code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import os import sys A__ : List[Any] = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) A__ : Union[str, Any] = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def _lowerCAmelCase ( *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return AutoConfig.from_pretrained(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def _lowerCAmelCase ( *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return AutoTokenizer.from_pretrained(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @add_start_docstrings(AutoModel.__doc__ ) def _lowerCAmelCase ( *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return AutoModel.from_pretrained(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def _lowerCAmelCase ( *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return AutoModelForCausalLM.from_pretrained(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def _lowerCAmelCase ( *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def _lowerCAmelCase ( *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def _lowerCAmelCase ( *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
353
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = (DDPMParallelScheduler,) def _snake_case ( self , **_lowerCAmelCase ) -> int: _lowerCAmelCase = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**_lowerCAmelCase ) return config def _snake_case ( self ) -> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def _snake_case ( self ) -> Any: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _snake_case ( self ) -> List[str]: self.check_over_configs(thresholding=_lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , ) def _snake_case ( self ) -> int: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _snake_case ( self ) -> Dict: for t in [0, 500, 999]: self.check_over_forward(time_step=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = self.dummy_sample_deter + 0.1 _lowerCAmelCase = self.dummy_sample_deter - 0.1 _lowerCAmelCase = samplea.shape[0] _lowerCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) _lowerCAmelCase = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase ) _lowerCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _lowerCAmelCase = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowerCAmelCase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowerCAmelCase ): if i == len(_lowerCAmelCase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowerCAmelCase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowerCAmelCase , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowerCAmelCase ) with self.assertRaises(_lowerCAmelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=_lowerCAmelCase , timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowerCAmelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=_lowerCAmelCase )
18
0
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: SCREAMING_SNAKE_CASE__:List[str] = None try: import msvcrt except ImportError: SCREAMING_SNAKE_CASE__:Any = None try: import fcntl except ImportError: SCREAMING_SNAKE_CASE__:Optional[int] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: SCREAMING_SNAKE_CASE__:Tuple = OSError # Data # ------------------------------------------------ SCREAMING_SNAKE_CASE__:Optional[Any] = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] SCREAMING_SNAKE_CASE__:List[Any] = """3.0.12""" SCREAMING_SNAKE_CASE__:Optional[int] = None def _lowerCamelCase( ): global _logger __a = _logger or logging.getLogger(__name__ ) return _logger class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase ): __a = lock_file return None def __str__( self ): __a = F"The file lock \'{self.lock_file}\' could not be acquired." return temp class snake_case__ : def __init__( self , lowerCamelCase ): __a = lock return None def __enter__( self ): return self.lock def __exit__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): self.lock.release() return None class snake_case__ : def __init__( self , lowerCamelCase , lowerCamelCase=-1 , lowerCamelCase=None ): __a = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __a = self.hash_filename_if_too_long(_lowerCAmelCase , _lowerCAmelCase ) # The path to the lock file. __a = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __a = None # The default timeout value. __a = timeout # We use this lock primarily for the lock counter. __a = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __a = 0 return None @property def a__ ( self ): return self._lock_file @property def a__ ( self ): return self._timeout @timeout.setter def a__ ( self , lowerCamelCase ): __a = float(_lowerCAmelCase ) return None def a__ ( self ): raise NotImplementedError() def a__ ( self ): raise NotImplementedError() @property def a__ ( self ): return self._lock_file_fd is not None def a__ ( self , lowerCamelCase=None , lowerCamelCase=0.05 ): # Use the default timeout, if no timeout is provided. if timeout is None: __a = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __a = id(self ) __a = self._lock_file __a = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(_lowerCAmelCase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __a = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def a__ ( self , lowerCamelCase=False ): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __a = id(self ) __a = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() __a = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self ): self.acquire() return self def __exit__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): self.release() return None def __del__( self ): self.release(force=_lowerCAmelCase ) return None def a__ ( self , lowerCamelCase , lowerCamelCase ): __a = os.path.basename(_lowerCAmelCase ) if len(_lowerCAmelCase ) > max_length and max_length > 0: __a = os.path.dirname(_lowerCAmelCase ) __a = str(hash(_lowerCAmelCase ) ) __a = filename[: max_length - len(_lowerCAmelCase ) - 8] + "..." + hashed_filename + ".lock" return os.path.join(_lowerCAmelCase , _lowerCAmelCase ) else: return path class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase , lowerCamelCase=-1 , lowerCamelCase=None ): from .file_utils import relative_to_absolute_path super().__init__(_lowerCAmelCase , timeout=_lowerCAmelCase , max_filename_length=_lowerCAmelCase ) __a = "\\\\?