAmelCase_ ( __magic_name__ ):
def _snake_case ( self ) -> int:
_lowerCAmelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
_lowerCAmelCase = os.open(self._lock_file , _lowerCAmelCase )
except OSError:
pass
else:
_lowerCAmelCase = fd
return None
def _snake_case ( self ) -> str:
os.close(self._lock_file_fd )
_lowerCAmelCase = None
try:
os.remove(self._lock_file )
# The file is already deleted and that's what we want.
except OSError:
pass
return None
_SCREAMING_SNAKE_CASE = None
if msvcrt:
_SCREAMING_SNAKE_CASE = WindowsFileLock
elif fcntl:
_SCREAMING_SNAKE_CASE = UnixFileLock
else:
_SCREAMING_SNAKE_CASE = SoftFileLock
if warnings is not None:
warnings.warn("only soft file lock is available")
| 18 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {"vocab_file": "spiece.model"}
_SCREAMING_SNAKE_CASE = {
"vocab_file": {
"TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model",
}
}
class lowerCAmelCase_ ( __magic_name__ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<sep>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<cls>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=["<eop>", "<eod>"] , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None:
_lowerCAmelCase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token
_lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , )
_lowerCAmelCase = 3
_lowerCAmelCase = do_lower_case
_lowerCAmelCase = remove_space
_lowerCAmelCase = keep_accents
_lowerCAmelCase = vocab_file
_lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_lowerCAmelCase )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"You need to install jieba to use CpmTokenizer or CpmTokenizerFast. "
"See https://pypi.org/project/jieba/ for installation." )
_lowerCAmelCase = jieba
_lowerCAmelCase = str.maketrans(" \n" , "\u2582\u2583" )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def _snake_case ( self ) -> Optional[int]:
return len(self.sp_model )
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Tuple:
_lowerCAmelCase = self.__dict__.copy()
_lowerCAmelCase = None
return state
def __setstate__( self , _lowerCAmelCase ) -> Dict:
_lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
_lowerCAmelCase = {}
_lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _snake_case ( self , _lowerCAmelCase ) -> str:
if self.remove_space:
_lowerCAmelCase = " ".join(inputs.strip().split() )
else:
_lowerCAmelCase = inputs
_lowerCAmelCase = outputs.replace("``" , "\"" ).replace("''" , "\"" )
if not self.keep_accents:
_lowerCAmelCase = unicodedata.normalize("NFKD" , _lowerCAmelCase )
_lowerCAmelCase = "".join([c for c in outputs if not unicodedata.combining(_lowerCAmelCase )] )
if self.do_lower_case:
_lowerCAmelCase = outputs.lower()
return outputs
def _snake_case ( self , _lowerCAmelCase ) -> List[str]:
_lowerCAmelCase = self.preprocess_text(_lowerCAmelCase )
_lowerCAmelCase = self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase )
_lowerCAmelCase = []
for piece in pieces:
if len(_lowerCAmelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit():
_lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCAmelCase , "" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
_lowerCAmelCase = cur_pieces[1:]
else:
_lowerCAmelCase = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_lowerCAmelCase )
else:
new_pieces.append(_lowerCAmelCase )
return new_pieces
def _snake_case ( self , _lowerCAmelCase ) -> str:
return self.sp_model.PieceToId(_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]:
return self.sp_model.IdToPiece(_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = "".join(_lowerCAmelCase ).replace(_lowerCAmelCase , " " ).strip()
return out_string
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]:
_lowerCAmelCase = [self.sep_token_id]
_lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase )
if token_ids_a is not None:
return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1, 1]
return ([0] * len(_lowerCAmelCase )) + [1, 1]
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]:
_lowerCAmelCase = [self.sep_token_id]
_lowerCAmelCase = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(_lowerCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase = os.path.join(
_lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _lowerCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCAmelCase , "wb" ) as fi:
_lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(_lowerCAmelCase )
return (out_vocab_file,)
def _snake_case ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase = super()._decode(*_lowerCAmelCase , **_lowerCAmelCase )
_lowerCAmelCase = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" )
return text
| 18 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"microsoft/trocr-base-handwritten": (
"https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : List[Any] = "trocr"
__lowerCamelCase : Optional[int] = ["past_key_values"]
__lowerCamelCase : List[str] = {
"num_attention_heads": "decoder_attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "decoder_layers",
}
def __init__( self , _lowerCAmelCase=50265 , _lowerCAmelCase=1024 , _lowerCAmelCase=12 , _lowerCAmelCase=16 , _lowerCAmelCase=4096 , _lowerCAmelCase="gelu" , _lowerCAmelCase=512 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , **_lowerCAmelCase , ) -> Any:
_lowerCAmelCase = vocab_size
_lowerCAmelCase = d_model
_lowerCAmelCase = decoder_layers
_lowerCAmelCase = decoder_attention_heads
_lowerCAmelCase = decoder_ffn_dim
_lowerCAmelCase = activation_function
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = dropout
_lowerCAmelCase = attention_dropout
_lowerCAmelCase = activation_dropout
_lowerCAmelCase = init_std
_lowerCAmelCase = decoder_layerdrop
_lowerCAmelCase = use_cache
_lowerCAmelCase = scale_embedding
_lowerCAmelCase = use_learned_position_embeddings
_lowerCAmelCase = layernorm_embedding
super().__init__(
pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
| 18 |
'''simple docstring'''
from sklearn.metrics import mean_squared_error
import datasets
_SCREAMING_SNAKE_CASE = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n"
_SCREAMING_SNAKE_CASE = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n"
_SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
def _snake_case ( self ) -> Dict:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"
] , )
def _snake_case ( self ) -> Tuple:
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("float" ) ),
"references": datasets.Sequence(datasets.Value("float" ) ),
}
else:
return {
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
}
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="uniform_average" , _lowerCAmelCase=True ) -> Union[str, Any]:
_lowerCAmelCase = mean_squared_error(
_lowerCAmelCase , _lowerCAmelCase , sample_weight=_lowerCAmelCase , multioutput=_lowerCAmelCase , squared=_lowerCAmelCase )
return {"mse": mse}
| 18 | 1 |
'''simple docstring'''
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase ) -> Optional[int]:
_lowerCAmelCase = n
_lowerCAmelCase = [None] * self.n
_lowerCAmelCase = 0 # index of the first element
_lowerCAmelCase = 0
_lowerCAmelCase = 0
def __len__( self ) -> int:
return self.size
def _snake_case ( self ) -> bool:
return self.size == 0
def _snake_case ( self ) -> Union[str, Any]:
return False if self.is_empty() else self.array[self.front]
def _snake_case ( self , _lowerCAmelCase ) -> Union[str, Any]:
if self.size >= self.n:
raise Exception("QUEUE IS FULL" )
_lowerCAmelCase = data
_lowerCAmelCase = (self.rear + 1) % self.n
self.size += 1
return self
def _snake_case ( self ) -> int:
if self.size == 0:
raise Exception("UNDERFLOW" )
_lowerCAmelCase = self.array[self.front]
_lowerCAmelCase = None
_lowerCAmelCase = (self.front + 1) % self.n
self.size -= 1
return temp
| 18 |
'''simple docstring'''
def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 18 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
_SCREAMING_SNAKE_CASE = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ["ViTFeatureExtractor"]
_SCREAMING_SNAKE_CASE = ["ViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTForImageClassification",
"ViTForMaskedImageModeling",
"ViTModel",
"ViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"TFViTForImageClassification",
"TFViTModel",
"TFViTPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"FlaxViTForImageClassification",
"FlaxViTModel",
"FlaxViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 18 |
'''simple docstring'''
from __future__ import annotations
def __a(SCREAMING_SNAKE_CASE_ : int | float | str , SCREAMING_SNAKE_CASE_ : int | float | str ):
'''simple docstring'''
if nth_term == "":
return [""]
_lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = []
for temp in range(int(SCREAMING_SNAKE_CASE_ ) ):
series.append(F'''1 / {pow(temp + 1 , int(SCREAMING_SNAKE_CASE_ ) )}''' if series else "1" )
return series
if __name__ == "__main__":
import doctest
doctest.testmod()
_SCREAMING_SNAKE_CASE = int(input("Enter the last number (nth term) of the P-Series"))
_SCREAMING_SNAKE_CASE = int(input("Enter the power for P-Series"))
print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p")
print(p_series(nth_term, power))
| 18 | 1 |
'''simple docstring'''
# Usage:
# ./gen-card-allenai-wmt16.py
import os
from pathlib import Path
def __a(SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ):
'''simple docstring'''
_lowerCAmelCase = {
"en": "Machine learning is great, isn't it?",
"ru": "Машинное обучение - это здорово, не так ли?",
"de": "Maschinelles Lernen ist großartig, nicht wahr?",
}
# BLUE scores as follows:
# "pair": [fairseq, transformers]
_lowerCAmelCase = {
"wmt16-en-de-dist-12-1": [28.3, 27.52],
"wmt16-en-de-dist-6-1": [27.4, 27.11],
"wmt16-en-de-12-1": [26.9, 25.75],
}
_lowerCAmelCase = F'''{src_lang}-{tgt_lang}'''
_lowerCAmelCase = F'''
---
language:
- {src_lang}
- {tgt_lang}
thumbnail:
tags:
- translation
- wmt16
- allenai
license: apache-2.0
datasets:
- wmt16
metrics:
- bleu
---
# FSMT
## Model description
This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.
For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).
All 3 models are available:
* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)
* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)
* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)
## Intended uses & limitations
#### How to use
```python
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
mname = "allenai/{model_name}"
tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)
input = "{texts[src_lang]}"
input_ids = tokenizer.encode(input, return_tensors="pt")
outputs = model.generate(input_ids)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(decoded) # {texts[tgt_lang]}
```
#### Limitations and bias
## Training data
Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).
## Eval results
Here are the BLEU scores:
model | fairseq | transformers
-------|---------|----------
{model_name} | {scores[model_name][0]} | {scores[model_name][1]}
The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.
The score was calculated using this code:
```bash
git clone https://github.com/huggingface/transformers
cd transformers
export PAIR={pair}
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=5
mkdir -p $DATA_DIR
sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
```
## Data Sources
- [training, etc.](http://www.statmt.org/wmt16/)
- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)
### BibTeX entry and citation info
```
@misc{{kasai2020deep,
title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},
author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},
year={{2020}},
eprint={{2006.10369}},
archivePrefix={{arXiv}},
primaryClass={{cs.CL}}
}}
```
'''
model_card_dir.mkdir(parents=SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , "README.md" )
print(F'''Generating {path}''' )
with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as f:
f.write(SCREAMING_SNAKE_CASE_ )
# make sure we are under the root of the project
_SCREAMING_SNAKE_CASE = Path(__file__).resolve().parent.parent.parent
_SCREAMING_SNAKE_CASE = repo_dir / "model_cards"
for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]:
_SCREAMING_SNAKE_CASE = model_cards_dir / "allenai" / model_name
write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
| 18 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Dict = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[int] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[int] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : List[Any] ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Dict ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Dict = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Any = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[int] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Any = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[int] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[int] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : str = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Tuple = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Any = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Tuple = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : str = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Dict = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Any = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Dict = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : str = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Tuple = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : str = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
| 18 | 1 |
'''simple docstring'''
import pickle
import numpy as np
from matplotlib import pyplot as plt
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=0.2 , _lowerCAmelCase=0.2 ) -> List[Any]:
_lowerCAmelCase = bp_numa
_lowerCAmelCase = bp_numa
_lowerCAmelCase = bp_numa
_lowerCAmelCase = conva_get[:2]
_lowerCAmelCase = conva_get[2]
_lowerCAmelCase = size_pa
_lowerCAmelCase = rate_w
_lowerCAmelCase = rate_t
_lowerCAmelCase = [
np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 )
for i in range(self.conva[1] )
]
_lowerCAmelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 )
_lowerCAmelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 )
_lowerCAmelCase = -2 * np.random.rand(self.conva[1] ) + 1
_lowerCAmelCase = -2 * np.random.rand(self.num_bpa ) + 1
_lowerCAmelCase = -2 * np.random.rand(self.num_bpa ) + 1
def _snake_case ( self , _lowerCAmelCase ) -> List[str]:
# save model dict with pickle
_lowerCAmelCase = {
"num_bp1": self.num_bpa,
"num_bp2": self.num_bpa,
"num_bp3": self.num_bpa,
"conv1": self.conva,
"step_conv1": self.step_conva,
"size_pooling1": self.size_poolinga,
"rate_weight": self.rate_weight,
"rate_thre": self.rate_thre,
"w_conv1": self.w_conva,
"wkj": self.wkj,
"vji": self.vji,
"thre_conv1": self.thre_conva,
"thre_bp2": self.thre_bpa,
"thre_bp3": self.thre_bpa,
}
with open(_lowerCAmelCase , "wb" ) as f:
pickle.dump(_lowerCAmelCase , _lowerCAmelCase )
print(f'''Model saved: {save_path}''' )
@classmethod
def _snake_case ( cls , _lowerCAmelCase ) -> Any:
# read saved model
with open(_lowerCAmelCase , "rb" ) as f:
_lowerCAmelCase = pickle.load(_lowerCAmelCase ) # noqa: S301
_lowerCAmelCase = model_dic.get("conv1" )
conv_get.append(model_dic.get("step_conv1" ) )
_lowerCAmelCase = model_dic.get("size_pooling1" )
_lowerCAmelCase = model_dic.get("num_bp1" )
_lowerCAmelCase = model_dic.get("num_bp2" )
_lowerCAmelCase = model_dic.get("num_bp3" )
_lowerCAmelCase = model_dic.get("rate_weight" )
_lowerCAmelCase = model_dic.get("rate_thre" )
# create model instance
_lowerCAmelCase = CNN(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# modify model parameter
_lowerCAmelCase = model_dic.get("w_conv1" )
_lowerCAmelCase = model_dic.get("wkj" )
_lowerCAmelCase = model_dic.get("vji" )
_lowerCAmelCase = model_dic.get("thre_conv1" )
_lowerCAmelCase = model_dic.get("thre_bp2" )
_lowerCAmelCase = model_dic.get("thre_bp3" )
return conv_ins
def _snake_case ( self , _lowerCAmelCase ) -> List[str]:
return 1 / (1 + np.exp(-1 * x ))
def _snake_case ( self , _lowerCAmelCase ) -> Tuple:
return round(_lowerCAmelCase , 3 )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]:
# convolution process
_lowerCAmelCase = convs[0]
_lowerCAmelCase = convs[1]
_lowerCAmelCase = np.shape(_lowerCAmelCase )[0]
# get the data slice of original image data, data_focus
_lowerCAmelCase = []
for i_focus in range(0 , size_data - size_conv + 1 , _lowerCAmelCase ):
for j_focus in range(0 , size_data - size_conv + 1 , _lowerCAmelCase ):
_lowerCAmelCase = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(_lowerCAmelCase )
# calculate the feature map of every single kernel, and saved as list of matrix
_lowerCAmelCase = []
_lowerCAmelCase = int((size_data - size_conv) / conv_step + 1 )
for i_map in range(_lowerCAmelCase ):
_lowerCAmelCase = []
for i_focus in range(len(_lowerCAmelCase ) ):
_lowerCAmelCase = (
np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) )
- thre_convs[i_map]
)
featuremap.append(self.sig(_lowerCAmelCase ) )
_lowerCAmelCase = np.asmatrix(_lowerCAmelCase ).reshape(
_lowerCAmelCase , _lowerCAmelCase )
data_featuremap.append(_lowerCAmelCase )
# expanding the data slice to One dimenssion
_lowerCAmelCase = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(_lowerCAmelCase ) )
_lowerCAmelCase = np.asarray(_lowerCAmelCase )
return focus_list, data_featuremap
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="average_pool" ) -> Any:
# pooling process
_lowerCAmelCase = len(featuremaps[0] )
_lowerCAmelCase = int(size_map / size_pooling )
_lowerCAmelCase = []
for i_map in range(len(_lowerCAmelCase ) ):
_lowerCAmelCase = featuremaps[i_map]
_lowerCAmelCase = []
for i_focus in range(0 , _lowerCAmelCase , _lowerCAmelCase ):
for j_focus in range(0 , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(_lowerCAmelCase ) )
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(_lowerCAmelCase ) )
_lowerCAmelCase = np.asmatrix(_lowerCAmelCase ).reshape(_lowerCAmelCase , _lowerCAmelCase )
featuremap_pooled.append(_lowerCAmelCase )
return featuremap_pooled
def _snake_case ( self , _lowerCAmelCase ) -> List[str]:
# expanding three dimension data to one dimension list
_lowerCAmelCase = []
for i in range(len(_lowerCAmelCase ) ):
_lowerCAmelCase = np.shape(data[i] )
_lowerCAmelCase = data[i].reshape(1 , shapes[0] * shapes[1] )
_lowerCAmelCase = data_listed.getA().tolist()[0]
data_expanded.extend(_lowerCAmelCase )
_lowerCAmelCase = np.asarray(_lowerCAmelCase )
return data_expanded
def _snake_case ( self , _lowerCAmelCase ) -> Any:
# expanding matrix to one dimension list
_lowerCAmelCase = np.asarray(_lowerCAmelCase )
_lowerCAmelCase = np.shape(_lowerCAmelCase )
_lowerCAmelCase = data_mat.reshape(1 , shapes[0] * shapes[1] )
return data_expanded
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = []
_lowerCAmelCase = 0
for i_map in range(_lowerCAmelCase ):
_lowerCAmelCase = np.ones((size_map, size_map) )
for i in range(0 , _lowerCAmelCase , _lowerCAmelCase ):
for j in range(0 , _lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = pd_pool[
i_pool
]
_lowerCAmelCase = i_pool + 1
_lowerCAmelCase = np.multiply(
_lowerCAmelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) )
pd_all.append(_lowerCAmelCase )
return pd_all
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=bool ) -> Tuple:
# model traning
print("----------------------Start Training-------------------------" )
print((" - - Shape: Train_Data ", np.shape(_lowerCAmelCase )) )
print((" - - Shape: Teach_Data ", np.shape(_lowerCAmelCase )) )
_lowerCAmelCase = 0
_lowerCAmelCase = []
_lowerCAmelCase = 10000
while rp < n_repeat and mse >= error_accuracy:
_lowerCAmelCase = 0
print(f'''-------------Learning Time {rp}--------------''' )
for p in range(len(_lowerCAmelCase ) ):
# print('------------Learning Image: %d--------------'%p)
_lowerCAmelCase = np.asmatrix(datas_train[p] )
_lowerCAmelCase = np.asarray(datas_teach[p] )
_lowerCAmelCase , _lowerCAmelCase = self.convolute(
_lowerCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
_lowerCAmelCase = self.pooling(_lowerCAmelCase , self.size_poolinga )
_lowerCAmelCase = np.shape(_lowerCAmelCase )
_lowerCAmelCase = self._expand(_lowerCAmelCase )
_lowerCAmelCase = data_bp_input
_lowerCAmelCase = np.dot(_lowerCAmelCase , self.vji.T ) - self.thre_bpa
_lowerCAmelCase = self.sig(_lowerCAmelCase )
_lowerCAmelCase = np.dot(_lowerCAmelCase , self.wkj.T ) - self.thre_bpa
_lowerCAmelCase = self.sig(_lowerCAmelCase )
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
_lowerCAmelCase = np.multiply(
(data_teach - bp_outa) , np.multiply(_lowerCAmelCase , (1 - bp_outa) ) )
_lowerCAmelCase = np.multiply(
np.dot(_lowerCAmelCase , self.wkj ) , np.multiply(_lowerCAmelCase , (1 - bp_outa) ) )
_lowerCAmelCase = np.dot(_lowerCAmelCase , self.vji )
_lowerCAmelCase = pd_i_all / (self.size_poolinga * self.size_poolinga)
_lowerCAmelCase = pd_conva_pooled.T.getA().tolist()
_lowerCAmelCase = self._calculate_gradient_from_pool(
_lowerCAmelCase , _lowerCAmelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , )
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1] ):
_lowerCAmelCase = self._expand_mat(pd_conva_all[k_conv] )
_lowerCAmelCase = self.rate_weight * np.dot(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]) )
_lowerCAmelCase = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv] ) * self.rate_thre
)
# all connected layer
_lowerCAmelCase = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
_lowerCAmelCase = self.vji + pd_j_all.T * bp_outa * self.rate_weight
_lowerCAmelCase = self.thre_bpa - pd_k_all * self.rate_thre
_lowerCAmelCase = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
_lowerCAmelCase = np.sum(abs(data_teach - bp_outa ) )
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
_lowerCAmelCase = rp + 1
_lowerCAmelCase = error_count / patterns
all_mse.append(_lowerCAmelCase )
def draw_error():
_lowerCAmelCase = [error_accuracy for i in range(int(n_repeat * 1.2 ) )]
plt.plot(_lowerCAmelCase , "+-" )
plt.plot(_lowerCAmelCase , "r--" )
plt.xlabel("Learning Times" )
plt.ylabel("All_mse" )
plt.grid(_lowerCAmelCase , alpha=0.5 )
plt.show()
print("------------------Training Complished---------------------" )
print((" - - Training epoch: ", rp, f''' - - Mse: {mse:.6f}''') )
if draw_e:
draw_error()
return mse
def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]:
# model predict
_lowerCAmelCase = []
print("-------------------Start Testing-------------------------" )
print((" - - Shape: Test_Data ", np.shape(_lowerCAmelCase )) )
for p in range(len(_lowerCAmelCase ) ):
_lowerCAmelCase = np.asmatrix(datas_test[p] )
_lowerCAmelCase , _lowerCAmelCase = self.convolute(
_lowerCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
_lowerCAmelCase = self.pooling(_lowerCAmelCase , self.size_poolinga )
_lowerCAmelCase = self._expand(_lowerCAmelCase )
_lowerCAmelCase = data_bp_input
_lowerCAmelCase = bp_outa * self.vji.T - self.thre_bpa
_lowerCAmelCase = self.sig(_lowerCAmelCase )
_lowerCAmelCase = bp_outa * self.wkj.T - self.thre_bpa
_lowerCAmelCase = self.sig(_lowerCAmelCase )
produce_out.extend(bp_outa.getA().tolist() )
_lowerCAmelCase = [list(map(self.do_round , _lowerCAmelCase ) ) for each in produce_out]
return np.asarray(_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase ) -> Tuple:
# return the data of image after convoluting process so we can check it out
_lowerCAmelCase = np.asmatrix(_lowerCAmelCase )
_lowerCAmelCase , _lowerCAmelCase = self.convolute(
_lowerCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
_lowerCAmelCase = self.pooling(_lowerCAmelCase , self.size_poolinga )
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 18 |
'''simple docstring'''
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple=None ):
'''simple docstring'''
_lowerCAmelCase = None
if token is not None:
_lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''}
_lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
_lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json()
_lowerCAmelCase = {}
try:
job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} )
_lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 )
for i in range(SCREAMING_SNAKE_CASE_ ):
_lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json()
job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} )
return job_links
except Exception:
print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict=None ):
'''simple docstring'''
_lowerCAmelCase = None
if token is not None:
_lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''}
_lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'''
_lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json()
_lowerCAmelCase = {}
try:
artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} )
_lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 )
for i in range(SCREAMING_SNAKE_CASE_ ):
_lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json()
artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} )
return artifacts
except Exception:
print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ):
'''simple docstring'''
_lowerCAmelCase = None
if token is not None:
_lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''}
_lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = result.headers["Location"]
_lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F'''{artifact_name}.zip''' )
with open(SCREAMING_SNAKE_CASE_ , "wb" ) as fp:
fp.write(response.content )
def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=None ):
'''simple docstring'''
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = None
with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z:
for filename in z.namelist():
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(SCREAMING_SNAKE_CASE_ ) as f:
for line in f:
_lowerCAmelCase = line.decode("UTF-8" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
_lowerCAmelCase = line[: line.index(": " )]
_lowerCAmelCase = line[line.index(": " ) + len(": " ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("FAILED " ):
# `test` is the test method that failed
_lowerCAmelCase = line[len("FAILED " ) :]
failed_tests.append(SCREAMING_SNAKE_CASE_ )
elif filename == "job_name.txt":
_lowerCAmelCase = line
if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
F'''`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE_ )} for `errors` '''
F'''and {len(SCREAMING_SNAKE_CASE_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'''
" problem." )
_lowerCAmelCase = None
if job_name and job_links:
_lowerCAmelCase = job_links.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# A list with elements of the form (line of error, error, failed test)
_lowerCAmelCase = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )]
return result
def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=None ):
'''simple docstring'''
_lowerCAmelCase = []
_lowerCAmelCase = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for p in os.listdir(SCREAMING_SNAKE_CASE_ ) if p.endswith(".zip" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE_ , job_links=SCREAMING_SNAKE_CASE_ ) )
return errors
def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str=None ):
'''simple docstring'''
_lowerCAmelCase = Counter()
counter.update([x[1] for x in logs] )
_lowerCAmelCase = counter.most_common()
_lowerCAmelCase = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
_lowerCAmelCase = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]}
_lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) )
return r
def __a(SCREAMING_SNAKE_CASE_ : List[str] ):
'''simple docstring'''
_lowerCAmelCase = test.split("::" )[0]
if test.startswith("tests/models/" ):
_lowerCAmelCase = test.split("/" )[2]
else:
_lowerCAmelCase = None
return test
def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple=None ):
'''simple docstring'''
_lowerCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs]
_lowerCAmelCase = [x for x in logs if x[2] is not None]
_lowerCAmelCase = {x[2] for x in logs}
_lowerCAmelCase = {}
for test in tests:
_lowerCAmelCase = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
_lowerCAmelCase = counter.most_common()
_lowerCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
_lowerCAmelCase = sum(error_counts.values() )
if n_errors > 0:
_lowerCAmelCase = {"count": n_errors, "errors": error_counts}
_lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) )
return r
def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ):
'''simple docstring'''
_lowerCAmelCase = "| no. | error | status |"
_lowerCAmelCase = "|-:|:-|:-|"
_lowerCAmelCase = [header, sep]
for error in reduced_by_error:
_lowerCAmelCase = reduced_by_error[error]["count"]
_lowerCAmelCase = F'''| {count} | {error[:100]} | |'''
lines.append(SCREAMING_SNAKE_CASE_ )
return "\n".join(SCREAMING_SNAKE_CASE_ )
def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ):
'''simple docstring'''
_lowerCAmelCase = "| model | no. of errors | major error | count |"
_lowerCAmelCase = "|-:|-:|-:|-:|"
_lowerCAmelCase = [header, sep]
for model in reduced_by_model:
_lowerCAmelCase = reduced_by_model[model]["count"]
_lowerCAmelCase , _lowerCAmelCase = list(reduced_by_model[model]["errors"].items() )[0]
_lowerCAmelCase = F'''| {model} | {count} | {error[:60]} | {_count} |'''
lines.append(SCREAMING_SNAKE_CASE_ )
return "\n".join(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Where to store the downloaded artifacts and other result files.",
)
parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.")
_SCREAMING_SNAKE_CASE = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
_SCREAMING_SNAKE_CASE = get_job_links(args.workflow_run_id, token=args.token)
_SCREAMING_SNAKE_CASE = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
_SCREAMING_SNAKE_CASE = k.find(" / ")
_SCREAMING_SNAKE_CASE = k[index + len(" / ") :]
_SCREAMING_SNAKE_CASE = v
with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
_SCREAMING_SNAKE_CASE = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
_SCREAMING_SNAKE_CASE = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
_SCREAMING_SNAKE_CASE = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
_SCREAMING_SNAKE_CASE = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
_SCREAMING_SNAKE_CASE = reduce_by_error(errors)
_SCREAMING_SNAKE_CASE = reduce_by_model(errors)
_SCREAMING_SNAKE_CASE = make_github_table(reduced_by_error)
_SCREAMING_SNAKE_CASE = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
| 18 | 1 |
'''simple docstring'''
import torch
from diffusers import DPMSolverSDEScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import require_torchsde
from .test_schedulers import SchedulerCommonTest
@require_torchsde
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : str = (DPMSolverSDEScheduler,)
__lowerCamelCase : int = 10
def _snake_case ( self , **_lowerCAmelCase ) -> str:
_lowerCAmelCase = {
"num_train_timesteps": 1100,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"noise_sampler_seed": 0,
}
config.update(**_lowerCAmelCase )
return config
def _snake_case ( self ) -> Tuple:
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=_lowerCAmelCase )
def _snake_case ( self ) -> int:
for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase )
def _snake_case ( self ) -> Tuple:
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_lowerCAmelCase )
def _snake_case ( self ) -> Dict:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_lowerCAmelCase )
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
_lowerCAmelCase = sample.to(_lowerCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_lowerCAmelCase = scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = output.prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.47821044921875 ) < 1E-2
assert abs(result_mean.item() - 0.2178705964565277 ) < 1E-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59352111816406 ) < 1E-2
assert abs(result_mean.item() - 0.22342906892299652 ) < 1E-3
else:
assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2
assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" )
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
_lowerCAmelCase = sample.to(_lowerCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_lowerCAmelCase = scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = output.prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 124.77149200439453 ) < 1E-2
assert abs(result_mean.item() - 0.16226289014816284 ) < 1E-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 128.1663360595703 ) < 1E-2
assert abs(result_mean.item() - 0.16688326001167297 ) < 1E-3
else:
assert abs(result_sum.item() - 119.8487548828125 ) < 1E-2
assert abs(result_mean.item() - 0.1560530662536621 ) < 1E-3
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
scheduler.set_timesteps(self.num_inference_steps , device=_lowerCAmelCase )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter.to(_lowerCAmelCase ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
_lowerCAmelCase = scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = output.prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.46957397460938 ) < 1E-2
assert abs(result_mean.item() - 0.21805934607982635 ) < 1E-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59353637695312 ) < 1E-2
assert abs(result_mean.item() - 0.22342908382415771 ) < 1E-3
else:
assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2
assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase , use_karras_sigmas=_lowerCAmelCase )
scheduler.set_timesteps(self.num_inference_steps , device=_lowerCAmelCase )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter.to(_lowerCAmelCase ) * scheduler.init_noise_sigma
_lowerCAmelCase = sample.to(_lowerCAmelCase )
for t in scheduler.timesteps:
_lowerCAmelCase = scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = output.prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 176.66974135742188 ) < 1E-2
assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 177.63653564453125 ) < 1E-2
assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
else:
assert abs(result_sum.item() - 170.3135223388672 ) < 1E-2
assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
| 18 |
'''simple docstring'''
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : List[str] = (DPMSolverSinglestepScheduler,)
__lowerCamelCase : int = (("num_inference_steps", 25),)
def _snake_case ( self , **_lowerCAmelCase ) -> Any:
_lowerCAmelCase = {
"num_train_timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"solver_order": 2,
"prediction_type": "epsilon",
"thresholding": False,
"sample_max_value": 1.0,
"algorithm_type": "dpmsolver++",
"solver_type": "midpoint",
"lambda_min_clipped": -float("inf" ),
"variance_type": None,
}
config.update(**_lowerCAmelCase )
return config
def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> List[Any]:
_lowerCAmelCase = dict(self.forward_default_kwargs )
_lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase )
_lowerCAmelCase = self.dummy_sample
_lowerCAmelCase = 0.1 * sample
_lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
_lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase )
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
scheduler.set_timesteps(_lowerCAmelCase )
# copy over dummy past residuals
_lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_lowerCAmelCase )
_lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase )
new_scheduler.set_timesteps(_lowerCAmelCase )
# copy over dummy past residuals
_lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order]
_lowerCAmelCase , _lowerCAmelCase = sample, sample
for t in range(_lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ):
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
_lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def _snake_case ( self ) -> int:
pass
def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> Optional[int]:
_lowerCAmelCase = dict(self.forward_default_kwargs )
_lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase )
_lowerCAmelCase = self.dummy_sample
_lowerCAmelCase = 0.1 * sample
_lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
scheduler.set_timesteps(_lowerCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
_lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_lowerCAmelCase )
_lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_lowerCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
_lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order]
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
_lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def _snake_case ( self , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Tuple:
if scheduler is None:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase )
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase )
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = 10
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
scheduler.set_timesteps(_lowerCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample
return sample
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
_lowerCAmelCase = 50
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
scheduler.set_timesteps(_lowerCAmelCase )
# make sure that the first t is uneven
for i, t in enumerate(scheduler.timesteps[3:] ):
_lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2574 ) < 1E-3
def _snake_case ( self ) -> Optional[Any]:
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=_lowerCAmelCase )
def _snake_case ( self ) -> List[Any]:
# make sure that iterating over schedulers with same config names gives same results
# for defaults
_lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
_lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2791 ) < 1E-3
_lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config )
_lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config )
_lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config )
_lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config )
_lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2791 ) < 1E-3
def _snake_case ( self ) -> str:
self.check_over_configs(thresholding=_lowerCAmelCase )
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , algorithm_type="dpmsolver++" , solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , )
def _snake_case ( self ) -> Dict:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_lowerCAmelCase )
def _snake_case ( self ) -> Union[str, Any]:
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , )
_lowerCAmelCase = self.full_loop(
solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , )
assert not torch.isnan(_lowerCAmelCase ).any(), "Samples have nan numbers"
def _snake_case ( self ) -> Optional[Any]:
self.check_over_configs(lower_order_final=_lowerCAmelCase )
self.check_over_configs(lower_order_final=_lowerCAmelCase )
def _snake_case ( self ) -> Optional[Any]:
self.check_over_configs(lambda_min_clipped=-float("inf" ) )
self.check_over_configs(lambda_min_clipped=-5.1 )
def _snake_case ( self ) -> str:
self.check_over_configs(variance_type=_lowerCAmelCase )
self.check_over_configs(variance_type="learned_range" )
def _snake_case ( self ) -> int:
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=_lowerCAmelCase , time_step=0 )
def _snake_case ( self ) -> Any:
_lowerCAmelCase = self.full_loop()
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2791 ) < 1E-3
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = self.full_loop(use_karras_sigmas=_lowerCAmelCase )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2248 ) < 1E-3
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = self.full_loop(prediction_type="v_prediction" )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.1453 ) < 1E-3
def _snake_case ( self ) -> Any:
_lowerCAmelCase = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=_lowerCAmelCase )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.0649 ) < 1E-3
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config(thresholding=_lowerCAmelCase , dynamic_thresholding_ratio=0 )
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = 10
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter.half()
scheduler.set_timesteps(_lowerCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample
assert sample.dtype == torch.floataa
| 18 | 1 |
'''simple docstring'''
import os
import pickle
import unittest
from transformers import AutoTokenizer
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.models.bert_japanese.tokenization_bert_japanese import (
VOCAB_FILES_NAMES,
BertJapaneseTokenizer,
CharacterTokenizer,
JumanppTokenizer,
MecabTokenizer,
SudachiTokenizer,
WordpieceTokenizer,
)
from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi
from ...test_tokenization_common import TokenizerTesterMixin
@custom_tokenizers
class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ):
__lowerCamelCase : Union[str, Any] = BertJapaneseTokenizer
__lowerCamelCase : List[Any] = False
__lowerCamelCase : Any = True
def _snake_case ( self ) -> List[Any]:
super().setUp()
_lowerCAmelCase = [
"[UNK]",
"[CLS]",
"[SEP]",
"こんにちは",
"こん",
"にちは",
"ばんは",
"##こん",
"##にちは",
"##ばんは",
"世界",
"##世界",
"、",
"##、",
"。",
"##。",
]
_lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def _snake_case ( self , _lowerCAmelCase ) -> int:
_lowerCAmelCase = "こんにちは、世界。 \nこんばんは、世界。"
_lowerCAmelCase = "こんにちは 、 世界 。 こんばんは 、 世界 。"
return input_text, output_text
def _snake_case ( self , _lowerCAmelCase ) -> List[str]:
_lowerCAmelCase , _lowerCAmelCase = self.get_input_output_texts(_lowerCAmelCase )
_lowerCAmelCase = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
_lowerCAmelCase = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase )
return text, ids
def _snake_case ( self ) -> Tuple:
pass # TODO add if relevant
def _snake_case ( self ) -> Optional[int]:
pass # TODO add if relevant
def _snake_case ( self ) -> int:
pass # TODO add if relevant
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = self.tokenizer_class(self.vocab_file )
_lowerCAmelCase = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。" )
self.assertListEqual(_lowerCAmelCase , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
def _snake_case ( self ) -> int:
_lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="mecab" )
self.assertIsNotNone(_lowerCAmelCase )
_lowerCAmelCase = "こんにちは、世界。\nこんばんは、世界。"
_lowerCAmelCase = tokenizer.tokenize(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
_lowerCAmelCase = os.path.join(self.tmpdirname , "tokenizer.bin" )
with open(_lowerCAmelCase , "wb" ) as handle:
pickle.dump(_lowerCAmelCase , _lowerCAmelCase )
with open(_lowerCAmelCase , "rb" ) as handle:
_lowerCAmelCase = pickle.load(_lowerCAmelCase )
_lowerCAmelCase = tokenizer_new.tokenize(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = MecabTokenizer(mecab_dic="ipadic" )
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , )
def _snake_case ( self ) -> Dict:
try:
_lowerCAmelCase = MecabTokenizer(mecab_dic="unidic_lite" )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , )
def _snake_case ( self ) -> Dict:
try:
_lowerCAmelCase = MecabTokenizer(mecab_dic="unidic" )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , )
def _snake_case ( self ) -> int:
_lowerCAmelCase = MecabTokenizer(do_lower_case=_lowerCAmelCase , mecab_dic="ipadic" )
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"] , )
def _snake_case ( self ) -> int:
try:
_lowerCAmelCase = MecabTokenizer(
do_lower_case=_lowerCAmelCase , normalize_text=_lowerCAmelCase , mecab_option="-d /usr/local/lib/mecab/dic/jumandic" )
except RuntimeError:
# if dict doesn't exist in the system, previous code raises this error.
return
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"] , )
def _snake_case ( self ) -> int:
_lowerCAmelCase = MecabTokenizer(normalize_text=_lowerCAmelCase , mecab_dic="ipadic" )
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"] , )
@require_sudachi
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="sudachi" )
self.assertIsNotNone(_lowerCAmelCase )
_lowerCAmelCase = "こんにちは、世界。\nこんばんは、世界。"
_lowerCAmelCase = tokenizer.tokenize(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
_lowerCAmelCase = os.path.join(self.tmpdirname , "tokenizer.bin" )
with open(_lowerCAmelCase , "wb" ) as handle:
pickle.dump(_lowerCAmelCase , _lowerCAmelCase )
with open(_lowerCAmelCase , "rb" ) as handle:
_lowerCAmelCase = pickle.load(_lowerCAmelCase )
_lowerCAmelCase = tokenizer_new.tokenize(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
@require_sudachi
def _snake_case ( self ) -> str:
_lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="core" )
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , )
@require_sudachi
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="A" )
self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国", "人", "参政", "権"] )
@require_sudachi
def _snake_case ( self ) -> str:
_lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="B" )
self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人", "参政権"] )
@require_sudachi
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="C" )
self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人参政権"] )
@require_sudachi
def _snake_case ( self ) -> Any:
_lowerCAmelCase = SudachiTokenizer(do_lower_case=_lowerCAmelCase , sudachi_dict_type="core" )
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iphone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , )
@require_sudachi
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = SudachiTokenizer(normalize_text=_lowerCAmelCase , sudachi_dict_type="core" )
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", "\u3000", "。", " ", " "] , )
@require_sudachi
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = SudachiTokenizer(trim_whitespace=_lowerCAmelCase , sudachi_dict_type="core" )
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , )
@require_jumanpp
def _snake_case ( self ) -> Any:
_lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="jumanpp" )
self.assertIsNotNone(_lowerCAmelCase )
_lowerCAmelCase = "こんにちは、世界。\nこんばんは、世界。"
_lowerCAmelCase = tokenizer.tokenize(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
_lowerCAmelCase = os.path.join(self.tmpdirname , "tokenizer.bin" )
with open(_lowerCAmelCase , "wb" ) as handle:
pickle.dump(_lowerCAmelCase , _lowerCAmelCase )
with open(_lowerCAmelCase , "rb" ) as handle:
_lowerCAmelCase = pickle.load(_lowerCAmelCase )
_lowerCAmelCase = tokenizer_new.tokenize(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
@require_jumanpp
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , )
@require_jumanpp
def _snake_case ( self ) -> str:
_lowerCAmelCase = JumanppTokenizer(do_lower_case=_lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iphone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , )
@require_jumanpp
def _snake_case ( self ) -> Tuple:
_lowerCAmelCase = JumanppTokenizer(normalize_text=_lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["ア", "ッ", "フ", "゚", "ル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , )
@require_jumanpp
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = JumanppTokenizer(trim_whitespace=_lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "。"] , )
@require_jumanpp
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize("ありがとうございますm(_ _)m見つけるのが大変です。" ) , ["ありがとう", "ございます", "m(_ _)m", "見つける", "の", "が", "大変です", "。"] , )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは"]
_lowerCAmelCase = {}
for i, token in enumerate(_lowerCAmelCase ):
_lowerCAmelCase = i
_lowerCAmelCase = WordpieceTokenizer(vocab=_lowerCAmelCase , unk_token="[UNK]" )
self.assertListEqual(tokenizer.tokenize("" ) , [] )
self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こんにちは"] )
self.assertListEqual(tokenizer.tokenize("こんばんは" ) , ["こん", "##ばんは"] )
self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは" ) , ["こん", "##ばんは", "[UNK]", "こんにちは"] )
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = BertJapaneseTokenizer.from_pretrained("nlp-waseda/roberta-base-japanese-with-auto-jumanpp" )
_lowerCAmelCase = tokenizer.subword_tokenizer
_lowerCAmelCase = subword_tokenizer.tokenize("国境 の 長い トンネル を 抜ける と 雪国 であった 。" )
self.assertListEqual(_lowerCAmelCase , ["▁国境", "▁の", "▁長い", "▁トンネル", "▁を", "▁抜ける", "▁と", "▁雪", "国", "▁であった", "▁。"] )
_lowerCAmelCase = subword_tokenizer.tokenize("こんばんは こんばん にち は こんにちは" )
self.assertListEqual(_lowerCAmelCase , ["▁こん", "ばん", "は", "▁こん", "ばん", "▁に", "ち", "▁は", "▁こんにちは"] )
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese" )
_lowerCAmelCase = tokenizer.encode("ありがとう。" , add_special_tokens=_lowerCAmelCase )
_lowerCAmelCase = tokenizer.encode("どういたしまして。" , add_special_tokens=_lowerCAmelCase )
_lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase )
_lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ):
__lowerCamelCase : Dict = BertJapaneseTokenizer
__lowerCamelCase : Optional[int] = False
def _snake_case ( self ) -> str:
super().setUp()
_lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"]
_lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def _snake_case ( self , **_lowerCAmelCase ) -> List[Any]:
return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="character" , **_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = "こんにちは、世界。 \nこんばんは、世界。"
_lowerCAmelCase = "こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。"
return input_text, output_text
def _snake_case ( self ) -> int:
pass # TODO add if relevant
def _snake_case ( self ) -> List[str]:
pass # TODO add if relevant
def _snake_case ( self ) -> Optional[int]:
pass # TODO add if relevant
def _snake_case ( self ) -> Any:
_lowerCAmelCase = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="character" )
_lowerCAmelCase = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。" )
self.assertListEqual(
_lowerCAmelCase , ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] )
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"]
_lowerCAmelCase = {}
for i, token in enumerate(_lowerCAmelCase ):
_lowerCAmelCase = i
_lowerCAmelCase = CharacterTokenizer(vocab=_lowerCAmelCase , unk_token="[UNK]" )
self.assertListEqual(tokenizer.tokenize("" ) , [] )
self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こ", "ん", "に", "ち", "は"] )
self.assertListEqual(tokenizer.tokenize("こんにちほ" ) , ["こ", "ん", "に", "ち", "[UNK]"] )
def _snake_case ( self ) -> Tuple:
_lowerCAmelCase = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char" )
_lowerCAmelCase = tokenizer.encode("ありがとう。" , add_special_tokens=_lowerCAmelCase )
_lowerCAmelCase = tokenizer.encode("どういたしまして。" , add_special_tokens=_lowerCAmelCase )
_lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase )
_lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class lowerCAmelCase_ ( unittest.TestCase ):
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = "cl-tohoku/bert-base-japanese"
_lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
class lowerCAmelCase_ ( unittest.TestCase ):
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase = "cl-tohoku/bert-base-japanese"
with self.assertLogs("transformers" , level="WARNING" ) as cm:
BertTokenizer.from_pretrained(_lowerCAmelCase )
self.assertTrue(
cm.records[0].message.startswith(
"The tokenizer class you load from this checkpoint is not the same type as the class this function"
" is called from." ) )
_lowerCAmelCase = "bert-base-cased"
with self.assertLogs("transformers" , level="WARNING" ) as cm:
BertJapaneseTokenizer.from_pretrained(_lowerCAmelCase )
self.assertTrue(
cm.records[0].message.startswith(
"The tokenizer class you load from this checkpoint is not the same type as the class this function"
" is called from." ) )
| 18 |
'''simple docstring'''
from __future__ import annotations
def __a(SCREAMING_SNAKE_CASE_ : list ):
'''simple docstring'''
if not nums:
raise ValueError("List is empty" )
return sum(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 18 | 1 |
'''simple docstring'''
from collections import defaultdict
def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
_lowerCAmelCase = first_str.lower().strip()
_lowerCAmelCase = second_str.lower().strip()
# Remove whitespace
_lowerCAmelCase = first_str.replace(" " , "" )
_lowerCAmelCase = second_str.replace(" " , "" )
# Strings of different lengths are not anagrams
if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ):
return False
# Default values for count should be 0
_lowerCAmelCase = defaultdict(SCREAMING_SNAKE_CASE_ )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
_SCREAMING_SNAKE_CASE = input("Enter the first string ").strip()
_SCREAMING_SNAKE_CASE = input("Enter the second string ").strip()
_SCREAMING_SNAKE_CASE = check_anagrams(input_a, input_b)
print(f'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
| 18 |
'''simple docstring'''
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
_lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase )
_lowerCAmelCase = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
_lowerCAmelCase = TextStreamer(_lowerCAmelCase )
model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
_lowerCAmelCase = cs.out[:-1]
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
_lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase )
_lowerCAmelCase = tokenizer.decode(greedy_ids[0] )
_lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase )
_lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
_lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase )
thread.start()
_lowerCAmelCase = ""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
_lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase )
_lowerCAmelCase = greedy_ids[:, input_ids.shape[1] :]
_lowerCAmelCase = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
_lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_prompt=_lowerCAmelCase )
model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
_lowerCAmelCase = cs.out[:-1]
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> Dict:
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
_lowerCAmelCase = AutoTokenizer.from_pretrained("distilgpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = torch.ones((1, 5) , device=_lowerCAmelCase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
_lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )
model.generate(_lowerCAmelCase , max_new_tokens=1 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
_lowerCAmelCase = cs.out[:-1] # Remove the final "\n"
_lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="pt" )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
_lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase , timeout=0.001 )
_lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
_lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(_lowerCAmelCase ):
_lowerCAmelCase = ""
for new_text in streamer:
streamer_text += new_text
| 18 | 1 |
'''simple docstring'''
def __a(SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
if num <= 0:
raise ValueError("Input must be a positive integer" )
_lowerCAmelCase = [True] * (num + 1)
_lowerCAmelCase = 2
while p * p <= num:
if primes[p]:
for i in range(p * p , num + 1 , SCREAMING_SNAKE_CASE_ ):
_lowerCAmelCase = False
p += 1
return [prime for prime in range(2 , num + 1 ) if primes[prime]]
if __name__ == "__main__":
import doctest
doctest.testmod()
_SCREAMING_SNAKE_CASE = int(input("Enter a positive integer: ").strip())
print(prime_sieve_eratosthenes(user_num))
| 18 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json",
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Union[str, Any] = "blenderbot-small"
__lowerCamelCase : Optional[Any] = ["past_key_values"]
__lowerCamelCase : str = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , _lowerCAmelCase=50265 , _lowerCAmelCase=512 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="gelu" , _lowerCAmelCase=512 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=2 , **_lowerCAmelCase , ) -> Dict:
_lowerCAmelCase = vocab_size
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = d_model
_lowerCAmelCase = encoder_ffn_dim
_lowerCAmelCase = encoder_layers
_lowerCAmelCase = encoder_attention_heads
_lowerCAmelCase = decoder_ffn_dim
_lowerCAmelCase = decoder_layers
_lowerCAmelCase = decoder_attention_heads
_lowerCAmelCase = dropout
_lowerCAmelCase = attention_dropout
_lowerCAmelCase = activation_dropout
_lowerCAmelCase = activation_function
_lowerCAmelCase = init_std
_lowerCAmelCase = encoder_layerdrop
_lowerCAmelCase = decoder_layerdrop
_lowerCAmelCase = use_cache
_lowerCAmelCase = encoder_layers
_lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
class lowerCAmelCase_ ( __magic_name__ ):
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_lowerCAmelCase = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
_lowerCAmelCase = {0: "batch"}
_lowerCAmelCase = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
_lowerCAmelCase = {0: "batch", 1: "decoder_sequence"}
_lowerCAmelCase = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(_lowerCAmelCase , direction="inputs" )
elif self.task == "causal-lm":
# TODO: figure this case out.
_lowerCAmelCase = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
_lowerCAmelCase , _lowerCAmelCase = self.num_layers
for i in range(_lowerCAmelCase ):
_lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"}
_lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"}
else:
_lowerCAmelCase = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
] )
return common_inputs
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_lowerCAmelCase = super().outputs
else:
_lowerCAmelCase = super(_lowerCAmelCase , self ).outputs
if self.use_past:
_lowerCAmelCase , _lowerCAmelCase = self.num_layers
for i in range(_lowerCAmelCase ):
_lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"}
_lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]:
_lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Generate decoder inputs
_lowerCAmelCase = seq_length if not self.use_past else 1
_lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()}
_lowerCAmelCase = dict(**_lowerCAmelCase , **_lowerCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
_lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape
_lowerCAmelCase = common_inputs["decoder_input_ids"].shape[1]
_lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads
_lowerCAmelCase = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_lowerCAmelCase = decoder_seq_length + 3
_lowerCAmelCase = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
_lowerCAmelCase = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase )] , dim=1 )
_lowerCAmelCase = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
_lowerCAmelCase , _lowerCAmelCase = self.num_layers
_lowerCAmelCase = min(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = max(_lowerCAmelCase , _lowerCAmelCase ) - min_num_layers
_lowerCAmelCase = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(_lowerCAmelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(_lowerCAmelCase ),
torch.zeros(_lowerCAmelCase ),
torch.zeros(_lowerCAmelCase ),
torch.zeros(_lowerCAmelCase ),
) )
# TODO: test this.
_lowerCAmelCase = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(_lowerCAmelCase , _lowerCAmelCase ):
common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) )
return common_inputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]:
_lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
_lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
_lowerCAmelCase = seqlen + 2
_lowerCAmelCase , _lowerCAmelCase = self.num_layers
_lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads
_lowerCAmelCase = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_lowerCAmelCase = common_inputs["attention_mask"].dtype
_lowerCAmelCase = torch.cat(
[common_inputs["attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase )] , dim=1 )
_lowerCAmelCase = [
(torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase )
]
return common_inputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
_lowerCAmelCase = compute_effective_axis_dimension(
_lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
_lowerCAmelCase = tokenizer.num_special_tokens_to_add(_lowerCAmelCase )
_lowerCAmelCase = compute_effective_axis_dimension(
_lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase )
# Generate dummy inputs according to compute batch and sequence
_lowerCAmelCase = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size
_lowerCAmelCase = dict(tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) )
return common_inputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
_lowerCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
elif self.task == "causal-lm":
_lowerCAmelCase = self._generate_dummy_inputs_for_causal_lm(
_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
else:
_lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
return common_inputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict:
if self.task in ["default", "seq2seq-lm"]:
_lowerCAmelCase = super()._flatten_past_key_values_(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
else:
_lowerCAmelCase = super(_lowerCAmelCase , self )._flatten_past_key_values_(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=32 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=16 , _lowerCAmelCase=[1, 2, 1] , _lowerCAmelCase=[2, 2, 4] , _lowerCAmelCase=2 , _lowerCAmelCase=2.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=10 , _lowerCAmelCase=8 , ) -> Dict:
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = embed_dim
_lowerCAmelCase = depths
_lowerCAmelCase = num_heads
_lowerCAmelCase = window_size
_lowerCAmelCase = mlp_ratio
_lowerCAmelCase = qkv_bias
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = drop_path_rate
_lowerCAmelCase = hidden_act
_lowerCAmelCase = use_absolute_embeddings
_lowerCAmelCase = patch_norm
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = initializer_range
_lowerCAmelCase = is_training
_lowerCAmelCase = scope
_lowerCAmelCase = use_labels
_lowerCAmelCase = type_sequence_label_size
_lowerCAmelCase = encoder_stride
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase = None
if self.use_labels:
_lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase = self.get_config()
return config, pixel_values, labels
def _snake_case ( self ) -> Union[str, Any]:
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = SwinvaModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase )
_lowerCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
_lowerCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple:
_lowerCAmelCase = SwinvaForMaskedImageModeling(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
_lowerCAmelCase = 1
_lowerCAmelCase = SwinvaForMaskedImageModeling(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCAmelCase = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]:
_lowerCAmelCase = self.type_sequence_label_size
_lowerCAmelCase = SwinvaForImageClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs
_lowerCAmelCase = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ):
__lowerCamelCase : Optional[int] = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
__lowerCamelCase : Any = (
{"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification}
if is_torch_available()
else {}
)
__lowerCamelCase : Optional[int] = False
__lowerCamelCase : List[Any] = False
__lowerCamelCase : Dict = False
__lowerCamelCase : str = False
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = SwinvaModelTester(self )
_lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , embed_dim=37 )
def _snake_case ( self ) -> int:
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _snake_case ( self ) -> Tuple:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
@unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0." )
def _snake_case ( self ) -> Optional[int]:
pass
@unittest.skip(reason="Swinv2 does not use inputs_embeds" )
def _snake_case ( self ) -> Tuple:
pass
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase = model_class(_lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_lowerCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase = model_class(_lowerCAmelCase )
_lowerCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase = [*signature.parameters.keys()]
_lowerCAmelCase = ["pixel_values"]
self.assertListEqual(arg_names[:1] , _lowerCAmelCase )
def _snake_case ( self ) -> int:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase = True
for model_class in self.all_model_classes:
_lowerCAmelCase = True
_lowerCAmelCase = False
_lowerCAmelCase = True
_lowerCAmelCase = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
with torch.no_grad():
_lowerCAmelCase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) )
_lowerCAmelCase = outputs.attentions
_lowerCAmelCase = len(self.model_tester.depths )
self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
_lowerCAmelCase = True
_lowerCAmelCase = config.window_size**2
_lowerCAmelCase = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
with torch.no_grad():
_lowerCAmelCase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) )
_lowerCAmelCase = outputs.attentions
self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
_lowerCAmelCase = len(_lowerCAmelCase )
# Check attention is always last and order is fine
_lowerCAmelCase = True
_lowerCAmelCase = True
_lowerCAmelCase = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
with torch.no_grad():
_lowerCAmelCase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) )
if hasattr(self.model_tester , "num_hidden_states_types" ):
_lowerCAmelCase = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
_lowerCAmelCase = 2
self.assertEqual(out_len + added_hidden_states , len(_lowerCAmelCase ) )
_lowerCAmelCase = outputs.attentions
self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]:
_lowerCAmelCase = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
with torch.no_grad():
_lowerCAmelCase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) )
_lowerCAmelCase = outputs.hidden_states
_lowerCAmelCase = getattr(
self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase )
# Swinv2 has a different seq_length
_lowerCAmelCase = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
_lowerCAmelCase = outputs.reshaped_hidden_states
self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = reshaped_hidden_states[0].shape
_lowerCAmelCase = (
reshaped_hidden_states[0].view(_lowerCAmelCase , _lowerCAmelCase , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def _snake_case ( self ) -> int:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
_lowerCAmelCase = True
self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCAmelCase = True
self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> str:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase = 3
_lowerCAmelCase = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
_lowerCAmelCase = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_lowerCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
_lowerCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
_lowerCAmelCase = True
self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCAmelCase = True
self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , (padded_height, padded_width) )
def _snake_case ( self ) -> Tuple:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase )
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase )
@slow
def _snake_case ( self ) -> Optional[int]:
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase = SwinvaModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase = _config_zero_init(_lowerCAmelCase )
for model_class in self.all_model_classes:
_lowerCAmelCase = model_class(config=_lowerCAmelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@require_vision
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
@cached_property
def _snake_case ( self ) -> Optional[Any]:
return (
AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" )
if is_vision_available()
else None
)
@slow
def _snake_case ( self ) -> str:
_lowerCAmelCase = SwinvaForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ).to(
_lowerCAmelCase )
_lowerCAmelCase = self.default_image_processor
_lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
_lowerCAmelCase = image_processor(images=_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
_lowerCAmelCase = model(**_lowerCAmelCase )
# verify the logits
_lowerCAmelCase = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
| 18 |
'''simple docstring'''
import re
import string
import numpy as np
import datasets
_SCREAMING_SNAKE_CASE = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n"
_SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n"
_SCREAMING_SNAKE_CASE = "\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
def _snake_case ( self ) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , reference_urls=[] , )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , ) -> str:
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
_lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in predictions] )
_lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in references] )
else:
_lowerCAmelCase = np.asarray(_lowerCAmelCase )
_lowerCAmelCase = np.asarray(_lowerCAmelCase )
if ignore_case:
_lowerCAmelCase = np.char.lower(_lowerCAmelCase )
_lowerCAmelCase = np.char.lower(_lowerCAmelCase )
if ignore_punctuation:
_lowerCAmelCase = string.punctuation.maketrans("" , "" , string.punctuation )
_lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase )
_lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase )
if ignore_numbers:
_lowerCAmelCase = string.digits.maketrans("" , "" , string.digits )
_lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase )
_lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase )
_lowerCAmelCase = predictions == references
return {"exact_match": np.mean(_lowerCAmelCase ) * 100}
| 18 | 1 |
'''simple docstring'''
import random
from typing import Any
def __a(SCREAMING_SNAKE_CASE_ : list ):
'''simple docstring'''
for _ in range(len(SCREAMING_SNAKE_CASE_ ) ):
_lowerCAmelCase = random.randint(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 )
_lowerCAmelCase = random.randint(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 )
_lowerCAmelCase , _lowerCAmelCase = data[b], data[a]
return data
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = [0, 1, 2, 3, 4, 5, 6, 7]
_SCREAMING_SNAKE_CASE = ["python", "says", "hello", "!"]
print("Fisher-Yates Shuffle:")
print("List", integers, strings)
print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
| 18 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class lowerCAmelCase_ ( __magic_name__ ):
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> None:
warnings.warn(
"The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use YolosImageProcessor instead." , _lowerCAmelCase , )
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
def __a(SCREAMING_SNAKE_CASE_ : Any ):
'''simple docstring'''
_lowerCAmelCase = [0] * len(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = 0
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
if indegree[i] == 0:
queue.append(SCREAMING_SNAKE_CASE_ )
while queue:
_lowerCAmelCase = queue.pop(0 )
cnt += 1
topo.append(SCREAMING_SNAKE_CASE_ )
for x in graph[vertex]:
indegree[x] -= 1
if indegree[x] == 0:
queue.append(SCREAMING_SNAKE_CASE_ )
if cnt != len(SCREAMING_SNAKE_CASE_ ):
print("Cycle exists" )
else:
print(SCREAMING_SNAKE_CASE_ )
# Adjacency List of Graph
_SCREAMING_SNAKE_CASE = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []}
topological_sort(graph)
| 18 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Any = "falcon"
__lowerCamelCase : List[str] = ["past_key_values"]
def __init__( self , _lowerCAmelCase=65024 , _lowerCAmelCase=4544 , _lowerCAmelCase=32 , _lowerCAmelCase=71 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=11 , _lowerCAmelCase=11 , **_lowerCAmelCase , ) -> Union[str, Any]:
_lowerCAmelCase = vocab_size
# Backward compatibility with n_embed kwarg
_lowerCAmelCase = kwargs.pop("n_embed" , _lowerCAmelCase )
_lowerCAmelCase = hidden_size if n_embed is None else n_embed
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = layer_norm_epsilon
_lowerCAmelCase = initializer_range
_lowerCAmelCase = use_cache
_lowerCAmelCase = hidden_dropout
_lowerCAmelCase = attention_dropout
_lowerCAmelCase = bos_token_id
_lowerCAmelCase = eos_token_id
_lowerCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads
_lowerCAmelCase = alibi
_lowerCAmelCase = new_decoder_architecture
_lowerCAmelCase = multi_query # Ignored when new_decoder_architecture is True
_lowerCAmelCase = parallel_attn
_lowerCAmelCase = bias
super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
@property
def _snake_case ( self ) -> Optional[Any]:
return self.hidden_size // self.num_attention_heads
@property
def _snake_case ( self ) -> Optional[Any]:
return not self.alibi
| 18 | 1 |
'''simple docstring'''
import argparse
import ast
import logging
import os
import sys
import pandas as pd
import torch
from tqdm import tqdm
from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration
from transformers import logging as transformers_logging
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip
from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip
_SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
transformers_logging.set_verbosity_info()
def __a(SCREAMING_SNAKE_CASE_ : List[str] ):
'''simple docstring'''
if "token" in model_name_or_path:
return "rag_token"
if "sequence" in model_name_or_path:
return "rag_sequence"
if "bart" in model_name_or_path:
return "bart"
return None
def __a(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
return max(metric_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for gt in ground_truths )
def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] ):
'''simple docstring'''
_lowerCAmelCase = [line.strip() for line in open(SCREAMING_SNAKE_CASE_ , "r" ).readlines()]
_lowerCAmelCase = []
if args.gold_data_mode == "qa":
_lowerCAmelCase = pd.read_csv(SCREAMING_SNAKE_CASE_ , sep="\t" , header=SCREAMING_SNAKE_CASE_ )
for answer_list in data[1]:
_lowerCAmelCase = ast.literal_eval(SCREAMING_SNAKE_CASE_ )
answers.append(SCREAMING_SNAKE_CASE_ )
else:
_lowerCAmelCase = [line.strip() for line in open(SCREAMING_SNAKE_CASE_ , "r" ).readlines()]
_lowerCAmelCase = [[reference] for reference in references]
_lowerCAmelCase = _lowerCAmelCase = _lowerCAmelCase = 0
for prediction, ground_truths in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
total += 1
em += metric_max_over_ground_truths(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
fa += metric_max_over_ground_truths(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = 100.0 * em / total
_lowerCAmelCase = 100.0 * fa / total
logger.info(F'''F1: {fa:.2f}''' )
logger.info(F'''EM: {em:.2f}''' )
def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] ):
'''simple docstring'''
_lowerCAmelCase = args.k
_lowerCAmelCase = [line.strip() for line in open(SCREAMING_SNAKE_CASE_ , "r" ).readlines()]
_lowerCAmelCase = [line.strip() for line in open(SCREAMING_SNAKE_CASE_ , "r" ).readlines()]
_lowerCAmelCase = _lowerCAmelCase = 0
for hypo, reference in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
_lowerCAmelCase = set(hypo.split("\t" )[:k] )
_lowerCAmelCase = set(reference.split("\t" ) )
total += 1
em += len(hypo_provenance & ref_provenance ) / k
_lowerCAmelCase = 100.0 * em / total
logger.info(F'''Precision@{k}: {em: .2f}''' )
def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple ):
'''simple docstring'''
def strip_title(SCREAMING_SNAKE_CASE_ : List[str] ):
if title.startswith("\"" ):
_lowerCAmelCase = title[1:]
if title.endswith("\"" ):
_lowerCAmelCase = title[:-1]
return title
_lowerCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
SCREAMING_SNAKE_CASE_ , return_tensors="pt" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , )["input_ids"].to(args.device )
_lowerCAmelCase = rag_model.rag.question_encoder(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = question_enc_outputs[0]
_lowerCAmelCase = rag_model.retriever(
SCREAMING_SNAKE_CASE_ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , )
_lowerCAmelCase = rag_model.retriever.index.get_doc_dicts(result.doc_ids )
_lowerCAmelCase = []
for docs in all_docs:
_lowerCAmelCase = [strip_title(SCREAMING_SNAKE_CASE_ ) for title in docs["title"]]
provenance_strings.append("\t".join(SCREAMING_SNAKE_CASE_ ) )
return provenance_strings
def __a(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] ):
'''simple docstring'''
with torch.no_grad():
_lowerCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
SCREAMING_SNAKE_CASE_ , return_tensors="pt" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = inputs_dict.input_ids.to(args.device )
_lowerCAmelCase = inputs_dict.attention_mask.to(args.device )
_lowerCAmelCase = rag_model.generate( # rag_model overwrites generate
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=SCREAMING_SNAKE_CASE_ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , )
_lowerCAmelCase = rag_model.retriever.generator_tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
if args.print_predictions:
for q, a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
logger.info("Q: {} - A: {}".format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
return answers
def __a():
'''simple docstring'''
_lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument(
"--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=SCREAMING_SNAKE_CASE_ , help=(
"RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the"
" model_name_or_path"
) , )
parser.add_argument(
"--index_name" , default=SCREAMING_SNAKE_CASE_ , choices=["exact", "compressed", "legacy"] , type=SCREAMING_SNAKE_CASE_ , help="RAG model retriever type" , )
parser.add_argument(
"--index_path" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , help="Path to the retrieval index" , )
parser.add_argument("--n_docs" , default=5 , type=SCREAMING_SNAKE_CASE_ , help="Number of retrieved docs" )
parser.add_argument(
"--model_name_or_path" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , )
parser.add_argument(
"--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=SCREAMING_SNAKE_CASE_ , help=(
"Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates"
" precision@k."
) , )
parser.add_argument("--k" , default=1 , type=SCREAMING_SNAKE_CASE_ , help="k for the precision@k calculation" )
parser.add_argument(
"--evaluation_set" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="Path to a file containing evaluation samples" , )
parser.add_argument(
"--gold_data_path" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="Path to a tab-separated file with gold samples" , )
parser.add_argument(
"--gold_data_mode" , default="qa" , type=SCREAMING_SNAKE_CASE_ , choices=["qa", "ans"] , help=(
"Format of the gold data file"
"qa - a single line in the following format: question [tab] answer_list"
"ans - a single line of the gold file contains the expected answer string"
) , )
parser.add_argument(
"--predictions_path" , type=SCREAMING_SNAKE_CASE_ , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , )
parser.add_argument(
"--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , )
parser.add_argument(
"--eval_batch_size" , default=8 , type=SCREAMING_SNAKE_CASE_ , help="Batch size per GPU/CPU for evaluation." , )
parser.add_argument(
"--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , )
parser.add_argument(
"--num_beams" , default=4 , type=SCREAMING_SNAKE_CASE_ , help="Number of beams to be used when generating answers" , )
parser.add_argument("--min_length" , default=1 , type=SCREAMING_SNAKE_CASE_ , help="Min length of the generated answers" )
parser.add_argument("--max_length" , default=50 , type=SCREAMING_SNAKE_CASE_ , help="Max length of the generated answers" )
parser.add_argument(
"--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , )
parser.add_argument(
"--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , )
_lowerCAmelCase = parser.parse_args()
_lowerCAmelCase = torch.device("cuda" if torch.cuda.is_available() else "cpu" )
return args
def __a(SCREAMING_SNAKE_CASE_ : List[Any] ):
'''simple docstring'''
_lowerCAmelCase = {}
if args.model_type is None:
_lowerCAmelCase = infer_model_type(args.model_name_or_path )
assert args.model_type is not None
if args.model_type.startswith("rag" ):
_lowerCAmelCase = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration
_lowerCAmelCase = args.n_docs
if args.index_name is not None:
_lowerCAmelCase = args.index_name
if args.index_path is not None:
_lowerCAmelCase = args.index_path
else:
_lowerCAmelCase = BartForConditionalGeneration
_lowerCAmelCase = (
[f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()]
if args.eval_all_checkpoints
else [args.model_name_or_path]
)
logger.info("Evaluate the following checkpoints: %s" , SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = get_scores if args.eval_mode == "e2e" else get_precision_at_k
_lowerCAmelCase = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval
for checkpoint in checkpoints:
if os.path.exists(args.predictions_path ) and (not args.recalculate):
logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) )
score_fn(SCREAMING_SNAKE_CASE_ , args.predictions_path , args.gold_data_path )
continue
logger.info("***** Running evaluation for {} *****".format(SCREAMING_SNAKE_CASE_ ) )
logger.info(" Batch size = %d" , args.eval_batch_size )
logger.info(" Predictions will be stored under {}".format(args.predictions_path ) )
if args.model_type.startswith("rag" ):
_lowerCAmelCase = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , retriever=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
model.retriever.init_retrieval()
else:
_lowerCAmelCase = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
model.to(args.device )
with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file:
_lowerCAmelCase = []
for line in tqdm(SCREAMING_SNAKE_CASE_ ):
questions.append(line.strip() )
if len(SCREAMING_SNAKE_CASE_ ) == args.eval_batch_size:
_lowerCAmelCase = evaluate_batch_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
preds_file.write("\n".join(SCREAMING_SNAKE_CASE_ ) + "\n" )
preds_file.flush()
_lowerCAmelCase = []
if len(SCREAMING_SNAKE_CASE_ ) > 0:
_lowerCAmelCase = evaluate_batch_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
preds_file.write("\n".join(SCREAMING_SNAKE_CASE_ ) )
preds_file.flush()
score_fn(SCREAMING_SNAKE_CASE_ , args.predictions_path , args.gold_data_path )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = get_args()
main(args)
| 18 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"facebook/deit-base-distilled-patch16-224": (
"https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json"
),
# See all DeiT models at https://huggingface.co/models?filter=deit
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Optional[int] = "deit"
def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=16 , **_lowerCAmelCase , ) -> Dict:
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = initializer_range
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = qkv_bias
_lowerCAmelCase = encoder_stride
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : List[str] = version.parse("1.11" )
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self ) -> float:
return 1E-4
| 18 | 1 |
'''simple docstring'''
import unittest
from diffusers.pipelines.pipeline_utils import is_safetensors_compatible
class lowerCAmelCase_ ( unittest.TestCase ):
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = [
"safety_checker/pytorch_model.bin",
"safety_checker/model.safetensors",
"vae/diffusion_pytorch_model.bin",
"vae/diffusion_pytorch_model.safetensors",
"text_encoder/pytorch_model.bin",
"text_encoder/model.safetensors",
"unet/diffusion_pytorch_model.bin",
"unet/diffusion_pytorch_model.safetensors",
]
self.assertTrue(is_safetensors_compatible(_lowerCAmelCase ) )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = [
"unet/diffusion_pytorch_model.bin",
"unet/diffusion_pytorch_model.safetensors",
]
self.assertTrue(is_safetensors_compatible(_lowerCAmelCase ) )
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = [
"safety_checker/pytorch_model.bin",
"safety_checker/model.safetensors",
"vae/diffusion_pytorch_model.bin",
"vae/diffusion_pytorch_model.safetensors",
"text_encoder/pytorch_model.bin",
"text_encoder/model.safetensors",
"unet/diffusion_pytorch_model.bin",
# Removed: 'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(_lowerCAmelCase ) )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = [
"text_encoder/pytorch_model.bin",
"text_encoder/model.safetensors",
]
self.assertTrue(is_safetensors_compatible(_lowerCAmelCase ) )
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = [
"safety_checker/pytorch_model.bin",
"safety_checker/model.safetensors",
"vae/diffusion_pytorch_model.bin",
"vae/diffusion_pytorch_model.safetensors",
"text_encoder/pytorch_model.bin",
# Removed: 'text_encoder/model.safetensors',
"unet/diffusion_pytorch_model.bin",
"unet/diffusion_pytorch_model.safetensors",
]
self.assertFalse(is_safetensors_compatible(_lowerCAmelCase ) )
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = [
"safety_checker/pytorch_model.fp16.bin",
"safety_checker/model.fp16.safetensors",
"vae/diffusion_pytorch_model.fp16.bin",
"vae/diffusion_pytorch_model.fp16.safetensors",
"text_encoder/pytorch_model.fp16.bin",
"text_encoder/model.fp16.safetensors",
"unet/diffusion_pytorch_model.fp16.bin",
"unet/diffusion_pytorch_model.fp16.safetensors",
]
_lowerCAmelCase = "fp16"
self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = [
"unet/diffusion_pytorch_model.fp16.bin",
"unet/diffusion_pytorch_model.fp16.safetensors",
]
_lowerCAmelCase = "fp16"
self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) )
def _snake_case ( self ) -> Any:
# pass variant but use the non-variant filenames
_lowerCAmelCase = [
"unet/diffusion_pytorch_model.bin",
"unet/diffusion_pytorch_model.safetensors",
]
_lowerCAmelCase = "fp16"
self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) )
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = [
"safety_checker/pytorch_model.fp16.bin",
"safety_checker/model.fp16.safetensors",
"vae/diffusion_pytorch_model.fp16.bin",
"vae/diffusion_pytorch_model.fp16.safetensors",
"text_encoder/pytorch_model.fp16.bin",
"text_encoder/model.fp16.safetensors",
"unet/diffusion_pytorch_model.fp16.bin",
# Removed: 'unet/diffusion_pytorch_model.fp16.safetensors',
]
_lowerCAmelCase = "fp16"
self.assertFalse(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) )
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = [
"text_encoder/pytorch_model.fp16.bin",
"text_encoder/model.fp16.safetensors",
]
_lowerCAmelCase = "fp16"
self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) )
def _snake_case ( self ) -> int:
# pass variant but use the non-variant filenames
_lowerCAmelCase = [
"text_encoder/pytorch_model.bin",
"text_encoder/model.safetensors",
]
_lowerCAmelCase = "fp16"
self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) )
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = [
"safety_checker/pytorch_model.fp16.bin",
"safety_checker/model.fp16.safetensors",
"vae/diffusion_pytorch_model.fp16.bin",
"vae/diffusion_pytorch_model.fp16.safetensors",
"text_encoder/pytorch_model.fp16.bin",
# 'text_encoder/model.fp16.safetensors',
"unet/diffusion_pytorch_model.fp16.bin",
"unet/diffusion_pytorch_model.fp16.safetensors",
]
_lowerCAmelCase = "fp16"
self.assertFalse(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) )
| 18 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_SCREAMING_SNAKE_CASE = {
"configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"],
"feature_extraction_mctct": ["MCTCTFeatureExtractor"],
"processing_mctct": ["MCTCTProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MCTCTForCTC",
"MCTCTModel",
"MCTCTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 18 | 1 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import torch
import torchaudio.compliance.kaldi as ta_kaldi
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : List[Any] = ["input_features", "attention_mask"]
def __init__( self , _lowerCAmelCase=80 , _lowerCAmelCase=16000 , _lowerCAmelCase=80 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Tuple:
super().__init__(feature_size=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , padding_value=_lowerCAmelCase , **_lowerCAmelCase )
_lowerCAmelCase = num_mel_bins
_lowerCAmelCase = do_ceptral_normalize
_lowerCAmelCase = normalize_means
_lowerCAmelCase = normalize_vars
_lowerCAmelCase = True
def _snake_case ( self , _lowerCAmelCase , ) -> np.ndarray:
_lowerCAmelCase = waveform * (2**15) # Kaldi compliance: 16-bit signed integers
_lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).unsqueeze(0 )
_lowerCAmelCase = ta_kaldi.fbank(_lowerCAmelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate )
return features.numpy()
@staticmethod
def _snake_case ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0.0 , ) -> np.ndarray:
# make sure we normalize float32 arrays
if normalize_means:
_lowerCAmelCase = x[:input_length].mean(axis=0 )
_lowerCAmelCase = np.subtract(_lowerCAmelCase , _lowerCAmelCase )
if normalize_vars:
_lowerCAmelCase = x[:input_length].std(axis=0 )
_lowerCAmelCase = np.divide(_lowerCAmelCase , _lowerCAmelCase )
if input_length < x.shape[0]:
_lowerCAmelCase = padding_value
# make sure array is in float32
_lowerCAmelCase = x.astype(np.floataa )
return x
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[np.ndarray]:
_lowerCAmelCase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [
self.utterance_cmvn(_lowerCAmelCase , _lowerCAmelCase , self.normalize_means , self.normalize_vars , self.padding_value )
for x, n in zip(_lowerCAmelCase , _lowerCAmelCase )
]
def __call__( self , _lowerCAmelCase , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> BatchFeature:
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with'''
f''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
_lowerCAmelCase = isinstance(_lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' )
_lowerCAmelCase = is_batched_numpy or (
isinstance(_lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_lowerCAmelCase = [np.asarray(_lowerCAmelCase , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(_lowerCAmelCase , np.ndarray ):
_lowerCAmelCase = np.asarray(_lowerCAmelCase , dtype=np.floataa )
elif isinstance(_lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
_lowerCAmelCase = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
_lowerCAmelCase = [raw_speech]
# extract fbank features
_lowerCAmelCase = [self._extract_fbank_features(_lowerCAmelCase ) for waveform in raw_speech]
# convert into correct format for padding
_lowerCAmelCase = BatchFeature({"input_features": features} )
_lowerCAmelCase = self.pad(
_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , **_lowerCAmelCase , )
# make sure list is in array format
_lowerCAmelCase = padded_inputs.get("input_features" )
if isinstance(input_features[0] , _lowerCAmelCase ):
_lowerCAmelCase = [np.asarray(_lowerCAmelCase , dtype=np.floataa ) for feature in input_features]
_lowerCAmelCase = padded_inputs.get("attention_mask" )
if attention_mask is not None:
_lowerCAmelCase = [np.asarray(_lowerCAmelCase , dtype=np.intaa ) for array in attention_mask]
# Utterance-level cepstral mean and variance normalization
if self.do_ceptral_normalize:
_lowerCAmelCase = (
np.array(_lowerCAmelCase , dtype=np.intaa )
if self._get_padding_strategies(_lowerCAmelCase , max_length=_lowerCAmelCase ) is not PaddingStrategy.DO_NOT_PAD
else None
)
_lowerCAmelCase = self.normalize(
padded_inputs["input_features"] , attention_mask=_lowerCAmelCase )
if return_tensors is not None:
_lowerCAmelCase = padded_inputs.convert_to_tensors(_lowerCAmelCase )
return padded_inputs
| 18 |
'''simple docstring'''
from typing import Dict, Iterable, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : int = ["pixel_values"]
def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = IMAGENET_DEFAULT_MEAN , _lowerCAmelCase = IMAGENET_DEFAULT_STD , **_lowerCAmelCase , ) -> None:
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = size if size is not None else {"shortest_edge": 224}
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
_lowerCAmelCase = crop_size if crop_size is not None else {"height": 224, "width": 224}
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" )
_lowerCAmelCase = do_resize
_lowerCAmelCase = size
_lowerCAmelCase = resample
_lowerCAmelCase = do_center_crop
_lowerCAmelCase = crop_size
_lowerCAmelCase = do_rescale
_lowerCAmelCase = rescale_factor
_lowerCAmelCase = do_normalize
_lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
_lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray:
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
# size_dict is a dict with either keys "height" and "width" or "shortest_edge"
if "shortest_edge" in size:
_lowerCAmelCase = int((256 / 224) * size["shortest_edge"] )
_lowerCAmelCase = get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase )
_lowerCAmelCase = {"height": output_size[0], "width": output_size[1]}
if "height" not in size_dict or "width" not in size_dict:
raise ValueError(
f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' )
return resize(
_lowerCAmelCase , size=(size_dict["height"], size_dict["width"]) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray:
_lowerCAmelCase = get_size_dict(_lowerCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray:
return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray:
return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ) -> BatchFeature:
_lowerCAmelCase = do_resize if do_resize is not None else self.do_resize
_lowerCAmelCase = resample if resample is not None else self.resample
_lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
_lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
_lowerCAmelCase = image_mean if image_mean is not None else self.image_mean
_lowerCAmelCase = image_std if image_std is not None else self.image_std
_lowerCAmelCase = size if size is not None else self.size
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
_lowerCAmelCase = crop_size if crop_size is not None else self.crop_size
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" )
_lowerCAmelCase = make_list_of_images(_lowerCAmelCase )
if not valid_images(_lowerCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
_lowerCAmelCase = [to_numpy_array(_lowerCAmelCase ) for image in images]
if do_resize:
_lowerCAmelCase = [self.resize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images]
if do_center_crop:
_lowerCAmelCase = [self.center_crop(_lowerCAmelCase , _lowerCAmelCase ) for image in images]
if do_rescale:
_lowerCAmelCase = [self.rescale(_lowerCAmelCase , _lowerCAmelCase ) for image in images]
if do_normalize:
_lowerCAmelCase = [self.normalize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images]
_lowerCAmelCase = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images]
_lowerCAmelCase = {"pixel_values": images}
return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class lowerCAmelCase_ ( __magic_name__ ):
def __init__( self , _lowerCAmelCase ) -> List[Any]:
super().__init__()
_lowerCAmelCase = nn.ModuleList(_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = True , ) -> Union[ControlNetOutput, Tuple]:
for i, (image, scale, controlnet) in enumerate(zip(_lowerCAmelCase , _lowerCAmelCase , self.nets ) ):
_lowerCAmelCase , _lowerCAmelCase = controlnet(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , )
# merge samples
if i == 0:
_lowerCAmelCase , _lowerCAmelCase = down_samples, mid_sample
else:
_lowerCAmelCase = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(_lowerCAmelCase , _lowerCAmelCase )
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Tuple:
_lowerCAmelCase = 0
_lowerCAmelCase = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
_lowerCAmelCase , is_main_process=_lowerCAmelCase , save_function=_lowerCAmelCase , safe_serialization=_lowerCAmelCase , variant=_lowerCAmelCase , )
idx += 1
_lowerCAmelCase = model_path_to_save + f'''_{idx}'''
@classmethod
def _snake_case ( cls , _lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase = 0
_lowerCAmelCase = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
_lowerCAmelCase = pretrained_model_path
while os.path.isdir(_lowerCAmelCase ):
_lowerCAmelCase = ControlNetModel.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase )
controlnets.append(_lowerCAmelCase )
idx += 1
_lowerCAmelCase = pretrained_model_path + f'''_{idx}'''
logger.info(f'''{len(_lowerCAmelCase )} controlnets loaded from {pretrained_model_path}.''' )
if len(_lowerCAmelCase ) == 0:
raise ValueError(
f'''No ControlNets found under {os.path.dirname(_lowerCAmelCase )}. Expected at least {pretrained_model_path + '_0'}.''' )
return cls(_lowerCAmelCase )
| 18 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json",
# See all Donut models at https://huggingface.co/models?filter=donut-swin
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Union[str, Any] = "donut-swin"
__lowerCamelCase : int = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , **_lowerCAmelCase , ) -> Optional[Any]:
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = embed_dim
_lowerCAmelCase = depths
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = num_heads
_lowerCAmelCase = window_size
_lowerCAmelCase = mlp_ratio
_lowerCAmelCase = qkv_bias
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = drop_path_rate
_lowerCAmelCase = hidden_act
_lowerCAmelCase = use_absolute_embeddings
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
| 18 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Any = "falcon"
__lowerCamelCase : List[str] = ["past_key_values"]
def __init__( self , _lowerCAmelCase=65024 , _lowerCAmelCase=4544 , _lowerCAmelCase=32 , _lowerCAmelCase=71 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=11 , _lowerCAmelCase=11 , **_lowerCAmelCase , ) -> Union[str, Any]:
_lowerCAmelCase = vocab_size
# Backward compatibility with n_embed kwarg
_lowerCAmelCase = kwargs.pop("n_embed" , _lowerCAmelCase )
_lowerCAmelCase = hidden_size if n_embed is None else n_embed
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = layer_norm_epsilon
_lowerCAmelCase = initializer_range
_lowerCAmelCase = use_cache
_lowerCAmelCase = hidden_dropout
_lowerCAmelCase = attention_dropout
_lowerCAmelCase = bos_token_id
_lowerCAmelCase = eos_token_id
_lowerCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads
_lowerCAmelCase = alibi
_lowerCAmelCase = new_decoder_architecture
_lowerCAmelCase = multi_query # Ignored when new_decoder_architecture is True
_lowerCAmelCase = parallel_attn
_lowerCAmelCase = bias
super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
@property
def _snake_case ( self ) -> Optional[Any]:
return self.hidden_size // self.num_attention_heads
@property
def _snake_case ( self ) -> Optional[Any]:
return not self.alibi
| 18 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"microsoft/swinv2-tiny-patch4-window8-256": (
"https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json"
),
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Union[str, Any] = "swinv2"
__lowerCamelCase : int = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=32 , **_lowerCAmelCase , ) -> Tuple:
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = embed_dim
_lowerCAmelCase = depths
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = num_heads
_lowerCAmelCase = window_size
_lowerCAmelCase = mlp_ratio
_lowerCAmelCase = qkv_bias
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = drop_path_rate
_lowerCAmelCase = hidden_act
_lowerCAmelCase = use_absolute_embeddings
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = initializer_range
_lowerCAmelCase = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
_lowerCAmelCase = (0, 0, 0, 0)
| 18 | 1 |
'''simple docstring'''
_SCREAMING_SNAKE_CASE = 2_56
# Modulus to hash a string
_SCREAMING_SNAKE_CASE = 1_00_00_03
def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
_lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ )
if p_len > t_len:
return False
_lowerCAmelCase = 0
_lowerCAmelCase = 0
_lowerCAmelCase = 1
# Calculating the hash of pattern and substring of text
for i in range(SCREAMING_SNAKE_CASE_ ):
_lowerCAmelCase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
_lowerCAmelCase = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
_lowerCAmelCase = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
_lowerCAmelCase = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def __a():
'''simple docstring'''
_lowerCAmelCase = "abc1abc12"
_lowerCAmelCase = "alskfjaldsabc1abc1abc12k23adsfabcabc"
_lowerCAmelCase = "alskfjaldsk23adsfabcabc"
assert rabin_karp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and not rabin_karp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Test 2)
_lowerCAmelCase = "ABABX"
_lowerCAmelCase = "ABABZABABYABABX"
assert rabin_karp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Test 3)
_lowerCAmelCase = "AAAB"
_lowerCAmelCase = "ABAAAAAB"
assert rabin_karp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Test 4)
_lowerCAmelCase = "abcdabcy"
_lowerCAmelCase = "abcxabcdabxabcdabcdabcy"
assert rabin_karp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Test 5)
_lowerCAmelCase = "Lü"
_lowerCAmelCase = "Lüsai"
assert rabin_karp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = "Lue"
assert not rabin_karp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
print("Success." )
if __name__ == "__main__":
test_rabin_karp()
| 18 |
'''simple docstring'''
import gc
import unittest
import torch
from parameterized import parameterized
from diffusers import AutoencoderKL
from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ):
__lowerCamelCase : Optional[Any] = AutoencoderKL
__lowerCamelCase : List[Any] = "sample"
__lowerCamelCase : Tuple = 1e-2
@property
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = 4
_lowerCAmelCase = 3
_lowerCAmelCase = (32, 32)
_lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCAmelCase )
return {"sample": image}
@property
def _snake_case ( self ) -> Any:
return (3, 32, 32)
@property
def _snake_case ( self ) -> List[Any]:
return (3, 32, 32)
def _snake_case ( self ) -> str:
_lowerCAmelCase = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
}
_lowerCAmelCase = self.dummy_input
return init_dict, inputs_dict
def _snake_case ( self ) -> Optional[int]:
pass
def _snake_case ( self ) -> Any:
pass
@unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" )
def _snake_case ( self ) -> str:
# enable deterministic behavior for gradient checkpointing
_lowerCAmelCase , _lowerCAmelCase = self.prepare_init_args_and_inputs_for_common()
_lowerCAmelCase = self.model_class(**_lowerCAmelCase )
model.to(_lowerCAmelCase )
assert not model.is_gradient_checkpointing and model.training
_lowerCAmelCase = model(**_lowerCAmelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
_lowerCAmelCase = torch.randn_like(_lowerCAmelCase )
_lowerCAmelCase = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
_lowerCAmelCase = self.model_class(**_lowerCAmelCase )
# clone model
model_a.load_state_dict(model.state_dict() )
model_a.to(_lowerCAmelCase )
model_a.enable_gradient_checkpointing()
assert model_a.is_gradient_checkpointing and model_a.training
_lowerCAmelCase = model_a(**_lowerCAmelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_a.zero_grad()
_lowerCAmelCase = (out_a - labels).mean()
loss_a.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_a).abs() < 1E-5 )
_lowerCAmelCase = dict(model.named_parameters() )
_lowerCAmelCase = dict(model_a.named_parameters() )
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) )
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase , _lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
self.assertEqual(len(loading_info["missing_keys"] ) , 0 )
model.to(_lowerCAmelCase )
_lowerCAmelCase = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" )
_lowerCAmelCase = model.to(_lowerCAmelCase )
model.eval()
if torch_device == "mps":
_lowerCAmelCase = torch.manual_seed(0 )
else:
_lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 )
_lowerCAmelCase = torch.randn(
1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , )
_lowerCAmelCase = image.to(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase , sample_posterior=_lowerCAmelCase , generator=_lowerCAmelCase ).sample
_lowerCAmelCase = output[0, -1, -3:, -3:].flatten().cpu()
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device == "mps":
_lowerCAmelCase = torch.tensor(
[
-4.0078E-01,
-3.8323E-04,
-1.2681E-01,
-1.1462E-01,
2.0095E-01,
1.0893E-01,
-8.8247E-02,
-3.0361E-01,
-9.8644E-03,
] )
elif torch_device == "cpu":
_lowerCAmelCase = torch.tensor(
[-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] )
else:
_lowerCAmelCase = torch.tensor(
[-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] )
self.assertTrue(torch_all_close(_lowerCAmelCase , _lowerCAmelCase , rtol=1E-2 ) )
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]:
return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy'''
def _snake_case ( self ) -> List[str]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self , _lowerCAmelCase=0 , _lowerCAmelCase=(4, 3, 512, 512) , _lowerCAmelCase=False ) -> Tuple:
_lowerCAmelCase = torch.floataa if fpaa else torch.floataa
_lowerCAmelCase = torch.from_numpy(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) ).to(_lowerCAmelCase ).to(_lowerCAmelCase )
return image
def _snake_case ( self , _lowerCAmelCase="CompVis/stable-diffusion-v1-4" , _lowerCAmelCase=False ) -> Tuple:
_lowerCAmelCase = "fp16" if fpaa else None
_lowerCAmelCase = torch.floataa if fpaa else torch.floataa
_lowerCAmelCase = AutoencoderKL.from_pretrained(
_lowerCAmelCase , subfolder="vae" , torch_dtype=_lowerCAmelCase , revision=_lowerCAmelCase , )
model.to(_lowerCAmelCase ).eval()
return model
def _snake_case ( self , _lowerCAmelCase=0 ) -> str:
if torch_device == "mps":
return torch.manual_seed(_lowerCAmelCase )
return torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase )
@parameterized.expand(
[
# fmt: off
[33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
[47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
# fmt: on
] )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase )
_lowerCAmelCase = self.get_generator(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample
assert sample.shape == image.shape
_lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu()
_lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 )
@parameterized.expand(
[
# fmt: off
[33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]],
[47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]],
# fmt: on
] )
@require_torch_gpu
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase )
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , fpaa=_lowerCAmelCase )
_lowerCAmelCase = self.get_generator(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample
assert sample.shape == image.shape
_lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu()
_lowerCAmelCase = torch.tensor(_lowerCAmelCase )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
[47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
# fmt: on
] )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase ).sample
assert sample.shape == image.shape
_lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu()
_lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 )
@parameterized.expand(
[
# fmt: off
[13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]],
[37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]],
# fmt: on
] )
@require_torch_gpu
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) )
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
_lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().cpu()
_lowerCAmelCase = torch.tensor(_lowerCAmelCase )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 )
@parameterized.expand(
[
# fmt: off
[27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]],
[16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]],
# fmt: on
] )
@require_torch_gpu
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> str:
_lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase )
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
_lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu()
_lowerCAmelCase = torch.tensor(_lowerCAmelCase )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=5E-3 )
@parameterized.expand([(13,), (16,), (27,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." )
def _snake_case ( self , _lowerCAmelCase ) -> List[str]:
_lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase )
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-1 )
@parameterized.expand([(13,), (16,), (37,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." )
def _snake_case ( self , _lowerCAmelCase ) -> Any:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) )
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
[47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
# fmt: on
] )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase )
_lowerCAmelCase = self.get_generator(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model.encode(_lowerCAmelCase ).latent_dist
_lowerCAmelCase = dist.sample(generator=_lowerCAmelCase )
assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
_lowerCAmelCase = sample[0, -1, -3:, -3:].flatten().cpu()
_lowerCAmelCase = torch.tensor(_lowerCAmelCase )
_lowerCAmelCase = 3E-3 if torch_device != "mps" else 1E-2
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=_lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
from __future__ import annotations
from typing import Dict
from ...configuration_utils import PretrainedConfig
_SCREAMING_SNAKE_CASE = {
"susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json",
"susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json",
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : int = "ernie_m"
__lowerCamelCase : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"}
def __init__( self , _lowerCAmelCase = 250002 , _lowerCAmelCase = 768 , _lowerCAmelCase = 12 , _lowerCAmelCase = 12 , _lowerCAmelCase = 3072 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 514 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1 , _lowerCAmelCase = 1E-05 , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=0.0 , **_lowerCAmelCase , ) -> Union[str, Any]:
super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase )
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = initializer_range
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = classifier_dropout
_lowerCAmelCase = is_decoder
_lowerCAmelCase = act_dropout
| 18 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json",
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : str = "gpt_bigcode"
__lowerCamelCase : Optional[int] = ["past_key_values"]
__lowerCamelCase : List[str] = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , _lowerCAmelCase=50257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=50256 , _lowerCAmelCase=50256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]:
_lowerCAmelCase = vocab_size
_lowerCAmelCase = n_positions
_lowerCAmelCase = n_embd
_lowerCAmelCase = n_layer
_lowerCAmelCase = n_head
_lowerCAmelCase = n_inner
_lowerCAmelCase = activation_function
_lowerCAmelCase = resid_pdrop
_lowerCAmelCase = embd_pdrop
_lowerCAmelCase = attn_pdrop
_lowerCAmelCase = layer_norm_epsilon
_lowerCAmelCase = initializer_range
_lowerCAmelCase = scale_attn_weights
_lowerCAmelCase = use_cache
_lowerCAmelCase = attention_softmax_in_fpaa
_lowerCAmelCase = scale_attention_softmax_in_fpaa
_lowerCAmelCase = multi_query
_lowerCAmelCase = bos_token_id
_lowerCAmelCase = eos_token_id
super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = torch.device("cpu")
def __a():
'''simple docstring'''
_lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg"
_lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw )
return im
def __a(SCREAMING_SNAKE_CASE_ : Any ):
'''simple docstring'''
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.1_703e00, 2.1_107e00, -2.0_811e00, 8.8_685e-01, 2.4_360e-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.9_636e-01, 2.3_478e-01, -1.6_963e00, -1.7_381e00, -8.6_337e-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.2_768e-01, -4.7_429e-01, -1.0_897e00, -1.0_248e00, 3.5_523e-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.5_330e-01, 2.4_211e-01, -6.0_185e-01, -8.2_789e-01, -6.0_446e-02] )
def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict ):
'''simple docstring'''
_lowerCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = val
def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ):
'''simple docstring'''
_lowerCAmelCase = []
for k in state_dict.keys():
_lowerCAmelCase = k
if ".pwconv" in k:
_lowerCAmelCase = k_new.replace(".pwconv" , ".point_wise_conv" )
if ".dwconv" in k:
_lowerCAmelCase = k_new.replace(".dwconv" , ".depth_wise_conv" )
if ".Proj." in k:
_lowerCAmelCase = k_new.replace(".Proj." , ".proj." )
if "patch_embed" in k_new:
_lowerCAmelCase = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" )
if "network" in k_new:
_lowerCAmelCase = k_new.split("." )
if ls[2].isdigit():
_lowerCAmelCase = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] )
else:
_lowerCAmelCase = k_new.replace("network" , "swiftformer.encoder.network" )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def __a(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ):
'''simple docstring'''
_lowerCAmelCase = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
_lowerCAmelCase = 1000
_lowerCAmelCase = "huggingface/label-files"
_lowerCAmelCase = "imagenet-1k-id2label.json"
_lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) )
_lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()}
_lowerCAmelCase = idalabel
_lowerCAmelCase = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
_lowerCAmelCase = [3, 3, 6, 4]
_lowerCAmelCase = [48, 56, 112, 220]
elif swiftformer_name == "swiftformer_s":
_lowerCAmelCase = [3, 3, 9, 6]
_lowerCAmelCase = [48, 64, 168, 224]
elif swiftformer_name == "swiftformer_l1":
_lowerCAmelCase = [4, 3, 10, 5]
_lowerCAmelCase = [48, 96, 192, 384]
elif swiftformer_name == "swiftformer_l3":
_lowerCAmelCase = [4, 4, 12, 6]
_lowerCAmelCase = [64, 128, 320, 512]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith("https" ):
_lowerCAmelCase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location="cpu" , check_hash=SCREAMING_SNAKE_CASE_ )
else:
_lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location="cpu" )
_lowerCAmelCase = checkpoint
_lowerCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# load HuggingFace model
_lowerCAmelCase = SwiftFormerForImageClassification(SCREAMING_SNAKE_CASE_ ).eval()
hf_model.load_state_dict(SCREAMING_SNAKE_CASE_ )
# prepare test inputs
_lowerCAmelCase = prepare_img()
_lowerCAmelCase = ViTImageProcessor.from_pretrained("preprocessor_config" )
_lowerCAmelCase = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="pt" )
# compare outputs from both models
_lowerCAmelCase = get_expected_output(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = hf_model(inputs["pixel_values"] ).logits
assert hf_logits.shape == torch.Size([1, 1000] )
assert torch.allclose(hf_logits[0, 0:5] , SCREAMING_SNAKE_CASE_ , atol=1e-3 )
Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ )
print(F'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' )
hf_model.save_pretrained(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--swiftformer_name",
default="swiftformer_xs",
choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"],
type=str,
help="Name of the SwiftFormer model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="./converted_outputs/",
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.")