\\" + relative_to_absolute_path(self.lock_file ) def a__ ( self ): __a = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __a = os.open(self._lock_file , _lowerCAmelCase ) except OSError: pass else: try: msvcrt.locking(_lowerCAmelCase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(_lowerCAmelCase ) else: __a = fd return None def a__ ( self ): __a = self._lock_file_fd __a = None msvcrt.locking(_lowerCAmelCase , msvcrt.LK_UNLCK , 1 ) os.close(_lowerCAmelCase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase , lowerCamelCase=-1 , lowerCamelCase=None ): __a = os.statvfs(os.path.dirname(_lowerCAmelCase ) ).f_namemax super().__init__(_lowerCAmelCase , timeout=_lowerCAmelCase , max_filename_length=_lowerCAmelCase ) def a__ ( self ): __a = os.O_RDWR | os.O_CREAT | os.O_TRUNC __a = os.open(self._lock_file , _lowerCAmelCase ) try: fcntl.flock(_lowerCAmelCase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(_lowerCAmelCase ) else: __a = fd return None def a__ ( self ): # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition __a = self._lock_file_fd __a = None fcntl.flock(_lowerCAmelCase , fcntl.LOCK_UN ) os.close(_lowerCAmelCase ) return None class snake_case__ ( snake_case_ ): def a__ ( self ): __a = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __a = os.open(self._lock_file , _lowerCAmelCase ) except OSError: pass else: __a = fd return None def a__ ( self ): os.close(self._lock_file_fd ) __a = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None SCREAMING_SNAKE_CASE__:Optional[int] = None if msvcrt: SCREAMING_SNAKE_CASE__:Dict = WindowsFileLock elif fcntl: SCREAMING_SNAKE_CASE__:int = UnixFileLock else: SCREAMING_SNAKE_CASE__:Any = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
528
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "spiece.model"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<sep>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<cls>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=["<eop>", "<eod>"] , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: _lowerCAmelCase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) _lowerCAmelCase = 3 _lowerCAmelCase = do_lower_case _lowerCAmelCase = remove_space _lowerCAmelCase = keep_accents _lowerCAmelCase = vocab_file _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) _lowerCAmelCase = jieba _lowerCAmelCase = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _snake_case ( self ) -> Optional[int]: return len(self.sp_model ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__( self , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , _lowerCAmelCase ) -> str: if self.remove_space: _lowerCAmelCase = " ".join(inputs.strip().split() ) else: _lowerCAmelCase = inputs _lowerCAmelCase = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _lowerCAmelCase = unicodedata.normalize("NFKD" , _lowerCAmelCase ) _lowerCAmelCase = "".join([c for c in outputs if not unicodedata.combining(_lowerCAmelCase )] ) if self.do_lower_case: _lowerCAmelCase = outputs.lower() return outputs def _snake_case ( self , _lowerCAmelCase ) -> List[str]: _lowerCAmelCase = self.preprocess_text(_lowerCAmelCase ) _lowerCAmelCase = self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) _lowerCAmelCase = [] for piece in pieces: if len(_lowerCAmelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCAmelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase = cur_pieces[1:] else: _lowerCAmelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowerCAmelCase ) else: new_pieces.append(_lowerCAmelCase ) return new_pieces def _snake_case ( self , _lowerCAmelCase ) -> str: return self.sp_model.PieceToId(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]: return self.sp_model.IdToPiece(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = "".join(_lowerCAmelCase ).replace(_lowerCAmelCase , " " ).strip() return out_string def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is not None: return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] return ([0] * len(_lowerCAmelCase )) + [1, 1] def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(_lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , "wb" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,) def _snake_case ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: _lowerCAmelCase = super()._decode(*_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
18
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowercase_ = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(_lowerCAmelCase ) lowercase_ = -1 lowercase_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) lowercase_ = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) lowercase_ = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowercase_ = TextStreamer(_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowercase_ = cs.out[:-1] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowercase_ = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(_lowerCAmelCase ) lowercase_ = -1 lowercase_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) lowercase_ = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) lowercase_ = tokenizer.decode(greedy_ids[0] ) lowercase_ = TextIteratorStreamer(_lowerCAmelCase ) lowercase_ = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} lowercase_ = Thread(target=model.generate , kwargs=_lowerCAmelCase ) thread.start() lowercase_ = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowercase_ = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(_lowerCAmelCase ) lowercase_ = -1 lowercase_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) lowercase_ = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) lowercase_ = greedy_ids[:, input_ids.shape[1] :] lowercase_ = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowercase_ = TextStreamer(_lowerCAmelCase , skip_prompt=_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowercase_ = cs.out[:-1] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = AutoTokenizer.from_pretrained("""distilgpt2""" ) lowercase_ = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(_lowerCAmelCase ) lowercase_ = -1 lowercase_ = torch.ones((1, 5) , device=_lowerCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowercase_ = TextStreamer(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=1 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowercase_ = cs.out[:-1] # Remove the final "\n" lowercase_ = tokenizer(_lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowercase_ = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(_lowerCAmelCase ) lowercase_ = -1 lowercase_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) lowercase_ = TextIteratorStreamer(_lowerCAmelCase , timeout=0.001 ) lowercase_ = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} lowercase_ = Thread(target=model.generate , kwargs=_lowerCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCAmelCase ): lowercase_ = """""" for new_text in streamer: streamer_text += new_text
412
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _SCREAMING_SNAKE_CASE = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" _SCREAMING_SNAKE_CASE = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" _SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def _snake_case ( self ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def _snake_case ( self ) -> Tuple: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="uniform_average" , _lowerCAmelCase=True ) -> Union[str, Any]: _lowerCAmelCase = mean_squared_error( _lowerCAmelCase , _lowerCAmelCase , sample_weight=_lowerCAmelCase , multioutput=_lowerCAmelCase , squared=_lowerCAmelCase ) return {"mse": mse}
18
0
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = "data2vec-audio" def __init__( self ,A=32 ,A=768 ,A=12 ,A=12 ,A=3_072 ,A="gelu" ,A=0.1 ,A=0.1 ,A=0.1 ,A=0.0 ,A=0.1 ,A=0.1 ,A=0.02 ,A=1e-5 ,A="gelu" ,A=(512, 512, 512, 512, 512, 512, 512) ,A=(5, 2, 2, 2, 2, 2, 2) ,A=(10, 3, 3, 3, 3, 2, 2) ,A=False ,A=16 ,A=19 ,A=5 ,A=0.05 ,A=10 ,A=2 ,A=0.0 ,A=10 ,A=0 ,A="sum" ,A=False ,A=False ,A=256 ,A=(512, 512, 512, 512, 1_500) ,A=(5, 3, 3, 1, 1) ,A=(1, 2, 3, 1, 1) ,A=512 ,A=0 ,A=1 ,A=2 ,A=False ,A=3 ,A=2 ,A=3 ,A=None ,**A ,): super().__init__(**_lowerCAmelCase ,pad_token_id=_lowerCAmelCase ,bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) UpperCAmelCase = hidden_size UpperCAmelCase = feat_extract_activation UpperCAmelCase = list(_lowerCAmelCase ) UpperCAmelCase = list(_lowerCAmelCase ) UpperCAmelCase = list(_lowerCAmelCase ) UpperCAmelCase = conv_bias UpperCAmelCase = num_conv_pos_embeddings UpperCAmelCase = num_conv_pos_embedding_groups UpperCAmelCase = conv_pos_kernel_size UpperCAmelCase = len(self.conv_dim ) UpperCAmelCase = num_hidden_layers UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = feat_proj_dropout UpperCAmelCase = final_dropout UpperCAmelCase = layerdrop UpperCAmelCase = layer_norm_eps UpperCAmelCase = initializer_range UpperCAmelCase = vocab_size UpperCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks # ctc loss UpperCAmelCase = ctc_loss_reduction UpperCAmelCase = ctc_zero_infinity # adapter UpperCAmelCase = add_adapter UpperCAmelCase = adapter_kernel_size UpperCAmelCase = adapter_stride UpperCAmelCase = num_adapter_layers UpperCAmelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase = list(_lowerCAmelCase ) UpperCAmelCase = list(_lowerCAmelCase ) UpperCAmelCase = list(_lowerCAmelCase ) UpperCAmelCase = xvector_output_dim @property def _UpperCamelCase ( self ): return math.prod(self.conv_stride )
341
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
18
0
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): __snake_case : str = 10 def lowercase_ ( self ): __snake_case : Tuple = [1, 2, 3, 4] __snake_case : Optional[Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_lowerCAmelCase , self.block_size , 0 ) , _lowerCAmelCase ) def lowercase_ ( self ): __snake_case : Union[str, Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] __snake_case : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_lowerCAmelCase , self.block_size , 0 ) , _lowerCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] __snake_case : Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_lowerCAmelCase , self.block_size , 0 ) , _lowerCAmelCase ) def lowercase_ ( self ): __snake_case : List[Any] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' __snake_case , __snake_case : str = process_story(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , [] ) def lowercase_ ( self ): __snake_case : int = '' __snake_case , __snake_case : List[str] = process_story(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , [] ) self.assertEqual(_lowerCAmelCase , [] ) def lowercase_ ( self ): __snake_case : Optional[int] = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) __snake_case , __snake_case : str = process_story(_lowerCAmelCase ) __snake_case : Union[str, Any] = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : Dict = ['It was the best of times.'] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def lowercase_ ( self ): __snake_case : Union[str, Any] = torch.tensor([1, 2, 3, 4] ) __snake_case : str = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_lowerCAmelCase , 0 ).numpy() , expected.numpy() ) def lowercase_ ( self ): __snake_case : List[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) __snake_case : Optional[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_lowerCAmelCase , 23 ).numpy() , expected.numpy() ) def lowercase_ ( self ): __snake_case : str = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __snake_case : Dict = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_lowerCAmelCase , 1 ).numpy() , expected.numpy() ) def lowercase_ ( self ): __snake_case : Union[str, Any] = 101 __snake_case : List[Any] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) __snake_case : Optional[Any] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __snake_case : Optional[Any] = compute_token_type_ids(_lowerCAmelCase , _lowerCAmelCase ) np.testing.assert_array_equal(_lowerCAmelCase , _lowerCAmelCase )
576
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : int | float | str , SCREAMING_SNAKE_CASE_ : int | float | str ): '''simple docstring''' if nth_term == "": return [""] _lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = [] for temp in range(int(SCREAMING_SNAKE_CASE_ ) ): series.append(F'''1 / {pow(temp + 1 , int(SCREAMING_SNAKE_CASE_ ) )}''' if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = int(input("Enter the last number (nth term) of the P-Series")) _SCREAMING_SNAKE_CASE = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
18
0
'''simple docstring''' def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( """Base16 encoded data is invalid:\nData does not have an even number of hex digits.""" ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set("""0123456789ABCDEF""" ): raise ValueError( """Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.""" ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
533
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] )
18