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 18 |
'''simple docstring'''
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json",
# See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : List[Any] = "data2vec-audio"
def __init__( self , _lowerCAmelCase=32 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase="gelu" , _lowerCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _lowerCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase=False , _lowerCAmelCase=16 , _lowerCAmelCase=19 , _lowerCAmelCase=5 , _lowerCAmelCase=0.05 , _lowerCAmelCase=10 , _lowerCAmelCase=2 , _lowerCAmelCase=0.0 , _lowerCAmelCase=10 , _lowerCAmelCase=0 , _lowerCAmelCase="sum" , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=256 , _lowerCAmelCase=(512, 512, 512, 512, 1500) , _lowerCAmelCase=(5, 3, 3, 1, 1) , _lowerCAmelCase=(1, 2, 3, 1, 1) , _lowerCAmelCase=512 , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=False , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Dict:
super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase )
_lowerCAmelCase = hidden_size
_lowerCAmelCase = feat_extract_activation
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = conv_bias
_lowerCAmelCase = num_conv_pos_embeddings
_lowerCAmelCase = num_conv_pos_embedding_groups
_lowerCAmelCase = conv_pos_kernel_size
_lowerCAmelCase = len(self.conv_dim )
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = hidden_dropout
_lowerCAmelCase = attention_dropout
_lowerCAmelCase = activation_dropout
_lowerCAmelCase = feat_proj_dropout
_lowerCAmelCase = final_dropout
_lowerCAmelCase = layerdrop
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = initializer_range
_lowerCAmelCase = vocab_size
_lowerCAmelCase = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_lowerCAmelCase = mask_time_prob
_lowerCAmelCase = mask_time_length
_lowerCAmelCase = mask_time_min_masks
_lowerCAmelCase = mask_feature_prob
_lowerCAmelCase = mask_feature_length
_lowerCAmelCase = mask_feature_min_masks
# ctc loss
_lowerCAmelCase = ctc_loss_reduction
_lowerCAmelCase = ctc_zero_infinity
# adapter
_lowerCAmelCase = add_adapter
_lowerCAmelCase = adapter_kernel_size
_lowerCAmelCase = adapter_stride
_lowerCAmelCase = num_adapter_layers
_lowerCAmelCase = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
_lowerCAmelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = xvector_output_dim
@property
def _snake_case ( self ) -> str:
return math.prod(self.conv_stride )
| 18 | 1 |
'''simple docstring'''
from __future__ import annotations
from decimal import Decimal
from math import * # noqa: F403
from sympy import diff
def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : float | Decimal , SCREAMING_SNAKE_CASE_ : float = 10**-10 ):
'''simple docstring'''
_lowerCAmelCase = a
while True:
_lowerCAmelCase = Decimal(SCREAMING_SNAKE_CASE_ ) - (
Decimal(eval(SCREAMING_SNAKE_CASE_ ) ) / Decimal(eval(str(diff(SCREAMING_SNAKE_CASE_ ) ) ) ) # noqa: S307
)
# This number dictates the accuracy of the answer
if abs(eval(SCREAMING_SNAKE_CASE_ ) ) < precision: # noqa: S307
return float(SCREAMING_SNAKE_CASE_ )
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(f'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''')
# Find root of polynomial
print(f'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''')
# Find Square Root of 5
print(f'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''')
# Exponential Roots
print(f'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
| 18 |
'''simple docstring'''
import torch
from diffusers import DDPMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Any = (DDPMParallelScheduler,)
def _snake_case ( self , **_lowerCAmelCase ) -> int:
_lowerCAmelCase = {
"num_train_timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"variance_type": "fixed_small",
"clip_sample": True,
}
config.update(**_lowerCAmelCase )
return config
def _snake_case ( self ) -> List[Any]:
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=_lowerCAmelCase )
def _snake_case ( self ) -> List[Any]:
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase )
def _snake_case ( self ) -> Any:
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_lowerCAmelCase )
def _snake_case ( self ) -> Optional[Any]:
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=_lowerCAmelCase )
def _snake_case ( self ) -> Optional[int]:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_lowerCAmelCase )
def _snake_case ( self ) -> List[str]:
self.check_over_configs(thresholding=_lowerCAmelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , )
def _snake_case ( self ) -> int:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=_lowerCAmelCase )
def _snake_case ( self ) -> Dict:
for t in [0, 500, 999]:
self.check_over_forward(time_step=_lowerCAmelCase )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5
def _snake_case ( self ) -> Tuple:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
_lowerCAmelCase = self.dummy_sample_deter + 0.1
_lowerCAmelCase = self.dummy_sample_deter - 0.1
_lowerCAmelCase = samplea.shape[0]
_lowerCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 )
_lowerCAmelCase = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase )
_lowerCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
_lowerCAmelCase = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) )
_lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 1153.1833 ) < 1E-2
assert abs(result_mean.item() - 0.5005 ) < 1E-3
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
_lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(_lowerCAmelCase ) ):
# 1. predict noise residual
_lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase )
# 2. predict previous mean of sample x_t-1
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample
_lowerCAmelCase = pred_prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 258.9606 ) < 1E-2
assert abs(result_mean.item() - 0.3372 ) < 1E-3
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" )
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
_lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(_lowerCAmelCase ) ):
# 1. predict noise residual
_lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase )
# 2. predict previous mean of sample x_t-1
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample
_lowerCAmelCase = pred_prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 202.0296 ) < 1E-2
assert abs(result_mean.item() - 0.2631 ) < 1E-3
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=_lowerCAmelCase )
_lowerCAmelCase = scheduler.timesteps
for i, timestep in enumerate(_lowerCAmelCase ):
if i == len(_lowerCAmelCase ) - 1:
_lowerCAmelCase = -1
else:
_lowerCAmelCase = timesteps[i + 1]
_lowerCAmelCase = scheduler.previous_timestep(_lowerCAmelCase )
_lowerCAmelCase = prev_t.item()
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> Any:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = [100, 87, 50, 51, 0]
with self.assertRaises(_lowerCAmelCase , msg="`custom_timesteps` must be in descending order." ):
scheduler.set_timesteps(timesteps=_lowerCAmelCase )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = [100, 87, 50, 1, 0]
_lowerCAmelCase = len(_lowerCAmelCase )
with self.assertRaises(_lowerCAmelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ):
scheduler.set_timesteps(num_inference_steps=_lowerCAmelCase , timesteps=_lowerCAmelCase )
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_lowerCAmelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ):
scheduler.set_timesteps(timesteps=_lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
import os
from collections import namedtuple
import pytest
from datasets import ClassLabel, Features, Sequence, Value
from datasets.commands.test import TestCommand
from datasets.info import DatasetInfo, DatasetInfosDict
_SCREAMING_SNAKE_CASE = namedtuple(
"_TestCommandArgs",
[
"dataset",
"name",
"cache_dir",
"data_dir",
"all_configs",
"save_infos",
"ignore_verifications",
"force_redownload",
"clear_cache",
],
defaults=[None, None, None, False, False, False, False, False],
)
def __a(SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ):
'''simple docstring'''
return (abs(source - target ) / target) < 0.01
@pytest.mark.integration
def __a(SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
_lowerCAmelCase = _TestCommandArgs(dataset=SCREAMING_SNAKE_CASE_ , all_configs=SCREAMING_SNAKE_CASE_ , save_infos=SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = TestCommand(*SCREAMING_SNAKE_CASE_ )
test_command.run()
_lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , "README.md" )
assert os.path.exists(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = DatasetInfosDict.from_directory(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = DatasetInfosDict(
{
"default": DatasetInfo(
features=Features(
{
"tokens": Sequence(Value("string" ) ),
"ner_tags": Sequence(
ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] ) ),
"langs": Sequence(Value("string" ) ),
"spans": Sequence(Value("string" ) ),
} ) , splits=[
{
"name": "train",
"num_bytes": 2351563,
"num_examples": 10000,
},
{
"name": "validation",
"num_bytes": 238418,
"num_examples": 1000,
},
] , download_size=3940680 , dataset_size=2589981 , )
} )
assert dataset_infos.keys() == expected_dataset_infos.keys()
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
_lowerCAmelCase , _lowerCAmelCase = getattr(dataset_infos["default"] , SCREAMING_SNAKE_CASE_ ), getattr(expected_dataset_infos["default"] , SCREAMING_SNAKE_CASE_ )
if key == "num_bytes":
assert is_apercent_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif key == "splits":
assert list(SCREAMING_SNAKE_CASE_ ) == list(SCREAMING_SNAKE_CASE_ )
for split in result:
assert result[split].name == expected[split].name
assert result[split].num_examples == expected[split].num_examples
assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes )
else:
result == expected
| 18 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {"vocab_file": "spiece.model"}
_SCREAMING_SNAKE_CASE = {
"vocab_file": {
"TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model",
}
}
class lowerCAmelCase_ ( __magic_name__ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<sep>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<cls>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=["<eop>", "<eod>"] , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None:
_lowerCAmelCase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token
_lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , )
_lowerCAmelCase = 3
_lowerCAmelCase = do_lower_case
_lowerCAmelCase = remove_space
_lowerCAmelCase = keep_accents
_lowerCAmelCase = vocab_file
_lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_lowerCAmelCase )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"You need to install jieba to use CpmTokenizer or CpmTokenizerFast. "
"See https://pypi.org/project/jieba/ for installation." )
_lowerCAmelCase = jieba
_lowerCAmelCase = str.maketrans(" \n" , "\u2582\u2583" )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def _snake_case ( self ) -> Optional[int]:
return len(self.sp_model )
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Tuple:
_lowerCAmelCase = self.__dict__.copy()
_lowerCAmelCase = None
return state
def __setstate__( self , _lowerCAmelCase ) -> Dict:
_lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
_lowerCAmelCase = {}
_lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _snake_case ( self , _lowerCAmelCase ) -> str:
if self.remove_space:
_lowerCAmelCase = " ".join(inputs.strip().split() )
else:
_lowerCAmelCase = inputs
_lowerCAmelCase = outputs.replace("``" , "\"" ).replace("''" , "\"" )
if not self.keep_accents:
_lowerCAmelCase = unicodedata.normalize("NFKD" , _lowerCAmelCase )
_lowerCAmelCase = "".join([c for c in outputs if not unicodedata.combining(_lowerCAmelCase )] )
if self.do_lower_case:
_lowerCAmelCase = outputs.lower()
return outputs
def _snake_case ( self , _lowerCAmelCase ) -> List[str]:
_lowerCAmelCase = self.preprocess_text(_lowerCAmelCase )
_lowerCAmelCase = self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase )
_lowerCAmelCase = []
for piece in pieces:
if len(_lowerCAmelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit():
_lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCAmelCase , "" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
_lowerCAmelCase = cur_pieces[1:]
else:
_lowerCAmelCase = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_lowerCAmelCase )
else:
new_pieces.append(_lowerCAmelCase )
return new_pieces
def _snake_case ( self , _lowerCAmelCase ) -> str:
return self.sp_model.PieceToId(_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]:
return self.sp_model.IdToPiece(_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = "".join(_lowerCAmelCase ).replace(_lowerCAmelCase , " " ).strip()
return out_string
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]:
_lowerCAmelCase = [self.sep_token_id]
_lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase )
if token_ids_a is not None:
return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1, 1]
return ([0] * len(_lowerCAmelCase )) + [1, 1]
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]:
_lowerCAmelCase = [self.sep_token_id]
_lowerCAmelCase = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(_lowerCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase = os.path.join(
_lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _lowerCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCAmelCase , "wb" ) as fi:
_lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(_lowerCAmelCase )
return (out_vocab_file,)
def _snake_case ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase = super()._decode(*_lowerCAmelCase , **_lowerCAmelCase )
_lowerCAmelCase = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" )
return text
| 18 | 1 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {"vocab_file": "spiece.model"}
_SCREAMING_SNAKE_CASE = {
"vocab_file": {
"TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model",
}
}
class lowerCAmelCase_ ( __magic_name__ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<sep>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<cls>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=["<eop>", "<eod>"] , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None:
_lowerCAmelCase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token
_lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , )
_lowerCAmelCase = 3
_lowerCAmelCase = do_lower_case
_lowerCAmelCase = remove_space
_lowerCAmelCase = keep_accents
_lowerCAmelCase = vocab_file
_lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_lowerCAmelCase )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"You need to install jieba to use CpmTokenizer or CpmTokenizerFast. "
"See https://pypi.org/project/jieba/ for installation." )
_lowerCAmelCase = jieba
_lowerCAmelCase = str.maketrans(" \n" , "\u2582\u2583" )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def _snake_case ( self ) -> Optional[int]:
return len(self.sp_model )
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Tuple:
_lowerCAmelCase = self.__dict__.copy()
_lowerCAmelCase = None
return state
def __setstate__( self , _lowerCAmelCase ) -> Dict:
_lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
_lowerCAmelCase = {}
_lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _snake_case ( self , _lowerCAmelCase ) -> str:
if self.remove_space:
_lowerCAmelCase = " ".join(inputs.strip().split() )
else:
_lowerCAmelCase = inputs
_lowerCAmelCase = outputs.replace("``" , "\"" ).replace("''" , "\"" )
if not self.keep_accents:
_lowerCAmelCase = unicodedata.normalize("NFKD" , _lowerCAmelCase )
_lowerCAmelCase = "".join([c for c in outputs if not unicodedata.combining(_lowerCAmelCase )] )
if self.do_lower_case:
_lowerCAmelCase = outputs.lower()
return outputs
def _snake_case ( self , _lowerCAmelCase ) -> List[str]:
_lowerCAmelCase = self.preprocess_text(_lowerCAmelCase )
_lowerCAmelCase = self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase )
_lowerCAmelCase = []
for piece in pieces:
if len(_lowerCAmelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit():
_lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCAmelCase , "" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
_lowerCAmelCase = cur_pieces[1:]
else:
_lowerCAmelCase = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_lowerCAmelCase )
else:
new_pieces.append(_lowerCAmelCase )
return new_pieces
def _snake_case ( self , _lowerCAmelCase ) -> str:
return self.sp_model.PieceToId(_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]:
return self.sp_model.IdToPiece(_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = "".join(_lowerCAmelCase ).replace(_lowerCAmelCase , " " ).strip()
return out_string
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]:
_lowerCAmelCase = [self.sep_token_id]
_lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase )
if token_ids_a is not None:
return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1, 1]
return ([0] * len(_lowerCAmelCase )) + [1, 1]
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]:
_lowerCAmelCase = [self.sep_token_id]
_lowerCAmelCase = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(_lowerCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase = os.path.join(
_lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _lowerCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCAmelCase , "wb" ) as fi:
_lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(_lowerCAmelCase )
return (out_vocab_file,)
def _snake_case ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase = super()._decode(*_lowerCAmelCase , **_lowerCAmelCase )
_lowerCAmelCase = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" )
return text
| 18 |
'''simple docstring'''
from sklearn.metrics import mean_squared_error
import datasets
_SCREAMING_SNAKE_CASE = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n"
_SCREAMING_SNAKE_CASE = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n"
_SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
def _snake_case ( self ) -> Dict:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"
] , )
def _snake_case ( self ) -> Tuple:
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("float" ) ),
"references": datasets.Sequence(datasets.Value("float" ) ),
}
else:
return {
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
}
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="uniform_average" , _lowerCAmelCase=True ) -> Union[str, Any]:
_lowerCAmelCase = mean_squared_error(
_lowerCAmelCase , _lowerCAmelCase , sample_weight=_lowerCAmelCase , multioutput=_lowerCAmelCase , squared=_lowerCAmelCase )
return {"mse": mse}
| 18 | 1 |
'''simple docstring'''
import gc
import unittest
import torch
from parameterized import parameterized
from diffusers import AutoencoderKL
from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ):
__lowerCamelCase : Optional[Any] = AutoencoderKL
__lowerCamelCase : List[Any] = "sample"
__lowerCamelCase : Tuple = 1e-2
@property
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = 4
_lowerCAmelCase = 3
_lowerCAmelCase = (32, 32)
_lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCAmelCase )
return {"sample": image}
@property
def _snake_case ( self ) -> Any:
return (3, 32, 32)
@property
def _snake_case ( self ) -> List[Any]:
return (3, 32, 32)
def _snake_case ( self ) -> str:
_lowerCAmelCase = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
}
_lowerCAmelCase = self.dummy_input
return init_dict, inputs_dict
def _snake_case ( self ) -> Optional[int]:
pass
def _snake_case ( self ) -> Any:
pass
@unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" )
def _snake_case ( self ) -> str:
# enable deterministic behavior for gradient checkpointing
_lowerCAmelCase , _lowerCAmelCase = self.prepare_init_args_and_inputs_for_common()
_lowerCAmelCase = self.model_class(**_lowerCAmelCase )
model.to(_lowerCAmelCase )
assert not model.is_gradient_checkpointing and model.training
_lowerCAmelCase = model(**_lowerCAmelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
_lowerCAmelCase = torch.randn_like(_lowerCAmelCase )
_lowerCAmelCase = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
_lowerCAmelCase = self.model_class(**_lowerCAmelCase )
# clone model
model_a.load_state_dict(model.state_dict() )
model_a.to(_lowerCAmelCase )
model_a.enable_gradient_checkpointing()
assert model_a.is_gradient_checkpointing and model_a.training
_lowerCAmelCase = model_a(**_lowerCAmelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_a.zero_grad()
_lowerCAmelCase = (out_a - labels).mean()
loss_a.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_a).abs() < 1E-5 )
_lowerCAmelCase = dict(model.named_parameters() )
_lowerCAmelCase = dict(model_a.named_parameters() )
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) )
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase , _lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
self.assertEqual(len(loading_info["missing_keys"] ) , 0 )
model.to(_lowerCAmelCase )
_lowerCAmelCase = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" )
_lowerCAmelCase = model.to(_lowerCAmelCase )
model.eval()
if torch_device == "mps":
_lowerCAmelCase = torch.manual_seed(0 )
else:
_lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 )
_lowerCAmelCase = torch.randn(
1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , )
_lowerCAmelCase = image.to(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase , sample_posterior=_lowerCAmelCase , generator=_lowerCAmelCase ).sample
_lowerCAmelCase = output[0, -1, -3:, -3:].flatten().cpu()
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device == "mps":
_lowerCAmelCase = torch.tensor(
[
-4.0078E-01,
-3.8323E-04,
-1.2681E-01,
-1.1462E-01,
2.0095E-01,
1.0893E-01,
-8.8247E-02,
-3.0361E-01,
-9.8644E-03,
] )
elif torch_device == "cpu":
_lowerCAmelCase = torch.tensor(
[-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] )
else:
_lowerCAmelCase = torch.tensor(
[-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] )
self.assertTrue(torch_all_close(_lowerCAmelCase , _lowerCAmelCase , rtol=1E-2 ) )
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]:
return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy'''
def _snake_case ( self ) -> List[str]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self , _lowerCAmelCase=0 , _lowerCAmelCase=(4, 3, 512, 512) , _lowerCAmelCase=False ) -> Tuple:
_lowerCAmelCase = torch.floataa if fpaa else torch.floataa
_lowerCAmelCase = torch.from_numpy(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) ).to(_lowerCAmelCase ).to(_lowerCAmelCase )
return image
def _snake_case ( self , _lowerCAmelCase="CompVis/stable-diffusion-v1-4" , _lowerCAmelCase=False ) -> Tuple:
_lowerCAmelCase = "fp16" if fpaa else None
_lowerCAmelCase = torch.floataa if fpaa else torch.floataa
_lowerCAmelCase = AutoencoderKL.from_pretrained(
_lowerCAmelCase , subfolder="vae" , torch_dtype=_lowerCAmelCase , revision=_lowerCAmelCase , )
model.to(_lowerCAmelCase ).eval()
return model
def _snake_case ( self , _lowerCAmelCase=0 ) -> str:
if torch_device == "mps":
return torch.manual_seed(_lowerCAmelCase )
return torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase )
@parameterized.expand(
[
# fmt: off
[33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
[47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
# fmt: on
] )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase )
_lowerCAmelCase = self.get_generator(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample
assert sample.shape == image.shape
_lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu()
_lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 )
@parameterized.expand(
[
# fmt: off
[33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]],
[47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]],
# fmt: on
] )
@require_torch_gpu
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase )
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , fpaa=_lowerCAmelCase )
_lowerCAmelCase = self.get_generator(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample
assert sample.shape == image.shape
_lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu()
_lowerCAmelCase = torch.tensor(_lowerCAmelCase )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
[47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
# fmt: on
] )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase ).sample
assert sample.shape == image.shape
_lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu()
_lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 )
@parameterized.expand(
[
# fmt: off
[13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]],
[37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]],
# fmt: on
] )
@require_torch_gpu
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) )
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
_lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().cpu()
_lowerCAmelCase = torch.tensor(_lowerCAmelCase )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 )
@parameterized.expand(
[
# fmt: off
[27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]],
[16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]],
# fmt: on
] )
@require_torch_gpu
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> str:
_lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase )
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
_lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu()
_lowerCAmelCase = torch.tensor(_lowerCAmelCase )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=5E-3 )
@parameterized.expand([(13,), (16,), (27,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." )
def _snake_case ( self , _lowerCAmelCase ) -> List[str]:
_lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase )
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-1 )
@parameterized.expand([(13,), (16,), (37,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." )
def _snake_case ( self , _lowerCAmelCase ) -> Any:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) )
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
[47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
# fmt: on
] )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase )
_lowerCAmelCase = self.get_generator(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model.encode(_lowerCAmelCase ).latent_dist
_lowerCAmelCase = dist.sample(generator=_lowerCAmelCase )
assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
_lowerCAmelCase = sample[0, -1, -3:, -3:].flatten().cpu()
_lowerCAmelCase = torch.tensor(_lowerCAmelCase )
_lowerCAmelCase = 3E-3 if torch_device != "mps" else 1E-2
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=_lowerCAmelCase )
| 18 |
'''simple docstring'''
def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 18 | 1 |
'''simple docstring'''
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
def _snake_case ( self ) -> int:
_lowerCAmelCase = "ylacombe/bark-small"
_lowerCAmelCase = tempfile.mkdtemp()
_lowerCAmelCase = "en_speaker_1"
_lowerCAmelCase = "This is a test string"
_lowerCAmelCase = "speaker_embeddings_path.json"
_lowerCAmelCase = "speaker_embeddings"
def _snake_case ( self , **_lowerCAmelCase ) -> str:
return AutoTokenizer.from_pretrained(self.checkpoint , **_lowerCAmelCase )
def _snake_case ( self ) -> Optional[int]:
shutil.rmtree(self.tmpdirname )
def _snake_case ( self ) -> str:
_lowerCAmelCase = self.get_tokenizer()
_lowerCAmelCase = BarkProcessor(tokenizer=_lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
_lowerCAmelCase = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def _snake_case ( self ) -> Any:
_lowerCAmelCase = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
_lowerCAmelCase = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
_lowerCAmelCase = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def _snake_case ( self ) -> Any:
_lowerCAmelCase = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
_lowerCAmelCase = 35
_lowerCAmelCase = 2
_lowerCAmelCase = 8
_lowerCAmelCase = {
"semantic_prompt": np.ones(_lowerCAmelCase ),
"coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ),
"fine_prompt": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
_lowerCAmelCase = processor(text=self.input_string , voice_preset=_lowerCAmelCase )
_lowerCAmelCase = inputs["history_prompt"]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_lowerCAmelCase , np.array([] ) ).tolist() )
# test loading voice preset from npz file
_lowerCAmelCase = os.path.join(self.tmpdirname , "file.npz" )
np.savez(_lowerCAmelCase , **_lowerCAmelCase )
_lowerCAmelCase = processor(text=self.input_string , voice_preset=_lowerCAmelCase )
_lowerCAmelCase = inputs["history_prompt"]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_lowerCAmelCase , np.array([] ) ).tolist() )
# test loading voice preset from the hub
_lowerCAmelCase = processor(text=self.input_string , voice_preset=self.voice_preset )
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = self.get_tokenizer()
_lowerCAmelCase = BarkProcessor(tokenizer=_lowerCAmelCase )
_lowerCAmelCase = processor(text=self.input_string )
_lowerCAmelCase = tokenizer(
self.input_string , padding="max_length" , max_length=256 , add_special_tokens=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 18 |
'''simple docstring'''
from __future__ import annotations
def __a(SCREAMING_SNAKE_CASE_ : int | float | str , SCREAMING_SNAKE_CASE_ : int | float | str ):
'''simple docstring'''
if nth_term == "":
return [""]
_lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = []
for temp in range(int(SCREAMING_SNAKE_CASE_ ) ):
series.append(F'''1 / {pow(temp + 1 , int(SCREAMING_SNAKE_CASE_ ) )}''' if series else "1" )
return series
if __name__ == "__main__":
import doctest
doctest.testmod()
_SCREAMING_SNAKE_CASE = int(input("Enter the last number (nth term) of the P-Series"))
_SCREAMING_SNAKE_CASE = int(input("Enter the power for P-Series"))
print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p")
print(p_series(nth_term, power))
| 18 | 1 |
'''simple docstring'''
_SCREAMING_SNAKE_CASE = "0.18.2"
from .configuration_utils import ConfigMixin
from .utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_inflect_available,
is_invisible_watermark_available,
is_k_diffusion_available,
is_k_diffusion_version,
is_librosa_available,
is_note_seq_available,
is_onnx_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
is_transformers_available,
is_transformers_version,
is_unidecode_available,
logging,
)
try:
if not is_onnx_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_onnx_objects import * # noqa F403
else:
from .pipelines import OnnxRuntimeModel
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_pt_objects import * # noqa F403
else:
from .models import (
AutoencoderKL,
ControlNetModel,
ModelMixin,
PriorTransformer,
TaFilmDecoder,
TransformeraDModel,
UNetaDModel,
UNetaDConditionModel,
UNetaDModel,
UNetaDConditionModel,
VQModel,
)
from .optimization import (
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
get_scheduler,
)
from .pipelines import (
AudioPipelineOutput,
ConsistencyModelPipeline,
DanceDiffusionPipeline,
DDIMPipeline,
DDPMPipeline,
DiffusionPipeline,
DiTPipeline,
ImagePipelineOutput,
KarrasVePipeline,
LDMPipeline,
LDMSuperResolutionPipeline,
PNDMPipeline,
RePaintPipeline,
ScoreSdeVePipeline,
)
from .schedulers import (
CMStochasticIterativeScheduler,
DDIMInverseScheduler,
DDIMParallelScheduler,
DDIMScheduler,
DDPMParallelScheduler,
DDPMScheduler,
DEISMultistepScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
IPNDMScheduler,
KarrasVeScheduler,
KDPMaAncestralDiscreteScheduler,
KDPMaDiscreteScheduler,
PNDMScheduler,
RePaintScheduler,
SchedulerMixin,
ScoreSdeVeScheduler,
UnCLIPScheduler,
UniPCMultistepScheduler,
VQDiffusionScheduler,
)
from .training_utils import EMAModel
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .schedulers import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .schedulers import DPMSolverSDEScheduler
try:
if not (is_torch_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
AltDiffusionImgaImgPipeline,
AltDiffusionPipeline,
AudioLDMPipeline,
CycleDiffusionPipeline,
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
ImageTextPipelineOutput,
KandinskyImgaImgPipeline,
KandinskyInpaintPipeline,
KandinskyPipeline,
KandinskyPriorPipeline,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaControlnetPipeline,
KandinskyVaaImgaImgPipeline,
KandinskyVaaInpaintPipeline,
KandinskyVaaPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
KandinskyVaaPriorPipeline,
LDMTextToImagePipeline,
PaintByExamplePipeline,
SemanticStableDiffusionPipeline,
ShapEImgaImgPipeline,
ShapEPipeline,
StableDiffusionAttendAndExcitePipeline,
StableDiffusionControlNetImgaImgPipeline,
StableDiffusionControlNetInpaintPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionDepthaImgPipeline,
StableDiffusionDiffEditPipeline,
StableDiffusionImageVariationPipeline,
StableDiffusionImgaImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionInpaintPipelineLegacy,
StableDiffusionInstructPixaPixPipeline,
StableDiffusionLatentUpscalePipeline,
StableDiffusionLDMaDPipeline,
StableDiffusionModelEditingPipeline,
StableDiffusionPanoramaPipeline,
StableDiffusionParadigmsPipeline,
StableDiffusionPipeline,
StableDiffusionPipelineSafe,
StableDiffusionPixaPixZeroPipeline,
StableDiffusionSAGPipeline,
StableDiffusionUpscalePipeline,
StableUnCLIPImgaImgPipeline,
StableUnCLIPPipeline,
TextToVideoSDPipeline,
TextToVideoZeroPipeline,
UnCLIPImageVariationPipeline,
UnCLIPPipeline,
UniDiffuserModel,
UniDiffuserPipeline,
UniDiffuserTextDecoder,
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
VideoToVideoSDPipeline,
VQDiffusionPipeline,
)
try:
if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403
else:
from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
else:
from .pipelines import StableDiffusionKDiffusionPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403
else:
from .pipelines import (
OnnxStableDiffusionImgaImgPipeline,
OnnxStableDiffusionInpaintPipeline,
OnnxStableDiffusionInpaintPipelineLegacy,
OnnxStableDiffusionPipeline,
OnnxStableDiffusionUpscalePipeline,
StableDiffusionOnnxPipeline,
)
try:
if not (is_torch_available() and is_librosa_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_librosa_objects import * # noqa F403
else:
from .pipelines import AudioDiffusionPipeline, Mel
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .pipelines import SpectrogramDiffusionPipeline
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_objects import * # noqa F403
else:
from .models.controlnet_flax import FlaxControlNetModel
from .models.modeling_flax_utils import FlaxModelMixin
from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel
from .models.vae_flax import FlaxAutoencoderKL
from .pipelines import FlaxDiffusionPipeline
from .schedulers import (
FlaxDDIMScheduler,
FlaxDDPMScheduler,
FlaxDPMSolverMultistepScheduler,
FlaxKarrasVeScheduler,
FlaxLMSDiscreteScheduler,
FlaxPNDMScheduler,
FlaxSchedulerMixin,
FlaxScoreSdeVeScheduler,
)
try:
if not (is_flax_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
FlaxStableDiffusionControlNetPipeline,
FlaxStableDiffusionImgaImgPipeline,
FlaxStableDiffusionInpaintPipeline,
FlaxStableDiffusionPipeline,
)
try:
if not (is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_note_seq_objects import * # noqa F403
else:
from .pipelines import MidiProcessor
| 18 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Dict = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[int] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[int] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : List[Any] ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Dict ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Dict = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Any = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[int] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Any = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[int] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[int] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : str = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Tuple = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Any = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Tuple = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : str = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Dict = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Any = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Dict = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : str = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Tuple = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : str = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
| 18 | 1 |
'''simple docstring'''
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Tuple = "M-CLIP"
def __init__( self , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , **_lowerCAmelCase ) -> List[Any]:
_lowerCAmelCase = transformerDimSize
_lowerCAmelCase = imageDimSize
super().__init__(**_lowerCAmelCase )
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : int = MCLIPConfig
def __init__( self , _lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase )
_lowerCAmelCase = XLMRobertaModel(_lowerCAmelCase )
_lowerCAmelCase = torch.nn.Linear(
in_features=config.transformerDimensions , out_features=config.numDims )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]:
_lowerCAmelCase = self.transformer(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0]
_lowerCAmelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None]
return self.LinearTransformation(_lowerCAmelCase ), embs
| 18 |
'''simple docstring'''
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple=None ):
'''simple docstring'''
_lowerCAmelCase = None
if token is not None:
_lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''}
_lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
_lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json()
_lowerCAmelCase = {}
try:
job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} )
_lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 )
for i in range(SCREAMING_SNAKE_CASE_ ):
_lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json()
job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} )
return job_links
except Exception:
print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict=None ):
'''simple docstring'''
_lowerCAmelCase = None
if token is not None:
_lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''}
_lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'''
_lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json()
_lowerCAmelCase = {}
try:
artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} )
_lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 )
for i in range(SCREAMING_SNAKE_CASE_ ):
_lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json()
artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} )
return artifacts
except Exception:
print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ):
'''simple docstring'''
_lowerCAmelCase = None
if token is not None:
_lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''}
_lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = result.headers["Location"]
_lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F'''{artifact_name}.zip''' )
with open(SCREAMING_SNAKE_CASE_ , "wb" ) as fp:
fp.write(response.content )
def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=None ):
'''simple docstring'''
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = None
with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z:
for filename in z.namelist():
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(SCREAMING_SNAKE_CASE_ ) as f:
for line in f:
_lowerCAmelCase = line.decode("UTF-8" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
_lowerCAmelCase = line[: line.index(": " )]
_lowerCAmelCase = line[line.index(": " ) + len(": " ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("FAILED " ):
# `test` is the test method that failed
_lowerCAmelCase = line[len("FAILED " ) :]
failed_tests.append(SCREAMING_SNAKE_CASE_ )
elif filename == "job_name.txt":
_lowerCAmelCase = line
if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
F'''`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE_ )} for `errors` '''
F'''and {len(SCREAMING_SNAKE_CASE_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'''
" problem." )
_lowerCAmelCase = None
if job_name and job_links:
_lowerCAmelCase = job_links.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# A list with elements of the form (line of error, error, failed test)
_lowerCAmelCase = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )]
return result
def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=None ):
'''simple docstring'''
_lowerCAmelCase = []
_lowerCAmelCase = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for p in os.listdir(SCREAMING_SNAKE_CASE_ ) if p.endswith(".zip" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE_ , job_links=SCREAMING_SNAKE_CASE_ ) )
return errors
def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str=None ):
'''simple docstring'''
_lowerCAmelCase = Counter()
counter.update([x[1] for x in logs] )
_lowerCAmelCase = counter.most_common()
_lowerCAmelCase = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
_lowerCAmelCase = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]}
_lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) )
return r
def __a(SCREAMING_SNAKE_CASE_ : List[str] ):
'''simple docstring'''
_lowerCAmelCase = test.split("::" )[0]
if test.startswith("tests/models/" ):
_lowerCAmelCase = test.split("/" )[2]
else:
_lowerCAmelCase = None
return test
def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple=None ):
'''simple docstring'''
_lowerCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs]
_lowerCAmelCase = [x for x in logs if x[2] is not None]
_lowerCAmelCase = {x[2] for x in logs}
_lowerCAmelCase = {}
for test in tests:
_lowerCAmelCase = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
_lowerCAmelCase = counter.most_common()
_lowerCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
_lowerCAmelCase = sum(error_counts.values() )
if n_errors > 0:
_lowerCAmelCase = {"count": n_errors, "errors": error_counts}
_lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) )
return r
def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ):
'''simple docstring'''
_lowerCAmelCase = "| no. | error | status |"
_lowerCAmelCase = "|-:|:-|:-|"
_lowerCAmelCase = [header, sep]
for error in reduced_by_error:
_lowerCAmelCase = reduced_by_error[error]["count"]
_lowerCAmelCase = F'''| {count} | {error[:100]} | |'''
lines.append(SCREAMING_SNAKE_CASE_ )
return "\n".join(SCREAMING_SNAKE_CASE_ )
def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ):
'''simple docstring'''
_lowerCAmelCase = "| model | no. of errors | major error | count |"
_lowerCAmelCase = "|-:|-:|-:|-:|"
_lowerCAmelCase = [header, sep]
for model in reduced_by_model:
_lowerCAmelCase = reduced_by_model[model]["count"]
_lowerCAmelCase , _lowerCAmelCase = list(reduced_by_model[model]["errors"].items() )[0]
_lowerCAmelCase = F'''| {model} | {count} | {error[:60]} | {_count} |'''
lines.append(SCREAMING_SNAKE_CASE_ )
return "\n".join(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Where to store the downloaded artifacts and other result files.",
)
parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.")
_SCREAMING_SNAKE_CASE = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
_SCREAMING_SNAKE_CASE = get_job_links(args.workflow_run_id, token=args.token)
_SCREAMING_SNAKE_CASE = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
_SCREAMING_SNAKE_CASE = k.find(" / ")
_SCREAMING_SNAKE_CASE = k[index + len(" / ") :]
_SCREAMING_SNAKE_CASE = v
with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
_SCREAMING_SNAKE_CASE = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
_SCREAMING_SNAKE_CASE = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
_SCREAMING_SNAKE_CASE = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
_SCREAMING_SNAKE_CASE = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
_SCREAMING_SNAKE_CASE = reduce_by_error(errors)
_SCREAMING_SNAKE_CASE = reduce_by_model(errors)
_SCREAMING_SNAKE_CASE = make_github_table(reduced_by_error)
_SCREAMING_SNAKE_CASE = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
| 18 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_SCREAMING_SNAKE_CASE = {
"configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"],
"tokenization_convbert": ["ConvBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ["ConvBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConvBertForMaskedLM",
"ConvBertForMultipleChoice",
"ConvBertForQuestionAnswering",
"ConvBertForSequenceClassification",
"ConvBertForTokenClassification",
"ConvBertLayer",
"ConvBertModel",
"ConvBertPreTrainedModel",
"load_tf_weights_in_convbert",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFConvBertForMaskedLM",
"TFConvBertForMultipleChoice",
"TFConvBertForQuestionAnswering",
"TFConvBertForSequenceClassification",
"TFConvBertForTokenClassification",
"TFConvBertLayer",
"TFConvBertModel",
"TFConvBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 18 |
'''simple docstring'''
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : List[str] = (DPMSolverSinglestepScheduler,)
__lowerCamelCase : int = (("num_inference_steps", 25),)
def _snake_case ( self , **_lowerCAmelCase ) -> Any:
_lowerCAmelCase = {
"num_train_timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"solver_order": 2,
"prediction_type": "epsilon",
"thresholding": False,
"sample_max_value": 1.0,
"algorithm_type": "dpmsolver++",
"solver_type": "midpoint",
"lambda_min_clipped": -float("inf" ),
"variance_type": None,
}
config.update(**_lowerCAmelCase )
return config
def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> List[Any]:
_lowerCAmelCase = dict(self.forward_default_kwargs )
_lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase )
_lowerCAmelCase = self.dummy_sample
_lowerCAmelCase = 0.1 * sample
_lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
_lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase )
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
scheduler.set_timesteps(_lowerCAmelCase )
# copy over dummy past residuals
_lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_lowerCAmelCase )
_lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase )
new_scheduler.set_timesteps(_lowerCAmelCase )
# copy over dummy past residuals
_lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order]
_lowerCAmelCase , _lowerCAmelCase = sample, sample
for t in range(_lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ):
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
_lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def _snake_case ( self ) -> int:
pass
def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> Optional[int]:
_lowerCAmelCase = dict(self.forward_default_kwargs )
_lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase )
_lowerCAmelCase = self.dummy_sample
_lowerCAmelCase = 0.1 * sample
_lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
scheduler.set_timesteps(_lowerCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
_lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_lowerCAmelCase )
_lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_lowerCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
_lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order]
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
_lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def _snake_case ( self , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Tuple:
if scheduler is None:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase )
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase )
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = 10
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
scheduler.set_timesteps(_lowerCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample
return sample
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
_lowerCAmelCase = 50
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
scheduler.set_timesteps(_lowerCAmelCase )
# make sure that the first t is uneven
for i, t in enumerate(scheduler.timesteps[3:] ):
_lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2574 ) < 1E-3
def _snake_case ( self ) -> Optional[Any]:
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=_lowerCAmelCase )
def _snake_case ( self ) -> List[Any]:
# make sure that iterating over schedulers with same config names gives same results
# for defaults
_lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
_lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2791 ) < 1E-3
_lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config )
_lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config )
_lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config )
_lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config )
_lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2791 ) < 1E-3
def _snake_case ( self ) -> str:
self.check_over_configs(thresholding=_lowerCAmelCase )
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , algorithm_type="dpmsolver++" , solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , )
def _snake_case ( self ) -> Dict:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_lowerCAmelCase )
def _snake_case ( self ) -> Union[str, Any]:
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , )
_lowerCAmelCase = self.full_loop(
solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , )
assert not torch.isnan(_lowerCAmelCase ).any(), "Samples have nan numbers"
def _snake_case ( self ) -> Optional[Any]:
self.check_over_configs(lower_order_final=_lowerCAmelCase )
self.check_over_configs(lower_order_final=_lowerCAmelCase )
def _snake_case ( self ) -> Optional[Any]:
self.check_over_configs(lambda_min_clipped=-float("inf" ) )
self.check_over_configs(lambda_min_clipped=-5.1 )
def _snake_case ( self ) -> str:
self.check_over_configs(variance_type=_lowerCAmelCase )
self.check_over_configs(variance_type="learned_range" )
def _snake_case ( self ) -> int:
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=_lowerCAmelCase , time_step=0 )
def _snake_case ( self ) -> Any:
_lowerCAmelCase = self.full_loop()
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2791 ) < 1E-3
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = self.full_loop(use_karras_sigmas=_lowerCAmelCase )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2248 ) < 1E-3
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = self.full_loop(prediction_type="v_prediction" )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.1453 ) < 1E-3
def _snake_case ( self ) -> Any:
_lowerCAmelCase = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=_lowerCAmelCase )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.0649 ) < 1E-3
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config(thresholding=_lowerCAmelCase , dynamic_thresholding_ratio=0 )
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = 10
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter.half()
scheduler.set_timesteps(_lowerCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample
assert sample.dtype == torch.floataa
| 18 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_SCREAMING_SNAKE_CASE = {
"configuration_whisper": ["WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP", "WhisperConfig", "WhisperOnnxConfig"],
"feature_extraction_whisper": ["WhisperFeatureExtractor"],
"processing_whisper": ["WhisperProcessor"],
"tokenization_whisper": ["WhisperTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ["WhisperTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST",
"WhisperForConditionalGeneration",
"WhisperModel",
"WhisperPreTrainedModel",
"WhisperForAudioClassification",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFWhisperForConditionalGeneration",
"TFWhisperModel",
"TFWhisperPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"FlaxWhisperForConditionalGeneration",
"FlaxWhisperModel",
"FlaxWhisperPreTrainedModel",
"FlaxWhisperForAudioClassification",
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 18 |
'''simple docstring'''
from __future__ import annotations
def __a(SCREAMING_SNAKE_CASE_ : list ):
'''simple docstring'''
if not nums:
raise ValueError("List is empty" )
return sum(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 18 | 1 |
'''simple docstring'''
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=2 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=36 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=6 , _lowerCAmelCase=6 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1000 , ) -> Any:
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = text_seq_length
_lowerCAmelCase = is_training
_lowerCAmelCase = use_input_mask
_lowerCAmelCase = use_token_type_ids
_lowerCAmelCase = use_labels
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = type_vocab_size
_lowerCAmelCase = type_sequence_label_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = coordinate_size
_lowerCAmelCase = shape_size
_lowerCAmelCase = num_labels
_lowerCAmelCase = num_choices
_lowerCAmelCase = scope
_lowerCAmelCase = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
_lowerCAmelCase = text_seq_length
_lowerCAmelCase = (image_size // patch_size) ** 2 + 1
_lowerCAmelCase = self.text_seq_length + self.image_seq_length
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
_lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
_lowerCAmelCase = bbox[i, j, 3]
_lowerCAmelCase = bbox[i, j, 1]
_lowerCAmelCase = t
if bbox[i, j, 2] < bbox[i, j, 0]:
_lowerCAmelCase = bbox[i, j, 2]
_lowerCAmelCase = bbox[i, j, 0]
_lowerCAmelCase = t
_lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase = None
if self.use_input_mask:
_lowerCAmelCase = random_attention_mask([self.batch_size, self.text_seq_length] )
_lowerCAmelCase = None
if self.use_token_type_ids:
_lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
_lowerCAmelCase = None
_lowerCAmelCase = None
if self.use_labels:
_lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
_lowerCAmelCase = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]:
_lowerCAmelCase = LayoutLMvaModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
# text + image
_lowerCAmelCase = model(_lowerCAmelCase , pixel_values=_lowerCAmelCase )
_lowerCAmelCase = model(
_lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
_lowerCAmelCase = model(_lowerCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
_lowerCAmelCase = model(pixel_values=_lowerCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase = self.num_labels
_lowerCAmelCase = LayoutLMvaForSequenceClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(
_lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase = self.num_labels
_lowerCAmelCase = LayoutLMvaForTokenClassification(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(
_lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]:
_lowerCAmelCase = LayoutLMvaForQuestionAnswering(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(
_lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) = config_and_inputs
_lowerCAmelCase = {
"input_ids": input_ids,
"bbox": bbox,
"pixel_values": pixel_values,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ):
__lowerCamelCase : Optional[int] = False
__lowerCamelCase : Tuple = False
__lowerCamelCase : Dict = False
__lowerCamelCase : Tuple = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowerCamelCase : Union[str, Any] = (
{"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel}
if is_torch_available()
else {}
)
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int:
# `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual
# embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has
# the sequence dimension of the text embedding only.
# (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`)
return True
def _snake_case ( self ) -> Any:
_lowerCAmelCase = LayoutLMvaModelTester(self )
_lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> Dict:
_lowerCAmelCase = copy.deepcopy(_lowerCAmelCase )
if model_class in get_values(_lowerCAmelCase ):
_lowerCAmelCase = {
k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous()
if isinstance(_lowerCAmelCase , torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(_lowerCAmelCase ):
_lowerCAmelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase )
elif model_class in get_values(_lowerCAmelCase ):
_lowerCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase )
_lowerCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase )
elif model_class in [
*get_values(_lowerCAmelCase ),
]:
_lowerCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase )
elif model_class in [
*get_values(_lowerCAmelCase ),
]:
_lowerCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=_lowerCAmelCase , )
return inputs_dict
def _snake_case ( self ) -> List[Any]:
self.config_tester.run_common_tests()
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_lowerCAmelCase = type
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def _snake_case ( self ) -> Tuple:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase )
def _snake_case ( self ) -> str:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase )
@slow
def _snake_case ( self ) -> List[str]:
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase = LayoutLMvaModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
def __a():
'''simple docstring'''
_lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
@cached_property
def _snake_case ( self ) -> List[str]:
return LayoutLMvaImageProcessor(apply_ocr=_lowerCAmelCase ) if is_vision_available() else None
@slow
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(_lowerCAmelCase )
_lowerCAmelCase = self.default_image_processor
_lowerCAmelCase = prepare_img()
_lowerCAmelCase = image_processor(images=_lowerCAmelCase , return_tensors="pt" ).pixel_values.to(_lowerCAmelCase )
_lowerCAmelCase = torch.tensor([[1, 2]] )
_lowerCAmelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
_lowerCAmelCase = model(
input_ids=input_ids.to(_lowerCAmelCase ) , bbox=bbox.to(_lowerCAmelCase ) , pixel_values=pixel_values.to(_lowerCAmelCase ) , )
# verify the logits
_lowerCAmelCase = torch.Size((1, 199, 768) )
self.assertEqual(outputs.last_hidden_state.shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
| 18 |
'''simple docstring'''
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
_lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase )
_lowerCAmelCase = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
_lowerCAmelCase = TextStreamer(_lowerCAmelCase )
model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
_lowerCAmelCase = cs.out[:-1]
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
_lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase )
_lowerCAmelCase = tokenizer.decode(greedy_ids[0] )
_lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase )
_lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
_lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase )
thread.start()
_lowerCAmelCase = ""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
_lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase )
_lowerCAmelCase = greedy_ids[:, input_ids.shape[1] :]
_lowerCAmelCase = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
_lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_prompt=_lowerCAmelCase )
model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
_lowerCAmelCase = cs.out[:-1]
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> Dict:
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
_lowerCAmelCase = AutoTokenizer.from_pretrained("distilgpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = torch.ones((1, 5) , device=_lowerCAmelCase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
_lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )
model.generate(_lowerCAmelCase , max_new_tokens=1 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
_lowerCAmelCase = cs.out[:-1] # Remove the final "\n"
_lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="pt" )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
_lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase , timeout=0.001 )
_lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
_lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(_lowerCAmelCase ):
_lowerCAmelCase = ""
for new_text in streamer:
streamer_text += new_text
| 18 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json",
"microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json",
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Union[str, Any] = "markuplm"
def __init__( self , _lowerCAmelCase=30522 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=256 , _lowerCAmelCase=1024 , _lowerCAmelCase=216 , _lowerCAmelCase=1001 , _lowerCAmelCase=32 , _lowerCAmelCase=50 , _lowerCAmelCase="absolute" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Optional[Any]:
super().__init__(
pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = hidden_act
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = type_vocab_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = position_embedding_type
_lowerCAmelCase = use_cache
_lowerCAmelCase = classifier_dropout
# additional properties
_lowerCAmelCase = max_depth
_lowerCAmelCase = max_xpath_tag_unit_embeddings
_lowerCAmelCase = max_xpath_subs_unit_embeddings
_lowerCAmelCase = tag_pad_id
_lowerCAmelCase = subs_pad_id
_lowerCAmelCase = xpath_unit_hidden_size
| 18 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json",
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Union[str, Any] = "blenderbot-small"
__lowerCamelCase : Optional[Any] = ["past_key_values"]
__lowerCamelCase : str = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , _lowerCAmelCase=50265 , _lowerCAmelCase=512 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="gelu" , _lowerCAmelCase=512 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=2 , **_lowerCAmelCase , ) -> Dict:
_lowerCAmelCase = vocab_size
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = d_model
_lowerCAmelCase = encoder_ffn_dim
_lowerCAmelCase = encoder_layers
_lowerCAmelCase = encoder_attention_heads
_lowerCAmelCase = decoder_ffn_dim
_lowerCAmelCase = decoder_layers
_lowerCAmelCase = decoder_attention_heads
_lowerCAmelCase = dropout
_lowerCAmelCase = attention_dropout
_lowerCAmelCase = activation_dropout
_lowerCAmelCase = activation_function
_lowerCAmelCase = init_std
_lowerCAmelCase = encoder_layerdrop
_lowerCAmelCase = decoder_layerdrop
_lowerCAmelCase = use_cache
_lowerCAmelCase = encoder_layers
_lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
class lowerCAmelCase_ ( __magic_name__ ):
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_lowerCAmelCase = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
_lowerCAmelCase = {0: "batch"}
_lowerCAmelCase = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
_lowerCAmelCase = {0: "batch", 1: "decoder_sequence"}
_lowerCAmelCase = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(_lowerCAmelCase , direction="inputs" )
elif self.task == "causal-lm":
# TODO: figure this case out.
_lowerCAmelCase = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
_lowerCAmelCase , _lowerCAmelCase = self.num_layers
for i in range(_lowerCAmelCase ):
_lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"}
_lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"}
else:
_lowerCAmelCase = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
] )
return common_inputs
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_lowerCAmelCase = super().outputs
else:
_lowerCAmelCase = super(_lowerCAmelCase , self ).outputs
if self.use_past:
_lowerCAmelCase , _lowerCAmelCase = self.num_layers
for i in range(_lowerCAmelCase ):
_lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"}
_lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]:
_lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Generate decoder inputs
_lowerCAmelCase = seq_length if not self.use_past else 1
_lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()}
_lowerCAmelCase = dict(**_lowerCAmelCase , **_lowerCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
_lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape
_lowerCAmelCase = common_inputs["decoder_input_ids"].shape[1]
_lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads
_lowerCAmelCase = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_lowerCAmelCase = decoder_seq_length + 3
_lowerCAmelCase = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
_lowerCAmelCase = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase )] , dim=1 )
_lowerCAmelCase = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
_lowerCAmelCase , _lowerCAmelCase = self.num_layers
_lowerCAmelCase = min(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = max(_lowerCAmelCase , _lowerCAmelCase ) - min_num_layers
_lowerCAmelCase = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(_lowerCAmelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(_lowerCAmelCase ),
torch.zeros(_lowerCAmelCase ),
torch.zeros(_lowerCAmelCase ),
torch.zeros(_lowerCAmelCase ),
) )
# TODO: test this.
_lowerCAmelCase = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(_lowerCAmelCase , _lowerCAmelCase ):
common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) )
return common_inputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]:
_lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
_lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
_lowerCAmelCase = seqlen + 2
_lowerCAmelCase , _lowerCAmelCase = self.num_layers
_lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads
_lowerCAmelCase = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_lowerCAmelCase = common_inputs["attention_mask"].dtype
_lowerCAmelCase = torch.cat(
[common_inputs["attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase )] , dim=1 )
_lowerCAmelCase = [
(torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase )
]
return common_inputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
_lowerCAmelCase = compute_effective_axis_dimension(
_lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
_lowerCAmelCase = tokenizer.num_special_tokens_to_add(_lowerCAmelCase )
_lowerCAmelCase = compute_effective_axis_dimension(
_lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase )
# Generate dummy inputs according to compute batch and sequence
_lowerCAmelCase = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size
_lowerCAmelCase = dict(tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) )
return common_inputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
_lowerCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
elif self.task == "causal-lm":
_lowerCAmelCase = self._generate_dummy_inputs_for_causal_lm(
_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
else:
_lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
return common_inputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict:
if self.task in ["default", "seq2seq-lm"]:
_lowerCAmelCase = super()._flatten_past_key_values_(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
else:
_lowerCAmelCase = super(_lowerCAmelCase , self )._flatten_past_key_values_(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
def __a(SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
if not all(x.isalpha() for x in string ):
raise ValueError("String must only contain alphabetic characters." )
_lowerCAmelCase = sorted(string.lower() )
return len(SCREAMING_SNAKE_CASE_ ) == len(set(SCREAMING_SNAKE_CASE_ ) )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = input("Enter a string ").strip()
_SCREAMING_SNAKE_CASE = is_isogram(input_str)
print(f'''{input_str} is {'an' if isogram else 'not an'} isogram.''')