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : float | Decimal , _lowercase : float = 10**-10 ) ->Dict: '''simple docstring''' a : List[Any] = a while True: a : Union[str, Any] = Decimal(SCREAMING_SNAKE_CASE_ ) - ( Decimal(eval(SCREAMING_SNAKE_CASE_ ) ) / Decimal(eval(str(diff(SCREAMING_SNAKE_CASE_ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(SCREAMING_SNAKE_CASE_ ) ) < precision: # noqa: S307 return float(SCREAMING_SNAKE_CASE_ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
633
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() _lowerCAmelCase = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) _lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict=None ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() _lowerCAmelCase = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) _lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = result.headers["Location"] _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F'''{artifact_name}.zip''' ) with open(SCREAMING_SNAKE_CASE_ , "wb" ) as fp: fp.write(response.content ) def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=None ): '''simple docstring''' _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE_ ) as f: for line in f: _lowerCAmelCase = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _lowerCAmelCase = line[: line.index(": " )] _lowerCAmelCase = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed _lowerCAmelCase = line[len("FAILED " ) :] failed_tests.append(SCREAMING_SNAKE_CASE_ ) elif filename == "job_name.txt": _lowerCAmelCase = line if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( F'''`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE_ )} for `errors` ''' F'''and {len(SCREAMING_SNAKE_CASE_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' " problem." ) _lowerCAmelCase = None if job_name and job_links: _lowerCAmelCase = job_links.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # A list with elements of the form (line of error, error, failed test) _lowerCAmelCase = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] return result def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = [] _lowerCAmelCase = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for p in os.listdir(SCREAMING_SNAKE_CASE_ ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE_ , job_links=SCREAMING_SNAKE_CASE_ ) ) return errors def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str=None ): '''simple docstring''' _lowerCAmelCase = Counter() counter.update([x[1] for x in logs] ) _lowerCAmelCase = counter.most_common() _lowerCAmelCase = {} for error, count in counts: if error_filter is None or error not in error_filter: _lowerCAmelCase = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} _lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def __a(SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' _lowerCAmelCase = test.split("::" )[0] if test.startswith("tests/models/" ): _lowerCAmelCase = test.split("/" )[2] else: _lowerCAmelCase = None return test def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs] _lowerCAmelCase = [x for x in logs if x[2] is not None] _lowerCAmelCase = {x[2] for x in logs} _lowerCAmelCase = {} for test in tests: _lowerCAmelCase = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _lowerCAmelCase = counter.most_common() _lowerCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _lowerCAmelCase = sum(error_counts.values() ) if n_errors > 0: _lowerCAmelCase = {"count": n_errors, "errors": error_counts} _lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase = "| no. | error | status |" _lowerCAmelCase = "|-:|:-|:-|" _lowerCAmelCase = [header, sep] for error in reduced_by_error: _lowerCAmelCase = reduced_by_error[error]["count"] _lowerCAmelCase = F'''| {count} | {error[:100]} | |''' lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase = "| model | no. of errors | major error | count |" _lowerCAmelCase = "|-:|-:|-:|-:|" _lowerCAmelCase = [header, sep] for model in reduced_by_model: _lowerCAmelCase = reduced_by_model[model]["count"] _lowerCAmelCase , _lowerCAmelCase = list(reduced_by_model[model]["errors"].items() )[0] _lowerCAmelCase = F'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _SCREAMING_SNAKE_CASE = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _SCREAMING_SNAKE_CASE = get_job_links(args.workflow_run_id, token=args.token) _SCREAMING_SNAKE_CASE = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _SCREAMING_SNAKE_CASE = k.find(" / ") _SCREAMING_SNAKE_CASE = k[index + len(" / ") :] _SCREAMING_SNAKE_CASE = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _SCREAMING_SNAKE_CASE = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _SCREAMING_SNAKE_CASE = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _SCREAMING_SNAKE_CASE = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = reduce_by_error(errors) _SCREAMING_SNAKE_CASE = reduce_by_model(errors) _SCREAMING_SNAKE_CASE = make_github_table(reduced_by_error) _SCREAMING_SNAKE_CASE = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
18
0
'''simple docstring''' import argparse import os from accelerate.test_utils import execute_subprocess_async def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[str]=None ) -> Union[str, Any]: if subparsers is not None: _a : Tuple =subparsers.add_parser("""test""" ) else: _a : Optional[int] =argparse.ArgumentParser("""Accelerate test command""" ) parser.add_argument( """--config_file""" ,default=SCREAMING_SNAKE_CASE_ ,help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) ,) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) return parser def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Any ) -> Any: _a : str =os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] ) if args.config_file is None: _a : Tuple =script_name else: _a : Union[str, Any] =F"--config_file={args.config_file} {script_name}" _a : Any =["""accelerate-launch"""] + test_args.split() _a : List[Any] =execute_subprocess_async(SCREAMING_SNAKE_CASE_ ,env=os.environ.copy() ) if result.returncode == 0: print("""Test is a success! You are ready for your distributed training!""" ) def SCREAMING_SNAKE_CASE_ ( ) -> int: _a : Dict =test_command_parser() _a : Union[str, Any] =parser.parse_args() test_command(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
694