| 18 |
'''simple docstring'''
import re
import string
import numpy as np
import datasets
_SCREAMING_SNAKE_CASE = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n"
_SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n"
_SCREAMING_SNAKE_CASE = "\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
def _snake_case ( self ) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , reference_urls=[] , )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , ) -> str:
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
_lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in predictions] )
_lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in references] )
else:
_lowerCAmelCase = np.asarray(_lowerCAmelCase )
_lowerCAmelCase = np.asarray(_lowerCAmelCase )
if ignore_case:
_lowerCAmelCase = np.char.lower(_lowerCAmelCase )
_lowerCAmelCase = np.char.lower(_lowerCAmelCase )
if ignore_punctuation:
_lowerCAmelCase = string.punctuation.maketrans("" , "" , string.punctuation )
_lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase )
_lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase )
if ignore_numbers:
_lowerCAmelCase = string.digits.maketrans("" , "" , string.digits )
_lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase )
_lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase )
_lowerCAmelCase = predictions == references
return {"exact_match": np.mean(_lowerCAmelCase ) * 100}
| 18 | 1 |
'''simple docstring'''
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=2 , _lowerCAmelCase=99 , _lowerCAmelCase=0 , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase="last" , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=0 , ) -> Any:
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = seq_length
_lowerCAmelCase = is_training
_lowerCAmelCase = use_input_lengths
_lowerCAmelCase = use_token_type_ids
_lowerCAmelCase = use_labels
_lowerCAmelCase = gelu_activation
_lowerCAmelCase = sinusoidal_embeddings
_lowerCAmelCase = causal
_lowerCAmelCase = asm
_lowerCAmelCase = n_langs
_lowerCAmelCase = vocab_size
_lowerCAmelCase = n_special
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = type_sequence_label_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = num_labels
_lowerCAmelCase = num_choices
_lowerCAmelCase = summary_type
_lowerCAmelCase = use_proj
_lowerCAmelCase = scope
_lowerCAmelCase = bos_token_id
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase = None
if self.use_input_lengths:
_lowerCAmelCase = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
_lowerCAmelCase = None
if self.use_token_type_ids:
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
_lowerCAmelCase = None
_lowerCAmelCase = None
_lowerCAmelCase = None
if self.use_labels:
_lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowerCAmelCase = ids_tensor([self.batch_size] , 2 ).float()
_lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
_lowerCAmelCase = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def _snake_case ( self ) -> List[str]:
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> Dict:
_lowerCAmelCase = XLMModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , lengths=_lowerCAmelCase , langs=_lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase , langs=_lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> Dict:
_lowerCAmelCase = XLMWithLMHeadModel(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> str:
_lowerCAmelCase = XLMForQuestionAnsweringSimple(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase )
_lowerCAmelCase = outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> Tuple:
_lowerCAmelCase = XLMForQuestionAnswering(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase )
_lowerCAmelCase = model(
_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , cls_index=_lowerCAmelCase , is_impossible=_lowerCAmelCase , p_mask=_lowerCAmelCase , )
_lowerCAmelCase = model(
_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , cls_index=_lowerCAmelCase , is_impossible=_lowerCAmelCase , )
((_lowerCAmelCase) , ) = result_with_labels.to_tuple()
_lowerCAmelCase = model(_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase )
((_lowerCAmelCase) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> Union[str, Any]:
_lowerCAmelCase = XLMForSequenceClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> int:
_lowerCAmelCase = self.num_labels
_lowerCAmelCase = XLMForTokenClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> Union[str, Any]:
_lowerCAmelCase = self.num_choices
_lowerCAmelCase = XLMForMultipleChoice(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowerCAmelCase = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) = config_and_inputs
_lowerCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,__magic_name__ ,unittest.TestCase ):
__lowerCamelCase : int = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
__lowerCamelCase : Tuple = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
__lowerCamelCase : List[Any] = (
{
"feature-extraction": XLMModel,
"fill-mask": XLMWithLMHeadModel,
"question-answering": XLMForQuestionAnsweringSimple,
"text-classification": XLMForSequenceClassification,
"text-generation": XLMWithLMHeadModel,
"token-classification": XLMForTokenClassification,
"zero-shot": XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]:
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("Fast" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> Optional[Any]:
_lowerCAmelCase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
_lowerCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase )
_lowerCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase )
return inputs_dict
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = XLMModelTester(self )
_lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , emb_dim=37 )
def _snake_case ( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*_lowerCAmelCase )
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*_lowerCAmelCase )
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*_lowerCAmelCase )
def _snake_case ( self ) -> Any:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*_lowerCAmelCase )
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*_lowerCAmelCase )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*_lowerCAmelCase )
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=1 ) -> int:
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
self.assertListEqual(
[isinstance(_lowerCAmelCase , _lowerCAmelCase ) for iter_attentions in attentions] , [True] * len(_lowerCAmelCase ) )
self.assertEqual(len(_lowerCAmelCase ) , (max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(_lowerCAmelCase ):
# adds PAD dummy token
_lowerCAmelCase = min_length + idx + 1
_lowerCAmelCase = min_length + idx + 1
_lowerCAmelCase = (
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_lowerCAmelCase ) )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=1 ) -> Union[str, Any]:
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
self.assertListEqual(
[isinstance(_lowerCAmelCase , _lowerCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(_lowerCAmelCase ) , )
self.assertEqual(len(_lowerCAmelCase ) , (max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(_lowerCAmelCase ):
# adds PAD dummy token
_lowerCAmelCase = min_length + idx + 1
_lowerCAmelCase = (batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_lowerCAmelCase ) , )
pass
@slow
def _snake_case ( self ) -> str:
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase = XLMModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
@slow
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" )
model.to(_lowerCAmelCase )
_lowerCAmelCase = torch.tensor([[14, 447]] , dtype=torch.long , device=_lowerCAmelCase ) # the president
_lowerCAmelCase = [
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
_lowerCAmelCase = model.generate(_lowerCAmelCase , do_sample=_lowerCAmelCase )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _lowerCAmelCase )
| 18 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class lowerCAmelCase_ ( __magic_name__ ):
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> None:
warnings.warn(
"The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use YolosImageProcessor instead." , _lowerCAmelCase , )
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json",
# See all Donut models at https://huggingface.co/models?filter=donut-swin
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Union[str, Any] = "donut-swin"
__lowerCamelCase : int = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , **_lowerCAmelCase , ) -> Optional[Any]:
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = embed_dim
_lowerCAmelCase = depths
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = num_heads
_lowerCAmelCase = window_size
_lowerCAmelCase = mlp_ratio
_lowerCAmelCase = qkv_bias
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = drop_path_rate
_lowerCAmelCase = hidden_act
_lowerCAmelCase = use_absolute_embeddings
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
| 18 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Any = "falcon"
__lowerCamelCase : List[str] = ["past_key_values"]
def __init__( self , _lowerCAmelCase=65024 , _lowerCAmelCase=4544 , _lowerCAmelCase=32 , _lowerCAmelCase=71 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=11 , _lowerCAmelCase=11 , **_lowerCAmelCase , ) -> Union[str, Any]:
_lowerCAmelCase = vocab_size
# Backward compatibility with n_embed kwarg
_lowerCAmelCase = kwargs.pop("n_embed" , _lowerCAmelCase )
_lowerCAmelCase = hidden_size if n_embed is None else n_embed
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = layer_norm_epsilon
_lowerCAmelCase = initializer_range
_lowerCAmelCase = use_cache
_lowerCAmelCase = hidden_dropout
_lowerCAmelCase = attention_dropout
_lowerCAmelCase = bos_token_id
_lowerCAmelCase = eos_token_id
_lowerCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads
_lowerCAmelCase = alibi
_lowerCAmelCase = new_decoder_architecture
_lowerCAmelCase = multi_query # Ignored when new_decoder_architecture is True
_lowerCAmelCase = parallel_attn
_lowerCAmelCase = bias
super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
@property
def _snake_case ( self ) -> Optional[Any]:
return self.hidden_size // self.num_attention_heads
@property
def _snake_case ( self ) -> Optional[Any]:
return not self.alibi
| 18 | 1 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all LED models at https://huggingface.co/models?filter=LED
_SCREAMING_SNAKE_CASE = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
_SCREAMING_SNAKE_CASE = {
"allenai/led-base-16384": 1_63_84,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def __a():
'''simple docstring'''
_lowerCAmelCase = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
_lowerCAmelCase = bs[:]
_lowerCAmelCase = 0
for b in range(2**8 ):
if b not in bs:
bs.append(SCREAMING_SNAKE_CASE_ )
cs.append(2**8 + n )
n += 1
_lowerCAmelCase = [chr(SCREAMING_SNAKE_CASE_ ) for n in cs]
return dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] ):
'''simple docstring'''
_lowerCAmelCase = set()
_lowerCAmelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_lowerCAmelCase = char
return pairs
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES
__lowerCamelCase : str = PRETRAINED_VOCAB_FILES_MAP
__lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCamelCase : str = ["input_ids", "attention_mask"]
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="replace" , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=False , **_lowerCAmelCase , ) -> str:
_lowerCAmelCase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else bos_token
_lowerCAmelCase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else eos_token
_lowerCAmelCase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else sep_token
_lowerCAmelCase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else cls_token
_lowerCAmelCase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else unk_token
_lowerCAmelCase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token
super().__init__(
errors=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , )
with open(_lowerCAmelCase , encoding="utf-8" ) as vocab_handle:
_lowerCAmelCase = json.load(_lowerCAmelCase )
_lowerCAmelCase = {v: k for k, v in self.encoder.items()}
_lowerCAmelCase = errors # how to handle errors in decoding
_lowerCAmelCase = bytes_to_unicode()
_lowerCAmelCase = {v: k for k, v in self.byte_encoder.items()}
with open(_lowerCAmelCase , encoding="utf-8" ) as merges_handle:
_lowerCAmelCase = merges_handle.read().split("\n" )[1:-1]
_lowerCAmelCase = [tuple(merge.split() ) for merge in bpe_merges]
_lowerCAmelCase = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) )
_lowerCAmelCase = {}
_lowerCAmelCase = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
_lowerCAmelCase = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def _snake_case ( self ) -> Union[str, Any]:
return len(self.encoder )
def _snake_case ( self ) -> Dict:
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self , _lowerCAmelCase ) -> Union[str, Any]:
if token in self.cache:
return self.cache[token]
_lowerCAmelCase = tuple(_lowerCAmelCase )
_lowerCAmelCase = get_pairs(_lowerCAmelCase )
if not pairs:
return token
while True:
_lowerCAmelCase = min(_lowerCAmelCase , key=lambda _lowerCAmelCase : self.bpe_ranks.get(_lowerCAmelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
_lowerCAmelCase , _lowerCAmelCase = bigram
_lowerCAmelCase = []
_lowerCAmelCase = 0
while i < len(_lowerCAmelCase ):
try:
_lowerCAmelCase = word.index(_lowerCAmelCase , _lowerCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
_lowerCAmelCase = j
if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_lowerCAmelCase = tuple(_lowerCAmelCase )
_lowerCAmelCase = new_word
if len(_lowerCAmelCase ) == 1:
break
else:
_lowerCAmelCase = get_pairs(_lowerCAmelCase )
_lowerCAmelCase = " ".join(_lowerCAmelCase )
_lowerCAmelCase = word
return word
def _snake_case ( self , _lowerCAmelCase ) -> str:
_lowerCAmelCase = []
for token in re.findall(self.pat , _lowerCAmelCase ):
_lowerCAmelCase = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowerCAmelCase ).split(" " ) )
return bpe_tokens
def _snake_case ( self , _lowerCAmelCase ) -> Dict:
return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) )
def _snake_case ( self , _lowerCAmelCase ) -> List[Any]:
return self.decoder.get(_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase ) -> Optional[int]:
_lowerCAmelCase = "".join(_lowerCAmelCase )
_lowerCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(_lowerCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase = os.path.join(
_lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
_lowerCAmelCase = os.path.join(
_lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + "\n" )
_lowerCAmelCase = 0
with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
" Please check that the tokenizer is not corrupted!" )
_lowerCAmelCase = token_index
writer.write(" ".join(_lowerCAmelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_lowerCAmelCase = [self.cls_token_id]
_lowerCAmelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(_lowerCAmelCase )) + [1]
return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1]
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]:
_lowerCAmelCase = [self.sep_token_id]
_lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase=False , **_lowerCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(_lowerCAmelCase ) > 0 and not text[0].isspace()):
_lowerCAmelCase = " " + text
return (text, kwargs)
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = PaddingStrategy.DO_NOT_PAD , _lowerCAmelCase = None , _lowerCAmelCase = None , ) -> dict:
_lowerCAmelCase = super()._pad(
encoded_inputs=_lowerCAmelCase , max_length=_lowerCAmelCase , padding_strategy=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , )
# Load from model defaults
if return_attention_mask is None:
_lowerCAmelCase = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
_lowerCAmelCase = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
_lowerCAmelCase = len(encoded_inputs["global_attention_mask"] ) != len(_lowerCAmelCase )
if needs_to_be_padded:
_lowerCAmelCase = len(_lowerCAmelCase ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
_lowerCAmelCase = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
_lowerCAmelCase = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs
| 18 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"facebook/deit-base-distilled-patch16-224": (
"https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json"
),
# See all DeiT models at https://huggingface.co/models?filter=deit
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Optional[int] = "deit"
def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=16 , **_lowerCAmelCase , ) -> Dict:
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = initializer_range
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = qkv_bias
_lowerCAmelCase = encoder_stride
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : List[str] = version.parse("1.11" )
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self ) -> float:
return 1E-4
| 18 | 1 |
'''simple docstring'''
import math
def __a(SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
_lowerCAmelCase = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 )
return exponent == int(SCREAMING_SNAKE_CASE_ )
def __a(SCREAMING_SNAKE_CASE_ : float = 1 / 12345 ):
'''simple docstring'''
_lowerCAmelCase = 0
_lowerCAmelCase = 0
_lowerCAmelCase = 3
while True:
_lowerCAmelCase = (integer**2 - 1) / 4
# if candidate is an integer, then there is a partition for k
if partition_candidate == int(SCREAMING_SNAKE_CASE_ ):
_lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ )
total_partitions += 1
if check_partition_perfect(SCREAMING_SNAKE_CASE_ ):
perfect_partitions += 1
if perfect_partitions > 0:
if perfect_partitions / total_partitions < max_proportion:
return int(SCREAMING_SNAKE_CASE_ )
integer += 1
if __name__ == "__main__":
print(f'''{solution() = }''')
| 18 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_SCREAMING_SNAKE_CASE = {
"configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"],
"feature_extraction_mctct": ["MCTCTFeatureExtractor"],
"processing_mctct": ["MCTCTProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MCTCTForCTC",
"MCTCTModel",
"MCTCTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 18 | 1 |
'''simple docstring'''
import os
import re
import sys
import traceback
import warnings
from pathlib import Path
from typing import Dict, Optional, Union
from uuid import uuida
from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami
from huggingface_hub.file_download import REGEX_COMMIT_HASH
from huggingface_hub.utils import (
EntryNotFoundError,
RepositoryNotFoundError,
RevisionNotFoundError,
is_jinja_available,
)
from packaging import version
from requests import HTTPError
from .. import __version__
from .constants import (
DEPRECATED_REVISION_ARGS,
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
)
from .import_utils import (
ENV_VARS_TRUE_VALUES,
_flax_version,
_jax_version,
_onnxruntime_version,
_torch_version,
is_flax_available,
is_onnx_available,
is_torch_available,
)
from .logging import get_logger
_SCREAMING_SNAKE_CASE = get_logger(__name__)
_SCREAMING_SNAKE_CASE = Path(__file__).parent / "model_card_template.md"
_SCREAMING_SNAKE_CASE = uuida().hex
_SCREAMING_SNAKE_CASE = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES
_SCREAMING_SNAKE_CASE = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES
_SCREAMING_SNAKE_CASE = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/"
def __a(SCREAMING_SNAKE_CASE_ : Union[Dict, str, None] = None ):
'''simple docstring'''
_lowerCAmelCase = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}'''
if DISABLE_TELEMETRY or HF_HUB_OFFLINE:
return ua + "; telemetry/off"
if is_torch_available():
ua += F'''; torch/{_torch_version}'''
if is_flax_available():
ua += F'''; jax/{_jax_version}'''
ua += F'''; flax/{_flax_version}'''
if is_onnx_available():
ua += F'''; onnxruntime/{_onnxruntime_version}'''
# CI will set this value to True
if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES:
ua += "; is_ci/true"
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
ua += "; " + user_agent
return ua
def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = None ):
'''simple docstring'''
if token is None:
_lowerCAmelCase = HfFolder.get_token()
if organization is None:
_lowerCAmelCase = whoami(SCREAMING_SNAKE_CASE_ )["name"]
return F'''{username}/{model_id}'''
else:
return F'''{organization}/{model_id}'''
def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ):
'''simple docstring'''
if not is_jinja_available():
raise ValueError(
"Modelcard rendering is based on Jinja templates."
" Please make sure to have `jinja` installed before using `create_model_card`."
" To install it, please run `pip install Jinja2`." )
if hasattr(SCREAMING_SNAKE_CASE_ , "local_rank" ) and args.local_rank not in [-1, 0]:
return
_lowerCAmelCase = args.hub_token if hasattr(SCREAMING_SNAKE_CASE_ , "hub_token" ) else None
_lowerCAmelCase = get_full_repo_name(SCREAMING_SNAKE_CASE_ , token=SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = ModelCard.from_template(
card_data=ModelCardData( # Card metadata object that will be converted to YAML block
language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE_ , model_name=SCREAMING_SNAKE_CASE_ , repo_name=SCREAMING_SNAKE_CASE_ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE_ , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=(
args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE_ , "gradient_accumulation_steps" ) else None
) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE_ , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE_ , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE_ , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE_ , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE_ , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE_ , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE_ , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE_ , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE_ , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , )
_lowerCAmelCase = os.path.join(args.output_dir , "README.md" )
model_card.save(SCREAMING_SNAKE_CASE_ )
def __a(SCREAMING_SNAKE_CASE_ : Optional[str] , SCREAMING_SNAKE_CASE_ : Optional[str] = None ):
'''simple docstring'''
if resolved_file is None or commit_hash is not None:
return commit_hash
_lowerCAmelCase = str(Path(SCREAMING_SNAKE_CASE_ ).as_posix() )
_lowerCAmelCase = re.search(R"snapshots/([^/]+)/" , SCREAMING_SNAKE_CASE_ )
if search is None:
return None
_lowerCAmelCase = search.groups()[0]
return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE_ ) else None
# Old default cache path, potentially to be migrated.
# This logic was more or less taken from `transformers`, with the following differences:
# - Diffusers doesn't use custom environment variables to specify the cache path.
# - There is no need to migrate the cache format, just move the files to the new location.
_SCREAMING_SNAKE_CASE = os.path.expanduser(
os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface"))
)
_SCREAMING_SNAKE_CASE = os.path.join(hf_cache_home, "diffusers")
def __a(SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = None ):
'''simple docstring'''
if new_cache_dir is None:
_lowerCAmelCase = DIFFUSERS_CACHE
if old_cache_dir is None:
_lowerCAmelCase = old_diffusers_cache
_lowerCAmelCase = Path(SCREAMING_SNAKE_CASE_ ).expanduser()
_lowerCAmelCase = Path(SCREAMING_SNAKE_CASE_ ).expanduser()
for old_blob_path in old_cache_dir.glob("**/blobs/*" ):
if old_blob_path.is_file() and not old_blob_path.is_symlink():
_lowerCAmelCase = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE_ )
new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ )
os.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
try:
os.symlink(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
except OSError:
logger.warning(
"Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." )
# At this point, old_cache_dir contains symlinks to the new cache (it can still be used).
_SCREAMING_SNAKE_CASE = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt")
if not os.path.isfile(cache_version_file):
_SCREAMING_SNAKE_CASE = 0
else:
with open(cache_version_file) as f:
try:
_SCREAMING_SNAKE_CASE = int(f.read())
except ValueError:
_SCREAMING_SNAKE_CASE = 0
if cache_version < 1:
_SCREAMING_SNAKE_CASE = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0
if old_cache_is_not_empty:
logger.warning(
"The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your "
"existing cached models. This is a one-time operation, you can interrupt it or run it "
"later by calling `diffusers.utils.hub_utils.move_cache()`."
)
try:
move_cache()
except Exception as e:
_SCREAMING_SNAKE_CASE = "\n".join(traceback.format_tb(e.__traceback__))
logger.error(
f'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease '''
"file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole "
"message and we will do our best to help."
)
if cache_version < 1:
try:
os.makedirs(DIFFUSERS_CACHE, exist_ok=True)
with open(cache_version_file, "w") as f:
f.write("1")
except Exception:
logger.warning(
f'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure '''
"the directory exists and can be written to."
)
def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ):
'''simple docstring'''
if variant is not None:
_lowerCAmelCase = weights_name.split("." )
_lowerCAmelCase = splits[:-1] + [variant] + splits[-1:]
_lowerCAmelCase = ".".join(SCREAMING_SNAKE_CASE_ )
return weights_name
def __a(SCREAMING_SNAKE_CASE_ : List[Any] , *,
SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str]=None , ):
'''simple docstring'''
_lowerCAmelCase = str(SCREAMING_SNAKE_CASE_ )
if os.path.isfile(SCREAMING_SNAKE_CASE_ ):
return pretrained_model_name_or_path
elif os.path.isdir(SCREAMING_SNAKE_CASE_ ):
if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ):
# Load from a PyTorch checkpoint
_lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return model_file
elif subfolder is not None and os.path.isfile(
os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ):
_lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return model_file
else:
raise EnvironmentError(
F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' )
else:
# 1. First check if deprecated way of loading from branches is used
if (
revision in DEPRECATED_REVISION_ARGS
and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
and version.parse(version.parse(SCREAMING_SNAKE_CASE_ ).base_version ) >= version.parse("0.20.0" )
):
try:
_lowerCAmelCase = hf_hub_download(
SCREAMING_SNAKE_CASE_ , filename=_add_variant(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , cache_dir=SCREAMING_SNAKE_CASE_ , force_download=SCREAMING_SNAKE_CASE_ , proxies=SCREAMING_SNAKE_CASE_ , resume_download=SCREAMING_SNAKE_CASE_ , local_files_only=SCREAMING_SNAKE_CASE_ , use_auth_token=SCREAMING_SNAKE_CASE_ , user_agent=SCREAMING_SNAKE_CASE_ , subfolder=SCREAMING_SNAKE_CASE_ , revision=revision or commit_hash , )
warnings.warn(
F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , SCREAMING_SNAKE_CASE_ , )
return model_file
except: # noqa: E722
warnings.warn(
F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}\' so that the correct variant file can be added.''' , SCREAMING_SNAKE_CASE_ , )
try:
# 2. Load model file as usual
_lowerCAmelCase = hf_hub_download(
SCREAMING_SNAKE_CASE_ , filename=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , force_download=SCREAMING_SNAKE_CASE_ , proxies=SCREAMING_SNAKE_CASE_ , resume_download=SCREAMING_SNAKE_CASE_ , local_files_only=SCREAMING_SNAKE_CASE_ , use_auth_token=SCREAMING_SNAKE_CASE_ , user_agent=SCREAMING_SNAKE_CASE_ , subfolder=SCREAMING_SNAKE_CASE_ , revision=revision or commit_hash , )
return model_file
except RepositoryNotFoundError:
raise EnvironmentError(
F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier '''
"listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
"token having permission to this repo with `use_auth_token` or log in with `huggingface-cli "
"login`." )
except RevisionNotFoundError:
raise EnvironmentError(
F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for '''
"this model name. Check the model page at "
F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' )
except EntryNotFoundError:
raise EnvironmentError(
F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' )
except HTTPError as err:
raise EnvironmentError(
F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' )
except ValueError:
raise EnvironmentError(
F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it'''
F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a'''
F''' directory containing a file named {weights_name} or'''
" \nCheckout your internet connection or see how to run the library in"
" offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." )
except EnvironmentError:
raise EnvironmentError(
F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from '''
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory '''
F'''containing a file named {weights_name}''' )
| 18 |
'''simple docstring'''
from typing import Dict, Iterable, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : int = ["pixel_values"]
def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = IMAGENET_DEFAULT_MEAN , _lowerCAmelCase = IMAGENET_DEFAULT_STD , **_lowerCAmelCase , ) -> None:
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = size if size is not None else {"shortest_edge": 224}
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
_lowerCAmelCase = crop_size if crop_size is not None else {"height": 224, "width": 224}
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" )
_lowerCAmelCase = do_resize
_lowerCAmelCase = size
_lowerCAmelCase = resample
_lowerCAmelCase = do_center_crop
_lowerCAmelCase = crop_size
_lowerCAmelCase = do_rescale
_lowerCAmelCase = rescale_factor
_lowerCAmelCase = do_normalize
_lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
_lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray:
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
# size_dict is a dict with either keys "height" and "width" or "shortest_edge"
if "shortest_edge" in size:
_lowerCAmelCase = int((256 / 224) * size["shortest_edge"] )
_lowerCAmelCase = get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase )
_lowerCAmelCase = {"height": output_size[0], "width": output_size[1]}
if "height" not in size_dict or "width" not in size_dict:
raise ValueError(
f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' )
return resize(
_lowerCAmelCase , size=(size_dict["height"], size_dict["width"]) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray:
_lowerCAmelCase = get_size_dict(_lowerCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray:
return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray:
return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ) -> BatchFeature:
_lowerCAmelCase = do_resize if do_resize is not None else self.do_resize
_lowerCAmelCase = resample if resample is not None else self.resample
_lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
_lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
_lowerCAmelCase = image_mean if image_mean is not None else self.image_mean
_lowerCAmelCase = image_std if image_std is not None else self.image_std
_lowerCAmelCase = size if size is not None else self.size
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
_lowerCAmelCase = crop_size if crop_size is not None else self.crop_size
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" )
_lowerCAmelCase = make_list_of_images(_lowerCAmelCase )
if not valid_images(_lowerCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
_lowerCAmelCase = [to_numpy_array(_lowerCAmelCase ) for image in images]
if do_resize:
_lowerCAmelCase = [self.resize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images]
if do_center_crop:
_lowerCAmelCase = [self.center_crop(_lowerCAmelCase , _lowerCAmelCase ) for image in images]
if do_rescale:
_lowerCAmelCase = [self.rescale(_lowerCAmelCase , _lowerCAmelCase ) for image in images]
if do_normalize:
_lowerCAmelCase = [self.normalize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images]
_lowerCAmelCase = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images]
_lowerCAmelCase = {"pixel_values": images}
return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json",
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : str = "layoutlmv3"
def __init__( self , _lowerCAmelCase=50265 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=1024 , _lowerCAmelCase=128 , _lowerCAmelCase=128 , _lowerCAmelCase=True , _lowerCAmelCase=32 , _lowerCAmelCase=128 , _lowerCAmelCase=64 , _lowerCAmelCase=256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=224 , _lowerCAmelCase=3 , _lowerCAmelCase=16 , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Optional[Any]:
super().__init__(
vocab_size=_lowerCAmelCase , hidden_size=_lowerCAmelCase , num_hidden_layers=_lowerCAmelCase , num_attention_heads=_lowerCAmelCase , intermediate_size=_lowerCAmelCase , hidden_act=_lowerCAmelCase , hidden_dropout_prob=_lowerCAmelCase , attention_probs_dropout_prob=_lowerCAmelCase , max_position_embeddings=_lowerCAmelCase , type_vocab_size=_lowerCAmelCase , initializer_range=_lowerCAmelCase , layer_norm_eps=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
_lowerCAmelCase = max_ad_position_embeddings
_lowerCAmelCase = coordinate_size
_lowerCAmelCase = shape_size
_lowerCAmelCase = has_relative_attention_bias
_lowerCAmelCase = rel_pos_bins
_lowerCAmelCase = max_rel_pos
_lowerCAmelCase = has_spatial_attention_bias
_lowerCAmelCase = rel_ad_pos_bins
_lowerCAmelCase = max_rel_ad_pos
_lowerCAmelCase = text_embed
_lowerCAmelCase = visual_embed
_lowerCAmelCase = input_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = patch_size
_lowerCAmelCase = classifier_dropout
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : int = version.parse("1.12" )
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
# The order of inputs is different for question answering and sequence classification
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("attention_mask", {0: "batch", 1: "sequence"}),
("bbox", {0: "batch", 1: "sequence"}),
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
else:
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("bbox", {0: "batch", 1: "sequence"}),
("attention_mask", {0: "batch", 1: "sequence"}),
("pixel_values", {0: "batch", 1: "num_channels"}),
] )
@property
def _snake_case ( self ) -> float:
return 1E-5
@property
def _snake_case ( self ) -> int:
return 12
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = 3 , _lowerCAmelCase = 40 , _lowerCAmelCase = 40 , ) -> Mapping[str, Any]:
setattr(processor.image_processor , "apply_ocr" , _lowerCAmelCase )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
_lowerCAmelCase = compute_effective_axis_dimension(
_lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
_lowerCAmelCase = processor.tokenizer.num_special_tokens_to_add(_lowerCAmelCase )
_lowerCAmelCase = compute_effective_axis_dimension(
_lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase )
# Generate dummy inputs according to compute batch and sequence
_lowerCAmelCase = [[" ".join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
_lowerCAmelCase = [[[48, 84, 73, 128]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
_lowerCAmelCase = self._generate_dummy_images(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = dict(
processor(
_lowerCAmelCase , text=_lowerCAmelCase , boxes=_lowerCAmelCase , return_tensors=_lowerCAmelCase , ) )
return inputs
| 18 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json",
# See all Donut models at https://huggingface.co/models?filter=donut-swin
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Union[str, Any] = "donut-swin"
__lowerCamelCase : int = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , **_lowerCAmelCase , ) -> Optional[Any]:
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = embed_dim
_lowerCAmelCase = depths
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = num_heads
_lowerCAmelCase = window_size
_lowerCAmelCase = mlp_ratio
_lowerCAmelCase = qkv_bias
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = drop_path_rate
_lowerCAmelCase = hidden_act
_lowerCAmelCase = use_absolute_embeddings
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
| 18 | 1 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
_SCREAMING_SNAKE_CASE = 25_00_04
_SCREAMING_SNAKE_CASE = 25_00_20
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ):
__lowerCamelCase : Any = MBartaaTokenizer
__lowerCamelCase : List[Any] = MBartaaTokenizerFast
__lowerCamelCase : List[Any] = True
__lowerCamelCase : str = True
def _snake_case ( self ) -> Optional[int]:
super().setUp()
# We have a SentencePiece fixture for testing
_lowerCAmelCase = MBartaaTokenizer(_lowerCAmelCase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=_lowerCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = "<s>"
_lowerCAmelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase )
def _snake_case ( self ) -> str:
_lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(_lowerCAmelCase ) , 1054 )
def _snake_case ( self ) -> int:
self.assertEqual(self.get_tokenizer().vocab_size , 1054 )
def _snake_case ( self ) -> str:
_lowerCAmelCase = MBartaaTokenizer(_lowerCAmelCase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=_lowerCAmelCase )
_lowerCAmelCase = tokenizer.tokenize("This is a test" )
self.assertListEqual(_lowerCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_lowerCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_lowerCAmelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , )
_lowerCAmelCase = tokenizer.convert_tokens_to_ids(_lowerCAmelCase )
self.assertListEqual(
_lowerCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
_lowerCAmelCase = tokenizer.convert_ids_to_tokens(_lowerCAmelCase )
self.assertListEqual(
_lowerCAmelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , )
@slow
def _snake_case ( self ) -> Tuple:
# fmt: off
_lowerCAmelCase = {"input_ids": [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowerCAmelCase , model_name="facebook/mbart-large-50" , revision="d3913889c59cd5c9e456b269c376325eabad57e2" , )
def _snake_case ( self ) -> Dict:
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
_lowerCAmelCase = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart50", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
_lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase )
_lowerCAmelCase = self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase )
_lowerCAmelCase = tempfile.mkdtemp()
_lowerCAmelCase = tokenizer_r.save_pretrained(_lowerCAmelCase )
_lowerCAmelCase = tokenizer_p.save_pretrained(_lowerCAmelCase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) )
_lowerCAmelCase = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f )
self.assertSequenceEqual(_lowerCAmelCase , _lowerCAmelCase )
# Checks everything loads correctly in the same way
_lowerCAmelCase = tokenizer_r.from_pretrained(_lowerCAmelCase )
_lowerCAmelCase = tokenizer_p.from_pretrained(_lowerCAmelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(_lowerCAmelCase )
# Save tokenizer rust, legacy_format=True
_lowerCAmelCase = tempfile.mkdtemp()
_lowerCAmelCase = tokenizer_r.save_pretrained(_lowerCAmelCase , legacy_format=_lowerCAmelCase )
_lowerCAmelCase = tokenizer_p.save_pretrained(_lowerCAmelCase )
# Checks it save with the same files
self.assertSequenceEqual(_lowerCAmelCase , _lowerCAmelCase )
# Checks everything loads correctly in the same way
_lowerCAmelCase = tokenizer_r.from_pretrained(_lowerCAmelCase )
_lowerCAmelCase = tokenizer_p.from_pretrained(_lowerCAmelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) )
shutil.rmtree(_lowerCAmelCase )
# Save tokenizer rust, legacy_format=False
_lowerCAmelCase = tempfile.mkdtemp()
_lowerCAmelCase = tokenizer_r.save_pretrained(_lowerCAmelCase , legacy_format=_lowerCAmelCase )
_lowerCAmelCase = tokenizer_p.save_pretrained(_lowerCAmelCase )
# Checks it saved the tokenizer.json file
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
_lowerCAmelCase = tokenizer_r.from_pretrained(_lowerCAmelCase )
_lowerCAmelCase = tokenizer_p.from_pretrained(_lowerCAmelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) )
shutil.rmtree(_lowerCAmelCase )
@require_torch
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase_ ( unittest.TestCase ):
__lowerCamelCase : List[str] = "facebook/mbart-large-50-one-to-many-mmt"
__lowerCamelCase : int = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
__lowerCamelCase : Dict = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
__lowerCamelCase : Optional[Any] = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2]
@classmethod
def _snake_case ( cls ) -> List[str]:
_lowerCAmelCase = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" )
_lowerCAmelCase = 1
return cls
def _snake_case ( self ) -> Any:
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 250001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 250004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 250020 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"] , 250038 )
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _lowerCAmelCase )
def _snake_case ( self ) -> int:
self.assertIn(_lowerCAmelCase , self.tokenizer.all_special_ids )
_lowerCAmelCase = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
_lowerCAmelCase = self.tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )
_lowerCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , _lowerCAmelCase )
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase = ["this is gunna be a long sentence " * 20]
assert isinstance(src_text[0] , _lowerCAmelCase )
_lowerCAmelCase = 10
_lowerCAmelCase = self.tokenizer(_lowerCAmelCase , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase ).input_ids[0]
self.assertEqual(ids[0] , _lowerCAmelCase )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase )
def _snake_case ( self ) -> List[str]:
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [250053, 250001] )
def _snake_case ( self ) -> str:
_lowerCAmelCase = tempfile.mkdtemp()
_lowerCAmelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_lowerCAmelCase )
_lowerCAmelCase = MBartaaTokenizer.from_pretrained(_lowerCAmelCase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowerCAmelCase )
@require_torch
def _snake_case ( self ) -> str:
_lowerCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowerCAmelCase , return_tensors="pt" )
_lowerCAmelCase = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , )
_lowerCAmelCase = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
_lowerCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _lowerCAmelCase )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def _snake_case ( self ) -> str:
_lowerCAmelCase = self.tokenizer(self.src_text , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=3 , return_tensors="pt" )
_lowerCAmelCase = self.tokenizer(
text_target=self.tgt_text , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=10 , return_tensors="pt" )
_lowerCAmelCase = targets["input_ids"]
_lowerCAmelCase = shift_tokens_right(_lowerCAmelCase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def _snake_case ( self ) -> str:
_lowerCAmelCase = self.tokenizer._build_translation_inputs(
"A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" )
self.assertEqual(
nested_simplify(_lowerCAmelCase ) , {
# en_XX, A, test, EOS
"input_ids": [[250004, 62, 3034, 2]],
"attention_mask": [[1, 1, 1, 1]],
# ar_AR
"forced_bos_token_id": 250001,
} , )
| 18 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"microsoft/swinv2-tiny-patch4-window8-256": (
"https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json"
),
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Union[str, Any] = "swinv2"
__lowerCamelCase : int = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=32 , **_lowerCAmelCase , ) -> Tuple:
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = embed_dim
_lowerCAmelCase = depths
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = num_heads
_lowerCAmelCase = window_size
_lowerCAmelCase = mlp_ratio
_lowerCAmelCase = qkv_bias
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = drop_path_rate
_lowerCAmelCase = hidden_act
_lowerCAmelCase = use_absolute_embeddings
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = initializer_range
_lowerCAmelCase = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
_lowerCAmelCase = (0, 0, 0, 0)
| 18 | 1 |
'''simple docstring'''
from __future__ import annotations
from numpy import array, cos, cross, floataa, radians, sin
from numpy.typing import NDArray
def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : bool = False ):
'''simple docstring'''
if radian_mode:
return [magnitude * cos(SCREAMING_SNAKE_CASE_ ), magnitude * sin(SCREAMING_SNAKE_CASE_ )]
return [magnitude * cos(radians(SCREAMING_SNAKE_CASE_ ) ), magnitude * sin(radians(SCREAMING_SNAKE_CASE_ ) )]
def __a(SCREAMING_SNAKE_CASE_ : NDArray[floataa] , SCREAMING_SNAKE_CASE_ : NDArray[floataa] , SCREAMING_SNAKE_CASE_ : float = 10**-1 ):
'''simple docstring'''
_lowerCAmelCase = cross(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = sum(SCREAMING_SNAKE_CASE_ )
return abs(SCREAMING_SNAKE_CASE_ ) < eps
if __name__ == "__main__":
# Test to check if it works
_SCREAMING_SNAKE_CASE = array(
[
polar_force(718.4, 1_80 - 30),
polar_force(879.54, 45),
polar_force(1_00, -90),
]
)
_SCREAMING_SNAKE_CASE = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem 1 in image_data/2D_problems.jpg
_SCREAMING_SNAKE_CASE = array(
[
polar_force(30 * 9.81, 15),
polar_force(2_15, 1_80 - 45),
polar_force(2_64, 90 - 30),
]
)
_SCREAMING_SNAKE_CASE = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem in image_data/2D_problems_1.jpg
_SCREAMING_SNAKE_CASE = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]])
_SCREAMING_SNAKE_CASE = array([[0, 0], [6, 0], [10, 0], [12, 0]])
assert in_static_equilibrium(forces, location)
import doctest
doctest.testmod()
| 18 |
'''simple docstring'''
import gc
import unittest
import torch
from parameterized import parameterized
from diffusers import AutoencoderKL
from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ):
__lowerCamelCase : Optional[Any] = AutoencoderKL
__lowerCamelCase : List[Any] = "sample"
__lowerCamelCase : Tuple = 1e-2
@property
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = 4
_lowerCAmelCase = 3
_lowerCAmelCase = (32, 32)
_lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCAmelCase )
return {"sample": image}
@property
def _snake_case ( self ) -> Any:
return (3, 32, 32)
@property
def _snake_case ( self ) -> List[Any]:
return (3, 32, 32)
def _snake_case ( self ) -> str:
_lowerCAmelCase = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
}
_lowerCAmelCase = self.dummy_input
return init_dict, inputs_dict
def _snake_case ( self ) -> Optional[int]:
pass
def _snake_case ( self ) -> Any:
pass
@unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" )
def _snake_case ( self ) -> str:
# enable deterministic behavior for gradient checkpointing
_lowerCAmelCase , _lowerCAmelCase = self.prepare_init_args_and_inputs_for_common()
_lowerCAmelCase = self.model_class(**_lowerCAmelCase )
model.to(_lowerCAmelCase )
assert not model.is_gradient_checkpointing and model.training
_lowerCAmelCase = model(**_lowerCAmelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
_lowerCAmelCase = torch.randn_like(_lowerCAmelCase )
_lowerCAmelCase = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
_lowerCAmelCase = self.model_class(**_lowerCAmelCase )
# clone model
model_a.load_state_dict(model.state_dict() )
model_a.to(_lowerCAmelCase )
model_a.enable_gradient_checkpointing()
assert model_a.is_gradient_checkpointing and model_a.training
_lowerCAmelCase = model_a(**_lowerCAmelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_a.zero_grad()
_lowerCAmelCase = (out_a - labels).mean()
loss_a.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_a).abs() < 1E-5 )
_lowerCAmelCase = dict(model.named_parameters() )
_lowerCAmelCase = dict(model_a.named_parameters() )
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) )
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase , _lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
self.assertEqual(len(loading_info["missing_keys"] ) , 0 )
model.to(_lowerCAmelCase )
_lowerCAmelCase = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" )
_lowerCAmelCase = model.to(_lowerCAmelCase )
model.eval()
if torch_device == "mps":
_lowerCAmelCase = torch.manual_seed(0 )
else:
_lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 )
_lowerCAmelCase = torch.randn(
1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , )
_lowerCAmelCase = image.to(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase , sample_posterior=_lowerCAmelCase , generator=_lowerCAmelCase ).sample
_lowerCAmelCase = output[0, -1, -3:, -3:].flatten().cpu()
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device == "mps":
_lowerCAmelCase = torch.tensor(
[
-4.0078E-01,
-3.8323E-04,
-1.2681E-01,
-1.1462E-01,
2.0095E-01,
1.0893E-01,
-8.8247E-02,
-3.0361E-01,
-9.8644E-03,
] )
elif torch_device == "cpu":
_lowerCAmelCase = torch.tensor(
[-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] )
else:
_lowerCAmelCase = torch.tensor(
[-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] )
self.assertTrue(torch_all_close(_lowerCAmelCase , _lowerCAmelCase , rtol=1E-2 ) )
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]:
return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy'''
def _snake_case ( self ) -> List[str]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self , _lowerCAmelCase=0 , _lowerCAmelCase=(4, 3, 512, 512) , _lowerCAmelCase=False ) -> Tuple:
_lowerCAmelCase = torch.floataa if fpaa else torch.floataa
_lowerCAmelCase = torch.from_numpy(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) ).to(_lowerCAmelCase ).to(_lowerCAmelCase )
return image
def _snake_case ( self , _lowerCAmelCase="CompVis/stable-diffusion-v1-4" , _lowerCAmelCase=False ) -> Tuple:
_lowerCAmelCase = "fp16" if fpaa else None
_lowerCAmelCase = torch.floataa if fpaa else torch.floataa
_lowerCAmelCase = AutoencoderKL.from_pretrained(
_lowerCAmelCase , subfolder="vae" , torch_dtype=_lowerCAmelCase , revision=_lowerCAmelCase , )
model.to(_lowerCAmelCase ).eval()
return model
def _snake_case ( self , _lowerCAmelCase=0 ) -> str:
if torch_device == "mps":
return torch.manual_seed(_lowerCAmelCase )
return torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase )
@parameterized.expand(
[
# fmt: off
[33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
[47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
# fmt: on
] )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase )
_lowerCAmelCase = self.get_generator(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample
assert sample.shape == image.shape
_lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu()
_lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 )
@parameterized.expand(
[
# fmt: off
[33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]],
[47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]],
# fmt: on
] )
@require_torch_gpu
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase )
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , fpaa=_lowerCAmelCase )
_lowerCAmelCase = self.get_generator(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample
assert sample.shape == image.shape
_lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu()
_lowerCAmelCase = torch.tensor(_lowerCAmelCase )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
[47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
# fmt: on
] )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase ).sample
assert sample.shape == image.shape
_lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu()
_lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 )
@parameterized.expand(
[
# fmt: off
[13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]],
[37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]],
# fmt: on
] )
@require_torch_gpu
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) )
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
_lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().cpu()
_lowerCAmelCase = torch.tensor(_lowerCAmelCase )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 )
@parameterized.expand(
[
# fmt: off
[27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]],
[16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]],
# fmt: on
] )
@require_torch_gpu
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> str:
_lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase )
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
_lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu()
_lowerCAmelCase = torch.tensor(_lowerCAmelCase )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=5E-3 )
@parameterized.expand([(13,), (16,), (27,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." )
def _snake_case ( self , _lowerCAmelCase ) -> List[str]:
_lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase )
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-1 )
@parameterized.expand([(13,), (16,), (37,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." )
def _snake_case ( self , _lowerCAmelCase ) -> Any:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) )
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
[47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
# fmt: on
] )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase )
_lowerCAmelCase = self.get_generator(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model.encode(_lowerCAmelCase ).latent_dist
_lowerCAmelCase = dist.sample(generator=_lowerCAmelCase )
assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
_lowerCAmelCase = sample[0, -1, -3:, -3:].flatten().cpu()
_lowerCAmelCase = torch.tensor(_lowerCAmelCase )
_lowerCAmelCase = 3E-3 if torch_device != "mps" else 1E-2
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=_lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.json"}
_SCREAMING_SNAKE_CASE = {
"vocab_file": {
"mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json",
}
}
_SCREAMING_SNAKE_CASE = {"mgp-str": 27}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : List[Any] = VOCAB_FILES_NAMES
__lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP
__lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , _lowerCAmelCase , _lowerCAmelCase="[GO]" , _lowerCAmelCase="[GO]" , _lowerCAmelCase="[s]" , _lowerCAmelCase="[GO]" , **_lowerCAmelCase ) -> Union[str, Any]:
super().__init__(
unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , **_lowerCAmelCase , )
with open(_lowerCAmelCase , encoding="utf-8" ) as vocab_handle:
_lowerCAmelCase = json.load(_lowerCAmelCase )
_lowerCAmelCase = {v: k for k, v in self.vocab.items()}
@property
def _snake_case ( self ) -> Union[str, Any]:
return len(self.vocab )
def _snake_case ( self ) -> int:
return dict(self.vocab , **self.added_tokens_encoder )
def _snake_case ( self , _lowerCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase = []
for s in text:
char_tokens.extend(_lowerCAmelCase )
return char_tokens
def _snake_case ( self , _lowerCAmelCase ) -> Tuple:
return self.vocab.get(_lowerCAmelCase , self.vocab.get(self.unk_token ) )
def _snake_case ( self , _lowerCAmelCase ) -> str:
return self.decoder.get(_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(_lowerCAmelCase ):
logger.error("Vocabulary path ({}) should be a directory".format(_lowerCAmelCase ) )
return
_lowerCAmelCase = os.path.join(
_lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + "\n" )
return (vocab_file,)
| 18 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json",
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : str = "gpt_bigcode"
__lowerCamelCase : Optional[int] = ["past_key_values"]
__lowerCamelCase : List[str] = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , _lowerCAmelCase=50257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=50256 , _lowerCAmelCase=50256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]:
_lowerCAmelCase = vocab_size
_lowerCAmelCase = n_positions
_lowerCAmelCase = n_embd
_lowerCAmelCase = n_layer
_lowerCAmelCase = n_head
_lowerCAmelCase = n_inner
_lowerCAmelCase = activation_function
_lowerCAmelCase = resid_pdrop
_lowerCAmelCase = embd_pdrop
_lowerCAmelCase = attn_pdrop
_lowerCAmelCase = layer_norm_epsilon
_lowerCAmelCase = initializer_range
_lowerCAmelCase = scale_attn_weights
_lowerCAmelCase = use_cache
_lowerCAmelCase = attention_softmax_in_fpaa
_lowerCAmelCase = scale_attention_softmax_in_fpaa
_lowerCAmelCase = multi_query
_lowerCAmelCase = bos_token_id
_lowerCAmelCase = eos_token_id
super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
import math
def __a(SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
_lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = int(math.floor(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) )
_lowerCAmelCase = 0
while arr[min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) - 1] < x:
_lowerCAmelCase = step
step += int(math.floor(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) )
if prev >= n:
return -1
while arr[prev] < x:
_lowerCAmelCase = prev + 1
if prev == min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return -1
if arr[prev] == x:
return prev
return -1
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = input("Enter numbers separated by a comma:\n").strip()
_SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(",")]
_SCREAMING_SNAKE_CASE = int(input("Enter the number to be searched:\n"))
_SCREAMING_SNAKE_CASE = jump_search(arr, x)
if res == -1:
print("Number not found!")