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = (DPMSolverSinglestepScheduler,) __lowerCamelCase : int = (("num_inference_steps", 25),) def _snake_case ( self , **_lowerCAmelCase ) -> Any: _lowerCAmelCase = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf" ), "variance_type": None, } config.update(**_lowerCAmelCase ) return config def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> List[Any]: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) _lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase ) new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase , _lowerCAmelCase = sample, sample for t in range(_lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self ) -> int: pass def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) _lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Tuple: if scheduler is None: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample return sample def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = 50 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults _lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 _lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _snake_case ( self ) -> str: self.check_over_configs(thresholding=_lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , algorithm_type="dpmsolver++" , solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , ) def _snake_case ( self ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , ) _lowerCAmelCase = self.full_loop( solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , ) assert not torch.isnan(_lowerCAmelCase ).any(), "Samples have nan numbers" def _snake_case ( self ) -> Optional[Any]: self.check_over_configs(lower_order_final=_lowerCAmelCase ) self.check_over_configs(lower_order_final=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: self.check_over_configs(lambda_min_clipped=-float("inf" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def _snake_case ( self ) -> str: self.check_over_configs(variance_type=_lowerCAmelCase ) self.check_over_configs(variance_type="learned_range" ) def _snake_case ( self ) -> int: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowerCAmelCase , time_step=0 ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.full_loop() _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.full_loop(use_karras_sigmas=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.full_loop(prediction_type="v_prediction" ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def _snake_case ( self ) -> Any: _lowerCAmelCase = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(thresholding=_lowerCAmelCase , dynamic_thresholding_ratio=0 ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa
18
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
346
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : list ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
18
0
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __lowercase ( a__ , a__ , a__ , a__ ) -> Dict: __SCREAMING_SNAKE_CASE = FunnelConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(f"""Building PyTorch model from configuration: {config}""" ) __SCREAMING_SNAKE_CASE = FunnelBaseModel(SCREAMING_SNAKE_CASE_ ) if base_model else FunnelModel(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCAmelCase__ : int =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether you want just the base model (no decoder) or not.''' ) lowerCAmelCase__ : List[Any] =parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
148
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCAmelCase = cs.out[:-1] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) _lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase ) _lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase ) thread.start() _lowerCAmelCase = "" for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) _lowerCAmelCase = greedy_ids[:, input_ids.shape[1] :] _lowerCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_prompt=_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCAmelCase = cs.out[:-1] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Dict: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _lowerCAmelCase = AutoTokenizer.from_pretrained("distilgpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = torch.ones((1, 5) , device=_lowerCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=1 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _lowerCAmelCase = cs.out[:-1] # Remove the final "\n" _lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase , timeout=0.001 ) _lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = "" for new_text in streamer: streamer_text += new_text
18
0
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) def A__ ( __lowerCAmelCase : Union[str, Any] ): lowerCamelCase__ = R"""\w+[.]\d+""" lowerCamelCase__ = re.findall(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for pat in pats: lowerCamelCase__ = key.replace(SCREAMING_SNAKE_CASE_ , """_""".join(pat.split(""".""" ) ) ) return key def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] ): lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCamelCase__ = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": lowerCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCamelCase__ = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCamelCase__ = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any=42 ): lowerCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCamelCase__ = flax_model.init_weights(PRNGKey(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase__ = flatten_dict(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase__ = rename_key(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters lowerCamelCase__ , lowerCamelCase__ = rename_key_and_reshape_tensor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown lowerCamelCase__ = jnp.asarray(SCREAMING_SNAKE_CASE_ ) return unflatten_dict(SCREAMING_SNAKE_CASE_ )
50
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "blenderbot-small" __lowerCamelCase : Optional[Any] = ["past_key_values"] __lowerCamelCase : str = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , _lowerCAmelCase=50265 , _lowerCAmelCase=512 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="gelu" , _lowerCAmelCase=512 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=2 , **_lowerCAmelCase , ) -> Dict: _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = d_model _lowerCAmelCase = encoder_ffn_dim _lowerCAmelCase = encoder_layers _lowerCAmelCase = encoder_attention_heads _lowerCAmelCase = decoder_ffn_dim _lowerCAmelCase = decoder_layers _lowerCAmelCase = decoder_attention_heads _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = activation_function _lowerCAmelCase = init_std _lowerCAmelCase = encoder_layerdrop _lowerCAmelCase = decoder_layerdrop _lowerCAmelCase = use_cache _lowerCAmelCase = encoder_layers _lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) class lowerCAmelCase_ ( __magic_name__ ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _lowerCAmelCase = {0: "batch"} _lowerCAmelCase = {0: "batch", 1: "past_decoder_sequence + sequence"} else: _lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} _lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _lowerCAmelCase , _lowerCAmelCase = self.num_layers for i in range(_lowerCAmelCase ): _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} else: _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = super().outputs else: _lowerCAmelCase = super(_lowerCAmelCase , self ).outputs if self.use_past: _lowerCAmelCase , _lowerCAmelCase = self.num_layers for i in range(_lowerCAmelCase ): _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Generate decoder inputs _lowerCAmelCase = seq_length if not self.use_past else 1 _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} _lowerCAmelCase = dict(**_lowerCAmelCase , **_lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape _lowerCAmelCase = common_inputs["decoder_input_ids"].shape[1] _lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads _lowerCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase = decoder_seq_length + 3 _lowerCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCAmelCase = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase )] , dim=1 ) _lowerCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCAmelCase , _lowerCAmelCase = self.num_layers _lowerCAmelCase = min(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = max(_lowerCAmelCase , _lowerCAmelCase ) - min_num_layers _lowerCAmelCase = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(_lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), ) ) # TODO: test this. _lowerCAmelCase = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(_lowerCAmelCase , _lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape # Not using the same length for past_key_values _lowerCAmelCase = seqlen + 2 _lowerCAmelCase , _lowerCAmelCase = self.num_layers _lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads _lowerCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase = common_inputs["attention_mask"].dtype _lowerCAmelCase = torch.cat( [common_inputs["attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase )] , dim=1 ) _lowerCAmelCase = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase ) ] return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCAmelCase = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCAmelCase = tokenizer.num_special_tokens_to_add(_lowerCAmelCase ) _lowerCAmelCase = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence _lowerCAmelCase = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCAmelCase = dict(tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) elif self.task == "causal-lm": _lowerCAmelCase = self._generate_dummy_inputs_for_causal_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) else: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = super()._flatten_past_key_values_(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCAmelCase = super(_lowerCAmelCase , self )._flatten_past_key_values_( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
18
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor A__ : Tuple = logging.get_logger(__name__) class __magic_name__ ( SCREAMING_SNAKE_CASE__ ): def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
353
'''simple docstring''' import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" _SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" _SCREAMING_SNAKE_CASE = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def _snake_case ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: _lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in predictions] ) _lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in references] ) else: _lowerCAmelCase = np.asarray(_lowerCAmelCase ) _lowerCAmelCase = np.asarray(_lowerCAmelCase ) if ignore_case: _lowerCAmelCase = np.char.lower(_lowerCAmelCase ) _lowerCAmelCase = np.char.lower(_lowerCAmelCase ) if ignore_punctuation: _lowerCAmelCase = string.punctuation.maketrans("" , "" , string.punctuation ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) if ignore_numbers: _lowerCAmelCase = string.digits.maketrans("" , "" , string.digits ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _lowerCAmelCase = predictions == references return {"exact_match": np.mean(_lowerCAmelCase ) * 100}
18
0
"""simple docstring""" from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class snake_case__ ( snake_case_ ): def __lt__( self , lowerCamelCase ): return self[-1] < other[-1] def __eq__( self , lowerCamelCase ): return self[-1] == other[-1] def _lowerCamelCase( a ): __a = [] # sort into stacks for element in collection: __a = Stack([element] ) __a = bisect_left(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if i != len(SCREAMING_SNAKE_CASE_ ): stacks[i].append(SCREAMING_SNAKE_CASE_ ) else: stacks.append(SCREAMING_SNAKE_CASE_ ) # use a heap-based merge to merge stack efficiently __a = merge(*(reversed(SCREAMING_SNAKE_CASE_ ) for stack in stacks) ) return collection if __name__ == "__main__": SCREAMING_SNAKE_CASE__:List[Any] = input("""Enter numbers separated by a comma:\n""").strip() SCREAMING_SNAKE_CASE__:List[Any] = [int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
528
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> None: warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
18
0
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a = { 'facebook/mask2former-swin-small-coco-instance': ( 'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = "mask2former" __SCREAMING_SNAKE_CASE : Optional[Any] = ["swin"] __SCREAMING_SNAKE_CASE : str = {"hidden_size": "hidden_dim"} def __init__( self : Union[str, Any] , UpperCamelCase__ : Dict = None , UpperCamelCase__ : Dict = 256 , UpperCamelCase__ : Union[str, Any] = 256 , UpperCamelCase__ : Any = 256 , UpperCamelCase__ : Dict = 1_024 , UpperCamelCase__ : List[Any] = "relu" , UpperCamelCase__ : Optional[Any] = 6 , UpperCamelCase__ : int = 10 , UpperCamelCase__ : str = 8 , UpperCamelCase__ : Optional[Any] = 0.0 , UpperCamelCase__ : Tuple = 2_048 , UpperCamelCase__ : List[Any] = False , UpperCamelCase__ : List[str] = False , UpperCamelCase__ : List[str] = 4 , UpperCamelCase__ : int = 255 , UpperCamelCase__ : int = 100 , UpperCamelCase__ : str = 0.1 , UpperCamelCase__ : List[Any] = 2.0 , UpperCamelCase__ : Tuple = 5.0 , UpperCamelCase__ : List[str] = 5.0 , UpperCamelCase__ : Any = 12_544 , UpperCamelCase__ : Optional[Any] = 3.0 , UpperCamelCase__ : Optional[Any] = 0.75 , UpperCamelCase__ : List[str] = 0.02 , UpperCamelCase__ : Union[str, Any] = 1.0 , UpperCamelCase__ : List[str] = True , UpperCamelCase__ : str = [4, 8, 16, 32] , UpperCamelCase__ : List[Any] = None , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) lowercase_ = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_lowerCAmelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase_ = backbone_config.pop("""model_type""" ) lowercase_ = CONFIG_MAPPING[backbone_model_type] lowercase_ = config_class.from_dict(_lowerCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' F'''Supported model types: {",".join(self.backbones_supported )}''' ) lowercase_ = backbone_config lowercase_ = feature_size lowercase_ = mask_feature_size lowercase_ = hidden_dim lowercase_ = encoder_feedforward_dim lowercase_ = activation_function lowercase_ = encoder_layers lowercase_ = decoder_layers lowercase_ = num_attention_heads lowercase_ = dropout lowercase_ = dim_feedforward lowercase_ = pre_norm lowercase_ = enforce_input_projection lowercase_ = common_stride lowercase_ = ignore_value lowercase_ = num_queries lowercase_ = no_object_weight lowercase_ = class_weight lowercase_ = mask_weight lowercase_ = dice_weight lowercase_ = train_num_points lowercase_ = oversample_ratio lowercase_ = importance_sample_ratio lowercase_ = init_std lowercase_ = init_xavier_std lowercase_ = use_auxiliary_loss lowercase_ = feature_strides lowercase_ = output_auxiliary_logits lowercase_ = decoder_layers super().__init__(**_lowerCAmelCase ) @classmethod def UpperCAmelCase__ ( cls : Optional[Any] , UpperCamelCase__ : Dict , **UpperCamelCase__ : Tuple ): '''simple docstring''' return cls( backbone_config=_lowerCAmelCase , **_lowerCAmelCase , ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = copy.deepcopy(self.__dict__ ) lowercase_ = self.backbone_config.to_dict() lowercase_ = self.__class__.model_type return output
412
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = "falcon" __lowerCamelCase : List[str] = ["past_key_values"] def __init__( self , _lowerCAmelCase=65024 , _lowerCAmelCase=4544 , _lowerCAmelCase=32 , _lowerCAmelCase=71 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=11 , _lowerCAmelCase=11 , **_lowerCAmelCase , ) -> Union[str, Any]: _lowerCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _lowerCAmelCase = kwargs.pop("n_embed" , _lowerCAmelCase ) _lowerCAmelCase = hidden_size if n_embed is None else n_embed _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = use_cache _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id _lowerCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _lowerCAmelCase = alibi _lowerCAmelCase = new_decoder_architecture _lowerCAmelCase = multi_query # Ignored when new_decoder_architecture is True _lowerCAmelCase = parallel_attn _lowerCAmelCase = bias super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) @property def _snake_case ( self ) -> Optional[Any]: return self.hidden_size // self.num_attention_heads @property def _snake_case ( self ) -> Optional[Any]: return not self.alibi
18
0
"""simple docstring""" from typing import Any class lowerCamelCase__ : def __init__( self ,A ): UpperCAmelCase = data UpperCAmelCase = None class lowerCamelCase__ : def __init__( self ): UpperCAmelCase = None def _UpperCamelCase ( self ): UpperCAmelCase = self.head while temp is not None: print(temp.data ,end=""" """ ) UpperCAmelCase = temp.next print() def _UpperCamelCase ( self ,A ): UpperCAmelCase = Node(_lowerCAmelCase ) UpperCAmelCase = self.head UpperCAmelCase = new_node def _UpperCamelCase ( self ,A ,A ): if node_data_a == node_data_a: return else: UpperCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: UpperCAmelCase = node_a.next UpperCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: UpperCAmelCase = node_a.next if node_a is None or node_a is None: return UpperCAmelCase , UpperCAmelCase = node_a.data, node_a.data if __name__ == "__main__": _UpperCamelCase = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
341
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/deit-base-distilled-patch16-224": ( "https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Optional[int] = "deit" def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=16 , **_lowerCAmelCase , ) -> Dict: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = qkv_bias _lowerCAmelCase = encoder_stride class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self ) -> float: return 1E-4
18
0
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = LEDTokenizer __UpperCAmelCase = LEDTokenizerFast __UpperCAmelCase = True def lowercase_ ( self ): super().setUp() __snake_case : Optional[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __snake_case : List[str] = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) __snake_case : List[Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __snake_case : Optional[int] = {'unk_token': '<unk>'} __snake_case : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_lowerCAmelCase ) ) def lowercase_ ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def lowercase_ ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): return "lower newer", "lower newer" @cached_property def lowercase_ ( self ): return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def lowercase_ ( self ): return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def lowercase_ ( self ): __snake_case : Any = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __snake_case : Optional[Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __snake_case : Any = tokenizer(_lowerCAmelCase , max_length=len(_lowerCAmelCase ) , padding=_lowerCAmelCase , return_tensors='pt' ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __snake_case : Any = batch.input_ids.tolist()[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) @require_torch def lowercase_ ( self ): __snake_case : Any = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __snake_case : List[Any] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='pt' ) self.assertIn('input_ids' , _lowerCAmelCase ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertNotIn('labels' , _lowerCAmelCase ) self.assertNotIn('decoder_attention_mask' , _lowerCAmelCase ) @require_torch def lowercase_ ( self ): __snake_case : Union[str, Any] = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __snake_case : List[str] = tokenizer(text_target=_lowerCAmelCase , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def lowercase_ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __snake_case : str = tokenizer( ['I