else:
print(f'''Number {x} is at index {res}''')
| 18 |
'''simple docstring'''
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json",
# See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : List[Any] = "data2vec-audio"
def __init__( self , _lowerCAmelCase=32 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase="gelu" , _lowerCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _lowerCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase=False , _lowerCAmelCase=16 , _lowerCAmelCase=19 , _lowerCAmelCase=5 , _lowerCAmelCase=0.05 , _lowerCAmelCase=10 , _lowerCAmelCase=2 , _lowerCAmelCase=0.0 , _lowerCAmelCase=10 , _lowerCAmelCase=0 , _lowerCAmelCase="sum" , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=256 , _lowerCAmelCase=(512, 512, 512, 512, 1500) , _lowerCAmelCase=(5, 3, 3, 1, 1) , _lowerCAmelCase=(1, 2, 3, 1, 1) , _lowerCAmelCase=512 , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=False , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Dict:
super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase )
_lowerCAmelCase = hidden_size
_lowerCAmelCase = feat_extract_activation
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = conv_bias
_lowerCAmelCase = num_conv_pos_embeddings
_lowerCAmelCase = num_conv_pos_embedding_groups
_lowerCAmelCase = conv_pos_kernel_size
_lowerCAmelCase = len(self.conv_dim )
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = hidden_dropout
_lowerCAmelCase = attention_dropout
_lowerCAmelCase = activation_dropout
_lowerCAmelCase = feat_proj_dropout
_lowerCAmelCase = final_dropout
_lowerCAmelCase = layerdrop
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = initializer_range
_lowerCAmelCase = vocab_size
_lowerCAmelCase = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_lowerCAmelCase = mask_time_prob
_lowerCAmelCase = mask_time_length
_lowerCAmelCase = mask_time_min_masks
_lowerCAmelCase = mask_feature_prob
_lowerCAmelCase = mask_feature_length
_lowerCAmelCase = mask_feature_min_masks
# ctc loss
_lowerCAmelCase = ctc_loss_reduction
_lowerCAmelCase = ctc_zero_infinity
# adapter
_lowerCAmelCase = add_adapter
_lowerCAmelCase = adapter_kernel_size
_lowerCAmelCase = adapter_stride
_lowerCAmelCase = num_adapter_layers
_lowerCAmelCase = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
_lowerCAmelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = xvector_output_dim
@property
def _snake_case ( self ) -> str:
return math.prod(self.conv_stride )
| 18 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotSmallConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
_SCREAMING_SNAKE_CASE = "platform"
import jax
import jax.numpy as jnp
from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
shift_tokens_right,
)
def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , SCREAMING_SNAKE_CASE_ : Dict=None , ):
'''simple docstring'''
if attention_mask is None:
_lowerCAmelCase = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
_lowerCAmelCase = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
_lowerCAmelCase = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_lowerCAmelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_lowerCAmelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=99 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=32 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=0.02 , ) -> Optional[int]:
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = seq_length
_lowerCAmelCase = is_training
_lowerCAmelCase = use_labels
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = eos_token_id
_lowerCAmelCase = pad_token_id
_lowerCAmelCase = bos_token_id
_lowerCAmelCase = initializer_range
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
_lowerCAmelCase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
_lowerCAmelCase = shift_tokens_right(_lowerCAmelCase , 1 , 2 )
_lowerCAmelCase = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCAmelCase , )
_lowerCAmelCase = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
return config, inputs_dict
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase , _lowerCAmelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]:
_lowerCAmelCase = 20
_lowerCAmelCase = model_class_name(_lowerCAmelCase )
_lowerCAmelCase = model.encode(inputs_dict["input_ids"] )
_lowerCAmelCase , _lowerCAmelCase = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
_lowerCAmelCase = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" )
_lowerCAmelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_lowerCAmelCase = model.decode(
decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , )
_lowerCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" )
_lowerCAmelCase = model.decode(
decoder_input_ids[:, -1:] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCAmelCase , )
_lowerCAmelCase = model.decode(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Any:
_lowerCAmelCase = 20
_lowerCAmelCase = model_class_name(_lowerCAmelCase )
_lowerCAmelCase = model.encode(inputs_dict["input_ids"] )
_lowerCAmelCase , _lowerCAmelCase = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
_lowerCAmelCase = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_lowerCAmelCase = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_lowerCAmelCase = model.decode(
decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , )
_lowerCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" )
_lowerCAmelCase = model.decode(
decoder_input_ids[:, -1:] , _lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , )
_lowerCAmelCase = model.decode(_lowerCAmelCase , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase )
_lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' )
@require_flax
class lowerCAmelCase_ ( unittest.TestCase ):
__lowerCamelCase : str = 99
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
_lowerCAmelCase = input_ids.shape[0]
_lowerCAmelCase = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self._get_config_and_data()
_lowerCAmelCase = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase )
_lowerCAmelCase = lm_model(input_ids=_lowerCAmelCase )
_lowerCAmelCase = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["logits"].shape , _lowerCAmelCase )
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
_lowerCAmelCase = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase )
_lowerCAmelCase = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa )
_lowerCAmelCase = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa )
_lowerCAmelCase = lm_model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase )
_lowerCAmelCase = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["logits"].shape , _lowerCAmelCase )
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa )
_lowerCAmelCase = shift_tokens_right(_lowerCAmelCase , 1 , 2 )
_lowerCAmelCase = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum()
_lowerCAmelCase = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(_lowerCAmelCase , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ,__magic_name__ ):
__lowerCamelCase : List[Any] = True
__lowerCamelCase : List[str] = (
(
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallForConditionalGeneration,
)
if is_flax_available()
else ()
)
__lowerCamelCase : Optional[Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else ()
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase = FlaxBlenderbotSmallModelTester(self )
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> Dict:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> int:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = model_class(_lowerCAmelCase )
@jax.jit
def encode_jitted(_lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ):
return model.encode(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )
with self.subTest("JIT Enabled" ):
_lowerCAmelCase = encode_jitted(**_lowerCAmelCase ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
_lowerCAmelCase = encode_jitted(**_lowerCAmelCase ).to_tuple()
self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) )
for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def _snake_case ( self ) -> Any:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_lowerCAmelCase = model_class(_lowerCAmelCase )
_lowerCAmelCase = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] )
_lowerCAmelCase = {
"decoder_input_ids": inputs_dict["decoder_input_ids"],
"decoder_attention_mask": inputs_dict["decoder_attention_mask"],
"encoder_outputs": encoder_outputs,
}
@jax.jit
def decode_jitted(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
return model.decode(
decoder_input_ids=_lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , encoder_outputs=_lowerCAmelCase , )
with self.subTest("JIT Enabled" ):
_lowerCAmelCase = decode_jitted(**_lowerCAmelCase ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
_lowerCAmelCase = decode_jitted(**_lowerCAmelCase ).to_tuple()
self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) )
for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def _snake_case ( self ) -> Dict:
for model_class_name in self.all_model_classes:
_lowerCAmelCase = model_class_name.from_pretrained("facebook/blenderbot_small-90M" )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
_lowerCAmelCase = np.ones((1, 1) ) * model.config.eos_token_id
_lowerCAmelCase = model(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
| 18 |
'''simple docstring'''
import torch
from diffusers import DDPMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Any = (DDPMParallelScheduler,)
def _snake_case ( self , **_lowerCAmelCase ) -> int:
_lowerCAmelCase = {
"num_train_timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"variance_type": "fixed_small",
"clip_sample": True,
}
config.update(**_lowerCAmelCase )
return config
def _snake_case ( self ) -> List[Any]:
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=_lowerCAmelCase )
def _snake_case ( self ) -> List[Any]:
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase )
def _snake_case ( self ) -> Any:
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_lowerCAmelCase )
def _snake_case ( self ) -> Optional[Any]:
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=_lowerCAmelCase )
def _snake_case ( self ) -> Optional[int]:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_lowerCAmelCase )
def _snake_case ( self ) -> List[str]:
self.check_over_configs(thresholding=_lowerCAmelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , )
def _snake_case ( self ) -> int:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=_lowerCAmelCase )
def _snake_case ( self ) -> Dict:
for t in [0, 500, 999]:
self.check_over_forward(time_step=_lowerCAmelCase )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5
def _snake_case ( self ) -> Tuple:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
_lowerCAmelCase = self.dummy_sample_deter + 0.1
_lowerCAmelCase = self.dummy_sample_deter - 0.1
_lowerCAmelCase = samplea.shape[0]
_lowerCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 )
_lowerCAmelCase = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase )
_lowerCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
_lowerCAmelCase = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) )
_lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 1153.1833 ) < 1E-2
assert abs(result_mean.item() - 0.5005 ) < 1E-3
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
_lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(_lowerCAmelCase ) ):
# 1. predict noise residual
_lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase )
# 2. predict previous mean of sample x_t-1
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample
_lowerCAmelCase = pred_prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 258.9606 ) < 1E-2
assert abs(result_mean.item() - 0.3372 ) < 1E-3
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" )
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
_lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(_lowerCAmelCase ) ):
# 1. predict noise residual
_lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase )
# 2. predict previous mean of sample x_t-1
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample
_lowerCAmelCase = pred_prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 202.0296 ) < 1E-2
assert abs(result_mean.item() - 0.2631 ) < 1E-3
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=_lowerCAmelCase )
_lowerCAmelCase = scheduler.timesteps
for i, timestep in enumerate(_lowerCAmelCase ):
if i == len(_lowerCAmelCase ) - 1:
_lowerCAmelCase = -1
else:
_lowerCAmelCase = timesteps[i + 1]
_lowerCAmelCase = scheduler.previous_timestep(_lowerCAmelCase )
_lowerCAmelCase = prev_t.item()
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> Any:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = [100, 87, 50, 51, 0]
with self.assertRaises(_lowerCAmelCase , msg="`custom_timesteps` must be in descending order." ):
scheduler.set_timesteps(timesteps=_lowerCAmelCase )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = [100, 87, 50, 1, 0]
_lowerCAmelCase = len(_lowerCAmelCase )
with self.assertRaises(_lowerCAmelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ):
scheduler.set_timesteps(num_inference_steps=_lowerCAmelCase , timesteps=_lowerCAmelCase )
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_lowerCAmelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ):
scheduler.set_timesteps(timesteps=_lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class lowerCAmelCase_ ( nn.Module ):
__lowerCamelCase : int
__lowerCamelCase : int
__lowerCamelCase : float = 0.0
__lowerCamelCase : int = 1
__lowerCamelCase : int = 1
__lowerCamelCase : bool = True
__lowerCamelCase : bool = False
__lowerCamelCase : bool = False
__lowerCamelCase : bool = False
__lowerCamelCase : jnp.dtype = jnp.floataa
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = []
_lowerCAmelCase = []
for i in range(self.num_layers ):
_lowerCAmelCase = self.in_channels if i == 0 else self.out_channels
_lowerCAmelCase = FlaxResnetBlockaD(
in_channels=_lowerCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_lowerCAmelCase )
_lowerCAmelCase = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_lowerCAmelCase )
_lowerCAmelCase = resnets
_lowerCAmelCase = attentions
if self.add_downsample:
_lowerCAmelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=True ) -> Any:
_lowerCAmelCase = ()
for resnet, attn in zip(self.resnets , self.attentions ):
_lowerCAmelCase = resnet(_lowerCAmelCase , _lowerCAmelCase , deterministic=_lowerCAmelCase )
_lowerCAmelCase = attn(_lowerCAmelCase , _lowerCAmelCase , deterministic=_lowerCAmelCase )
output_states += (hidden_states,)
if self.add_downsample:
_lowerCAmelCase = self.downsamplers_a(_lowerCAmelCase )
output_states += (hidden_states,)
return hidden_states, output_states
class lowerCAmelCase_ ( nn.Module ):
__lowerCamelCase : int
__lowerCamelCase : int
__lowerCamelCase : float = 0.0
__lowerCamelCase : int = 1
__lowerCamelCase : bool = True
__lowerCamelCase : jnp.dtype = jnp.floataa
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase = []
for i in range(self.num_layers ):
_lowerCAmelCase = self.in_channels if i == 0 else self.out_channels
_lowerCAmelCase = FlaxResnetBlockaD(
in_channels=_lowerCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_lowerCAmelCase )
_lowerCAmelCase = resnets
if self.add_downsample:
_lowerCAmelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=True ) -> str:
_lowerCAmelCase = ()
for resnet in self.resnets:
_lowerCAmelCase = resnet(_lowerCAmelCase , _lowerCAmelCase , deterministic=_lowerCAmelCase )
output_states += (hidden_states,)
if self.add_downsample:
_lowerCAmelCase = self.downsamplers_a(_lowerCAmelCase )
output_states += (hidden_states,)
return hidden_states, output_states
class lowerCAmelCase_ ( nn.Module ):
__lowerCamelCase : int
__lowerCamelCase : int
__lowerCamelCase : int
__lowerCamelCase : float = 0.0
__lowerCamelCase : int = 1
__lowerCamelCase : int = 1
__lowerCamelCase : bool = True
__lowerCamelCase : bool = False
__lowerCamelCase : bool = False
__lowerCamelCase : bool = False
__lowerCamelCase : jnp.dtype = jnp.floataa
def _snake_case ( self ) -> int:
_lowerCAmelCase = []
_lowerCAmelCase = []
for i in range(self.num_layers ):
_lowerCAmelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels
_lowerCAmelCase = self.prev_output_channel if i == 0 else self.out_channels
_lowerCAmelCase = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_lowerCAmelCase )
_lowerCAmelCase = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_lowerCAmelCase )
_lowerCAmelCase = resnets
_lowerCAmelCase = attentions
if self.add_upsample:
_lowerCAmelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=True ) -> Any:
for resnet, attn in zip(self.resnets , self.attentions ):
# pop res hidden states
_lowerCAmelCase = res_hidden_states_tuple[-1]
_lowerCAmelCase = res_hidden_states_tuple[:-1]
_lowerCAmelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
_lowerCAmelCase = resnet(_lowerCAmelCase , _lowerCAmelCase , deterministic=_lowerCAmelCase )
_lowerCAmelCase = attn(_lowerCAmelCase , _lowerCAmelCase , deterministic=_lowerCAmelCase )
if self.add_upsample:
_lowerCAmelCase = self.upsamplers_a(_lowerCAmelCase )
return hidden_states
class lowerCAmelCase_ ( nn.Module ):
__lowerCamelCase : int
__lowerCamelCase : int
__lowerCamelCase : int
__lowerCamelCase : float = 0.0
__lowerCamelCase : int = 1
__lowerCamelCase : bool = True
__lowerCamelCase : jnp.dtype = jnp.floataa
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = []
for i in range(self.num_layers ):
_lowerCAmelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels
_lowerCAmelCase = self.prev_output_channel if i == 0 else self.out_channels
_lowerCAmelCase = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_lowerCAmelCase )
_lowerCAmelCase = resnets
if self.add_upsample:
_lowerCAmelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=True ) -> Optional[Any]:
for resnet in self.resnets:
# pop res hidden states
_lowerCAmelCase = res_hidden_states_tuple[-1]
_lowerCAmelCase = res_hidden_states_tuple[:-1]
_lowerCAmelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
_lowerCAmelCase = resnet(_lowerCAmelCase , _lowerCAmelCase , deterministic=_lowerCAmelCase )
if self.add_upsample:
_lowerCAmelCase = self.upsamplers_a(_lowerCAmelCase )
return hidden_states
class lowerCAmelCase_ ( nn.Module ):
__lowerCamelCase : int
__lowerCamelCase : float = 0.0
__lowerCamelCase : int = 1
__lowerCamelCase : int = 1
__lowerCamelCase : bool = False
__lowerCamelCase : bool = False
__lowerCamelCase : jnp.dtype = jnp.floataa
def _snake_case ( self ) -> str:
# there is always at least one resnet
_lowerCAmelCase = [
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
_lowerCAmelCase = []
for _ in range(self.num_layers ):
_lowerCAmelCase = FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_lowerCAmelCase )
_lowerCAmelCase = FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_lowerCAmelCase )
_lowerCAmelCase = resnets
_lowerCAmelCase = attentions
def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=True ) -> List[str]:
_lowerCAmelCase = self.resnets[0](_lowerCAmelCase , _lowerCAmelCase )
for attn, resnet in zip(self.attentions , self.resnets[1:] ):
_lowerCAmelCase = attn(_lowerCAmelCase , _lowerCAmelCase , deterministic=_lowerCAmelCase )
_lowerCAmelCase = resnet(_lowerCAmelCase , _lowerCAmelCase , deterministic=_lowerCAmelCase )
return hidden_states
| 18 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {"vocab_file": "spiece.model"}
_SCREAMING_SNAKE_CASE = {
"vocab_file": {
"TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model",
}
}
class lowerCAmelCase_ ( __magic_name__ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<sep>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<cls>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=["<eop>", "<eod>"] , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None:
_lowerCAmelCase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token
_lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , )
_lowerCAmelCase = 3
_lowerCAmelCase = do_lower_case
_lowerCAmelCase = remove_space
_lowerCAmelCase = keep_accents
_lowerCAmelCase = vocab_file
_lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_lowerCAmelCase )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"You need to install jieba to use CpmTokenizer or CpmTokenizerFast. "
"See https://pypi.org/project/jieba/ for installation." )
_lowerCAmelCase = jieba
_lowerCAmelCase = str.maketrans(" \n" , "\u2582\u2583" )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def _snake_case ( self ) -> Optional[int]:
return len(self.sp_model )
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Tuple:
_lowerCAmelCase = self.__dict__.copy()
_lowerCAmelCase = None
return state
def __setstate__( self , _lowerCAmelCase ) -> Dict:
_lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
_lowerCAmelCase = {}
_lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _snake_case ( self , _lowerCAmelCase ) -> str:
if self.remove_space:
_lowerCAmelCase = " ".join(inputs.strip().split() )
else:
_lowerCAmelCase = inputs
_lowerCAmelCase = outputs.replace("``" , "\"" ).replace("''" , "\"" )
if not self.keep_accents:
_lowerCAmelCase = unicodedata.normalize("NFKD" , _lowerCAmelCase )
_lowerCAmelCase = "".join([c for c in outputs if not unicodedata.combining(_lowerCAmelCase )] )
if self.do_lower_case:
_lowerCAmelCase = outputs.lower()
return outputs
def _snake_case ( self , _lowerCAmelCase ) -> List[str]:
_lowerCAmelCase = self.preprocess_text(_lowerCAmelCase )
_lowerCAmelCase = self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase )
_lowerCAmelCase = []
for piece in pieces:
if len(_lowerCAmelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit():
_lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCAmelCase , "" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
_lowerCAmelCase = cur_pieces[1:]
else:
_lowerCAmelCase = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_lowerCAmelCase )
else:
new_pieces.append(_lowerCAmelCase )
return new_pieces
def _snake_case ( self , _lowerCAmelCase ) -> str:
return self.sp_model.PieceToId(_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]:
return self.sp_model.IdToPiece(_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = "".join(_lowerCAmelCase ).replace(_lowerCAmelCase , " " ).strip()
return out_string
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]:
_lowerCAmelCase = [self.sep_token_id]
_lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase )
if token_ids_a is not None:
return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1, 1]
return ([0] * len(_lowerCAmelCase )) + [1, 1]
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]:
_lowerCAmelCase = [self.sep_token_id]
_lowerCAmelCase = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(_lowerCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase = os.path.join(
_lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _lowerCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCAmelCase , "wb" ) as fi:
_lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(_lowerCAmelCase )
return (out_vocab_file,)
def _snake_case ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase = super()._decode(*_lowerCAmelCase , **_lowerCAmelCase )
_lowerCAmelCase = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" )
return text
| 18 | 1 |
'''simple docstring'''
from collections import namedtuple
_SCREAMING_SNAKE_CASE = namedtuple("from_to", "from_ to")
_SCREAMING_SNAKE_CASE = {
"cubicmeter": from_to(1, 1),
"litre": from_to(0.001, 10_00),
"kilolitre": from_to(1, 1),
"gallon": from_to(0.0_0454, 264.172),
"cubicyard": from_to(0.7_6455, 1.3_0795),
"cubicfoot": from_to(0.028, 35.3147),
"cup": from_to(0.0_0023_6588, 4226.75),
}
def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
if from_type not in METRIC_CONVERSION:
raise ValueError(
F'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n'''
+ ", ".join(SCREAMING_SNAKE_CASE_ ) )
if to_type not in METRIC_CONVERSION:
raise ValueError(
F'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n'''
+ ", ".join(SCREAMING_SNAKE_CASE_ ) )
return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to
if __name__ == "__main__":
import doctest
doctest.testmod()
| 18 |
'''simple docstring'''
from sklearn.metrics import mean_squared_error
import datasets
_SCREAMING_SNAKE_CASE = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n"
_SCREAMING_SNAKE_CASE = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n"
_SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
def _snake_case ( self ) -> Dict:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"
] , )
def _snake_case ( self ) -> Tuple:
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("float" ) ),
"references": datasets.Sequence(datasets.Value("float" ) ),
}
else:
return {
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
}
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="uniform_average" , _lowerCAmelCase=True ) -> Union[str, Any]:
_lowerCAmelCase = mean_squared_error(
_lowerCAmelCase , _lowerCAmelCase , sample_weight=_lowerCAmelCase , multioutput=_lowerCAmelCase , squared=_lowerCAmelCase )
return {"mse": mse}
| 18 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel
from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class lowerCAmelCase_ ( unittest.TestCase ):
@property
def _snake_case ( self ) -> Optional[Any]:
torch.manual_seed(0 )
_lowerCAmelCase = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , )
return model
@property
def _snake_case ( self ) -> Optional[int]:
torch.manual_seed(0 )
_lowerCAmelCase = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , )
return model
@property
def _snake_case ( self ) -> Any:
torch.manual_seed(0 )
_lowerCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModel(_lowerCAmelCase )
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase = self.dummy_uncond_unet
_lowerCAmelCase = DDIMScheduler()
_lowerCAmelCase = self.dummy_vq_model
_lowerCAmelCase = LDMPipeline(unet=_lowerCAmelCase , vqvae=_lowerCAmelCase , scheduler=_lowerCAmelCase )
ldm.to(_lowerCAmelCase )
ldm.set_progress_bar_config(disable=_lowerCAmelCase )
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = ldm(generator=_lowerCAmelCase , num_inference_steps=2 , output_type="numpy" ).images
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = ldm(generator=_lowerCAmelCase , num_inference_steps=2 , output_type="numpy" , return_dict=_lowerCAmelCase )[0]
_lowerCAmelCase = image[0, -3:, -3:, -1]
_lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_lowerCAmelCase = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] )
_lowerCAmelCase = 1E-2 if torch_device != "mps" else 3E-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance
@slow
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256" )
ldm.to(_lowerCAmelCase )
ldm.set_progress_bar_config(disable=_lowerCAmelCase )
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = ldm(generator=_lowerCAmelCase , num_inference_steps=5 , output_type="numpy" ).images
_lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
_lowerCAmelCase = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447] )
_lowerCAmelCase = 1E-2 if torch_device != "mps" else 3E-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
| 18 |
'''simple docstring'''
def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 18 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from ..models.clipseg import CLIPSegForImageSegmentation
from ..utils import is_vision_available, requires_backends
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Tuple = (
"This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image."
"It takes two arguments named `image` which should be the original image, and `label` which should be a text "
"describing the elements what should be identified in the segmentation mask. The tool returns the mask."
)
__lowerCamelCase : int = "CIDAS/clipseg-rd64-refined"
__lowerCamelCase : Union[str, Any] = "image_segmenter"
__lowerCamelCase : Dict = CLIPSegForImageSegmentation
__lowerCamelCase : Tuple = ["image", "text"]
__lowerCamelCase : Optional[int] = ["image"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["vision"] )
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]:
return self.pre_processor(text=[label] , images=[image] , padding=_lowerCAmelCase , return_tensors="pt" )
def _snake_case ( self , _lowerCAmelCase ) -> Dict:
with torch.no_grad():
_lowerCAmelCase = self.model(**_lowerCAmelCase ).logits
return logits
def _snake_case ( self , _lowerCAmelCase ) -> int:
_lowerCAmelCase = outputs.cpu().detach().numpy()
_lowerCAmelCase = 0
_lowerCAmelCase = 1
return Image.fromarray((array * 255).astype(np.uinta ) )
| 18 |
'''simple docstring'''
from __future__ import annotations
def __a(SCREAMING_SNAKE_CASE_ : int | float | str , SCREAMING_SNAKE_CASE_ : int | float | str ):
'''simple docstring'''
if nth_term == "":
return [""]
_lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = []
for temp in range(int(SCREAMING_SNAKE_CASE_ ) ):
series.append(F'''1 / {pow(temp + 1 , int(SCREAMING_SNAKE_CASE_ ) )}''' if series else "1" )
return series
if __name__ == "__main__":
import doctest
doctest.testmod()
_SCREAMING_SNAKE_CASE = int(input("Enter the last number (nth term) of the P-Series"))
_SCREAMING_SNAKE_CASE = int(input("Enter the power for P-Series"))
print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p")
print(p_series(nth_term, power))
| 18 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"SCUT-DLVCLab/lilt-roberta-en-base": (
"https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json"
),
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : List[Any] = "lilt"
def __init__( self , _lowerCAmelCase=30522 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0 , _lowerCAmelCase="absolute" , _lowerCAmelCase=None , _lowerCAmelCase=4 , _lowerCAmelCase=1024 , **_lowerCAmelCase , ) -> Dict:
super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase )
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = hidden_act
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = type_vocab_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = position_embedding_type
_lowerCAmelCase = classifier_dropout
_lowerCAmelCase = channel_shrink_ratio
_lowerCAmelCase = max_ad_position_embeddings
| 18 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Dict = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[int] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[int] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : List[Any] ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Dict ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Dict = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Any = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[int] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Any = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[int] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[int] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : str = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Tuple = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Any = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Tuple = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : str = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Dict = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Any = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Dict = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : str = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Tuple = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : str = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
| 18 | 1 |
'''simple docstring'''
import inspect
import unittest
import warnings
from transformers import DeiTConfig
from transformers.models.auto import get_values
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
)
from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=30 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=10 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=None , _lowerCAmelCase=2 , ) -> int:
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = is_training
_lowerCAmelCase = use_labels
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = type_sequence_label_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = scope
_lowerCAmelCase = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
_lowerCAmelCase = (image_size // patch_size) ** 2
_lowerCAmelCase = num_patches + 2
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase = None
if self.use_labels:
_lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase = self.get_config()
return config, pixel_values, labels
def _snake_case ( self ) -> Union[str, Any]:
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]:
_lowerCAmelCase = DeiTModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = DeiTForMaskedImageModeling(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
_lowerCAmelCase = 1
_lowerCAmelCase = DeiTForMaskedImageModeling(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCAmelCase = model(_lowerCAmelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Any:
_lowerCAmelCase = self.type_sequence_label_size
_lowerCAmelCase = DeiTForImageClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_lowerCAmelCase = 1
_lowerCAmelCase = DeiTForImageClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCAmelCase = model(_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _snake_case ( self ) -> Tuple:
_lowerCAmelCase = self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) = config_and_inputs
_lowerCAmelCase = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ):
__lowerCamelCase : Tuple = (
(
DeiTModel,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
__lowerCamelCase : int = (
{
"feature-extraction": DeiTModel,
"image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
__lowerCamelCase : Dict = False
__lowerCamelCase : List[Any] = False
__lowerCamelCase : Union[str, Any] = False
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = DeiTModelTester(self )
_lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 )
def _snake_case ( self ) -> int:
self.config_tester.run_common_tests()
@unittest.skip(reason="DeiT does not use inputs_embeds" )
def _snake_case ( self ) -> List[Any]:
pass
def _snake_case ( self ) -> Any:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase = model_class(_lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_lowerCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) )
def _snake_case ( self ) -> Dict:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase = model_class(_lowerCAmelCase )
_lowerCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase = [*signature.parameters.keys()]
_lowerCAmelCase = ["pixel_values"]
self.assertListEqual(arg_names[:1] , _lowerCAmelCase )
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase )
def _snake_case ( self ) -> Any:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> int:
_lowerCAmelCase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase )
if return_labels:
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def _snake_case ( self ) -> Tuple:
if not self.model_tester.is_training:
return
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase = True
for model_class in self.all_model_classes:
# DeiTForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(_lowerCAmelCase )
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
_lowerCAmelCase = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.train()
_lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase )
_lowerCAmelCase = model(**_lowerCAmelCase ).loss
loss.backward()
def _snake_case ( self ) -> int:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
_lowerCAmelCase = False
_lowerCAmelCase = True
for model_class in self.all_model_classes:
if model_class in get_values(_lowerCAmelCase ) or not model_class.supports_gradient_checkpointing:
continue
# DeiTForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
continue
_lowerCAmelCase = model_class(_lowerCAmelCase )
model.gradient_checkpointing_enable()
model.to(_lowerCAmelCase )
model.train()
_lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase )
_lowerCAmelCase = model(**_lowerCAmelCase ).loss
loss.backward()
def _snake_case ( self ) -> int:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase = [
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
{"title": "regression", "num_labels": 1, "dtype": torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(_lowerCAmelCase ),
*get_values(_lowerCAmelCase ),
]
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=f'''Testing {model_class} with {problem_type['title']}''' ):
_lowerCAmelCase = problem_type["title"]
_lowerCAmelCase = problem_type["num_labels"]
_lowerCAmelCase = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.train()
_lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase )
if problem_type["num_labels"] > 1:
_lowerCAmelCase = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] )
_lowerCAmelCase = inputs["labels"].to(problem_type["dtype"] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=_lowerCAmelCase ) as warning_list:
_lowerCAmelCase = model(**_lowerCAmelCase ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
f'''Something is going wrong in the regression problem: intercepted {w.message}''' )
loss.backward()
@slow
def _snake_case ( self ) -> Any:
for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase = DeiTModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
def __a():
'''simple docstring'''
_lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class lowerCAmelCase_ ( unittest.TestCase ):
@cached_property
def _snake_case ( self ) -> Any:
return (
DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" )
if is_vision_available()
else None
)
@slow
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to(
_lowerCAmelCase )
_lowerCAmelCase = self.default_image_processor
_lowerCAmelCase = prepare_img()
_lowerCAmelCase = image_processor(images=_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
_lowerCAmelCase = model(**_lowerCAmelCase )
# verify the logits
_lowerCAmelCase = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
@slow
@require_accelerate
@require_torch_gpu
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = DeiTModel.from_pretrained(
"facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto" )
_lowerCAmelCase = self.default_image_processor
_lowerCAmelCase = prepare_img()
_lowerCAmelCase = image_processor(images=_lowerCAmelCase , return_tensors="pt" )
_lowerCAmelCase = inputs.pixel_values.to(_lowerCAmelCase )
# forward pass to make sure inference works in fp16
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase )
| 18 |
'''simple docstring'''
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple=None ):
'''simple docstring'''
_lowerCAmelCase = None
if token is not None:
_lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''}
_lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
_lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json()
_lowerCAmelCase = {}
try:
job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} )
_lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 )
for i in range(SCREAMING_SNAKE_CASE_ ):
_lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json()
job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} )
return job_links
except Exception:
print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict=None ):
'''simple docstring'''
_lowerCAmelCase = None
if token is not None:
_lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''}
_lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'''
_lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json()
_lowerCAmelCase = {}
try:
artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} )
_lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 )
for i in range(SCREAMING_SNAKE_CASE_ ):
_lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json()
artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} )
return artifacts
except Exception:
print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ):
'''simple docstring'''
_lowerCAmelCase = None
if token is not None:
_lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''}
_lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = result.headers["Location"]
_lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F'''{artifact_name}.zip''' )
with open(SCREAMING_SNAKE_CASE_ , "wb" ) as fp:
fp.write(response.content )
def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=None ):
'''simple docstring'''
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = None
with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z:
for filename in z.namelist():
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(SCREAMING_SNAKE_CASE_ ) as f:
for line in f:
_lowerCAmelCase = line.decode("UTF-8" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
_lowerCAmelCase = line[: line.index(": " )]
_lowerCAmelCase = line[line.index(": " ) + len(": " ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("FAILED " ):
# `test` is the test method that failed
_lowerCAmelCase = line[len("FAILED " ) :]
failed_tests.append(SCREAMING_SNAKE_CASE_ )
elif filename == "job_name.txt":
_lowerCAmelCase = line
if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
F'''`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE_ )} for `errors` '''
F'''and {len(SCREAMING_SNAKE_CASE_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'''
" problem." )
_lowerCAmelCase = None
if job_name and job_links:
_lowerCAmelCase = job_links.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# A list with elements of the form (line of error, error, failed test)
_lowerCAmelCase = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )]
return result
def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=None ):
'''simple docstring'''
_lowerCAmelCase = []
_lowerCAmelCase = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for p in os.listdir(SCREAMING_SNAKE_CASE_ ) if p.endswith(".zip" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE_ , job_links=SCREAMING_SNAKE_CASE_ ) )
return errors
def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str=None ):
'''simple docstring'''
_lowerCAmelCase = Counter()
counter.update([x[1] for x in logs] )
_lowerCAmelCase = counter.most_common()
_lowerCAmelCase = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
_lowerCAmelCase = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]}
_lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) )
return r
def __a(SCREAMING_SNAKE_CASE_ : List[str] ):
'''simple docstring'''
_lowerCAmelCase = test.split("::" )[0]
if test.startswith("tests/models/" ):
_lowerCAmelCase = test.split("/" )[2]
else:
_lowerCAmelCase = None
return test
def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple=None ):
'''simple docstring'''
_lowerCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs]
_lowerCAmelCase = [x for x in logs if x[2] is not None]
_lowerCAmelCase = {x[2] for x in logs}
_lowerCAmelCase = {}
for test in tests:
_lowerCAmelCase = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
_lowerCAmelCase = counter.most_common()
_lowerCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
_lowerCAmelCase = sum(error_counts.values() )
if n_errors > 0:
_lowerCAmelCase = {"count": n_errors, "errors": error_counts}
_lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) )
return r
def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ):
'''simple docstring'''
_lowerCAmelCase = "| no. | error | status |"
_lowerCAmelCase = "|-:|:-|:-|"
_lowerCAmelCase = [header, sep]
for error in reduced_by_error:
_lowerCAmelCase = reduced_by_error[error]["count"]
_lowerCAmelCase = F'''| {count} | {error[:100]} | |'''
lines.append(SCREAMING_SNAKE_CASE_ )
return "\n".join(SCREAMING_SNAKE_CASE_ )
def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ):
'''simple docstring'''
_lowerCAmelCase = "| model | no. of errors | major error | count |"
_lowerCAmelCase = "|-:|-:|-:|-:|"
_lowerCAmelCase = [header, sep]
for model in reduced_by_model:
_lowerCAmelCase = reduced_by_model[model]["count"]
_lowerCAmelCase , _lowerCAmelCase = list(reduced_by_model[model]["errors"].items() )[0]
_lowerCAmelCase = F'''| {model} | {count} | {error[:60]} | {_count} |'''
lines.append(SCREAMING_SNAKE_CASE_ )
return "\n".join(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Where to store the downloaded artifacts and other result files.",
)
parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.")
_SCREAMING_SNAKE_CASE = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
_SCREAMING_SNAKE_CASE = get_job_links(args.workflow_run_id, token=args.token)
_SCREAMING_SNAKE_CASE = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
_SCREAMING_SNAKE_CASE = k.find(" / ")
_SCREAMING_SNAKE_CASE = k[index + len(" / ") :]
_SCREAMING_SNAKE_CASE = v
with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
_SCREAMING_SNAKE_CASE = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
_SCREAMING_SNAKE_CASE = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
_SCREAMING_SNAKE_CASE = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
_SCREAMING_SNAKE_CASE = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
_SCREAMING_SNAKE_CASE = reduce_by_error(errors)
_SCREAMING_SNAKE_CASE = reduce_by_model(errors)
_SCREAMING_SNAKE_CASE = make_github_table(reduced_by_error)
_SCREAMING_SNAKE_CASE = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
| 18 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=30 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=10 , _lowerCAmelCase=0.02 , _lowerCAmelCase=None , _lowerCAmelCase=2 , ) -> int:
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = is_training
_lowerCAmelCase = use_labels
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = type_sequence_label_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = scope
_lowerCAmelCase = encoder_stride
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
_lowerCAmelCase = (image_size // patch_size) ** 2
_lowerCAmelCase = num_patches + 1
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase = None
if self.use_labels:
_lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase = self.get_config()
return config, pixel_values, labels
def _snake_case ( self ) -> Any:
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]:
_lowerCAmelCase = ViTModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple:
_lowerCAmelCase = ViTForMaskedImageModeling(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
_lowerCAmelCase = 1
_lowerCAmelCase = ViTForMaskedImageModeling(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCAmelCase = model(_lowerCAmelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Any:
_lowerCAmelCase = self.type_sequence_label_size
_lowerCAmelCase = ViTForImageClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_lowerCAmelCase = 1
_lowerCAmelCase = ViTForImageClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCAmelCase = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _snake_case ( self ) -> int:
_lowerCAmelCase = self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) = config_and_inputs
_lowerCAmelCase = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ):
__lowerCamelCase : List[Any] = (
(
ViTModel,
ViTForImageClassification,
ViTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
__lowerCamelCase : Tuple = (
{"feature-extraction": ViTModel, "image-classification": ViTForImageClassification}
if is_torch_available()
else {}
)
__lowerCamelCase : Optional[Any] = True
__lowerCamelCase : str = False
__lowerCamelCase : List[Any] = False
__lowerCamelCase : int = False
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = ViTModelTester(self )
_lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 )
def _snake_case ( self ) -> str:
self.config_tester.run_common_tests()
@unittest.skip(reason="ViT does not use inputs_embeds" )
def _snake_case ( self ) -> Any:
pass
def _snake_case ( self ) -> Any:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase = model_class(_lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_lowerCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) )
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase = model_class(_lowerCAmelCase )
_lowerCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase = [*signature.parameters.keys()]
_lowerCAmelCase = ["pixel_values"]
self.assertListEqual(arg_names[:1] , _lowerCAmelCase )
def _snake_case ( self ) -> int:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase )
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase )
@slow
def _snake_case ( self ) -> Tuple:
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase = ViTModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
def __a():
'''simple docstring'''
_lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class lowerCAmelCase_ ( unittest.TestCase ):
@cached_property
def _snake_case ( self ) -> Any:
return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None
@slow
def _snake_case ( self ) -> Any:
_lowerCAmelCase = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(_lowerCAmelCase )
_lowerCAmelCase = self.default_image_processor
_lowerCAmelCase = prepare_img()
_lowerCAmelCase = image_processor(images=_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
_lowerCAmelCase = model(**_lowerCAmelCase )
# verify the logits
_lowerCAmelCase = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
@slow
def _snake_case ( self ) -> List[Any]:
# ViT models have an `interpolate_pos_encoding` argument in their forward method,
# allowing to interpolate the pre-trained position embeddings in order to use
# the model on higher resolutions. The DINO model by Facebook AI leverages this
# to visualize self-attention on higher resolution images.
_lowerCAmelCase = ViTModel.from_pretrained("facebook/dino-vits8" ).to(_lowerCAmelCase )
_lowerCAmelCase = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480 )
_lowerCAmelCase = prepare_img()
_lowerCAmelCase = image_processor(images=_lowerCAmelCase , return_tensors="pt" )
_lowerCAmelCase = inputs.pixel_values.to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase )
# verify the logits
_lowerCAmelCase = torch.Size((1, 3601, 384) )
self.assertEqual(outputs.last_hidden_state.shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor(
[[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
@slow
@require_accelerate
@require_torch_gpu
def _snake_case ( self ) -> int:
_lowerCAmelCase = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" )
_lowerCAmelCase = self.default_image_processor
_lowerCAmelCase = prepare_img()
_lowerCAmelCase = image_processor(images=_lowerCAmelCase , return_tensors="pt" )
_lowerCAmelCase = inputs.pixel_values.to(_lowerCAmelCase )
# forward pass to make sure inference works in fp16
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase )
| 18 |
'''simple docstring'''
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : List[str] = (DPMSolverSinglestepScheduler,)
__lowerCamelCase : int = (("num_inference_steps", 25),)
def _snake_case ( self , **_lowerCAmelCase ) -> Any:
_lowerCAmelCase = {
"num_train_timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"solver_order": 2,
"prediction_type": "epsilon",
"thresholding": False,
"sample_max_value": 1.0,
"algorithm_type": "dpmsolver++",
"solver_type": "midpoint",
"lambda_min_clipped": -float("inf" ),
"variance_type": None,
}
config.update(**_lowerCAmelCase )
return config
def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> List[Any]:
_lowerCAmelCase = dict(self.forward_default_kwargs )
_lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase )
_lowerCAmelCase = self.dummy_sample
_lowerCAmelCase = 0.1 * sample
_lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
_lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase )
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
scheduler.set_timesteps(_lowerCAmelCase )
# copy over dummy past residuals
_lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_lowerCAmelCase )
_lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase )
new_scheduler.set_timesteps(_lowerCAmelCase )
# copy over dummy past residuals
_lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order]
_lowerCAmelCase , _lowerCAmelCase = sample, sample
for t in range(_lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ):
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
_lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def _snake_case ( self ) -> int:
pass
def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> Optional[int]:
_lowerCAmelCase = dict(self.forward_default_kwargs )
_lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase )
_lowerCAmelCase = self.dummy_sample
_lowerCAmelCase = 0.1 * sample
_lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
scheduler.set_timesteps(_lowerCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
_lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_lowerCAmelCase )
_lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_lowerCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
_lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order]
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
_lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def _snake_case ( self , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Tuple:
if scheduler is None:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase )
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase )
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = 10
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
scheduler.set_timesteps(_lowerCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample
return sample
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
_lowerCAmelCase = 50
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
scheduler.set_timesteps(_lowerCAmelCase )
# make sure that the first t is uneven
for i, t in enumerate(scheduler.timesteps[3:] ):
_lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2574 ) < 1E-3
def _snake_case ( self ) -> Optional[Any]:
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=_lowerCAmelCase )
def _snake_case ( self ) -> List[Any]:
# make sure that iterating over schedulers with same config names gives same results
# for defaults
_lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
_lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2791 ) < 1E-3
_lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config )
_lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config )
_lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config )
_lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config )
_lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2791 ) < 1E-3
def _snake_case ( self ) -> str:
self.check_over_configs(thresholding=_lowerCAmelCase )
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , algorithm_type="dpmsolver++" , solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , )
def _snake_case ( self ) -> Dict:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_lowerCAmelCase )
def _snake_case ( self ) -> Union[str, Any]:
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , )
_lowerCAmelCase = self.full_loop(
solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , )
assert not torch.isnan(_lowerCAmelCase ).any(), "Samples have nan numbers"
def _snake_case ( self ) -> Optional[Any]:
self.check_over_configs(lower_order_final=_lowerCAmelCase )
self.check_over_configs(lower_order_final=_lowerCAmelCase )
def _snake_case ( self ) -> Optional[Any]:
self.check_over_configs(lambda_min_clipped=-float("inf" ) )
self.check_over_configs(lambda_min_clipped=-5.1 )
def _snake_case ( self ) -> str:
self.check_over_configs(variance_type=_lowerCAmelCase )
self.check_over_configs(variance_type="learned_range" )
def _snake_case ( self ) -> int:
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=_lowerCAmelCase , time_step=0 )
def _snake_case ( self ) -> Any:
_lowerCAmelCase = self.full_loop()
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2791 ) < 1E-3
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = self.full_loop(use_karras_sigmas=_lowerCAmelCase )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2248 ) < 1E-3
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = self.full_loop(prediction_type="v_prediction" )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.1453 ) < 1E-3
def _snake_case ( self ) -> Any:
_lowerCAmelCase = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=_lowerCAmelCase )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.0649 ) < 1E-3
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config(thresholding=_lowerCAmelCase , dynamic_thresholding_ratio=0 )
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = 10
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter.half()
scheduler.set_timesteps(_lowerCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample
assert sample.dtype == torch.floataa
| 18 | 1 |
'''simple docstring'''
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
AutoConfig,
AutoFeatureExtractor,
WavaVecaConfig,
WavaVecaFeatureExtractor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures")
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/dummy_feature_extractor_config.json")
_SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/dummy-config.json")
class lowerCAmelCase_ ( unittest.TestCase ):
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = 0
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h" )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> str:
with tempfile.TemporaryDirectory() as tmpdirname:
_lowerCAmelCase = WavaVecaConfig()
# remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally
_lowerCAmelCase = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase ).to_dict()
config_dict.pop("feature_extractor_type" )
_lowerCAmelCase = WavaVecaFeatureExtractor(**_lowerCAmelCase )
# save in new folder
model_config.save_pretrained(_lowerCAmelCase )
config.save_pretrained(_lowerCAmelCase )
_lowerCAmelCase = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase )
# make sure private variable is not incorrectly saved
_lowerCAmelCase = json.loads(config.to_json_string() )
self.assertTrue("_processor_class" not in dict_as_saved )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> str:
_lowerCAmelCase = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> Tuple:
with self.assertRaisesRegex(
_lowerCAmelCase , "bert-base is not a local folder and is not a valid model identifier" ):
_lowerCAmelCase = AutoFeatureExtractor.from_pretrained("bert-base" )
def _snake_case ( self ) -> Union[str, Any]:
with self.assertRaisesRegex(
_lowerCAmelCase , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
_lowerCAmelCase = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase , revision="aaaaaa" )
def _snake_case ( self ) -> Union[str, Any]:
with self.assertRaisesRegex(
_lowerCAmelCase , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ):
_lowerCAmelCase = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model" )
def _snake_case ( self ) -> Any:
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(_lowerCAmelCase ):
_lowerCAmelCase = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(_lowerCAmelCase ):
_lowerCAmelCase = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=_lowerCAmelCase )
_lowerCAmelCase = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=_lowerCAmelCase )
self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" )
# Test feature extractor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(_lowerCAmelCase )
_lowerCAmelCase = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase , trust_remote_code=_lowerCAmelCase )
self.assertEqual(reloaded_feature_extractor.__class__.__name__ , "NewFeatureExtractor" )
def _snake_case ( self ) -> Union[str, Any]:
try:
AutoConfig.register("custom" , _lowerCAmelCase )
AutoFeatureExtractor.register(_lowerCAmelCase , _lowerCAmelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_lowerCAmelCase ):
AutoFeatureExtractor.register(_lowerCAmelCase , _lowerCAmelCase )
# Now that the config is registered, it can be used as any other config with the auto-API
_lowerCAmelCase = CustomFeatureExtractor.from_pretrained(_lowerCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(_lowerCAmelCase )
_lowerCAmelCase = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
def _snake_case ( self ) -> Optional[int]:
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : int = True
try:
AutoConfig.register("custom" , _lowerCAmelCase )
AutoFeatureExtractor.register(_lowerCAmelCase , _lowerCAmelCase )
# If remote code is not set, the default is to use local
_lowerCAmelCase = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor" )
self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" )
self.assertTrue(feature_extractor.is_local )
# If remote code is disabled, we load the local one.
_lowerCAmelCase = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=_lowerCAmelCase )
self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" )
self.assertTrue(feature_extractor.is_local )
# If remote is enabled, we load from the Hub
_lowerCAmelCase = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=_lowerCAmelCase )
self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" )
self.assertTrue(not hasattr(_lowerCAmelCase , "is_local" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
| 18 |
'''simple docstring'''
from __future__ import annotations
def __a(SCREAMING_SNAKE_CASE_ : list ):
'''simple docstring'''
if not nums:
raise ValueError("List is empty" )
return sum(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 18 | 1 |
'''simple docstring'''
from typing import Any
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase ) -> Any:
_lowerCAmelCase = data
_lowerCAmelCase = None
class lowerCAmelCase_ :
def __init__( self ) -> List[str]:
_lowerCAmelCase = None
def _snake_case ( self ) -> Any:
_lowerCAmelCase = self.head
while temp is not None:
print(temp.data , end=" " )
_lowerCAmelCase = temp.next
print()
def _snake_case ( self , _lowerCAmelCase ) -> Dict:
_lowerCAmelCase = Node(_lowerCAmelCase )
_lowerCAmelCase = self.head
_lowerCAmelCase = new_node
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Dict:
if node_data_a == node_data_a:
return
else:
_lowerCAmelCase = self.head
while node_a is not None and node_a.data != node_data_a:
_lowerCAmelCase = node_a.next
_lowerCAmelCase = self.head
while node_a is not None and node_a.data != node_data_a:
_lowerCAmelCase = node_a.next
if node_a is None or node_a is None:
return
_lowerCAmelCase , _lowerCAmelCase = node_a.data, node_a.data
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = LinkedList()
for i in range(5, 0, -1):
ll.push(i)
ll.print_list()
ll.swap_nodes(1, 4)
print("After swapping")
ll.print_list()
| 18 |
'''simple docstring'''
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
_lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase )
_lowerCAmelCase = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
_lowerCAmelCase = TextStreamer(_lowerCAmelCase )
model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
_lowerCAmelCase = cs.out[:-1]
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
_lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase )
_lowerCAmelCase = tokenizer.decode(greedy_ids[0] )
_lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase )
_lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
_lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase )
thread.start()
_lowerCAmelCase = ""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
_lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase )
_lowerCAmelCase = greedy_ids[:, input_ids.shape[1] :]
_lowerCAmelCase = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
_lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_prompt=_lowerCAmelCase )
model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
_lowerCAmelCase = cs.out[:-1]
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> Dict:
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
_lowerCAmelCase = AutoTokenizer.from_pretrained("distilgpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = torch.ones((1, 5) , device=_lowerCAmelCase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
_lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )
model.generate(_lowerCAmelCase , max_new_tokens=1 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
_lowerCAmelCase = cs.out[:-1] # Remove the final "\n"
_lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="pt" )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
_lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase , timeout=0.001 )
_lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
_lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(_lowerCAmelCase ):
_lowerCAmelCase = ""
for new_text in streamer:
streamer_text += new_text
| 18 | 1 |
'''simple docstring'''
import math
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase=0 ) -> str: # a graph with Node 0,1,...,N-1
_lowerCAmelCase = n
_lowerCAmelCase = [
[math.inf for j in range(0 , _lowerCAmelCase )] for i in range(0 , _lowerCAmelCase )
] # adjacency matrix for weight
_lowerCAmelCase = [
[math.inf for j in range(0 , _lowerCAmelCase )] for i in range(0 , _lowerCAmelCase )
] # dp[i][j] stores minimum distance from i to j
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]:
_lowerCAmelCase = w
def _snake_case ( self ) -> Optional[Any]:
for k in range(0 , self.n ):
for i in range(0 , self.n ):
for j in range(0 , self.n ):
_lowerCAmelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Any:
return self.dp[u][v]
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = Graph(5)
graph.add_edge(0, 2, 9)
graph.add_edge(0, 4, 10)
graph.add_edge(1, 3, 5)
graph.add_edge(2, 3, 7)
graph.add_edge(3, 0, 10)
graph.add_edge(3, 1, 2)
graph.add_edge(3, 2, 1)
graph.add_edge(3, 4, 6)
graph.add_edge(4, 1, 3)
graph.add_edge(4, 2, 4)
graph.add_edge(4, 3, 9)
graph.floyd_warshall()
graph.show_min(1, 4)
graph.show_min(0, 3)
| 18 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json",
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Union[str, Any] = "blenderbot-small"
__lowerCamelCase : Optional[Any] = ["past_key_values"]
__lowerCamelCase : str = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , _lowerCAmelCase=50265 , _lowerCAmelCase=512 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="gelu" , _lowerCAmelCase=512 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=2 , **_lowerCAmelCase , ) -> Dict:
_lowerCAmelCase = vocab_size
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = d_model
_lowerCAmelCase = encoder_ffn_dim
_lowerCAmelCase = encoder_layers
_lowerCAmelCase = encoder_attention_heads
_lowerCAmelCase = decoder_ffn_dim
_lowerCAmelCase = decoder_layers
_lowerCAmelCase = decoder_attention_heads
_lowerCAmelCase = dropout
_lowerCAmelCase = attention_dropout
_lowerCAmelCase = activation_dropout
_lowerCAmelCase = activation_function
_lowerCAmelCase = init_std
_lowerCAmelCase = encoder_layerdrop
_lowerCAmelCase = decoder_layerdrop
_lowerCAmelCase = use_cache
_lowerCAmelCase = encoder_layers
_lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
class lowerCAmelCase_ ( __magic_name__ ):
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_lowerCAmelCase = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
_lowerCAmelCase = {0: "batch"}
_lowerCAmelCase = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
_lowerCAmelCase = {0: "batch", 1: "decoder_sequence"}
_lowerCAmelCase = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(_lowerCAmelCase , direction="inputs" )
elif self.task == "causal-lm":
# TODO: figure this case out.
_lowerCAmelCase = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
_lowerCAmelCase , _lowerCAmelCase = self.num_layers
for i in range(_lowerCAmelCase ):
_lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"}
_lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"}
else:
_lowerCAmelCase = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
] )
return common_inputs
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_lowerCAmelCase = super().outputs
else:
_lowerCAmelCase = super(_lowerCAmelCase , self ).outputs
if self.use_past:
_lowerCAmelCase , _lowerCAmelCase = self.num_layers
for i in range(_lowerCAmelCase ):
_lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"}
_lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]:
_lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Generate decoder inputs
_lowerCAmelCase = seq_length if not self.use_past else 1
_lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()}
_lowerCAmelCase = dict(**_lowerCAmelCase , **_lowerCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
_lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape
_lowerCAmelCase = common_inputs["decoder_input_ids"].shape[1]
_lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads
_lowerCAmelCase = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_lowerCAmelCase = decoder_seq_length + 3
_lowerCAmelCase = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
_lowerCAmelCase = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase )] , dim=1 )
_lowerCAmelCase = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
_lowerCAmelCase , _lowerCAmelCase = self.num_layers
_lowerCAmelCase = min(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = max(_lowerCAmelCase , _lowerCAmelCase ) - min_num_layers
_lowerCAmelCase = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(_lowerCAmelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(_lowerCAmelCase ),
torch.zeros(_lowerCAmelCase ),
torch.zeros(_lowerCAmelCase ),
torch.zeros(_lowerCAmelCase ),
) )
# TODO: test this.
_lowerCAmelCase = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(_lowerCAmelCase , _lowerCAmelCase ):
common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) )
return common_inputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]:
_lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
_lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
_lowerCAmelCase = seqlen + 2
_lowerCAmelCase , _lowerCAmelCase = self.num_layers
_lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads
_lowerCAmelCase = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_lowerCAmelCase = common_inputs["attention_mask"].dtype
_lowerCAmelCase = torch.cat(
[common_inputs["attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase )] , dim=1 )
_lowerCAmelCase = [
(torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase )
]
return common_inputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
_lowerCAmelCase = compute_effective_axis_dimension(
_lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
_lowerCAmelCase = tokenizer.num_special_tokens_to_add(_lowerCAmelCase )
_lowerCAmelCase = compute_effective_axis_dimension(
_lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase )
# Generate dummy inputs according to compute batch and sequence
_lowerCAmelCase = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size
_lowerCAmelCase = dict(tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) )
return common_inputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
_lowerCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
elif self.task == "causal-lm":
_lowerCAmelCase = self._generate_dummy_inputs_for_causal_lm(
_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
else:
_lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
return common_inputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict:
if self.task in ["default", "seq2seq-lm"]:
_lowerCAmelCase = super()._flatten_past_key_values_(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
else:
_lowerCAmelCase = super(_lowerCAmelCase , self )._flatten_past_key_values_(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
import numpy as np
from nltk.translate import meteor_score
import datasets
from datasets.config import importlib_metadata, version
_SCREAMING_SNAKE_CASE = version.parse(importlib_metadata.version("nltk"))
if NLTK_VERSION >= version.Version("3.6.4"):
from nltk import word_tokenize
_SCREAMING_SNAKE_CASE = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n"
_SCREAMING_SNAKE_CASE = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n"
_SCREAMING_SNAKE_CASE = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
def _snake_case ( self ) -> Optional[int]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[
"https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score",
"https://en.wikipedia.org/wiki/METEOR",
] , )
def _snake_case ( self , _lowerCAmelCase ) -> Optional[int]:
import nltk
nltk.download("wordnet" )
if NLTK_VERSION >= version.Version("3.6.5" ):
nltk.download("punkt" )
if NLTK_VERSION >= version.Version("3.6.6" ):
nltk.download("omw-1.4" )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=0.9 , _lowerCAmelCase=3 , _lowerCAmelCase=0.5 ) -> int:
if NLTK_VERSION >= version.Version("3.6.5" ):
_lowerCAmelCase = [
meteor_score.single_meteor_score(
word_tokenize(_lowerCAmelCase ) , word_tokenize(_lowerCAmelCase ) , alpha=_lowerCAmelCase , beta=_lowerCAmelCase , gamma=_lowerCAmelCase )
for ref, pred in zip(_lowerCAmelCase , _lowerCAmelCase )
]
else:
_lowerCAmelCase = [
meteor_score.single_meteor_score(_lowerCAmelCase , _lowerCAmelCase , alpha=_lowerCAmelCase , beta=_lowerCAmelCase , gamma=_lowerCAmelCase )
for ref, pred in zip(_lowerCAmelCase , _lowerCAmelCase )
]
return {"meteor": np.mean(_lowerCAmelCase )}
| 18 |
'''simple docstring'''
import re
import string
import numpy as np
import datasets
_SCREAMING_SNAKE_CASE = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n"
_SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n"
_SCREAMING_SNAKE_CASE = "\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
def _snake_case ( self ) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , reference_urls=[] , )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , ) -> str:
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
_lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in predictions] )
_lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in references] )
else:
_lowerCAmelCase = np.asarray(_lowerCAmelCase )
_lowerCAmelCase = np.asarray(_lowerCAmelCase )
if ignore_case:
_lowerCAmelCase = np.char.lower(_lowerCAmelCase )
_lowerCAmelCase = np.char.lower(_lowerCAmelCase )
if ignore_punctuation:
_lowerCAmelCase = string.punctuation.maketrans("" , "" , string.punctuation )
_lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase )
_lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase )
if ignore_numbers:
_lowerCAmelCase = string.digits.maketrans("" , "" , string.digits )
_lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase )
_lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase )
_lowerCAmelCase = predictions == references
return {"exact_match": np.mean(_lowerCAmelCase ) * 100}
| 18 | 1 |
'''simple docstring'''
from __future__ import annotations
def __a(SCREAMING_SNAKE_CASE_ : int | float | str , SCREAMING_SNAKE_CASE_ : int | float | str ):
'''simple docstring'''
if nth_term == "":
return [""]
_lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = []
for temp in range(int(SCREAMING_SNAKE_CASE_ ) ):
series.append(F'''1 / {pow(temp + 1 , int(SCREAMING_SNAKE_CASE_ ) )}''' if series else "1" )
return series
if __name__ == "__main__":
import doctest
doctest.testmod()
_SCREAMING_SNAKE_CASE = int(input("Enter the last number (nth term) of the P-Series"))
_SCREAMING_SNAKE_CASE = int(input("Enter the power for P-Series"))
print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p")
print(p_series(nth_term, power))
| 18 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class lowerCAmelCase_ ( __magic_name__ ):
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> None:
warnings.warn(
"The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use YolosImageProcessor instead." , _lowerCAmelCase , )
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse("3.8"):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple=False ):
'''simple docstring'''
try:
_lowerCAmelCase = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
_lowerCAmelCase = default
else:
# KEY is set, convert it to True or False.
try:
_lowerCAmelCase = strtobool(SCREAMING_SNAKE_CASE_ )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F'''If set, {key} must be yes or no.''' )
return _value
_SCREAMING_SNAKE_CASE = parse_flag_from_env("RUN_SLOW", default=False)
_SCREAMING_SNAKE_CASE = parse_flag_from_env("RUN_REMOTE", default=False)
_SCREAMING_SNAKE_CASE = parse_flag_from_env("RUN_LOCAL", default=True)
_SCREAMING_SNAKE_CASE = parse_flag_from_env("RUN_PACKAGED", default=True)
# Compression
_SCREAMING_SNAKE_CASE = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="test requires lz4")
_SCREAMING_SNAKE_CASE = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="test requires py7zr")
_SCREAMING_SNAKE_CASE = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="test requires zstandard")
# Audio
_SCREAMING_SNAKE_CASE = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec("soundfile") is None or version.parse(importlib_metadata.version("soundfile")) < version.parse("0.12.0"),
reason="test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; ",
)
# Beam
_SCREAMING_SNAKE_CASE = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("0.3.2"),
reason="test requires apache-beam and a compatible dill version",
)
# Dill-cloudpickle compatibility
_SCREAMING_SNAKE_CASE = pytest.mark.skipif(
config.DILL_VERSION <= version.parse("0.3.2"),
reason="test requires dill>0.3.2 for cloudpickle compatibility",
)
# Windows
_SCREAMING_SNAKE_CASE = pytest.mark.skipif(
sys.platform == "win32",
reason="test should not be run on Windows",
)
def __a(SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
try:
import faiss # noqa
except ImportError:
_lowerCAmelCase = unittest.skip("test requires faiss" )(SCREAMING_SNAKE_CASE_ )
return test_case
def __a(SCREAMING_SNAKE_CASE_ : Any ):
'''simple docstring'''
try:
import regex # noqa
except ImportError:
_lowerCAmelCase = unittest.skip("test requires regex" )(SCREAMING_SNAKE_CASE_ )
return test_case
def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] ):
'''simple docstring'''
try:
import elasticsearch # noqa
except ImportError:
_lowerCAmelCase = unittest.skip("test requires elasticsearch" )(SCREAMING_SNAKE_CASE_ )
return test_case
def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] ):
'''simple docstring'''
try:
import sqlalchemy # noqa
except ImportError:
_lowerCAmelCase = unittest.skip("test requires sqlalchemy" )(SCREAMING_SNAKE_CASE_ )
return test_case
def __a(SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
if not config.TORCH_AVAILABLE:
_lowerCAmelCase = unittest.skip("test requires PyTorch" )(SCREAMING_SNAKE_CASE_ )
return test_case
def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] ):
'''simple docstring'''
if not config.TF_AVAILABLE:
_lowerCAmelCase = unittest.skip("test requires TensorFlow" )(SCREAMING_SNAKE_CASE_ )
return test_case
def __a(SCREAMING_SNAKE_CASE_ : Tuple ):
'''simple docstring'''
if not config.JAX_AVAILABLE:
_lowerCAmelCase = unittest.skip("test requires JAX" )(SCREAMING_SNAKE_CASE_ )
return test_case
def __a(SCREAMING_SNAKE_CASE_ : Dict ):
'''simple docstring'''
if not config.PIL_AVAILABLE:
_lowerCAmelCase = unittest.skip("test requires Pillow" )(SCREAMING_SNAKE_CASE_ )
return test_case
def __a(SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
try:
import transformers # noqa F401
except ImportError:
return unittest.skip("test requires transformers" )(SCREAMING_SNAKE_CASE_ )
else:
return test_case
def __a(SCREAMING_SNAKE_CASE_ : Any ):
'''simple docstring'''
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip("test requires tiktoken" )(SCREAMING_SNAKE_CASE_ )
else:
return test_case
def __a(SCREAMING_SNAKE_CASE_ : List[str] ):
'''simple docstring'''
try:
import spacy # noqa F401
except ImportError:
return unittest.skip("test requires spacy" )(SCREAMING_SNAKE_CASE_ )
else:
return test_case
def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ):
'''simple docstring'''
def _require_spacy_model(SCREAMING_SNAKE_CASE_ : Union[str, Any] ):
try:
import spacy # noqa F401
spacy.load(SCREAMING_SNAKE_CASE_ )
except ImportError:
return unittest.skip("test requires spacy" )(SCREAMING_SNAKE_CASE_ )
except OSError:
return unittest.skip("test requires spacy model '{}'".format(SCREAMING_SNAKE_CASE_ ) )(SCREAMING_SNAKE_CASE_ )
else:
return test_case
return _require_spacy_model
def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ):
'''simple docstring'''
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip("test requires pyspark" )(SCREAMING_SNAKE_CASE_ )
else:
return test_case
def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] ):
'''simple docstring'''
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip("test requires joblibspark" )(SCREAMING_SNAKE_CASE_ )
else:
return test_case
def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ):
'''simple docstring'''
if not _run_slow_tests or _run_slow_tests == 0:
_lowerCAmelCase = unittest.skip("test is slow" )(SCREAMING_SNAKE_CASE_ )
return test_case
def __a(SCREAMING_SNAKE_CASE_ : Dict ):
'''simple docstring'''
if not _run_local_tests or _run_local_tests == 0:
_lowerCAmelCase = unittest.skip("test is local" )(SCREAMING_SNAKE_CASE_ )
return test_case
def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] ):
'''simple docstring'''
if not _run_packaged_tests or _run_packaged_tests == 0:
_lowerCAmelCase = unittest.skip("test is packaged" )(SCREAMING_SNAKE_CASE_ )
return test_case
def __a(SCREAMING_SNAKE_CASE_ : Any ):
'''simple docstring'''
if not _run_remote_tests or _run_remote_tests == 0:
_lowerCAmelCase = unittest.skip("test requires remote" )(SCREAMING_SNAKE_CASE_ )
return test_case
def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] ):
'''simple docstring'''
def decorate(cls : Any ):
for name, fn in cls.__dict__.items():
if callable(SCREAMING_SNAKE_CASE_ ) and name.startswith("test" ):
for decorator in decorators:
_lowerCAmelCase = decorator(SCREAMING_SNAKE_CASE_ )
setattr(cls , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return cls
return decorate
class lowerCAmelCase_ ( __magic_name__ ):
pass
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Any = 0
__lowerCamelCase : Any = 1
__lowerCamelCase : Optional[int] = 2
@contextmanager
def __a(SCREAMING_SNAKE_CASE_ : List[str]=OfflineSimulationMode.CONNECTION_FAILS , SCREAMING_SNAKE_CASE_ : Dict=1e-16 ):
'''simple docstring'''
_lowerCAmelCase = requests.Session().request
def timeout_request(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ):
# Change the url to an invalid url so that the connection hangs
_lowerCAmelCase = "https://10.255.255.1"
if kwargs.get("timeout" ) is None:
raise RequestWouldHangIndefinitelyError(
F'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' )
_lowerCAmelCase = timeout
try:
return online_request(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
_lowerCAmelCase = url
_lowerCAmelCase = e.args[0]
_lowerCAmelCase = (max_retry_error.args[0].replace("10.255.255.1" , F'''OfflineMock[{url}]''' ),)
_lowerCAmelCase = (max_retry_error,)
raise
def raise_connection_error(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : int ):
raise requests.ConnectionError("Offline mode is enabled." , request=SCREAMING_SNAKE_CASE_ )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch("requests.Session.send" , SCREAMING_SNAKE_CASE_ ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch("requests.Session.request" , SCREAMING_SNAKE_CASE_ ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ):
yield
else:
raise ValueError("Please use a value from the OfflineSimulationMode enum." )
@contextmanager
def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Optional[int] ):
'''simple docstring'''
_lowerCAmelCase = str(Path().resolve() )
with tempfile.TemporaryDirectory(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) as tmp_dir:
try:
os.chdir(SCREAMING_SNAKE_CASE_ )
yield
finally:
os.chdir(SCREAMING_SNAKE_CASE_ )
@contextmanager
def __a():
'''simple docstring'''
import gc
gc.collect()
_lowerCAmelCase = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def __a():
'''simple docstring'''
import gc
gc.collect()
_lowerCAmelCase = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple ):
'''simple docstring'''
return deepcopy(SCREAMING_SNAKE_CASE_ ).integers(0 , 100 , 10 ).tolist() == deepcopy(SCREAMING_SNAKE_CASE_ ).integers(0 , 100 , 10 ).tolist()
def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] ):
'''simple docstring'''
import decorator
from requests.exceptions import HTTPError
def _wrapper(SCREAMING_SNAKE_CASE_ : Dict , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ):
try:
return func(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
except HTTPError as err:
if str(SCREAMING_SNAKE_CASE_ ).startswith("500" ) or str(SCREAMING_SNAKE_CASE_ ).startswith("502" ):
pytest.xfail(str(SCREAMING_SNAKE_CASE_ ) )
raise err
return decorator.decorator(_wrapper , SCREAMING_SNAKE_CASE_ )
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = returncode
_lowerCAmelCase = stdout
_lowerCAmelCase = stderr
async def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ):
'''simple docstring'''
while True:
_lowerCAmelCase = await stream.readline()
if line:
callback(SCREAMING_SNAKE_CASE_ )
else:
break
async def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : Tuple=False ):
'''simple docstring'''
if echo:
print("\nRunning: " , " ".join(SCREAMING_SNAKE_CASE_ ) )
_lowerCAmelCase = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=SCREAMING_SNAKE_CASE_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=SCREAMING_SNAKE_CASE_ , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
_lowerCAmelCase = []
_lowerCAmelCase = []
def tee(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int="" ):
_lowerCAmelCase = line.decode("utf-8" ).rstrip()
sink.append(SCREAMING_SNAKE_CASE_ )
if not quiet:
print(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , file=SCREAMING_SNAKE_CASE_ )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout , lambda SCREAMING_SNAKE_CASE_ : tee(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sys.stdout , label="stdout:" ) ),
_read_stream(p.stderr , lambda SCREAMING_SNAKE_CASE_ : tee(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sys.stderr , label="stderr:" ) ),
] , timeout=SCREAMING_SNAKE_CASE_ , )
return _RunOutput(await p.wait() , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : str=180 , SCREAMING_SNAKE_CASE_ : Optional[Any]=False , SCREAMING_SNAKE_CASE_ : int=True ):
'''simple docstring'''
_lowerCAmelCase = asyncio.get_event_loop()
_lowerCAmelCase = loop.run_until_complete(
_stream_subprocess(SCREAMING_SNAKE_CASE_ , env=SCREAMING_SNAKE_CASE_ , stdin=SCREAMING_SNAKE_CASE_ , timeout=SCREAMING_SNAKE_CASE_ , quiet=SCREAMING_SNAKE_CASE_ , echo=SCREAMING_SNAKE_CASE_ ) )
_lowerCAmelCase = " ".join(SCREAMING_SNAKE_CASE_ )
if result.returncode > 0:
_lowerCAmelCase = "\n".join(result.stderr )
raise RuntimeError(
F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n'''
F'''The combined stderr from workers follows:\n{stderr}''' )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(F'''\'{cmd_str}\' produced no output.''' )
return result
def __a():
'''simple docstring'''
_lowerCAmelCase = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" )
_lowerCAmelCase = re.sub(R"^gw" , "" , SCREAMING_SNAKE_CASE_ , 0 , re.M )
return int(SCREAMING_SNAKE_CASE_ )
def __a():
'''simple docstring'''
_lowerCAmelCase = 29500
_lowerCAmelCase = pytest_xdist_worker_id()
return port + uniq_delta
| 18 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Any = "falcon"
__lowerCamelCase : List[str] = ["past_key_values"]
def __init__( self , _lowerCAmelCase=65024 , _lowerCAmelCase=4544 , _lowerCAmelCase=32 , _lowerCAmelCase=71 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=11 , _lowerCAmelCase=11 , **_lowerCAmelCase , ) -> Union[str, Any]:
_lowerCAmelCase = vocab_size
# Backward compatibility with n_embed kwarg
_lowerCAmelCase = kwargs.pop("n_embed" , _lowerCAmelCase )
_lowerCAmelCase = hidden_size if n_embed is None else n_embed
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = layer_norm_epsilon
_lowerCAmelCase = initializer_range
_lowerCAmelCase = use_cache
_lowerCAmelCase = hidden_dropout
_lowerCAmelCase = attention_dropout
_lowerCAmelCase = bos_token_id
_lowerCAmelCase = eos_token_id
_lowerCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads
_lowerCAmelCase = alibi
_lowerCAmelCase = new_decoder_architecture
_lowerCAmelCase = multi_query # Ignored when new_decoder_architecture is True
_lowerCAmelCase = parallel_attn
_lowerCAmelCase = bias
super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
@property
def _snake_case ( self ) -> Optional[Any]:
return self.hidden_size // self.num_attention_heads
@property
def _snake_case ( self ) -> Optional[Any]:
return not self.alibi
| 18 | 1 |
'''simple docstring'''
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ):
__lowerCamelCase : Optional[int] = LEDTokenizer
__lowerCamelCase : Union[str, Any] = LEDTokenizerFast
__lowerCamelCase : int = True
def _snake_case ( self ) -> Tuple:
super().setUp()
_lowerCAmelCase = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
_lowerCAmelCase = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) )
_lowerCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
_lowerCAmelCase = {"unk_token": "<unk>"}
_lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
_lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(_lowerCAmelCase ) )
def _snake_case ( self , **_lowerCAmelCase ) -> Optional[Any]:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def _snake_case ( self , **_lowerCAmelCase ) -> Any:
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase ) -> Tuple:
return "lower newer", "lower newer"
@cached_property
def _snake_case ( self ) -> Tuple:
return LEDTokenizer.from_pretrained("allenai/led-base-16384" )
@cached_property
def _snake_case ( self ) -> Tuple:
return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" )
@require_torch
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."]
_lowerCAmelCase = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_lowerCAmelCase = tokenizer(_lowerCAmelCase , max_length=len(_lowerCAmelCase ) , padding=_lowerCAmelCase , return_tensors="pt" )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
_lowerCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
@require_torch
def _snake_case ( self ) -> str:
_lowerCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_lowerCAmelCase = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" )
self.assertIn("input_ids" , _lowerCAmelCase )
self.assertIn("attention_mask" , _lowerCAmelCase )
self.assertNotIn("labels" , _lowerCAmelCase )
self.assertNotIn("decoder_attention_mask" , _lowerCAmelCase )
@require_torch
def _snake_case ( self ) -> Any:
_lowerCAmelCase = [
"Summary of the text.",
"Another summary.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_lowerCAmelCase = tokenizer(text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , return_tensors="pt" )
self.assertEqual(32 , targets["input_ids"].shape[1] )
@require_torch
def _snake_case ( self ) -> Tuple:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_lowerCAmelCase = tokenizer(
["I am a small frog" * 1024, "I am a small frog"] , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors="pt" )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual(batch.input_ids.shape , (2, 5122) )
@require_torch
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase = ["A long paragraph for summarization."]
_lowerCAmelCase = [
"Summary of the text.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="pt" )
_lowerCAmelCase = tokenizer(text_target=_lowerCAmelCase , return_tensors="pt" )
_lowerCAmelCase = inputs["input_ids"]
_lowerCAmelCase = targets["input_ids"]
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def _snake_case ( self ) -> List[Any]:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_lowerCAmelCase = ["Summary of the text.", "Another summary."]
_lowerCAmelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
_lowerCAmelCase = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase )
_lowerCAmelCase = [[0] * len(_lowerCAmelCase ) for x in encoded_output["input_ids"]]
_lowerCAmelCase = tokenizer.pad(_lowerCAmelCase )
self.assertSequenceEqual(outputs["global_attention_mask"] , _lowerCAmelCase )
def _snake_case ( self ) -> List[str]:
pass
def _snake_case ( self ) -> List[str]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
_lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase )
_lowerCAmelCase = self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase )
_lowerCAmelCase = "A, <mask> AllenNLP sentence."
_lowerCAmelCase = tokenizer_r.encode_plus(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase )
_lowerCAmelCase = tokenizer_p.encode_plus(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase )
self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) )
self.assertEqual(
sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , )
_lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] )
_lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] )
self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] )
self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] )
self.assertSequenceEqual(
_lowerCAmelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
self.assertSequenceEqual(
_lowerCAmelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
| 18 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"facebook/deit-base-distilled-patch16-224": (
"https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json"
),
# See all DeiT models at https://huggingface.co/models?filter=deit
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Optional[int] = "deit"
def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=16 , **_lowerCAmelCase , ) -> Dict:
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = initializer_range
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = qkv_bias
_lowerCAmelCase = encoder_stride
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : List[str] = version.parse("1.11" )
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self ) -> float:
return 1E-4
| 18 | 1 |
'''simple docstring'''
from binascii import hexlify
from hashlib import shaaaa
from os import urandom
# RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for
# Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526
_SCREAMING_SNAKE_CASE = {
# 1536-bit
5: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 2048-bit
14: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AACAA68FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 3072-bit
15: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 4096-bit
16: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
+ "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
+ "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
+ "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
+ "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
+ "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199"
+ "FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 6144-bit
17: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
+ "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
+ "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
+ "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
+ "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8"
+ "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C"
+ "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718"
+ "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D"
+ "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D"
+ "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226"
+ "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC"
+ "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26"
+ "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB"
+ "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2"
+ "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127"
+ "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
+ "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406"
+ "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918"
+ "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151"
+ "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03"
+ "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F"
+ "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
+ "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B"
+ "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632"
+ "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E"
+ "6DCC4024FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 8192-bit
18: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
+ "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
+ "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
+ "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
+ "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
+ "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
+ "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD"
+ "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831"
+ "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B"
+ "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF"
+ "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6"
+ "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3"
+ "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
+ "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328"
+ "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C"
+ "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE"
+ "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4"
+ "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300"
+ "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568"
+ "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9"
+ "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B"
+ "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A"
+ "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36"
+ "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1"
+ "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92"
+ "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47"
+ "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71"
+ "60C980DD98EDD3DFFFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
}
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase = 14 ) -> None:
if group not in primes:
raise ValueError("Unsupported Group" )
_lowerCAmelCase = primes[group]["prime"]
_lowerCAmelCase = primes[group]["generator"]
_lowerCAmelCase = int(hexlify(urandom(32 ) ) , base=16 )
def _snake_case ( self ) -> str:
return hex(self.__private_key )[2:]
def _snake_case ( self ) -> str:
_lowerCAmelCase = pow(self.generator , self.__private_key , self.prime )
return hex(_lowerCAmelCase )[2:]
def _snake_case ( self , _lowerCAmelCase ) -> bool:
# check if the other public key is valid based on NIST SP800-56
return (
2 <= key <= self.prime - 2
and pow(_lowerCAmelCase , (self.prime - 1) // 2 , self.prime ) == 1
)
def _snake_case ( self , _lowerCAmelCase ) -> str:
_lowerCAmelCase = int(_lowerCAmelCase , base=16 )
if not self.is_valid_public_key(_lowerCAmelCase ):
raise ValueError("Invalid public key" )
_lowerCAmelCase = pow(_lowerCAmelCase , self.__private_key , self.prime )
return shaaaa(str(_lowerCAmelCase ).encode() ).hexdigest()
@staticmethod
def _snake_case ( _lowerCAmelCase , _lowerCAmelCase ) -> bool:
# check if the other public key is valid based on NIST SP800-56
return (
2 <= remote_public_key_str <= prime - 2
and pow(_lowerCAmelCase , (prime - 1) // 2 , _lowerCAmelCase ) == 1
)
@staticmethod
def _snake_case ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 14 ) -> str:
_lowerCAmelCase = int(_lowerCAmelCase , base=16 )
_lowerCAmelCase = int(_lowerCAmelCase , base=16 )
_lowerCAmelCase = primes[group]["prime"]
if not DiffieHellman.is_valid_public_key_static(_lowerCAmelCase , _lowerCAmelCase ):
raise ValueError("Invalid public key" )
_lowerCAmelCase = pow(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
return shaaaa(str(_lowerCAmelCase ).encode() ).hexdigest()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 18 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_SCREAMING_SNAKE_CASE = {
"configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"],
"feature_extraction_mctct": ["MCTCTFeatureExtractor"],
"processing_mctct": ["MCTCTProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MCTCTForCTC",
"MCTCTModel",
"MCTCTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 18 | 1 |
'''simple docstring'''
from math import pow
def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , ):
'''simple docstring'''
if current_sum == needed_sum:
# If the sum of the powers is equal to needed_sum, then we have a solution.
solutions_count += 1
return current_sum, solutions_count
_lowerCAmelCase = int(pow(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
if current_sum + i_to_n <= needed_sum:
# If the sum of the powers is less than needed_sum, then continue adding powers.
current_sum += i_to_n
_lowerCAmelCase , _lowerCAmelCase = backtrack(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , current_number + 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
current_sum -= i_to_n
if i_to_n < needed_sum:
# If the power of i is less than needed_sum, then try with the next power.
_lowerCAmelCase , _lowerCAmelCase = backtrack(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , current_number + 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return current_sum, solutions_count
def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
if not (1 <= needed_sum <= 1000 and 2 <= power <= 10):
raise ValueError(
"Invalid input\n"
"needed_sum must be between 1 and 1000, power between 2 and 10." )
return backtrack(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 , 0 , 0 )[1] # Return the solutions_count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 18 |
'''simple docstring'''
from typing import Dict, Iterable, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : int = ["pixel_values"]
def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = IMAGENET_DEFAULT_MEAN , _lowerCAmelCase = IMAGENET_DEFAULT_STD , **_lowerCAmelCase , ) -> None:
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = size if size is not None else {"shortest_edge": 224}
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
_lowerCAmelCase = crop_size if crop_size is not None else {"height": 224, "width": 224}
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" )
_lowerCAmelCase = do_resize
_lowerCAmelCase = size
_lowerCAmelCase = resample
_lowerCAmelCase = do_center_crop
_lowerCAmelCase = crop_size
_lowerCAmelCase = do_rescale
_lowerCAmelCase = rescale_factor
_lowerCAmelCase = do_normalize
_lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
_lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray:
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
# size_dict is a dict with either keys "height" and "width" or "shortest_edge"
if "shortest_edge" in size:
_lowerCAmelCase = int((256 / 224) * size["shortest_edge"] )
_lowerCAmelCase = get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase )
_lowerCAmelCase = {"height": output_size[0], "width": output_size[1]}
if "height" not in size_dict or "width" not in size_dict:
raise ValueError(
f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' )
return resize(
_lowerCAmelCase , size=(size_dict["height"], size_dict["width"]) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray:
_lowerCAmelCase = get_size_dict(_lowerCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray:
return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray:
return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ) -> BatchFeature:
_lowerCAmelCase = do_resize if do_resize is not None else self.do_resize
_lowerCAmelCase = resample if resample is not None else self.resample
_lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
_lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
_lowerCAmelCase = image_mean if image_mean is not None else self.image_mean
_lowerCAmelCase = image_std if image_std is not None else self.image_std
_lowerCAmelCase = size if size is not None else self.size
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
_lowerCAmelCase = crop_size if crop_size is not None else self.crop_size
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" )
_lowerCAmelCase = make_list_of_images(_lowerCAmelCase )
if not valid_images(_lowerCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
_lowerCAmelCase = [to_numpy_array(_lowerCAmelCase ) for image in images]
if do_resize:
_lowerCAmelCase = [self.resize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images]
if do_center_crop:
_lowerCAmelCase = [self.center_crop(_lowerCAmelCase , _lowerCAmelCase ) for image in images]
if do_rescale:
_lowerCAmelCase = [self.rescale(_lowerCAmelCase , _lowerCAmelCase ) for image in images]
if do_normalize:
_lowerCAmelCase = [self.normalize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images]
_lowerCAmelCase = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images]
_lowerCAmelCase = {"pixel_values": images}
return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_SCREAMING_SNAKE_CASE = {"processing_layoutxlm": ["LayoutXLMProcessor"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ["LayoutXLMTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ["LayoutXLMTokenizerFast"]
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 18 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json",
# See all Donut models at https://huggingface.co/models?filter=donut-swin
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Union[str, Any] = "donut-swin"
__lowerCamelCase : int = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , **_lowerCAmelCase , ) -> Optional[Any]:
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = embed_dim
_lowerCAmelCase = depths
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = num_heads
_lowerCAmelCase = window_size
_lowerCAmelCase = mlp_ratio
_lowerCAmelCase = qkv_bias
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = drop_path_rate
_lowerCAmelCase = hidden_act
_lowerCAmelCase = use_absolute_embeddings
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
| 18 | 1 |
'''simple docstring'''
import math
import os
import sys
def __a(SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
_lowerCAmelCase = ""
try:
with open(SCREAMING_SNAKE_CASE_ , "rb" ) as binary_file:
_lowerCAmelCase = binary_file.read()
for dat in data:
_lowerCAmelCase = F'''{dat:08b}'''
result += curr_byte
return result
except OSError:
print("File not accessible" )
sys.exit()
def __a(SCREAMING_SNAKE_CASE_ : dict[str, str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
lexicon.pop(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = last_match_id
if math.loga(SCREAMING_SNAKE_CASE_ ).is_integer():
for curr_key in lexicon:
_lowerCAmelCase = "0" + lexicon[curr_key]
_lowerCAmelCase = bin(SCREAMING_SNAKE_CASE_ )[2:]
def __a(SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
_lowerCAmelCase = {"0": "0", "1": "1"}
_lowerCAmelCase , _lowerCAmelCase = "", ""
_lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ )
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
_lowerCAmelCase = lexicon[curr_string]
result += last_match_id
add_key_to_lexicon(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
index += 1
_lowerCAmelCase = ""
while curr_string != "" and curr_string not in lexicon:
curr_string += "0"
if curr_string != "":
_lowerCAmelCase = lexicon[curr_string]
result += last_match_id
return result
def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
_lowerCAmelCase = os.path.getsize(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = bin(SCREAMING_SNAKE_CASE_ )[2:]
_lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ )
return "0" * (length_length - 1) + file_length_binary + compressed
def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
_lowerCAmelCase = 8
try:
with open(SCREAMING_SNAKE_CASE_ , "wb" ) as opened_file:
_lowerCAmelCase = [
to_write[i : i + byte_length]
for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append("10000000" )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array:
opened_file.write(int(SCREAMING_SNAKE_CASE_ , 2 ).to_bytes(1 , byteorder="big" ) )
except OSError:
print("File not accessible" )
sys.exit()
def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
_lowerCAmelCase = read_file_binary(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = compress_data(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = add_file_length(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
write_file_binary(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 18 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"microsoft/swinv2-tiny-patch4-window8-256": (
"https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json"
),
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Union[str, Any] = "swinv2"
__lowerCamelCase : int = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=32 , **_lowerCAmelCase , ) -> Tuple:
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = embed_dim
_lowerCAmelCase = depths
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = num_heads
_lowerCAmelCase = window_size
_lowerCAmelCase = mlp_ratio
_lowerCAmelCase = qkv_bias
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = drop_path_rate
_lowerCAmelCase = hidden_act
_lowerCAmelCase = use_absolute_embeddings
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = initializer_range
_lowerCAmelCase = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
_lowerCAmelCase = (0, 0, 0, 0)
| 18 | 1 |
'''simple docstring'''
import argparse
import math
import os
from copy import deepcopy
import torch
from audio_diffusion.models import DiffusionAttnUnetaD
from diffusion import sampling
from torch import nn
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
_SCREAMING_SNAKE_CASE = {
"gwf-440k": {
"url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt",
"sample_rate": 4_80_00,
"sample_size": 6_55_36,
},
"jmann-small-190k": {
"url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt",
"sample_rate": 4_80_00,
"sample_size": 6_55_36,
},
"jmann-large-580k": {
"url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt",
"sample_rate": 4_80_00,
"sample_size": 13_10_72,
},
"maestro-uncond-150k": {
"url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt",
"sample_rate": 1_60_00,
"sample_size": 6_55_36,
},
"unlocked-uncond-250k": {
"url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt",
"sample_rate": 1_60_00,
"sample_size": 6_55_36,
},
"honk-140k": {
"url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt",
"sample_rate": 1_60_00,
"sample_size": 6_55_36,
},
}
def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any ):
'''simple docstring'''
return torch.atana(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) / math.pi * 2
def __a(SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
_lowerCAmelCase = torch.sin(t * math.pi / 2 ) ** 2
_lowerCAmelCase = (1 - sigma**2) ** 0.5
return alpha_sigma_to_t(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
class lowerCAmelCase_ ( __magic_name__ ):
pass
class lowerCAmelCase_ ( nn.Module ):
def __init__( self , _lowerCAmelCase ) -> Any:
super().__init__()
_lowerCAmelCase = DiffusionAttnUnetaD(_lowerCAmelCase , n_attn_layers=4 )
_lowerCAmelCase = deepcopy(self.diffusion )
_lowerCAmelCase = torch.quasirandom.SobolEngine(1 , scramble=_lowerCAmelCase )
def __a(SCREAMING_SNAKE_CASE_ : List[str] ):
'''simple docstring'''
_lowerCAmelCase = MODELS_MAP[model_name]["url"]
os.system(F'''wget {url} ./''' )
return F'''./{model_name}.ckpt'''
_SCREAMING_SNAKE_CASE = {
"1": "resnets.0",
"2": "attentions.0",
"3": "resnets.1",
"4": "attentions.1",
"5": "resnets.2",
"6": "attentions.2",
}
_SCREAMING_SNAKE_CASE = {
"8": "resnets.0",
"9": "attentions.0",
"10": "resnets.1",
"11": "attentions.1",
"12": "resnets.2",
"13": "attentions.2",
}
_SCREAMING_SNAKE_CASE = {
"1": "resnets.0",
"2": "attentions.0",
"3": "resnets.1",
"4": "attentions.1",
"5": "resnets.2",
"6": "attentions.2",
"8": "resnets.3",
"9": "attentions.3",
"10": "resnets.4",
"11": "attentions.4",
"12": "resnets.5",
"13": "attentions.5",
}
_SCREAMING_SNAKE_CASE = {
"0": "resnets.0",
"1": "resnets.1",
"2": "resnets.2",
"4": "resnets.0",
"5": "resnets.1",
"6": "resnets.2",
}
_SCREAMING_SNAKE_CASE = {
"skip": "conv_skip",
"main.0": "conv_1",
"main.1": "group_norm_1",
"main.3": "conv_2",
"main.4": "group_norm_2",
}
_SCREAMING_SNAKE_CASE = {
"norm": "group_norm",
"qkv_proj": ["query", "key", "value"],
"out_proj": ["proj_attn"],
}
def __a(SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
if name.startswith("skip" ):
return name.replace("skip" , RES_CONV_MAP["skip"] )
# name has to be of format main.{digit}
if not name.startswith("main." ):
raise ValueError(F'''ResConvBlock error with {name}''' )
return name.replace(name[:6] , RES_CONV_MAP[name[:6]] )
def __a(SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
for key, value in ATTN_MAP.items():
if name.startswith(SCREAMING_SNAKE_CASE_ ) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif name.startswith(SCREAMING_SNAKE_CASE_ ):
return [name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for v in value]
raise ValueError(F'''Attn error with {name}''' )
def __a(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str=13 ):
'''simple docstring'''
_lowerCAmelCase = input_string
if string.split("." )[0] == "timestep_embed":
return string.replace("timestep_embed" , "time_proj" )
_lowerCAmelCase = 0
if string.startswith("net.3." ):
depth += 1
_lowerCAmelCase = string[6:]
elif string.startswith("net." ):
_lowerCAmelCase = string[4:]
while string.startswith("main.7." ):
depth += 1
_lowerCAmelCase = string[7:]
if string.startswith("main." ):
_lowerCAmelCase = string[5:]
# mid block
if string[:2].isdigit():
_lowerCAmelCase = string[:2]
_lowerCAmelCase = string[2:]
else:
_lowerCAmelCase = string[0]
_lowerCAmelCase = string[1:]
if depth == max_depth:
_lowerCAmelCase = MID_NUM_TO_LAYER[layer_num]
_lowerCAmelCase = "mid_block"
elif depth > 0 and int(SCREAMING_SNAKE_CASE_ ) < 7:
_lowerCAmelCase = DOWN_NUM_TO_LAYER[layer_num]
_lowerCAmelCase = F'''down_blocks.{depth}'''
elif depth > 0 and int(SCREAMING_SNAKE_CASE_ ) > 7:
_lowerCAmelCase = UP_NUM_TO_LAYER[layer_num]
_lowerCAmelCase = F'''up_blocks.{max_depth - depth - 1}'''
elif depth == 0:
_lowerCAmelCase = DEPTH_0_TO_LAYER[layer_num]
_lowerCAmelCase = F'''up_blocks.{max_depth - 1}''' if int(SCREAMING_SNAKE_CASE_ ) > 3 else "down_blocks.0"
if not string_left.startswith("." ):
raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' )
_lowerCAmelCase = string_left[1:]
if "resnets" in new_layer:
_lowerCAmelCase = convert_resconv_naming(SCREAMING_SNAKE_CASE_ )
elif "attentions" in new_layer:
_lowerCAmelCase = convert_attn_naming(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = new_string_left
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
_lowerCAmelCase = prefix + "." + new_layer + "." + string_left
else:
_lowerCAmelCase = [prefix + "." + new_layer + "." + s for s in string_left]
return new_string
def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] ):
'''simple docstring'''
_lowerCAmelCase = {}
for k, v in state_dict.items():
if k.endswith("kernel" ):
# up- and downsample layers, don't have trainable weights
continue
_lowerCAmelCase = rename(SCREAMING_SNAKE_CASE_ )
# check if we need to transform from Conv => Linear for attention
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
_lowerCAmelCase = transform_conv_attns(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
else:
_lowerCAmelCase = v
return new_state_dict
def __a(SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] ):
'''simple docstring'''
if len(SCREAMING_SNAKE_CASE_ ) == 1:
if len(v.shape ) == 3:
# weight
_lowerCAmelCase = v[:, :, 0]
else:
# bias
_lowerCAmelCase = v
else:
# qkv matrices
_lowerCAmelCase = v.shape[0]
_lowerCAmelCase = trippled_shape // 3
for i in range(3 ):
if len(v.shape ) == 3:
_lowerCAmelCase = v[i * single_shape : (i + 1) * single_shape, :, 0]
else:
_lowerCAmelCase = v[i * single_shape : (i + 1) * single_shape]
return new_state_dict
def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] ):
'''simple docstring'''
_lowerCAmelCase = torch.device("cuda" if torch.cuda.is_available() else "cpu" )
_lowerCAmelCase = args.model_path.split("/" )[-1].split("." )[0]
if not os.path.isfile(args.model_path ):
assert (
model_name == args.model_path
), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}'''
_lowerCAmelCase = download(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = MODELS_MAP[model_name]["sample_rate"]
_lowerCAmelCase = MODELS_MAP[model_name]["sample_size"]
_lowerCAmelCase = Object()
_lowerCAmelCase = sample_size
_lowerCAmelCase = sample_rate
_lowerCAmelCase = 0
_lowerCAmelCase = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE_ , sample_rate=SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = diffusers_model.state_dict()
_lowerCAmelCase = DiffusionUncond(SCREAMING_SNAKE_CASE_ )
orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE_ )["state_dict"] )
_lowerCAmelCase = orig_model.diffusion_ema.eval()
_lowerCAmelCase = orig_model.state_dict()
_lowerCAmelCase = rename_orig_weights(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() )
_lowerCAmelCase = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() )
assert len(SCREAMING_SNAKE_CASE_ ) == 0, F'''Problem with {renamed_minus_diffusers}'''
assert all(k.endswith("kernel" ) for k in list(SCREAMING_SNAKE_CASE_ ) ), F'''Problem with {diffusers_minus_renamed}'''
for key, value in renamed_state_dict.items():
assert (
diffusers_state_dict[key].squeeze().shape == value.squeeze().shape
), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}'''
if key == "time_proj.weight":
_lowerCAmelCase = value.squeeze()
_lowerCAmelCase = value
diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = 100
_lowerCAmelCase = 33
_lowerCAmelCase = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE_ )[:-1]
_lowerCAmelCase = get_crash_schedule(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = torch.manual_seed(33 )
_lowerCAmelCase = pipe(num_inference_steps=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).audios
_lowerCAmelCase = sampling.iplms_sample(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {} )
_lowerCAmelCase = generated.clamp(-1 , 1 )
_lowerCAmelCase = (generated - audio).abs().sum()
_lowerCAmelCase = (generated - audio).abs().max()
if args.save:
pipe.save_pretrained(args.checkpoint_path )
print("Diff sum" , SCREAMING_SNAKE_CASE_ )
print("Diff max" , SCREAMING_SNAKE_CASE_ )
assert diff_max < 1e-3, F'''Diff max: {diff_max} is too much :-/'''
print(F'''Conversion for {model_name} successful!''' )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.")
parser.add_argument(
"--save", default=True, type=bool, required=False, help="Whether to save the converted model or not."
)
parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.")
_SCREAMING_SNAKE_CASE = parser.parse_args()
main(args)
| 18 |
'''simple docstring'''
import gc
import unittest
import torch
from parameterized import parameterized
from diffusers import AutoencoderKL
from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ):
__lowerCamelCase : Optional[Any] = AutoencoderKL
__lowerCamelCase : List[Any] = "sample"
__lowerCamelCase : Tuple = 1e-2
@property
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = 4
_lowerCAmelCase = 3
_lowerCAmelCase = (32, 32)
_lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCAmelCase )
return {"sample": image}
@property
def _snake_case ( self ) -> Any:
return (3, 32, 32)
@property
def _snake_case ( self ) -> List[Any]:
return (3, 32, 32)
def _snake_case ( self ) -> str:
_lowerCAmelCase = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
}
_lowerCAmelCase = self.dummy_input
return init_dict, inputs_dict
def _snake_case ( self ) -> Optional[int]:
pass
def _snake_case ( self ) -> Any:
pass
@unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" )
def _snake_case ( self ) -> str:
# enable deterministic behavior for gradient checkpointing
_lowerCAmelCase , _lowerCAmelCase = self.prepare_init_args_and_inputs_for_common()
_lowerCAmelCase = self.model_class(**_lowerCAmelCase )
model.to(_lowerCAmelCase )
assert not model.is_gradient_checkpointing and model.training
_lowerCAmelCase = model(**_lowerCAmelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
_lowerCAmelCase = torch.randn_like(_lowerCAmelCase )
_lowerCAmelCase = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
_lowerCAmelCase = self.model_class(**_lowerCAmelCase )
# clone model
model_a.load_state_dict(model.state_dict() )
model_a.to(_lowerCAmelCase )
model_a.enable_gradient_checkpointing()
assert model_a.is_gradient_checkpointing and model_a.training
_lowerCAmelCase = model_a(**_lowerCAmelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_a.zero_grad()
_lowerCAmelCase = (out_a - labels).mean()
loss_a.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_a).abs() < 1E-5 )
_lowerCAmelCase = dict(model.named_parameters() )
_lowerCAmelCase = dict(model_a.named_parameters() )
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) )
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase , _lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
self.assertEqual(len(loading_info["missing_keys"] ) , 0 )
model.to(_lowerCAmelCase )
_lowerCAmelCase = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" )
_lowerCAmelCase = model.to(_lowerCAmelCase )
model.eval()
if torch_device == "mps":
_lowerCAmelCase = torch.manual_seed(0 )
else:
_lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 )
_lowerCAmelCase = torch.randn(
1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , )
_lowerCAmelCase = image.to(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase , sample_posterior=_lowerCAmelCase , generator=_lowerCAmelCase ).sample
_lowerCAmelCase = output[0, -1, -3:, -3:].flatten().cpu()
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device == "mps":
_lowerCAmelCase = torch.tensor(
[
-4.0078E-01,
-3.8323E-04,
-1.2681E-01,
-1.1462E-01,
2.0095E-01,
1.0893E-01,
-8.8247E-02,
-3.0361E-01,
-9.8644E-03,
] )
elif torch_device == "cpu":
_lowerCAmelCase = torch.tensor(
[-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] )
else:
_lowerCAmelCase = torch.tensor(
[-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] )
self.assertTrue(torch_all_close(_lowerCAmelCase , _lowerCAmelCase , rtol=1E-2 ) )
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]:
return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy'''
def _snake_case ( self ) -> List[str]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self , _lowerCAmelCase=0 , _lowerCAmelCase=(4, 3, 512, 512) , _lowerCAmelCase=False ) -> Tuple:
_lowerCAmelCase = torch.floataa if fpaa else torch.floataa
_lowerCAmelCase = torch.from_numpy(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) ).to(_lowerCAmelCase ).to(_lowerCAmelCase )
return image
def _snake_case ( self , _lowerCAmelCase="CompVis/stable-diffusion-v1-4" , _lowerCAmelCase=False ) -> Tuple:
_lowerCAmelCase = "fp16" if fpaa else None
_lowerCAmelCase = torch.floataa if fpaa else torch.floataa
_lowerCAmelCase = AutoencoderKL.from_pretrained(
_lowerCAmelCase , subfolder="vae" , torch_dtype=_lowerCAmelCase , revision=_lowerCAmelCase , )
model.to(_lowerCAmelCase ).eval()
return model
def _snake_case ( self , _lowerCAmelCase=0 ) -> str:
if torch_device == "mps":
return torch.manual_seed(_lowerCAmelCase )
return torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase )
@parameterized.expand(
[
# fmt: off
[33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
[47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
# fmt: on
] )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase )
_lowerCAmelCase = self.get_generator(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample
assert sample.shape == image.shape
_lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu()
_lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 )
@parameterized.expand(
[
# fmt: off
[33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]],
[47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]],
# fmt: on
] )
@require_torch_gpu
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase )
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , fpaa=_lowerCAmelCase )
_lowerCAmelCase = self.get_generator(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample
assert sample.shape == image.shape
_lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu()
_lowerCAmelCase = torch.tensor(_lowerCAmelCase )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
[47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
# fmt: on
] )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase ).sample
assert sample.shape == image.shape
_lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu()
_lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 )
@parameterized.expand(
[
# fmt: off
[13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]],
[37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]],
# fmt: on
] )
@require_torch_gpu
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) )
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
_lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().cpu()
_lowerCAmelCase = torch.tensor(_lowerCAmelCase )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 )
@parameterized.expand(
[
# fmt: off
[27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]],
[16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]],
# fmt: on
] )
@require_torch_gpu
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> str:
_lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase )
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
_lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu()
_lowerCAmelCase = torch.tensor(_lowerCAmelCase )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=5E-3 )
@parameterized.expand([(13,), (16,), (27,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." )
def _snake_case ( self , _lowerCAmelCase ) -> List[str]:
_lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase )
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-1 )
@parameterized.expand([(13,), (16,), (37,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." )
def _snake_case ( self , _lowerCAmelCase ) -> Any:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) )
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
[47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
# fmt: on
] )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase )
_lowerCAmelCase = self.get_generator(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model.encode(_lowerCAmelCase ).latent_dist
_lowerCAmelCase = dist.sample(generator=_lowerCAmelCase )
assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
_lowerCAmelCase = sample[0, -1, -3:, -3:].flatten().cpu()
_lowerCAmelCase = torch.tensor(_lowerCAmelCase )
_lowerCAmelCase = 3E-3 if torch_device != "mps" else 1E-2
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=_lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
def __a(SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : int = 0 ):
'''simple docstring'''
_lowerCAmelCase = right or len(SCREAMING_SNAKE_CASE_ ) - 1
if left > right:
return -1
elif list_data[left] == key:
return left
elif list_data[right] == key:
return right
else:
return search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , left + 1 , right - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 18 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json",
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : str = "gpt_bigcode"
__lowerCamelCase : Optional[int] = ["past_key_values"]
__lowerCamelCase : List[str] = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , _lowerCAmelCase=50257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=50256 , _lowerCAmelCase=50256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]:
_lowerCAmelCase = vocab_size
_lowerCAmelCase = n_positions
_lowerCAmelCase = n_embd
_lowerCAmelCase = n_layer
_lowerCAmelCase = n_head
_lowerCAmelCase = n_inner
_lowerCAmelCase = activation_function
_lowerCAmelCase = resid_pdrop
_lowerCAmelCase = embd_pdrop
_lowerCAmelCase = attn_pdrop
_lowerCAmelCase = layer_norm_epsilon
_lowerCAmelCase = initializer_range
_lowerCAmelCase = scale_attn_weights
_lowerCAmelCase = use_cache
_lowerCAmelCase = attention_softmax_in_fpaa
_lowerCAmelCase = scale_attention_softmax_in_fpaa
_lowerCAmelCase = multi_query
_lowerCAmelCase = bos_token_id
_lowerCAmelCase = eos_token_id
super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 18 |
'''simple docstring'''
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json",
# See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : List[Any] = "data2vec-audio"
def __init__( self , _lowerCAmelCase=32 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase="gelu" , _lowerCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _lowerCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase=False , _lowerCAmelCase=16 , _lowerCAmelCase=19 , _lowerCAmelCase=5 , _lowerCAmelCase=0.05 , _lowerCAmelCase=10 , _lowerCAmelCase=2 , _lowerCAmelCase=0.0 , _lowerCAmelCase=10 , _lowerCAmelCase=0 , _lowerCAmelCase="sum" , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=256 , _lowerCAmelCase=(512, 512, 512, 512, 1500) , _lowerCAmelCase=(5, 3, 3, 1, 1) , _lowerCAmelCase=(1, 2, 3, 1, 1) , _lowerCAmelCase=512 , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=False , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Dict:
super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase )
_lowerCAmelCase = hidden_size
_lowerCAmelCase = feat_extract_activation
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = conv_bias
_lowerCAmelCase = num_conv_pos_embeddings
_lowerCAmelCase = num_conv_pos_embedding_groups
_lowerCAmelCase = conv_pos_kernel_size
_lowerCAmelCase = len(self.conv_dim )
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = hidden_dropout
_lowerCAmelCase = attention_dropout
_lowerCAmelCase = activation_dropout
_lowerCAmelCase = feat_proj_dropout
_lowerCAmelCase = final_dropout
_lowerCAmelCase = layerdrop
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = initializer_range
_lowerCAmelCase = vocab_size
_lowerCAmelCase = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_lowerCAmelCase = mask_time_prob
_lowerCAmelCase = mask_time_length
_lowerCAmelCase = mask_time_min_masks
_lowerCAmelCase = mask_feature_prob
_lowerCAmelCase = mask_feature_length
_lowerCAmelCase = mask_feature_min_masks
# ctc loss
_lowerCAmelCase = ctc_loss_reduction
_lowerCAmelCase = ctc_zero_infinity
# adapter
_lowerCAmelCase = add_adapter
_lowerCAmelCase = adapter_kernel_size
_lowerCAmelCase = adapter_stride
_lowerCAmelCase = num_adapter_layers
_lowerCAmelCase = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
_lowerCAmelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = list(_lowerCAmelCase )
_lowerCAmelCase = xvector_output_dim
@property
def _snake_case ( self ) -> str:
return math.prod(self.conv_stride )
| 18 | 1 |
'''simple docstring'''
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_SCREAMING_SNAKE_CASE = {
"facebook/mask2former-swin-small-coco-instance": (
"https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Union[str, Any] = "mask2former"
__lowerCamelCase : Optional[Any] = ["swin"]
__lowerCamelCase : str = {"hidden_size": "hidden_dim"}
def __init__( self , _lowerCAmelCase = None , _lowerCAmelCase = 256 , _lowerCAmelCase = 256 , _lowerCAmelCase = 256 , _lowerCAmelCase = 1024 , _lowerCAmelCase = "relu" , _lowerCAmelCase = 6 , _lowerCAmelCase = 10 , _lowerCAmelCase = 8 , _lowerCAmelCase = 0.0 , _lowerCAmelCase = 2048 , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = 4 , _lowerCAmelCase = 255 , _lowerCAmelCase = 100 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 2.0 , _lowerCAmelCase = 5.0 , _lowerCAmelCase = 5.0 , _lowerCAmelCase = 12544 , _lowerCAmelCase = 3.0 , _lowerCAmelCase = 0.75 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1.0 , _lowerCAmelCase = True , _lowerCAmelCase = [4, 8, 16, 32] , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> List[Any]:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." )
_lowerCAmelCase = CONFIG_MAPPING["swin"](
image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_lowerCAmelCase , out_features=["stage1", "stage2", "stage3", "stage4"] , )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = backbone_config.pop("model_type" )
_lowerCAmelCase = CONFIG_MAPPING[backbone_model_type]
_lowerCAmelCase = config_class.from_dict(_lowerCAmelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. '''
f'''Supported model types: {','.join(self.backbones_supported )}''' )
_lowerCAmelCase = backbone_config
_lowerCAmelCase = feature_size
_lowerCAmelCase = mask_feature_size
_lowerCAmelCase = hidden_dim
_lowerCAmelCase = encoder_feedforward_dim
_lowerCAmelCase = activation_function
_lowerCAmelCase = encoder_layers
_lowerCAmelCase = decoder_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = dropout
_lowerCAmelCase = dim_feedforward
_lowerCAmelCase = pre_norm
_lowerCAmelCase = enforce_input_projection
_lowerCAmelCase = common_stride
_lowerCAmelCase = ignore_value
_lowerCAmelCase = num_queries
_lowerCAmelCase = no_object_weight
_lowerCAmelCase = class_weight
_lowerCAmelCase = mask_weight
_lowerCAmelCase = dice_weight
_lowerCAmelCase = train_num_points
_lowerCAmelCase = oversample_ratio
_lowerCAmelCase = importance_sample_ratio
_lowerCAmelCase = init_std
_lowerCAmelCase = init_xavier_std
_lowerCAmelCase = use_auxiliary_loss
_lowerCAmelCase = feature_strides
_lowerCAmelCase = output_auxiliary_logits
_lowerCAmelCase = decoder_layers
super().__init__(**_lowerCAmelCase )
@classmethod
def _snake_case ( cls , _lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
return cls(
backbone_config=_lowerCAmelCase , **_lowerCAmelCase , )
def _snake_case ( self ) -> Dict[str, any]:
_lowerCAmelCase = copy.deepcopy(self.__dict__ )
_lowerCAmelCase = self.backbone_config.to_dict()
_lowerCAmelCase = self.__class__.model_type
return output
| 18 |
'''simple docstring'''
import torch
from diffusers import DDPMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Any = (DDPMParallelScheduler,)
def _snake_case ( self , **_lowerCAmelCase ) -> int:
_lowerCAmelCase = {
"num_train_timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"variance_type": "fixed_small",
"clip_sample": True,
}
config.update(**_lowerCAmelCase )
return config
def _snake_case ( self ) -> List[Any]:
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=_lowerCAmelCase )
def _snake_case ( self ) -> List[Any]:
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase )
def _snake_case ( self ) -> Any:
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_lowerCAmelCase )
def _snake_case ( self ) -> Optional[Any]:
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=_lowerCAmelCase )
def _snake_case ( self ) -> Optional[int]:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_lowerCAmelCase )
def _snake_case ( self ) -> List[str]:
self.check_over_configs(thresholding=_lowerCAmelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , )
def _snake_case ( self ) -> int:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=_lowerCAmelCase )
def _snake_case ( self ) -> Dict:
for t in [0, 500, 999]:
self.check_over_forward(time_step=_lowerCAmelCase )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5
def _snake_case ( self ) -> Tuple:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
_lowerCAmelCase = self.dummy_sample_deter + 0.1
_lowerCAmelCase = self.dummy_sample_deter - 0.1
_lowerCAmelCase = samplea.shape[0]
_lowerCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 )
_lowerCAmelCase = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase )
_lowerCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
_lowerCAmelCase = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) )
_lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 1153.1833 ) < 1E-2
assert abs(result_mean.item() - 0.5005 ) < 1E-3
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
_lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(_lowerCAmelCase ) ):
# 1. predict noise residual
_lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase )
# 2. predict previous mean of sample x_t-1
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample
_lowerCAmelCase = pred_prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 258.9606 ) < 1E-2
assert abs(result_mean.item() - 0.3372 ) < 1E-3
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" )
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
_lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(_lowerCAmelCase ) ):
# 1. predict noise residual
_lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase )
# 2. predict previous mean of sample x_t-1
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample
_lowerCAmelCase = pred_prev_sample
_lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 202.0296 ) < 1E-2
assert abs(result_mean.item() - 0.2631 ) < 1E-3
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=_lowerCAmelCase )
_lowerCAmelCase = scheduler.timesteps
for i, timestep in enumerate(_lowerCAmelCase ):
if i == len(_lowerCAmelCase ) - 1:
_lowerCAmelCase = -1
else:
_lowerCAmelCase = timesteps[i + 1]
_lowerCAmelCase = scheduler.previous_timestep(_lowerCAmelCase )
_lowerCAmelCase = prev_t.item()
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> Any:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = [100, 87, 50, 51, 0]
with self.assertRaises(_lowerCAmelCase , msg="`custom_timesteps` must be in descending order." ):
scheduler.set_timesteps(timesteps=_lowerCAmelCase )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = [100, 87, 50, 1, 0]
_lowerCAmelCase = len(_lowerCAmelCase )
with self.assertRaises(_lowerCAmelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ):
scheduler.set_timesteps(num_inference_steps=_lowerCAmelCase , timesteps=_lowerCAmelCase )
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_lowerCAmelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ):
scheduler.set_timesteps(timesteps=_lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_SCREAMING_SNAKE_CASE = {
"configuration_distilbert": [
"DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"DistilBertConfig",
"DistilBertOnnxConfig",
],
"tokenization_distilbert": ["DistilBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ["DistilBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DistilBertForMaskedLM",
"DistilBertForMultipleChoice",
"DistilBertForQuestionAnswering",
"DistilBertForSequenceClassification",
"DistilBertForTokenClassification",
"DistilBertModel",
"DistilBertPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDistilBertForMaskedLM",
"TFDistilBertForMultipleChoice",
"TFDistilBertForQuestionAnswering",
"TFDistilBertForSequenceClassification",
"TFDistilBertForTokenClassification",
"TFDistilBertMainLayer",
"TFDistilBertModel",
"TFDistilBertPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"FlaxDistilBertForMaskedLM",
"FlaxDistilBertForMultipleChoice",
"FlaxDistilBertForQuestionAnswering",
"FlaxDistilBertForSequenceClassification",
"FlaxDistilBertForTokenClassification",
"FlaxDistilBertModel",
"FlaxDistilBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_distilbert import (
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DistilBertConfig,
DistilBertOnnxConfig,
)
from .tokenization_distilbert import DistilBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_distilbert_fast import DistilBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
DistilBertPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertMainLayer,
TFDistilBertModel,
TFDistilBertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 18 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {"vocab_file": "spiece.model"}
_SCREAMING_SNAKE_CASE = {
"vocab_file": {
"TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model",
}
}
class lowerCAmelCase_ ( __magic_name__ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<sep>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<cls>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=["<eop>", "<eod>"] , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None:
_lowerCAmelCase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token
_lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , )
_lowerCAmelCase = 3
_lowerCAmelCase = do_lower_case
_lowerCAmelCase = remove_space
_lowerCAmelCase = keep_accents
_lowerCAmelCase = vocab_file
_lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_lowerCAmelCase )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"You need to install jieba to use CpmTokenizer or CpmTokenizerFast. "
"See https://pypi.org/project/jieba/ for installation." )
_lowerCAmelCase = jieba
_lowerCAmelCase = str.maketrans(" \n" , "\u2582\u2583" )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def _snake_case ( self ) -> Optional[int]:
return len(self.sp_model )
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Tuple:
_lowerCAmelCase = self.__dict__.copy()
_lowerCAmelCase = None
return state
def __setstate__( self , _lowerCAmelCase ) -> Dict:
_lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
_lowerCAmelCase = {}
_lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _snake_case ( self , _lowerCAmelCase ) -> str:
if self.remove_space:
_lowerCAmelCase = " ".join(inputs.strip().split() )
else:
_lowerCAmelCase = inputs
_lowerCAmelCase = outputs.replace("``" , "\"" ).replace("''" , "\"" )
if not self.keep_accents:
_lowerCAmelCase = unicodedata.normalize("NFKD" , _lowerCAmelCase )
_lowerCAmelCase = "".join([c for c in outputs if not unicodedata.combining(_lowerCAmelCase )] )
if self.do_lower_case:
_lowerCAmelCase = outputs.lower()
return outputs
def _snake_case ( self , _lowerCAmelCase ) -> List[str]:
_lowerCAmelCase = self.preprocess_text(_lowerCAmelCase )
_lowerCAmelCase = self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase )
_lowerCAmelCase = []
for piece in pieces:
if len(_lowerCAmelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit():
_lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCAmelCase , "" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
_lowerCAmelCase = cur_pieces[1:]
else:
_lowerCAmelCase = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_lowerCAmelCase )
else:
new_pieces.append(_lowerCAmelCase )
return new_pieces
def _snake_case ( self , _lowerCAmelCase ) -> str:
return self.sp_model.PieceToId(_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]:
return self.sp_model.IdToPiece(_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = "".join(_lowerCAmelCase ).replace(_lowerCAmelCase , " " ).strip()
return out_string
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]:
_lowerCAmelCase = [self.sep_token_id]
_lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase )
if token_ids_a is not None:
return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1, 1]
return ([0] * len(_lowerCAmelCase )) + [1, 1]
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]:
_lowerCAmelCase = [self.sep_token_id]
_lowerCAmelCase = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(_lowerCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase = os.path.join(
_lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _lowerCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCAmelCase , "wb" ) as fi:
_lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(_lowerCAmelCase )
return (out_vocab_file,)
def _snake_case ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase = super()._decode(*_lowerCAmelCase , **_lowerCAmelCase )
_lowerCAmelCase = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" )
return text
| 18 | 1 |
'''simple docstring'''
import datasets
from .evaluate import evaluate
_SCREAMING_SNAKE_CASE = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n"
_SCREAMING_SNAKE_CASE = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n"
_SCREAMING_SNAKE_CASE = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
def _snake_case ( self ) -> List[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )},
"references": {
"id": datasets.Value("string" ),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
},
} ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int:
_lowerCAmelCase = {prediction["id"]: prediction["prediction_text"] for prediction in predictions}
_lowerCAmelCase = [
{
"paragraphs": [
{
"qas": [
{
"answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]],
"id": ref["id"],
}
for ref in references
]
}
]
}
]
_lowerCAmelCase = evaluate(dataset=_lowerCAmelCase , predictions=_lowerCAmelCase )
return score
| 18 |
'''simple docstring'''
from sklearn.metrics import mean_squared_error
import datasets
_SCREAMING_SNAKE_CASE = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n"
_SCREAMING_SNAKE_CASE = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n"
_SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
def _snake_case ( self ) -> Dict:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"
] , )
def _snake_case ( self ) -> Tuple:
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("float" ) ),
"references": datasets.Sequence(datasets.Value("float" ) ),
}
else:
return {
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
}
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="uniform_average" , _lowerCAmelCase=True ) -> Union[str, Any]:
_lowerCAmelCase = mean_squared_error(
_lowerCAmelCase , _lowerCAmelCase , sample_weight=_lowerCAmelCase , multioutput=_lowerCAmelCase , squared=_lowerCAmelCase )
return {"mse": mse}
| 18 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json",
"studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json",
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Optional[int] = "luke"
def __init__( self , _lowerCAmelCase=50267 , _lowerCAmelCase=500000 , _lowerCAmelCase=768 , _lowerCAmelCase=256 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , **_lowerCAmelCase , ) -> List[Any]:
super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
_lowerCAmelCase = vocab_size
_lowerCAmelCase = entity_vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = entity_emb_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = hidden_act
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = type_vocab_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = use_entity_aware_attention
_lowerCAmelCase = classifier_dropout
| 18 |
'''simple docstring'''
def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 18 | 1 |
'''simple docstring'''
from typing import Callable, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"microsoft/xprophetnet-large-wiki100-cased": (
"https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json"
),
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Optional[Any] = "xlm-prophetnet"
__lowerCamelCase : Dict = ["past_key_values"]
__lowerCamelCase : Tuple = {
"num_attention_heads": "num_encoder_attention_heads",
}
def __init__( self , _lowerCAmelCase = 0.1 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 30522 , _lowerCAmelCase = 1024 , _lowerCAmelCase = 4096 , _lowerCAmelCase = 12 , _lowerCAmelCase = 16 , _lowerCAmelCase = 4096 , _lowerCAmelCase = 12 , _lowerCAmelCase = 16 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 512 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = 2 , _lowerCAmelCase = 32 , _lowerCAmelCase = 128 , _lowerCAmelCase = False , _lowerCAmelCase = 0.0 , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = 1 , _lowerCAmelCase = 2 , **_lowerCAmelCase , ) -> str:
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = encoder_ffn_dim
_lowerCAmelCase = num_encoder_layers
_lowerCAmelCase = num_encoder_attention_heads
_lowerCAmelCase = decoder_ffn_dim
_lowerCAmelCase = num_decoder_layers
_lowerCAmelCase = num_decoder_attention_heads
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = init_std # Normal(0, this parameter)
_lowerCAmelCase = activation_function
# parameters for xlmprophetnet
_lowerCAmelCase = ngram
_lowerCAmelCase = num_buckets
_lowerCAmelCase = relative_max_distance
_lowerCAmelCase = disable_ngram_loss
_lowerCAmelCase = eps
# 3 Types of Dropout
_lowerCAmelCase = attention_dropout
_lowerCAmelCase = activation_dropout
_lowerCAmelCase = dropout
_lowerCAmelCase = use_cache
super().__init__(
pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , add_cross_attention=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
@property
def _snake_case ( self ) -> int:
return self.num_encoder_layers + self.num_decoder_layers
@num_hidden_layers.setter
def _snake_case ( self , _lowerCAmelCase ) -> int:
raise NotImplementedError(
"This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and"
" `num_decoder_layers`." )
| 18 |
'''simple docstring'''
from __future__ import annotations
def __a(SCREAMING_SNAKE_CASE_ : int | float | str , SCREAMING_SNAKE_CASE_ : int | float | str ):
'''simple docstring'''
if nth_term == "":
return [""]
_lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = []
for temp in range(int(SCREAMING_SNAKE_CASE_ ) ):
series.append(F'''1 / {pow(temp + 1 , int(SCREAMING_SNAKE_CASE_ ) )}''' if series else "1" )
return series
if __name__ == "__main__":
import doctest
doctest.testmod()
_SCREAMING_SNAKE_CASE = int(input("Enter the last number (nth term) of the P-Series"))
_SCREAMING_SNAKE_CASE = int(input("Enter the power for P-Series"))
print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p")
print(p_series(nth_term, power))
| 18 | 1 |
'''simple docstring'''
import copy
import json
import os
import tempfile
from transformers import is_torch_available
from .test_configuration_utils import config_common_kwargs
class lowerCAmelCase_ ( __magic_name__ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Optional[int]:
_lowerCAmelCase = parent
_lowerCAmelCase = config_class
_lowerCAmelCase = has_text_modality
_lowerCAmelCase = kwargs
_lowerCAmelCase = common_properties
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = self.config_class(**self.inputs_dict )
_lowerCAmelCase = (
["hidden_size", "num_attention_heads", "num_hidden_layers"]
if self.common_properties is None
else self.common_properties
)
# Add common fields for text models
if self.has_text_modality:
common_properties.extend(["vocab_size"] )
# Test that config has the common properties as getters
for prop in common_properties:
self.parent.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) , msg=f'''`{prop}` does not exist''' )
# Test that config has the common properties as setter
for idx, name in enumerate(_lowerCAmelCase ):
try:
setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
self.parent.assertEqual(
getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , msg=f'''`{name} value {idx} expected, but was {getattr(_lowerCAmelCase , _lowerCAmelCase )}''' )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
# Test if config class can be called with Config(prop_name=..)
for idx, name in enumerate(_lowerCAmelCase ):
try:
_lowerCAmelCase = self.config_class(**{name: idx} )
self.parent.assertEqual(
getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , msg=f'''`{name} value {idx} expected, but was {getattr(_lowerCAmelCase , _lowerCAmelCase )}''' )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
def _snake_case ( self ) -> Tuple:
_lowerCAmelCase = self.config_class(**self.inputs_dict )
_lowerCAmelCase = json.loads(config.to_json_string() )
for key, value in self.inputs_dict.items():
self.parent.assertEqual(obj[key] , _lowerCAmelCase )
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_lowerCAmelCase = os.path.join(_lowerCAmelCase , "config.json" )
config_first.to_json_file(_lowerCAmelCase )
_lowerCAmelCase = self.config_class.from_json_file(_lowerCAmelCase )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
config_first.save_pretrained(_lowerCAmelCase )
_lowerCAmelCase = self.config_class.from_pretrained(_lowerCAmelCase )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def _snake_case ( self ) -> Optional[int]:
_lowerCAmelCase = self.config_class(**self.inputs_dict )
_lowerCAmelCase = "test"
with tempfile.TemporaryDirectory() as tmpdirname:
_lowerCAmelCase = os.path.join(_lowerCAmelCase , _lowerCAmelCase )
config_first.save_pretrained(_lowerCAmelCase )
_lowerCAmelCase = self.config_class.from_pretrained(_lowerCAmelCase , subfolder=_lowerCAmelCase )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = self.config_class(**self.inputs_dict , num_labels=5 )
self.parent.assertEqual(len(config.idalabel ) , 5 )
self.parent.assertEqual(len(config.labelaid ) , 5 )
_lowerCAmelCase = 3
self.parent.assertEqual(len(config.idalabel ) , 3 )
self.parent.assertEqual(len(config.labelaid ) , 3 )
def _snake_case ( self ) -> str:
if self.config_class.is_composition:
return
_lowerCAmelCase = self.config_class()
self.parent.assertIsNotNone(_lowerCAmelCase )
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = copy.deepcopy(_lowerCAmelCase )
_lowerCAmelCase = self.config_class(**_lowerCAmelCase )
_lowerCAmelCase = []
for key, value in config_common_kwargs.items():
if key == "torch_dtype":
if not is_torch_available():
continue
else:
import torch
if config.torch_dtype != torch.floataa:
wrong_values.append(("torch_dtype", config.torch_dtype, torch.floataa) )
elif getattr(_lowerCAmelCase , _lowerCAmelCase ) != value:
wrong_values.append((key, getattr(_lowerCAmelCase , _lowerCAmelCase ), value) )
if len(_lowerCAmelCase ) > 0:
_lowerCAmelCase = "\n".join([f'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] )
raise ValueError(f'''The following keys were not properly set in the config:\n{errors}''' )
def _snake_case ( self ) -> Dict:
self.create_and_test_config_common_properties()
self.create_and_test_config_to_json_string()
self.create_and_test_config_to_json_file()
self.create_and_test_config_from_and_save_pretrained()
self.create_and_test_config_from_and_save_pretrained_subfolder()
self.create_and_test_config_with_num_labels()
self.check_config_can_be_init_without_params()
self.check_config_arguments_init()
| 18 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Dict = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[int] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[int] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : List[Any] ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
def __a(*SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Dict ):
'''simple docstring'''
requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Dict = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Any = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[int] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Any = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[int] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Optional[int] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : str = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Tuple = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Any = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Tuple = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : str = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Dict = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Any = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Dict = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : str = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : int = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : List[str] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Tuple = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : str = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
class lowerCAmelCase_ ( metaclass=__magic_name__ ):
__lowerCamelCase : Union[str, Any] = ["torch"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str:
requires_backends(cls , ["torch"] )
@classmethod
def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
requires_backends(cls , ["torch"] )
| 18 | 1 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowerCAmelCase_ ( __magic_name__ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ) -> Any:
super().__init__()
self.register_modules(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase )
@torch.no_grad()
def __call__( self , _lowerCAmelCase = 1 , _lowerCAmelCase = 100 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = True , ) -> Union[AudioPipelineOutput, Tuple]:
if audio_length_in_s is None:
_lowerCAmelCase = self.unet.config.sample_size / self.unet.config.sample_rate
_lowerCAmelCase = audio_length_in_s * self.unet.config.sample_rate
_lowerCAmelCase = 2 ** len(self.unet.up_blocks )
if sample_size < 3 * down_scale_factor:
raise ValueError(
f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to'''
f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' )
_lowerCAmelCase = int(_lowerCAmelCase )
if sample_size % down_scale_factor != 0:
_lowerCAmelCase = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled'''
f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising'''
" process." )
_lowerCAmelCase = int(_lowerCAmelCase )
_lowerCAmelCase = next(iter(self.unet.parameters() ) ).dtype
_lowerCAmelCase = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(_lowerCAmelCase )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
_lowerCAmelCase = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=self.device , dtype=_lowerCAmelCase )
# set step values
self.scheduler.set_timesteps(_lowerCAmelCase , device=audio.device )
_lowerCAmelCase = self.scheduler.timesteps.to(_lowerCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
_lowerCAmelCase = self.unet(_lowerCAmelCase , _lowerCAmelCase ).sample
# 2. compute previous image: x_t -> t_t-1
_lowerCAmelCase = self.scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample
_lowerCAmelCase = audio.clamp(-1 , 1 ).float().cpu().numpy()
_lowerCAmelCase = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=_lowerCAmelCase )
| 18 |
'''simple docstring'''
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple=None ):
'''simple docstring'''
_lowerCAmelCase = None
if token is not None:
_lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''}
_lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
_lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json()
_lowerCAmelCase = {}
try:
job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} )
_lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 )
for i in range(SCREAMING_SNAKE_CASE_ ):
_lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json()
job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} )
return job_links
except Exception:
print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict=None ):
'''simple docstring'''
_lowerCAmelCase = None
if token is not None:
_lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''}
_lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'''
_lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json()
_lowerCAmelCase = {}
try:
artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} )
_lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 )
for i in range(SCREAMING_SNAKE_CASE_ ):
_lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json()
artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} )
return artifacts
except Exception:
print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ):
'''simple docstring'''
_lowerCAmelCase = None
if token is not None:
_lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''}
_lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = result.headers["Location"]
_lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F'''{artifact_name}.zip''' )
with open(SCREAMING_SNAKE_CASE_ , "wb" ) as fp:
fp.write(response.content )
def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=None ):
'''simple docstring'''
_lowerCAmelCase = []
_lowerCAmelCase = []
_lowerCAmelCase = None
with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z:
for filename in z.namelist():
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(SCREAMING_SNAKE_CASE_ ) as f:
for line in f:
_lowerCAmelCase = line.decode("UTF-8" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
_lowerCAmelCase = line[: line.index(": " )]
_lowerCAmelCase = line[line.index(": " ) + len(": " ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("FAILED " ):
# `test` is the test method that failed
_lowerCAmelCase = line[len("FAILED " ) :]
failed_tests.append(SCREAMING_SNAKE_CASE_ )
elif filename == "job_name.txt":
_lowerCAmelCase = line
if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
F'''`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE_ )} for `errors` '''
F'''and {len(SCREAMING_SNAKE_CASE_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'''
" problem." )
_lowerCAmelCase = None
if job_name and job_links:
_lowerCAmelCase = job_links.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# A list with elements of the form (line of error, error, failed test)
_lowerCAmelCase = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )]
return result
def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=None ):
'''simple docstring'''
_lowerCAmelCase = []
_lowerCAmelCase = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for p in os.listdir(SCREAMING_SNAKE_CASE_ ) if p.endswith(".zip" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE_ , job_links=SCREAMING_SNAKE_CASE_ ) )
return errors
def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str=None ):
'''simple docstring'''
_lowerCAmelCase = Counter()
counter.update([x[1] for x in logs] )
_lowerCAmelCase = counter.most_common()
_lowerCAmelCase = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
_lowerCAmelCase = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]}
_lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) )
return r
def __a(SCREAMING_SNAKE_CASE_ : List[str] ):
'''simple docstring'''
_lowerCAmelCase = test.split("::" )[0]
if test.startswith("tests/models/" ):
_lowerCAmelCase = test.split("/" )[2]
else:
_lowerCAmelCase = None
return test
def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple=None ):
'''simple docstring'''
_lowerCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs]
_lowerCAmelCase = [x for x in logs if x[2] is not None]
_lowerCAmelCase = {x[2] for x in logs}
_lowerCAmelCase = {}
for test in tests:
_lowerCAmelCase = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
_lowerCAmelCase = counter.most_common()
_lowerCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
_lowerCAmelCase = sum(error_counts.values() )
if n_errors > 0:
_lowerCAmelCase = {"count": n_errors, "errors": error_counts}
_lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) )
return r
def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ):
'''simple docstring'''
_lowerCAmelCase = "| no. | error | status |"
_lowerCAmelCase = "|-:|:-|:-|"
_lowerCAmelCase = [header, sep]
for error in reduced_by_error:
_lowerCAmelCase = reduced_by_error[error]["count"]
_lowerCAmelCase = F'''| {count} | {error[:100]} | |'''
lines.append(SCREAMING_SNAKE_CASE_ )
return "\n".join(SCREAMING_SNAKE_CASE_ )
def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ):
'''simple docstring'''
_lowerCAmelCase = "| model | no. of errors | major error | count |"
_lowerCAmelCase = "|-:|-:|-:|-:|"
_lowerCAmelCase = [header, sep]
for model in reduced_by_model:
_lowerCAmelCase = reduced_by_model[model]["count"]
_lowerCAmelCase , _lowerCAmelCase = list(reduced_by_model[model]["errors"].items() )[0]
_lowerCAmelCase = F'''| {model} | {count} | {error[:60]} | {_count} |'''
lines.append(SCREAMING_SNAKE_CASE_ )
return "\n".join(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Where to store the downloaded artifacts and other result files.",
)
parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.")
_SCREAMING_SNAKE_CASE = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
_SCREAMING_SNAKE_CASE = get_job_links(args.workflow_run_id, token=args.token)
_SCREAMING_SNAKE_CASE = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
_SCREAMING_SNAKE_CASE = k.find(" / ")
_SCREAMING_SNAKE_CASE = k[index + len(" / ") :]
_SCREAMING_SNAKE_CASE = v
with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
_SCREAMING_SNAKE_CASE = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
_SCREAMING_SNAKE_CASE = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
_SCREAMING_SNAKE_CASE = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
_SCREAMING_SNAKE_CASE = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
_SCREAMING_SNAKE_CASE = reduce_by_error(errors)
_SCREAMING_SNAKE_CASE = reduce_by_model(errors)
_SCREAMING_SNAKE_CASE = make_github_table(reduced_by_error)
_SCREAMING_SNAKE_CASE = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
| 18 | 1 |
'''simple docstring'''
import logging
from transformers.configuration_utils import PretrainedConfig
_SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Optional[int] = "masked_bert"
def __init__( self , _lowerCAmelCase=30522 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0 , _lowerCAmelCase="topK" , _lowerCAmelCase="constant" , _lowerCAmelCase=0.0 , **_lowerCAmelCase , ) -> List[Any]:
super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase )
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = hidden_act
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = type_vocab_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = pruning_method
_lowerCAmelCase = mask_init
_lowerCAmelCase = mask_scale
| 18 |
'''simple docstring'''
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : List[str] = (DPMSolverSinglestepScheduler,)
__lowerCamelCase : int = (("num_inference_steps", 25),)
def _snake_case ( self , **_lowerCAmelCase ) -> Any:
_lowerCAmelCase = {
"num_train_timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"solver_order": 2,
"prediction_type": "epsilon",
"thresholding": False,
"sample_max_value": 1.0,
"algorithm_type": "dpmsolver++",
"solver_type": "midpoint",
"lambda_min_clipped": -float("inf" ),
"variance_type": None,
}
config.update(**_lowerCAmelCase )
return config
def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> List[Any]:
_lowerCAmelCase = dict(self.forward_default_kwargs )
_lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase )
_lowerCAmelCase = self.dummy_sample
_lowerCAmelCase = 0.1 * sample
_lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
_lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase )
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
scheduler.set_timesteps(_lowerCAmelCase )
# copy over dummy past residuals
_lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_lowerCAmelCase )
_lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase )
new_scheduler.set_timesteps(_lowerCAmelCase )
# copy over dummy past residuals
_lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order]
_lowerCAmelCase , _lowerCAmelCase = sample, sample
for t in range(_lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ):
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
_lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def _snake_case ( self ) -> int:
pass
def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> Optional[int]:
_lowerCAmelCase = dict(self.forward_default_kwargs )
_lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase )
_lowerCAmelCase = self.dummy_sample
_lowerCAmelCase = 0.1 * sample
_lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
_lowerCAmelCase = self.get_scheduler_config()
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
scheduler.set_timesteps(_lowerCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
_lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_lowerCAmelCase )
_lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_lowerCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
_lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order]
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
_lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def _snake_case ( self , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Tuple:
if scheduler is None:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase )
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase )
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = 10
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
scheduler.set_timesteps(_lowerCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample
return sample
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
_lowerCAmelCase = 50
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter
scheduler.set_timesteps(_lowerCAmelCase )
# make sure that the first t is uneven
for i, t in enumerate(scheduler.timesteps[3:] ):
_lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2574 ) < 1E-3
def _snake_case ( self ) -> Optional[Any]:
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=_lowerCAmelCase )
def _snake_case ( self ) -> List[Any]:
# make sure that iterating over schedulers with same config names gives same results
# for defaults
_lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
_lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2791 ) < 1E-3
_lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config )
_lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config )
_lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config )
_lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config )
_lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2791 ) < 1E-3
def _snake_case ( self ) -> str:
self.check_over_configs(thresholding=_lowerCAmelCase )
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , algorithm_type="dpmsolver++" , solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , )
def _snake_case ( self ) -> Dict:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_lowerCAmelCase )
def _snake_case ( self ) -> Union[str, Any]:
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , )
_lowerCAmelCase = self.full_loop(
solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , )
assert not torch.isnan(_lowerCAmelCase ).any(), "Samples have nan numbers"
def _snake_case ( self ) -> Optional[Any]:
self.check_over_configs(lower_order_final=_lowerCAmelCase )
self.check_over_configs(lower_order_final=_lowerCAmelCase )
def _snake_case ( self ) -> Optional[Any]:
self.check_over_configs(lambda_min_clipped=-float("inf" ) )
self.check_over_configs(lambda_min_clipped=-5.1 )
def _snake_case ( self ) -> str:
self.check_over_configs(variance_type=_lowerCAmelCase )
self.check_over_configs(variance_type="learned_range" )
def _snake_case ( self ) -> int:
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=_lowerCAmelCase , time_step=0 )
def _snake_case ( self ) -> Any:
_lowerCAmelCase = self.full_loop()
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2791 ) < 1E-3
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = self.full_loop(use_karras_sigmas=_lowerCAmelCase )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2248 ) < 1E-3
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = self.full_loop(prediction_type="v_prediction" )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.1453 ) < 1E-3
def _snake_case ( self ) -> Any:
_lowerCAmelCase = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=_lowerCAmelCase )
_lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_mean.item() - 0.0649 ) < 1E-3
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase = self.scheduler_classes[0]
_lowerCAmelCase = self.get_scheduler_config(thresholding=_lowerCAmelCase , dynamic_thresholding_ratio=0 )
_lowerCAmelCase = scheduler_class(**_lowerCAmelCase )
_lowerCAmelCase = 10
_lowerCAmelCase = self.dummy_model()
_lowerCAmelCase = self.dummy_sample_deter.half()
scheduler.set_timesteps(_lowerCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample
assert sample.dtype == torch.floataa
| 18 | 1 |
'''simple docstring'''
import copy
import random
from transformers import CLIPTokenizer
class lowerCAmelCase_ ( __magic_name__ ):
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict:
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
_lowerCAmelCase = {}
def _snake_case ( self , _lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]:
_lowerCAmelCase = super().add_tokens(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase )
if num_added_tokens == 0:
raise ValueError(
f'''The tokenizer already contains the token {placeholder_token}. Please pass a different'''
" `placeholder_token` that is not already in the tokenizer." )
def _snake_case ( self , _lowerCAmelCase , *_lowerCAmelCase , _lowerCAmelCase=1 , **_lowerCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase = []
if num_vec_per_token == 1:
self.try_adding_tokens(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase )
output.append(_lowerCAmelCase )
else:
_lowerCAmelCase = []
for i in range(_lowerCAmelCase ):
_lowerCAmelCase = placeholder_token + f'''_{i}'''
self.try_adding_tokens(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase )
output.append(_lowerCAmelCase )
# handle cases where there is a new placeholder token that contains the current placeholder token but is larger
for token in self.token_map:
if token in placeholder_token:
raise ValueError(
f'''The tokenizer already has placeholder token {token} that can get confused with'''
f''' {placeholder_token}keep placeholder tokens independent''' )
_lowerCAmelCase = output
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=1.0 ) -> int:
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = []
for i in range(len(_lowerCAmelCase ) ):
output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=_lowerCAmelCase ) )
return output
for placeholder_token in self.token_map:
if placeholder_token in text:
_lowerCAmelCase = self.token_map[placeholder_token]
_lowerCAmelCase = tokens[: 1 + int(len(_lowerCAmelCase ) * prop_tokens_to_load )]
if vector_shuffle:
_lowerCAmelCase = copy.copy(_lowerCAmelCase )
random.shuffle(_lowerCAmelCase )
_lowerCAmelCase = text.replace(_lowerCAmelCase , " ".join(_lowerCAmelCase ) )
return text
def __call__( self , _lowerCAmelCase , *_lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=1.0 , **_lowerCAmelCase ) -> Optional[int]:
return super().__call__(
self.replace_placeholder_tokens_in_text(
_lowerCAmelCase , vector_shuffle=_lowerCAmelCase , prop_tokens_to_load=_lowerCAmelCase ) , *_lowerCAmelCase , **_lowerCAmelCase , )
def _snake_case ( self , _lowerCAmelCase , *_lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=1.0 , **_lowerCAmelCase ) -> Tuple:
return super().encode(
self.replace_placeholder_tokens_in_text(
_lowerCAmelCase , vector_shuffle=_lowerCAmelCase , prop_tokens_to_load=_lowerCAmelCase ) , *_lowerCAmelCase , **_lowerCAmelCase , )
| 18 |
'''simple docstring'''
from __future__ import annotations
def __a(SCREAMING_SNAKE_CASE_ : list ):
'''simple docstring'''
if not nums:
raise ValueError("List is empty" )
return sum(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 18 | 1 |
'''simple docstring'''
import re
import jax.numpy as jnp
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ..utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] ):
'''simple docstring'''
_lowerCAmelCase = R"\w+[.]\d+"
_lowerCAmelCase = re.findall(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
for pat in pats:
_lowerCAmelCase = key.replace(SCREAMING_SNAKE_CASE_ , "_".join(pat.split("." ) ) )
return key
def __a(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] ):
'''simple docstring'''
_lowerCAmelCase = pt_tuple_key[:-1] + ("scale",)
if (
any("norm" in str_ for str_ in pt_tuple_key )
and (pt_tuple_key[-1] == "bias")
and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
):
_lowerCAmelCase = pt_tuple_key[:-1] + ("scale",)
return renamed_pt_tuple_key, pt_tensor
elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
_lowerCAmelCase = pt_tuple_key[:-1] + ("scale",)
return renamed_pt_tuple_key, pt_tensor
# embedding
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
_lowerCAmelCase = pt_tuple_key[:-1] + ("embedding",)
return renamed_pt_tuple_key, pt_tensor
# conv layer
_lowerCAmelCase = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
_lowerCAmelCase = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
_lowerCAmelCase = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight":
_lowerCAmelCase = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
_lowerCAmelCase = pt_tuple_key[:-1] + ("weight",)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
_lowerCAmelCase = pt_tuple_key[:-1] + ("bias",)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any=42 ):
'''simple docstring'''
_lowerCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()}
# Step 2: Since the model is stateless, get random Flax params
_lowerCAmelCase = flax_model.init_weights(PRNGKey(SCREAMING_SNAKE_CASE_ ) )
_lowerCAmelCase = flatten_dict(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = {}
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
_lowerCAmelCase = rename_key(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = tuple(renamed_pt_key.split("." ) )
# Correctly rename weight parameters
_lowerCAmelCase , _lowerCAmelCase = rename_key_and_reshape_tensor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '''
F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' )
# also add unexpected weight so that warning is thrown
_lowerCAmelCase = jnp.asarray(SCREAMING_SNAKE_CASE_ )
return unflatten_dict(SCREAMING_SNAKE_CASE_ )
| 18 |
'''simple docstring'''
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
_lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase )
_lowerCAmelCase = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
_lowerCAmelCase = TextStreamer(_lowerCAmelCase )
model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
_lowerCAmelCase = cs.out[:-1]
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
_lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase )
_lowerCAmelCase = tokenizer.decode(greedy_ids[0] )
_lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase )
_lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
_lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase )
thread.start()
_lowerCAmelCase = ""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
_lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase )
_lowerCAmelCase = greedy_ids[:, input_ids.shape[1] :]
_lowerCAmelCase = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
_lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_prompt=_lowerCAmelCase )
model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
_lowerCAmelCase = cs.out[:-1]
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self ) -> Dict:
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
_lowerCAmelCase = AutoTokenizer.from_pretrained("distilgpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = torch.ones((1, 5) , device=_lowerCAmelCase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
_lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )
model.generate(_lowerCAmelCase , max_new_tokens=1 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
_lowerCAmelCase = cs.out[:-1] # Remove the final "\n"
_lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="pt" )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase )
_lowerCAmelCase = -1
_lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase )
_lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase , timeout=0.001 )
_lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
_lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(_lowerCAmelCase ):
_lowerCAmelCase = ""
for new_text in streamer:
streamer_text += new_text
| 18 | 1 |
'''simple docstring'''
import argparse
import json
import os
import re
import torch
from transformers import BloomConfig, BloomModel
from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME
from transformers.utils import logging
logging.set_verbosity_info()
_SCREAMING_SNAKE_CASE = [
"word_embeddings_layernorm.weight",
"word_embeddings_layernorm.bias",
"input_layernorm.weight",
"input_layernorm.bias",
"post_attention_layernorm.weight",
"post_attention_layernorm.bias",
"self_attention.dense.bias",
"mlp.dense_4h_to_h.bias",
"ln_f.weight",
"ln_f.bias",
]
_SCREAMING_SNAKE_CASE = [
"mlp.dense_4h_to_h.weight",
"self_attention.dense.weight",
]
def __a(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ):
'''simple docstring'''
_lowerCAmelCase = {
"word_embeddings.weight": "word_embeddings.weight",
"word_embeddings.norm.weight": "word_embeddings_layernorm.weight",
"word_embeddings.norm.bias": "word_embeddings_layernorm.bias",
"weight": "ln_f.weight",
"bias": "ln_f.bias",
}
if key in layer_rename_map:
return layer_rename_map[key]
# Handle transformer blocks
_lowerCAmelCase = int(re.match(R".*layer_(\d*).*" , SCREAMING_SNAKE_CASE_ )[1] )
layer_number -= 3
return F'''h.{layer_number}.''' + key
def __a(SCREAMING_SNAKE_CASE_ : Dict ):
'''simple docstring'''
if dtype == torch.bool:
return 1 / 8
_lowerCAmelCase = re.search(R"[^\d](\d+)$" , str(SCREAMING_SNAKE_CASE_ ) )
if bit_search is None:
raise ValueError(F'''`dtype` is not a valid dtype: {dtype}.''' )
_lowerCAmelCase = int(bit_search.groups()[0] )
return bit_size // 8
def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ):
'''simple docstring'''
if bloom_config_file == "":
_lowerCAmelCase = BloomConfig()
else:
_lowerCAmelCase = BloomConfig.from_json_file(SCREAMING_SNAKE_CASE_ )
if shard_model:
_lowerCAmelCase = os.listdir(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = sorted(filter(lambda SCREAMING_SNAKE_CASE_ : s.startswith("layer" ) and "model_00" in s , SCREAMING_SNAKE_CASE_ ) )
_lowerCAmelCase = {"weight_map": {}, "metadata": {}}
_lowerCAmelCase = 0
_lowerCAmelCase = None
_lowerCAmelCase = BloomConfig()
for j, file in enumerate(SCREAMING_SNAKE_CASE_ ):
print("Processing file: {}".format(SCREAMING_SNAKE_CASE_ ) )
_lowerCAmelCase = None
for i in range(SCREAMING_SNAKE_CASE_ ):
# load all TP files
_lowerCAmelCase = file.replace("model_00" , F'''model_0{i}''' )
_lowerCAmelCase = torch.load(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , map_location="cpu" )
# Rename keys in the transformers names
_lowerCAmelCase = list(temp.keys() )
for key in keys:
_lowerCAmelCase = temp.pop(SCREAMING_SNAKE_CASE_ )
if tensors is None:
_lowerCAmelCase = temp
else:
for key in tensors.keys():
if any(key.endswith(SCREAMING_SNAKE_CASE_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
tensors[key] += temp[key]
else:
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
_lowerCAmelCase = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0
# We concatenate these weights accross TP ranks
_lowerCAmelCase = torch.cat([tensors[key], temp[key]] , dim=SCREAMING_SNAKE_CASE_ )
# Divide by the number of TP the weights we want to average
for key in tensors.keys():
if any(key.endswith(SCREAMING_SNAKE_CASE_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
_lowerCAmelCase = tensors[key] / pretraining_tp
torch.save(
SCREAMING_SNAKE_CASE_ , os.path.join(
SCREAMING_SNAKE_CASE_ , "pytorch_model_{}-of-{}.bin".format(str(j + 1 ).zfill(5 ) , str(len(SCREAMING_SNAKE_CASE_ ) ).zfill(5 ) ) , ) , )
for key in tensors.keys():
_lowerCAmelCase = tensors[key]
total_size += value.numel() * get_dtype_size(value.dtype )
if key not in index_dict["weight_map"]:
_lowerCAmelCase = "pytorch_model_{}-of-{}.bin".format(
str(j + 1 ).zfill(5 ) , str(len(SCREAMING_SNAKE_CASE_ ) ).zfill(5 ) )
_lowerCAmelCase = BloomConfig()
_lowerCAmelCase = pytorch_dump_folder_path + "/" + CONFIG_NAME
_lowerCAmelCase = total_size
with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as f:
f.write(config.to_json_string() )
with open(os.path.join(SCREAMING_SNAKE_CASE_ , WEIGHTS_NAME + ".index.json" ) , "w" , encoding="utf-8" ) as f:
_lowerCAmelCase = json.dumps(SCREAMING_SNAKE_CASE_ , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ ) + "\n"
f.write(SCREAMING_SNAKE_CASE_ )
else:
_lowerCAmelCase = BloomModel(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = os.listdir(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = sorted(filter(lambda SCREAMING_SNAKE_CASE_ : s.startswith("layer" ) and "model_00" in s , SCREAMING_SNAKE_CASE_ ) )
_lowerCAmelCase = None
for i, file in enumerate(SCREAMING_SNAKE_CASE_ ):
_lowerCAmelCase = None
for i in range(SCREAMING_SNAKE_CASE_ ):
# load all TP files
_lowerCAmelCase = file.replace("model_00" , F'''model_0{i}''' )
_lowerCAmelCase = torch.load(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , map_location="cpu" )
# Rename keys in the transformers names
_lowerCAmelCase = list(temp.keys() )
for key in keys:
_lowerCAmelCase = temp.pop(SCREAMING_SNAKE_CASE_ )
if tensors is None:
_lowerCAmelCase = temp
else:
for key in tensors.keys():
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
if any(key.endswith(SCREAMING_SNAKE_CASE_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
tensors[key] += temp[key]
else:
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
_lowerCAmelCase = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0
# We concatenate these weights accross TP ranks
_lowerCAmelCase = torch.cat([tensors[key], temp[key]] , dim=SCREAMING_SNAKE_CASE_ )
# Divide by the number of TP the weights we want to average
for key in tensors.keys():
if any(key.endswith(SCREAMING_SNAKE_CASE_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
_lowerCAmelCase = tensors[key] / pretraining_tp
_lowerCAmelCase = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ )
assert not other_keys.unexpected_keys, F'''The keys {other_keys.unexpected_keys} are unexpected'''
if missing_keys is None:
_lowerCAmelCase = set(other_keys.missing_keys )
else:
_lowerCAmelCase = missing_keys.intersection(set(other_keys.missing_keys ) )
assert not missing_keys, F'''The keys {missing_keys} are missing'''
# Save pytorch-model
os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
_lowerCAmelCase = pytorch_dump_folder_path + "/" + CONFIG_NAME
print(F'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' )
if config.torch_dtype is not None:
_lowerCAmelCase = model.to(config.torch_dtype )
torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ )
print(F'''Save configuration file to {pytorch_config_dump_path}''' )
with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--bloom_checkpoint_path",
default=None,
type=str,
required=True,
help="Path to the Megatron-LM checkpoint path.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--bloom_config_file",
default="",
type=str,
help=(
"An optional config json file corresponding to the pre-trained model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--shard_model",
action="store_true",
help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint",
)
parser.add_argument(
"--pretraining_tp",
default=4,
type=int,
help="Pretraining TP rank that has been used when training the model in Megatron-LM \n",
)
_SCREAMING_SNAKE_CASE = parser.parse_args()
convert_bloom_checkpoint_to_pytorch(
args.bloom_checkpoint_path,
args.bloom_config_file,
args.pytorch_dump_folder_path,
args.shard_model,
args.pretraining_tp,
)
| 18 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json",
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Union[str, Any] = "blenderbot-small"
__lowerCamelCase : Optional[Any] = ["past_key_values"]
__lowerCamelCase : str = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , _lowerCAmelCase=50265 , _lowerCAmelCase=512 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="gelu" , _lowerCAmelCase=512 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=2 , **_lowerCAmelCase , ) -> Dict:
_lowerCAmelCase = vocab_size
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = d_model
_lowerCAmelCase = encoder_ffn_dim
_lowerCAmelCase = encoder_layers
_lowerCAmelCase = encoder_attention_heads
_lowerCAmelCase = decoder_ffn_dim
_lowerCAmelCase = decoder_layers
_lowerCAmelCase = decoder_attention_heads
_lowerCAmelCase = dropout
_lowerCAmelCase = attention_dropout
_lowerCAmelCase = activation_dropout
_lowerCAmelCase = activation_function
_lowerCAmelCase = init_std
_lowerCAmelCase = encoder_layerdrop
_lowerCAmelCase = decoder_layerdrop
_lowerCAmelCase = use_cache
_lowerCAmelCase = encoder_layers
_lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
class lowerCAmelCase_ ( __magic_name__ ):
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_lowerCAmelCase = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
_lowerCAmelCase = {0: "batch"}
_lowerCAmelCase = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
_lowerCAmelCase = {0: "batch", 1: "decoder_sequence"}
_lowerCAmelCase = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(_lowerCAmelCase , direction="inputs" )
elif self.task == "causal-lm":
# TODO: figure this case out.
_lowerCAmelCase = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
_lowerCAmelCase , _lowerCAmelCase = self.num_layers
for i in range(_lowerCAmelCase ):
_lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"}
_lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"}
else:
_lowerCAmelCase = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
] )
return common_inputs
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_lowerCAmelCase = super().outputs
else:
_lowerCAmelCase = super(_lowerCAmelCase , self ).outputs
if self.use_past:
_lowerCAmelCase , _lowerCAmelCase = self.num_layers
for i in range(_lowerCAmelCase ):
_lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"}
_lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]:
_lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Generate decoder inputs
_lowerCAmelCase = seq_length if not self.use_past else 1
_lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()}
_lowerCAmelCase = dict(**_lowerCAmelCase , **_lowerCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
_lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape
_lowerCAmelCase = common_inputs["decoder_input_ids"].shape[1]
_lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads
_lowerCAmelCase = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_lowerCAmelCase = decoder_seq_length + 3
_lowerCAmelCase = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
_lowerCAmelCase = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase )] , dim=1 )
_lowerCAmelCase = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
_lowerCAmelCase , _lowerCAmelCase = self.num_layers
_lowerCAmelCase = min(_lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = max(_lowerCAmelCase , _lowerCAmelCase ) - min_num_layers
_lowerCAmelCase = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(_lowerCAmelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(_lowerCAmelCase ),
torch.zeros(_lowerCAmelCase ),
torch.zeros(_lowerCAmelCase ),
torch.zeros(_lowerCAmelCase ),
) )
# TODO: test this.
_lowerCAmelCase = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(_lowerCAmelCase , _lowerCAmelCase ):
common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) )
return common_inputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]:
_lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
_lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
_lowerCAmelCase = seqlen + 2
_lowerCAmelCase , _lowerCAmelCase = self.num_layers
_lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads
_lowerCAmelCase = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_lowerCAmelCase = common_inputs["attention_mask"].dtype
_lowerCAmelCase = torch.cat(
[common_inputs["attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase )] , dim=1 )
_lowerCAmelCase = [
(torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase )
]
return common_inputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
_lowerCAmelCase = compute_effective_axis_dimension(
_lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
_lowerCAmelCase = tokenizer.num_special_tokens_to_add(_lowerCAmelCase )
_lowerCAmelCase = compute_effective_axis_dimension(
_lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase )
# Generate dummy inputs according to compute batch and sequence
_lowerCAmelCase = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size
_lowerCAmelCase = dict(tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) )
return common_inputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
_lowerCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
elif self.task == "causal-lm":
_lowerCAmelCase = self._generate_dummy_inputs_for_causal_lm(
_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
else:
_lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
return common_inputs
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict:
if self.task in ["default", "seq2seq-lm"]:
_lowerCAmelCase = super()._flatten_past_key_values_(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
else:
_lowerCAmelCase = super(_lowerCAmelCase , self )._flatten_past_key_values_(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
def __a(SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
if n == 1 or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return 0
elif n == 2:
return 1
else:
_lowerCAmelCase = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def __a(SCREAMING_SNAKE_CASE_ : int ):
'''simple docstring'''
_lowerCAmelCase = 0
_lowerCAmelCase = 2
while digits < n:
index += 1
_lowerCAmelCase = len(str(fibonacci(SCREAMING_SNAKE_CASE_ ) ) )
return index
def __a(SCREAMING_SNAKE_CASE_ : int = 1000 ):
'''simple docstring'''
return fibonacci_digits_index(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 18 |
'''simple docstring'''
import re
import string
import numpy as np
import datasets
_SCREAMING_SNAKE_CASE = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n"
_SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n"
_SCREAMING_SNAKE_CASE = "\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
def _snake_case ( self ) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , reference_urls=[] , )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , ) -> str:
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
_lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in predictions] )
_lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in references] )
else:
_lowerCAmelCase = np.asarray(_lowerCAmelCase )
_lowerCAmelCase = np.asarray(_lowerCAmelCase )
if ignore_case:
_lowerCAmelCase = np.char.lower(_lowerCAmelCase )
_lowerCAmelCase = np.char.lower(_lowerCAmelCase )
if ignore_punctuation:
_lowerCAmelCase = string.punctuation.maketrans("" , "" , string.punctuation )
_lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase )
_lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase )
if ignore_numbers:
_lowerCAmelCase = string.digits.maketrans("" , "" , string.digits )
_lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase )
_lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase )
_lowerCAmelCase = predictions == references
return {"exact_match": np.mean(_lowerCAmelCase ) * 100}
| 18 | 1 |
'''simple docstring'''
import torch
def __a():
'''simple docstring'''
if torch.cuda.is_available():
_lowerCAmelCase = torch.cuda.device_count()
else:
_lowerCAmelCase = 0
print(F'''Successfully ran on {num_gpus} GPUs''' )
if __name__ == "__main__":
main()
| 18 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class lowerCAmelCase_ ( __magic_name__ ):
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> None:
warnings.warn(
"The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use YolosImageProcessor instead." , _lowerCAmelCase , )
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] ):
'''simple docstring'''
def wrapper(*SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : Tuple ):
_lowerCAmelCase = timeit.default_timer()
_lowerCAmelCase = func(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = timeit.default_timer() - starttime
return delta
_lowerCAmelCase = func.__name__
return wrapper
def __a(SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : List[Any]=100 , SCREAMING_SNAKE_CASE_ : Optional[int]=None ):
'''simple docstring'''
_lowerCAmelCase = []
_lowerCAmelCase = seq_shapes or {}
for i in range(SCREAMING_SNAKE_CASE_ ):
_lowerCAmelCase = {}
for col_id, (k, v) in enumerate(features.items() ):
if isinstance(SCREAMING_SNAKE_CASE_ , _ArrayXD ):
_lowerCAmelCase = np.random.rand(*v.shape ).astype(v.dtype )
elif isinstance(SCREAMING_SNAKE_CASE_ , datasets.Value ):
if v.dtype == "string":
_lowerCAmelCase = "The small grey turtle was surprisingly fast when challenged."
else:
_lowerCAmelCase = np.random.randint(10 , size=1 ).astype(v.dtype ).item()
elif isinstance(SCREAMING_SNAKE_CASE_ , datasets.Sequence ):
while isinstance(SCREAMING_SNAKE_CASE_ , datasets.Sequence ):
_lowerCAmelCase = v.feature
_lowerCAmelCase = seq_shapes[k]
_lowerCAmelCase = np.random.rand(*SCREAMING_SNAKE_CASE_ ).astype(v.dtype )
_lowerCAmelCase = data
dummy_data.append((i, example) )
return dummy_data
def __a(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict=100 , SCREAMING_SNAKE_CASE_ : int=None ):
'''simple docstring'''
_lowerCAmelCase = generate_examples(SCREAMING_SNAKE_CASE_ , num_examples=SCREAMING_SNAKE_CASE_ , seq_shapes=SCREAMING_SNAKE_CASE_ )
with ArrowWriter(features=SCREAMING_SNAKE_CASE_ , path=SCREAMING_SNAKE_CASE_ ) as writer:
for key, record in dummy_data:
_lowerCAmelCase = features.encode_example(SCREAMING_SNAKE_CASE_ )
writer.write(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase , _lowerCAmelCase = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
F'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' )
_lowerCAmelCase = datasets.Dataset.from_file(filename=SCREAMING_SNAKE_CASE_ , info=datasets.DatasetInfo(features=SCREAMING_SNAKE_CASE_ ) )
return dataset
| 18 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Any = "falcon"
__lowerCamelCase : List[str] = ["past_key_values"]
def __init__( self , _lowerCAmelCase=65024 , _lowerCAmelCase=4544 , _lowerCAmelCase=32 , _lowerCAmelCase=71 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=11 , _lowerCAmelCase=11 , **_lowerCAmelCase , ) -> Union[str, Any]:
_lowerCAmelCase = vocab_size
# Backward compatibility with n_embed kwarg
_lowerCAmelCase = kwargs.pop("n_embed" , _lowerCAmelCase )
_lowerCAmelCase = hidden_size if n_embed is None else n_embed
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = layer_norm_epsilon
_lowerCAmelCase = initializer_range
_lowerCAmelCase = use_cache
_lowerCAmelCase = hidden_dropout
_lowerCAmelCase = attention_dropout
_lowerCAmelCase = bos_token_id
_lowerCAmelCase = eos_token_id
_lowerCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads
_lowerCAmelCase = alibi
_lowerCAmelCase = new_decoder_architecture
_lowerCAmelCase = multi_query # Ignored when new_decoder_architecture is True
_lowerCAmelCase = parallel_attn
_lowerCAmelCase = bias
super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
@property
def _snake_case ( self ) -> Optional[Any]:
return self.hidden_size // self.num_attention_heads
@property
def _snake_case ( self ) -> Optional[Any]:
return not self.alibi
| 18 | 1 |
'''simple docstring'''
from importlib import import_module
from .logging import get_logger
_SCREAMING_SNAKE_CASE = get_logger(__name__)
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> int:
_lowerCAmelCase = attrs or []
if module is not None:
for key in module.__dict__:
if key in attrs or not key.startswith("__" ):
setattr(self , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) )
_lowerCAmelCase = module._original_module if isinstance(_lowerCAmelCase , _PatchedModuleObj ) else module
class lowerCAmelCase_ :
__lowerCamelCase : Dict = []
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ) -> Union[str, Any]:
_lowerCAmelCase = obj
_lowerCAmelCase = target
_lowerCAmelCase = new
_lowerCAmelCase = target.split("." )[0]
_lowerCAmelCase = {}
_lowerCAmelCase = attrs or []
def __enter__( self ) -> Optional[int]:
*_lowerCAmelCase , _lowerCAmelCase = self.target.split("." )
# Patch modules:
# it's used to patch attributes of submodules like "os.path.join";
# in this case we need to patch "os" and "os.path"
for i in range(len(_lowerCAmelCase ) ):
try:
_lowerCAmelCase = import_module(".".join(submodules[: i + 1] ) )
except ModuleNotFoundError:
continue
# We iterate over all the globals in self.obj in case we find "os" or "os.path"
for attr in self.obj.__dir__():
_lowerCAmelCase = getattr(self.obj , _lowerCAmelCase )
# We don't check for the name of the global, but rather if its value *is* "os" or "os.path".
# This allows to patch renamed modules like "from os import path as ospath".
if obj_attr is submodule or (
(isinstance(_lowerCAmelCase , _PatchedModuleObj ) and obj_attr._original_module is submodule)
):
_lowerCAmelCase = obj_attr
# patch at top level
setattr(self.obj , _lowerCAmelCase , _PatchedModuleObj(_lowerCAmelCase , attrs=self.attrs ) )
_lowerCAmelCase = getattr(self.obj , _lowerCAmelCase )
# construct lower levels patches
for key in submodules[i + 1 :]:
setattr(_lowerCAmelCase , _lowerCAmelCase , _PatchedModuleObj(getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , attrs=self.attrs ) )
_lowerCAmelCase = getattr(_lowerCAmelCase , _lowerCAmelCase )
# finally set the target attribute
setattr(_lowerCAmelCase , _lowerCAmelCase , self.new )
# Patch attribute itself:
# it's used for builtins like "open",
# and also to patch "os.path.join" we may also need to patch "join"
# itself if it was imported as "from os.path import join".
if submodules: # if it's an attribute of a submodule like "os.path.join"
try:
_lowerCAmelCase = getattr(import_module(".".join(_lowerCAmelCase ) ) , _lowerCAmelCase )
except (AttributeError, ModuleNotFoundError):
return
# We iterate over all the globals in self.obj in case we find "os.path.join"
for attr in self.obj.__dir__():
# We don't check for the name of the global, but rather if its value *is* "os.path.join".
# This allows to patch renamed attributes like "from os.path import join as pjoin".
if getattr(self.obj , _lowerCAmelCase ) is attr_value:
_lowerCAmelCase = getattr(self.obj , _lowerCAmelCase )
setattr(self.obj , _lowerCAmelCase , self.new )
elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open"
_lowerCAmelCase = globals()["__builtins__"][target_attr]
setattr(self.obj , _lowerCAmelCase , self.new )
else:
raise RuntimeError(f'''Tried to patch attribute {target_attr} instead of a submodule.''' )
def __exit__( self , *_lowerCAmelCase ) -> str:
for attr in list(self.original ):
setattr(self.obj , _lowerCAmelCase , self.original.pop(_lowerCAmelCase ) )
def _snake_case ( self ) -> Optional[int]:
self.__enter__()
self._active_patches.append(self )
def _snake_case ( self ) -> Any:
try:
self._active_patches.remove(self )
except ValueError:
# If the patch hasn't been started this will fail
return None
return self.__exit__()
| 18 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"facebook/deit-base-distilled-patch16-224": (
"https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json"
),
# See all DeiT models at https://huggingface.co/models?filter=deit
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Optional[int] = "deit"
def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=16 , **_lowerCAmelCase , ) -> Dict:
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = initializer_range
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = qkv_bias
_lowerCAmelCase = encoder_stride
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : List[str] = version.parse("1.11" )
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self ) -> float:
return 1E-4
| 18 | 1 |
'''simple docstring'''
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ) -> str:
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = seq_length
_lowerCAmelCase = is_training
_lowerCAmelCase = use_input_mask
_lowerCAmelCase = use_token_type_ids
_lowerCAmelCase = use_labels
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = type_vocab_size
_lowerCAmelCase = type_sequence_label_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = num_labels
_lowerCAmelCase = num_choices
_lowerCAmelCase = scope
def _snake_case ( self ) -> Tuple:
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowerCAmelCase = None
if self.use_input_mask:
_lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase = None
if self.use_token_type_ids:
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowerCAmelCase = None
_lowerCAmelCase = None
_lowerCAmelCase = None
if self.use_labels:
_lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
_lowerCAmelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _snake_case ( self ) -> Optional[int]:
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = BioGptModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )
_lowerCAmelCase = model(_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> Tuple:
_lowerCAmelCase = BioGptForCausalLM(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase = BioGptModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
# create attention mask
_lowerCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=_lowerCAmelCase )
_lowerCAmelCase = self.seq_length // 2
_lowerCAmelCase = 0
# first forward pass
_lowerCAmelCase , _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ).to_tuple()
# create hypothetical next token and extent to next_input_ids
_lowerCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
_lowerCAmelCase = ids_tensor((1,) , _lowerCAmelCase ).item() + 1
_lowerCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
_lowerCAmelCase = random_other_next_tokens
# append to next input_ids and attn_mask
_lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
_lowerCAmelCase = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_lowerCAmelCase )] , dim=1 , )
# get two different outputs
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )["last_hidden_state"]
_lowerCAmelCase = model(_lowerCAmelCase , past_key_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase )["last_hidden_state"]
# select random slice
_lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_lowerCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach()
_lowerCAmelCase = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) -> Dict:
_lowerCAmelCase = BioGptModel(config=_lowerCAmelCase ).to(_lowerCAmelCase ).eval()
_lowerCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=_lowerCAmelCase )
# first forward pass
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase )
_lowerCAmelCase , _lowerCAmelCase = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
_lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
_lowerCAmelCase = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
_lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
_lowerCAmelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )["last_hidden_state"]
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase )[
"last_hidden_state"
]
# select random slice
_lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach()
_lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase , _lowerCAmelCase=False ) -> Optional[int]:
_lowerCAmelCase = BioGptForCausalLM(_lowerCAmelCase )
model.to(_lowerCAmelCase )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
_lowerCAmelCase = model(_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def _snake_case ( self , _lowerCAmelCase , *_lowerCAmelCase ) -> int:
_lowerCAmelCase = BioGptModel(_lowerCAmelCase )
_lowerCAmelCase = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) -> List[str]:
_lowerCAmelCase = self.num_labels
_lowerCAmelCase = BioGptForTokenClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _snake_case ( self ) -> int:
_lowerCAmelCase = self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) = config_and_inputs
_lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,__magic_name__ ,unittest.TestCase ):
__lowerCamelCase : Optional[int] = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
__lowerCamelCase : int = (BioGptForCausalLM,) if is_torch_available() else ()
__lowerCamelCase : str = (
{
"feature-extraction": BioGptModel,
"text-classification": BioGptForSequenceClassification,
"text-generation": BioGptForCausalLM,
"token-classification": BioGptForTokenClassification,
"zero-shot": BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowerCamelCase : int = False
def _snake_case ( self ) -> str:
_lowerCAmelCase = BioGptModelTester(self )
_lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 )
def _snake_case ( self ) -> Dict:
self.config_tester.run_common_tests()
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_lowerCAmelCase = type
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def _snake_case ( self ) -> List[Any]:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_lowerCAmelCase )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*_lowerCAmelCase , gradient_checkpointing=_lowerCAmelCase )
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_lowerCAmelCase )
def _snake_case ( self ) -> int:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*_lowerCAmelCase )
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*_lowerCAmelCase )
@slow
def _snake_case ( self ) -> Tuple:
_lowerCAmelCase = BioGptForCausalLM.from_pretrained("microsoft/biogpt" )
model.to(_lowerCAmelCase )
_lowerCAmelCase = BioGptTokenizer.from_pretrained("microsoft/biogpt" )
_lowerCAmelCase = "left"
# Define PAD Token = EOS Token = 50256
_lowerCAmelCase = tokenizer.eos_token
_lowerCAmelCase = model.config.eos_token_id
# use different length sentences to test batching
_lowerCAmelCase = [
"Hello, my dog is a little",
"Today, I",
]
_lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="pt" , padding=_lowerCAmelCase )
_lowerCAmelCase = inputs["input_ids"].to(_lowerCAmelCase )
_lowerCAmelCase = model.generate(
input_ids=_lowerCAmelCase , attention_mask=inputs["attention_mask"].to(_lowerCAmelCase ) , )
_lowerCAmelCase = tokenizer(sentences[0] , return_tensors="pt" ).input_ids.to(_lowerCAmelCase )
_lowerCAmelCase = model.generate(input_ids=_lowerCAmelCase )
_lowerCAmelCase = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item()
_lowerCAmelCase = tokenizer(sentences[1] , return_tensors="pt" ).input_ids.to(_lowerCAmelCase )
_lowerCAmelCase = model.generate(input_ids=_lowerCAmelCase , max_length=model.config.max_length - num_paddings )
_lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )
_lowerCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_lowerCAmelCase )
_lowerCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=_lowerCAmelCase )
_lowerCAmelCase = [
"Hello, my dog is a little bit bigger than a little bit.",
"Today, I have a good idea of how to use the information",
]
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , [non_padded_sentence, padded_sentence] )
@slow
def _snake_case ( self ) -> Tuple:
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase = BioGptModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
def _snake_case ( self ) -> int:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase = 3
_lowerCAmelCase = input_dict["input_ids"]
_lowerCAmelCase = input_ids.ne(1 ).to(_lowerCAmelCase )
_lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
_lowerCAmelCase = BioGptForSequenceClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase = 3
_lowerCAmelCase = "multi_label_classification"
_lowerCAmelCase = input_dict["input_ids"]
_lowerCAmelCase = input_ids.ne(1 ).to(_lowerCAmelCase )
_lowerCAmelCase = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
_lowerCAmelCase = BioGptForSequenceClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
@slow
def _snake_case ( self ) -> str:
_lowerCAmelCase = BioGptForCausalLM.from_pretrained("microsoft/biogpt" )
_lowerCAmelCase = torch.tensor([[2, 4805, 9, 656, 21]] )
_lowerCAmelCase = model(_lowerCAmelCase )[0]
_lowerCAmelCase = 42384
_lowerCAmelCase = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor(
[[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
@slow
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = BioGptTokenizer.from_pretrained("microsoft/biogpt" )
_lowerCAmelCase = BioGptForCausalLM.from_pretrained("microsoft/biogpt" )
model.to(_lowerCAmelCase )
torch.manual_seed(0 )
_lowerCAmelCase = tokenizer("COVID-19 is" , return_tensors="pt" ).to(_lowerCAmelCase )
_lowerCAmelCase = model.generate(
**_lowerCAmelCase , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=_lowerCAmelCase , )
_lowerCAmelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=_lowerCAmelCase )
_lowerCAmelCase = (
"COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the"
" causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and"
" territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),"
" and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and"
" more than 800,000 deaths."
)
self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
| 18 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_SCREAMING_SNAKE_CASE = {
"configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"],
"feature_extraction_mctct": ["MCTCTFeatureExtractor"],
"processing_mctct": ["MCTCTProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MCTCTForCTC",
"MCTCTModel",
"MCTCTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 18 | 1 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class lowerCAmelCase_ ( unittest.TestCase ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=True , _lowerCAmelCase=1 / 255 , _lowerCAmelCase=True , ) -> int:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
_lowerCAmelCase = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333}
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = min_resolution
_lowerCAmelCase = max_resolution
_lowerCAmelCase = do_resize
_lowerCAmelCase = size
_lowerCAmelCase = do_normalize
_lowerCAmelCase = image_mean
_lowerCAmelCase = image_std
_lowerCAmelCase = do_rescale
_lowerCAmelCase = rescale_factor
_lowerCAmelCase = do_pad
def _snake_case ( self ) -> Dict:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase=False ) -> Union[str, Any]:
if not batched:
_lowerCAmelCase = image_inputs[0]
if isinstance(_lowerCAmelCase , Image.Image ):
_lowerCAmelCase , _lowerCAmelCase = image.size
else:
_lowerCAmelCase , _lowerCAmelCase = image.shape[1], image.shape[2]
if w < h:
_lowerCAmelCase = int(self.size["shortest_edge"] * h / w )
_lowerCAmelCase = self.size["shortest_edge"]
elif w > h:
_lowerCAmelCase = self.size["shortest_edge"]
_lowerCAmelCase = int(self.size["shortest_edge"] * w / h )
else:
_lowerCAmelCase = self.size["shortest_edge"]
_lowerCAmelCase = self.size["shortest_edge"]
else:
_lowerCAmelCase = []
for image in image_inputs:
_lowerCAmelCase , _lowerCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_lowerCAmelCase = max(_lowerCAmelCase , key=lambda _lowerCAmelCase : item[0] )[0]
_lowerCAmelCase = max(_lowerCAmelCase , key=lambda _lowerCAmelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ):
__lowerCamelCase : Union[str, Any] = ConditionalDetrImageProcessor if is_vision_available() else None
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = ConditionalDetrImageProcessingTester(self )
@property
def _snake_case ( self ) -> str:
return self.image_processor_tester.prepare_image_processor_dict()
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCAmelCase , "image_mean" ) )
self.assertTrue(hasattr(_lowerCAmelCase , "image_std" ) )
self.assertTrue(hasattr(_lowerCAmelCase , "do_normalize" ) )
self.assertTrue(hasattr(_lowerCAmelCase , "do_resize" ) )
self.assertTrue(hasattr(_lowerCAmelCase , "size" ) )
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} )
self.assertEqual(image_processor.do_pad , _lowerCAmelCase )
_lowerCAmelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_lowerCAmelCase )
self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} )
self.assertEqual(image_processor.do_pad , _lowerCAmelCase )
def _snake_case ( self ) -> Tuple:
pass
def _snake_case ( self ) -> List[str]:
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase , Image.Image )
# Test not batched input
_lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
_lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase )
_lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case ( self ) -> Optional[Any]:
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase , np.ndarray )
# Test not batched input
_lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
_lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors="pt" ).pixel_values
_lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case ( self ) -> Optional[Any]:
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase , torch.Tensor )
# Test not batched input
_lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
_lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors="pt" ).pixel_values
_lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _snake_case ( self ) -> str:
# prepare image and target
_lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f:
_lowerCAmelCase = json.loads(f.read() )
_lowerCAmelCase = {"image_id": 39769, "annotations": target}
# encode them
_lowerCAmelCase = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" )
_lowerCAmelCase = image_processing(images=_lowerCAmelCase , annotations=_lowerCAmelCase , return_tensors="pt" )
# verify pixel values
_lowerCAmelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["pixel_values"].shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _lowerCAmelCase , atol=1E-4 ) )
# verify area
_lowerCAmelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _lowerCAmelCase ) )
# verify boxes
_lowerCAmelCase = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _lowerCAmelCase , atol=1E-3 ) )
# verify image_id
_lowerCAmelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _lowerCAmelCase ) )
# verify is_crowd
_lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _lowerCAmelCase ) )
# verify class_labels
_lowerCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _lowerCAmelCase ) )
# verify orig_size
_lowerCAmelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _lowerCAmelCase ) )
# verify size
_lowerCAmelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _lowerCAmelCase ) )
@slow
def _snake_case ( self ) -> List[Any]:
# prepare image, target and masks_path
_lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f:
_lowerCAmelCase = json.loads(f.read() )
_lowerCAmelCase = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}
_lowerCAmelCase = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" )
# encode them
_lowerCAmelCase = ConditionalDetrImageProcessor(format="coco_panoptic" )
_lowerCAmelCase = image_processing(images=_lowerCAmelCase , annotations=_lowerCAmelCase , masks_path=_lowerCAmelCase , return_tensors="pt" )
# verify pixel values
_lowerCAmelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["pixel_values"].shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _lowerCAmelCase , atol=1E-4 ) )
# verify area
_lowerCAmelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _lowerCAmelCase ) )
# verify boxes
_lowerCAmelCase = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _lowerCAmelCase , atol=1E-3 ) )
# verify image_id
_lowerCAmelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _lowerCAmelCase ) )
# verify is_crowd
_lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _lowerCAmelCase ) )
# verify class_labels
_lowerCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _lowerCAmelCase ) )
# verify masks
_lowerCAmelCase = 822873
self.assertEqual(encoding["labels"][0]["masks"].sum().item() , _lowerCAmelCase )
# verify orig_size
_lowerCAmelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _lowerCAmelCase ) )
# verify size
_lowerCAmelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _lowerCAmelCase ) )
| 18 |
'''simple docstring'''
from typing import Dict, Iterable, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : int = ["pixel_values"]
def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = IMAGENET_DEFAULT_MEAN , _lowerCAmelCase = IMAGENET_DEFAULT_STD , **_lowerCAmelCase , ) -> None:
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = size if size is not None else {"shortest_edge": 224}
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
_lowerCAmelCase = crop_size if crop_size is not None else {"height": 224, "width": 224}
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" )
_lowerCAmelCase = do_resize
_lowerCAmelCase = size
_lowerCAmelCase = resample
_lowerCAmelCase = do_center_crop
_lowerCAmelCase = crop_size
_lowerCAmelCase = do_rescale
_lowerCAmelCase = rescale_factor
_lowerCAmelCase = do_normalize
_lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
_lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray:
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
# size_dict is a dict with either keys "height" and "width" or "shortest_edge"
if "shortest_edge" in size:
_lowerCAmelCase = int((256 / 224) * size["shortest_edge"] )
_lowerCAmelCase = get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase )
_lowerCAmelCase = {"height": output_size[0], "width": output_size[1]}
if "height" not in size_dict or "width" not in size_dict:
raise ValueError(
f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' )
return resize(
_lowerCAmelCase , size=(size_dict["height"], size_dict["width"]) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray:
_lowerCAmelCase = get_size_dict(_lowerCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray:
return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray:
return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ) -> BatchFeature:
_lowerCAmelCase = do_resize if do_resize is not None else self.do_resize
_lowerCAmelCase = resample if resample is not None else self.resample
_lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
_lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
_lowerCAmelCase = image_mean if image_mean is not None else self.image_mean
_lowerCAmelCase = image_std if image_std is not None else self.image_std
_lowerCAmelCase = size if size is not None else self.size
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
_lowerCAmelCase = crop_size if crop_size is not None else self.crop_size
_lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" )
_lowerCAmelCase = make_list_of_images(_lowerCAmelCase )
if not valid_images(_lowerCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
_lowerCAmelCase = [to_numpy_array(_lowerCAmelCase ) for image in images]
if do_resize:
_lowerCAmelCase = [self.resize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images]
if do_center_crop:
_lowerCAmelCase = [self.center_crop(_lowerCAmelCase , _lowerCAmelCase ) for image in images]
if do_rescale:
_lowerCAmelCase = [self.rescale(_lowerCAmelCase , _lowerCAmelCase ) for image in images]
if do_normalize:
_lowerCAmelCase = [self.normalize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images]
_lowerCAmelCase = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images]
_lowerCAmelCase = {"pixel_values": images}
return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
| 18 | 1 |
'''simple docstring'''
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name
_SCREAMING_SNAKE_CASE = "\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)[\"depth\"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline(\"depth-estimation\")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to(\"cuda\")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to(\"cuda\")\n\n\n >>> img = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/cat.png\"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")\n\n >>> prompt = \"A robot, 4k photo\"\n >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"\n\n >>> generator = torch.Generator(device=\"cuda\").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save(\"robot_cat.png\")\n ```\n"
def __a(SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple=8 ):
'''simple docstring'''
_lowerCAmelCase = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
_lowerCAmelCase = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class lowerCAmelCase_ ( __magic_name__ ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> Optional[int]:
super().__init__()
self.register_modules(
unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , movq=_lowerCAmelCase , )
_lowerCAmelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]:
if latents is None:
_lowerCAmelCase = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase , dtype=_lowerCAmelCase )
else:
if latents.shape != shape:
raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' )
_lowerCAmelCase = latents.to(_lowerCAmelCase )
_lowerCAmelCase = latents * scheduler.init_noise_sigma
return latents
def _snake_case ( self , _lowerCAmelCase=0 ) -> Optional[Any]:
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`" )
_lowerCAmelCase = torch.device(f'''cuda:{gpu_id}''' )
_lowerCAmelCase = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(_lowerCAmelCase , _lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase=0 ) -> Tuple:
if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." )
_lowerCAmelCase = torch.device(f'''cuda:{gpu_id}''' )
if self.device.type != "cpu":
self.to("cpu" , silence_dtype_warnings=_lowerCAmelCase )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
_lowerCAmelCase = None
for cpu_offloaded_model in [self.unet, self.movq]:
_lowerCAmelCase , _lowerCAmelCase = cpu_offload_with_hook(_lowerCAmelCase , _lowerCAmelCase , prev_module_hook=_lowerCAmelCase )
# We'll offload the last model manually.
_lowerCAmelCase = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def _snake_case ( self ) -> int:
if not hasattr(self.unet , "_hf_hook" ):
return self.device
for module in self.unet.modules():
if (
hasattr(_lowerCAmelCase , "_hf_hook" )
and hasattr(module._hf_hook , "execution_device" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(_lowerCAmelCase )
def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 512 , _lowerCAmelCase = 512 , _lowerCAmelCase = 100 , _lowerCAmelCase = 4.0 , _lowerCAmelCase = 1 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = "pil" , _lowerCAmelCase = True , ) -> List[str]:
_lowerCAmelCase = self._execution_device
_lowerCAmelCase = guidance_scale > 1.0
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = torch.cat(_lowerCAmelCase , dim=0 )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = torch.cat(_lowerCAmelCase , dim=0 )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
_lowerCAmelCase = torch.cat(_lowerCAmelCase , dim=0 )
_lowerCAmelCase = image_embeds.shape[0] * num_images_per_prompt
if do_classifier_free_guidance:
_lowerCAmelCase = image_embeds.repeat_interleave(_lowerCAmelCase , dim=0 )
_lowerCAmelCase = negative_image_embeds.repeat_interleave(_lowerCAmelCase , dim=0 )
_lowerCAmelCase = hint.repeat_interleave(_lowerCAmelCase , dim=0 )
_lowerCAmelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowerCAmelCase )
_lowerCAmelCase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=_lowerCAmelCase )
self.scheduler.set_timesteps(_lowerCAmelCase , device=_lowerCAmelCase )
_lowerCAmelCase = self.scheduler.timesteps
_lowerCAmelCase = self.movq.config.latent_channels
_lowerCAmelCase , _lowerCAmelCase = downscale_height_and_width(_lowerCAmelCase , _lowerCAmelCase , self.movq_scale_factor )
# create initial latent
_lowerCAmelCase = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , self.scheduler , )
for i, t in enumerate(self.progress_bar(_lowerCAmelCase ) ):
# expand the latents if we are doing classifier free guidance
_lowerCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_lowerCAmelCase = {"image_embeds": image_embeds, "hint": hint}
_lowerCAmelCase = self.unet(
sample=_lowerCAmelCase , timestep=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , added_cond_kwargs=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0]
if do_classifier_free_guidance:
_lowerCAmelCase , _lowerCAmelCase = noise_pred.split(latents.shape[1] , dim=1 )
_lowerCAmelCase , _lowerCAmelCase = noise_pred.chunk(2 )
_lowerCAmelCase , _lowerCAmelCase = variance_pred.chunk(2 )
_lowerCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
_lowerCAmelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , "variance_type" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
_lowerCAmelCase , _lowerCAmelCase = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
_lowerCAmelCase = self.scheduler.step(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase , )[0]
# post-processing
_lowerCAmelCase = self.movq.decode(_lowerCAmelCase , force_not_quantize=_lowerCAmelCase )["sample"]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' )
if output_type in ["np", "pil"]:
_lowerCAmelCase = image * 0.5 + 0.5
_lowerCAmelCase = image.clamp(0 , 1 )
_lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
_lowerCAmelCase = self.numpy_to_pil(_lowerCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_lowerCAmelCase )
| 18 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json",
# See all Donut models at https://huggingface.co/models?filter=donut-swin
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Union[str, Any] = "donut-swin"
__lowerCamelCase : int = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , **_lowerCAmelCase , ) -> Optional[Any]:
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = embed_dim
_lowerCAmelCase = depths
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = num_heads
_lowerCAmelCase = window_size
_lowerCAmelCase = mlp_ratio
_lowerCAmelCase = qkv_bias
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = drop_path_rate
_lowerCAmelCase = hidden_act
_lowerCAmelCase = use_absolute_embeddings
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
| 18 | 1 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
_SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
torch.set_grad_enabled(False)
_SCREAMING_SNAKE_CASE = "cuda" if torch.cuda.is_available() else "cpu"
def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int=100 , SCREAMING_SNAKE_CASE_ : Optional[int]=" " ):
'''simple docstring'''
_lowerCAmelCase = text.split(SCREAMING_SNAKE_CASE_ )
return [character.join(text[i : i + n] ).strip() for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )]
def __a(SCREAMING_SNAKE_CASE_ : dict ):
'''simple docstring'''
_lowerCAmelCase , _lowerCAmelCase = [], []
for title, text in zip(documents["title"] , documents["text"] ):
if text is not None:
for passage in split_text(SCREAMING_SNAKE_CASE_ ):
titles.append(title if title is not None else "" )
texts.append(SCREAMING_SNAKE_CASE_ )
return {"title": titles, "text": texts}
def __a(SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : DPRContextEncoder , SCREAMING_SNAKE_CASE_ : DPRContextEncoderTokenizerFast ):
'''simple docstring'''
_lowerCAmelCase = ctx_tokenizer(
documents["title"] , documents["text"] , truncation=SCREAMING_SNAKE_CASE_ , padding="longest" , return_tensors="pt" )["input_ids"]
_lowerCAmelCase = ctx_encoder(input_ids.to(device=SCREAMING_SNAKE_CASE_ ) , return_dict=SCREAMING_SNAKE_CASE_ ).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def __a(SCREAMING_SNAKE_CASE_ : "RagExampleArguments" , SCREAMING_SNAKE_CASE_ : "ProcessingArguments" , SCREAMING_SNAKE_CASE_ : "IndexHnswArguments" , ):
'''simple docstring'''
logger.info("Step 1 - Create the dataset" )
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
_lowerCAmelCase = load_dataset(
"csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] )
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
_lowerCAmelCase = dataset.map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , num_proc=processing_args.num_proc )
# And compute the embeddings
_lowerCAmelCase = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name )
_lowerCAmelCase = Features(
{"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space
_lowerCAmelCase = dataset.map(
partial(SCREAMING_SNAKE_CASE_ , ctx_encoder=SCREAMING_SNAKE_CASE_ , ctx_tokenizer=SCREAMING_SNAKE_CASE_ ) , batched=SCREAMING_SNAKE_CASE_ , batch_size=processing_args.batch_size , features=SCREAMING_SNAKE_CASE_ , )
# And finally save your dataset
_lowerCAmelCase = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" )
dataset.save_to_disk(SCREAMING_SNAKE_CASE_ )
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info("Step 2 - Index the dataset" )
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
_lowerCAmelCase = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT )
dataset.add_faiss_index("embeddings" , custom_index=SCREAMING_SNAKE_CASE_ )
# And save the index
_lowerCAmelCase = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" )
dataset.get_index("embeddings" ).save(SCREAMING_SNAKE_CASE_ )
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class lowerCAmelCase_ :
__lowerCamelCase : str = field(
default=str(Path(__magic_name__ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,)
__lowerCamelCase : Optional[str] = field(
default=__magic_name__ ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,)
__lowerCamelCase : str = field(
default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,)
__lowerCamelCase : str = field(
default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={
"help": (
"The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or"
" 'facebook/dpr-ctx_encoder-multiset-base'"
)
} ,)
__lowerCamelCase : Optional[str] = field(
default=str(Path(__magic_name__ ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,)
@dataclass
class lowerCAmelCase_ :
__lowerCamelCase : Optional[int] = field(
default=__magic_name__ ,metadata={
"help": "The number of processes to use to split the documents into passages. Default is single process."
} ,)
__lowerCamelCase : int = field(
default=16 ,metadata={
"help": "The batch size to use when computing the passages embeddings using the DPR context encoder."
} ,)
@dataclass
class lowerCAmelCase_ :
__lowerCamelCase : int = field(
default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,)
__lowerCamelCase : int = field(
default=128 ,metadata={
"help": (
"The number of bi-directional links created for every new element during the HNSW index construction."
)
} ,)
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
_SCREAMING_SNAKE_CASE = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
_SCREAMING_SNAKE_CASE = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 18 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"microsoft/swinv2-tiny-patch4-window8-256": (
"https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json"
),
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Union[str, Any] = "swinv2"
__lowerCamelCase : int = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=32 , **_lowerCAmelCase , ) -> Tuple:
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = image_size
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = embed_dim
_lowerCAmelCase = depths
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = num_heads
_lowerCAmelCase = window_size
_lowerCAmelCase = mlp_ratio
_lowerCAmelCase = qkv_bias
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = drop_path_rate
_lowerCAmelCase = hidden_act
_lowerCAmelCase = use_absolute_embeddings
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = initializer_range
_lowerCAmelCase = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
_lowerCAmelCase = (0, 0, 0, 0)
| 18 | 1 |
'''simple docstring'''
import datasets
from .evaluate import evaluate
_SCREAMING_SNAKE_CASE = "\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n"
_SCREAMING_SNAKE_CASE = "\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n"
_SCREAMING_SNAKE_CASE = "\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the CUAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\n 'aupr': Area Under the Precision-Recall curve\n 'prec_at_80_recall': Precision at 80% recall\n 'prec_at_90_recall': Precision at 90% recall\nExamples:\n >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> cuad_metric = datasets.load_metric(\"cuad\")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
def _snake_case ( self ) -> Optional[int]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": {
"id": datasets.Value("string" ),
"prediction_text": datasets.features.Sequence(datasets.Value("string" ) ),
},
"references": {
"id": datasets.Value("string" ),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
},
} ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]:
_lowerCAmelCase = {prediction["id"]: prediction["prediction_text"] for prediction in predictions}
_lowerCAmelCase = [
{
"paragraphs": [
{
"qas": [
{
"answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]],
"id": ref["id"],
}
for ref in references
]
}
]
}
]
_lowerCAmelCase = evaluate(dataset=_lowerCAmelCase , predictions=_lowerCAmelCase )
return score
| 18 |
'''simple docstring'''
import gc
import unittest
import torch
from parameterized import parameterized
from diffusers import AutoencoderKL
from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ):
__lowerCamelCase : Optional[Any] = AutoencoderKL
__lowerCamelCase : List[Any] = "sample"
__lowerCamelCase : Tuple = 1e-2
@property
def _snake_case ( self ) -> Union[str, Any]:
_lowerCAmelCase = 4
_lowerCAmelCase = 3
_lowerCAmelCase = (32, 32)
_lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCAmelCase )
return {"sample": image}
@property
def _snake_case ( self ) -> Any:
return (3, 32, 32)
@property
def _snake_case ( self ) -> List[Any]:
return (3, 32, 32)
def _snake_case ( self ) -> str:
_lowerCAmelCase = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
}
_lowerCAmelCase = self.dummy_input
return init_dict, inputs_dict
def _snake_case ( self ) -> Optional[int]:
pass
def _snake_case ( self ) -> Any:
pass
@unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" )
def _snake_case ( self ) -> str:
# enable deterministic behavior for gradient checkpointing
_lowerCAmelCase , _lowerCAmelCase = self.prepare_init_args_and_inputs_for_common()
_lowerCAmelCase = self.model_class(**_lowerCAmelCase )
model.to(_lowerCAmelCase )
assert not model.is_gradient_checkpointing and model.training
_lowerCAmelCase = model(**_lowerCAmelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
_lowerCAmelCase = torch.randn_like(_lowerCAmelCase )
_lowerCAmelCase = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
_lowerCAmelCase = self.model_class(**_lowerCAmelCase )
# clone model
model_a.load_state_dict(model.state_dict() )
model_a.to(_lowerCAmelCase )
model_a.enable_gradient_checkpointing()
assert model_a.is_gradient_checkpointing and model_a.training
_lowerCAmelCase = model_a(**_lowerCAmelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_a.zero_grad()
_lowerCAmelCase = (out_a - labels).mean()
loss_a.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_a).abs() < 1E-5 )
_lowerCAmelCase = dict(model.named_parameters() )
_lowerCAmelCase = dict(model_a.named_parameters() )
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) )
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase , _lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
self.assertEqual(len(loading_info["missing_keys"] ) , 0 )
model.to(_lowerCAmelCase )
_lowerCAmelCase = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" )
_lowerCAmelCase = model.to(_lowerCAmelCase )
model.eval()
if torch_device == "mps":
_lowerCAmelCase = torch.manual_seed(0 )
else:
_lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 )
_lowerCAmelCase = torch.randn(
1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , )
_lowerCAmelCase = image.to(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase , sample_posterior=_lowerCAmelCase , generator=_lowerCAmelCase ).sample
_lowerCAmelCase = output[0, -1, -3:, -3:].flatten().cpu()
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device == "mps":
_lowerCAmelCase = torch.tensor(
[
-4.0078E-01,
-3.8323E-04,
-1.2681E-01,
-1.1462E-01,
2.0095E-01,
1.0893E-01,
-8.8247E-02,
-3.0361E-01,
-9.8644E-03,
] )
elif torch_device == "cpu":
_lowerCAmelCase = torch.tensor(
[-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] )
else:
_lowerCAmelCase = torch.tensor(
[-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] )
self.assertTrue(torch_all_close(_lowerCAmelCase , _lowerCAmelCase , rtol=1E-2 ) )
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]:
return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy'''
def _snake_case ( self ) -> List[str]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self , _lowerCAmelCase=0 , _lowerCAmelCase=(4, 3, 512, 512) , _lowerCAmelCase=False ) -> Tuple:
_lowerCAmelCase = torch.floataa if fpaa else torch.floataa
_lowerCAmelCase = torch.from_numpy(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) ).to(_lowerCAmelCase ).to(_lowerCAmelCase )
return image
def _snake_case ( self , _lowerCAmelCase="CompVis/stable-diffusion-v1-4" , _lowerCAmelCase=False ) -> Tuple:
_lowerCAmelCase = "fp16" if fpaa else None
_lowerCAmelCase = torch.floataa if fpaa else torch.floataa
_lowerCAmelCase = AutoencoderKL.from_pretrained(
_lowerCAmelCase , subfolder="vae" , torch_dtype=_lowerCAmelCase , revision=_lowerCAmelCase , )
model.to(_lowerCAmelCase ).eval()
return model
def _snake_case ( self , _lowerCAmelCase=0 ) -> str:
if torch_device == "mps":
return torch.manual_seed(_lowerCAmelCase )
return torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase )
@parameterized.expand(
[
# fmt: off
[33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
[47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
# fmt: on
] )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase )
_lowerCAmelCase = self.get_generator(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample
assert sample.shape == image.shape
_lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu()
_lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 )
@parameterized.expand(
[
# fmt: off
[33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]],
[47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]],
# fmt: on
] )
@require_torch_gpu
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase )
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , fpaa=_lowerCAmelCase )
_lowerCAmelCase = self.get_generator(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample
assert sample.shape == image.shape
_lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu()
_lowerCAmelCase = torch.tensor(_lowerCAmelCase )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
[47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
# fmt: on
] )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model(_lowerCAmelCase ).sample
assert sample.shape == image.shape
_lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu()
_lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 )
@parameterized.expand(
[
# fmt: off
[13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]],
[37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]],
# fmt: on
] )
@require_torch_gpu
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) )
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
_lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().cpu()
_lowerCAmelCase = torch.tensor(_lowerCAmelCase )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 )
@parameterized.expand(
[
# fmt: off
[27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]],
[16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]],
# fmt: on
] )
@require_torch_gpu
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> str:
_lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase )
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
_lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu()
_lowerCAmelCase = torch.tensor(_lowerCAmelCase )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=5E-3 )
@parameterized.expand([(13,), (16,), (27,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." )
def _snake_case ( self , _lowerCAmelCase ) -> List[str]:
_lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase )
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-1 )
@parameterized.expand([(13,), (16,), (37,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." )
def _snake_case ( self , _lowerCAmelCase ) -> Any:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) )
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
_lowerCAmelCase = model.decode(_lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
[47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
# fmt: on
] )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int:
_lowerCAmelCase = self.get_sd_vae_model()
_lowerCAmelCase = self.get_sd_image(_lowerCAmelCase )
_lowerCAmelCase = self.get_generator(_lowerCAmelCase )
with torch.no_grad():
_lowerCAmelCase = model.encode(_lowerCAmelCase ).latent_dist
_lowerCAmelCase = dist.sample(generator=_lowerCAmelCase )
assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
_lowerCAmelCase = sample[0, -1, -3:, -3:].flatten().cpu()
_lowerCAmelCase = torch.tensor(_lowerCAmelCase )
_lowerCAmelCase = 3E-3 if torch_device != "mps" else 1E-2
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=_lowerCAmelCase )
| 18 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.