am a small frog' * 1_024, 'I am a small frog'] , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='pt' ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(batch.input_ids.shape , (2, 5_122) ) @require_torch def lowercase_ ( self ): __snake_case : Union[str, Any] = ['A long paragraph for summarization.'] __snake_case : Any = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __snake_case : int = tokenizer(_lowerCAmelCase , return_tensors='pt' ) __snake_case : List[str] = tokenizer(text_target=_lowerCAmelCase , return_tensors='pt' ) __snake_case : Optional[Any] = inputs['input_ids'] __snake_case : str = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowercase_ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __snake_case : Optional[int] = ['Summary of the text.', 'Another summary.'] __snake_case : List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] __snake_case : Union[str, Any] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase ) __snake_case : int = [[0] * len(_lowerCAmelCase ) for x in encoded_output['input_ids']] __snake_case : int = tokenizer.pad(_lowerCAmelCase ) self.assertSequenceEqual(outputs['global_attention_mask'] , _lowerCAmelCase ) def lowercase_ ( self ): pass def lowercase_ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __snake_case : Optional[int] = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) __snake_case : Any = self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) __snake_case : int = 'A, <mask> AllenNLP sentence.' __snake_case : Tuple = tokenizer_r.encode_plus(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) __snake_case : List[str] = tokenizer_p.encode_plus(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) __snake_case : Optional[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) __snake_case : Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( _lowerCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _lowerCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
576
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
18
0
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = {'vocab_file': 'vocab.json'} UpperCAmelCase_ : List[str] = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } UpperCAmelCase_ : str = {'mgp-str': 27} class lowercase__ ( _snake_case ): '''simple docstring''' A_ : List[Any] = VOCAB_FILES_NAMES A_ : Tuple = PRETRAINED_VOCAB_FILES_MAP A_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __snake_case , __snake_case="[GO]" , __snake_case="[GO]" , __snake_case="[s]" , __snake_case="[GO]" , **__snake_case ): super().__init__( unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , **_lowerCAmelCase , ) with open(_lowerCAmelCase , encoding="""utf-8""" ) as vocab_handle: _SCREAMING_SNAKE_CASE : Tuple = json.load(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in self.vocab.items()} @property def UpperCAmelCase_ ( self ): return len(self.vocab ) def UpperCAmelCase_ ( self ): return dict(self.vocab , **self.added_tokens_encoder ) def UpperCAmelCase_ ( self , __snake_case ): _SCREAMING_SNAKE_CASE : List[Any] = [] for s in text: char_tokens.extend(_lowerCAmelCase ) return char_tokens def UpperCAmelCase_ ( self , __snake_case ): return self.vocab.get(_lowerCAmelCase , self.vocab.get(self.unk_token ) ) def UpperCAmelCase_ ( self , __snake_case ): return self.decoder.get(_lowerCAmelCase ) def UpperCAmelCase_ ( self , __snake_case , __snake_case = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error("""Vocabulary path ({}) should be a directory""".format(_lowerCAmelCase ) ) return _SCREAMING_SNAKE_CASE : List[str] = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + """\n""" ) return (vocab_file,)
533
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : int = ["pixel_values"] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = IMAGENET_DEFAULT_MEAN , _lowerCAmelCase = IMAGENET_DEFAULT_STD , **_lowerCAmelCase , ) -> None: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = size if size is not None else {"shortest_edge": 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else {"height": 224, "width": 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = resample _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _lowerCAmelCase = int((256 / 224) * size["shortest_edge"] ) _lowerCAmelCase = get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = {"height": output_size[0], "width": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( _lowerCAmelCase , size=(size_dict["height"], size_dict["width"]) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ) -> BatchFeature: _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase = image_std if image_std is not None else self.image_std _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) _lowerCAmelCase = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _lowerCAmelCase = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: _lowerCAmelCase = [self.resize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_center_crop: _lowerCAmelCase = [self.center_crop(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_rescale: _lowerCAmelCase = [self.rescale(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_normalize: _lowerCAmelCase = [self.normalize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase = {"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
18
0
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[int] ) ->Optional[int]: '''simple docstring''' a : Union[str, Any] = {} a : str = tokenizer(example["content"] , truncation=SCREAMING_SNAKE_CASE_ )["input_ids"] a : Optional[int] = len(example["content"] ) / len(output["input_ids"] ) return output a : Optional[Any] = HfArgumentParser(PretokenizationArguments) a : Any = parser.parse_args() if args.num_workers is None: a : Dict = multiprocessing.cpu_count() a : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) a : Dict = time.time() a : Union[str, Any] = load_dataset(args.dataset_name, split='''train''') print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') a : Optional[Any] = time.time() a : int = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') a : List[str] = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
633
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "donut-swin" __lowerCamelCase : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , **_lowerCAmelCase , ) -> Optional[Any]: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
18
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__: List[str] = logging.get_logger(__name__) A__: Optional[int] = { '''naver-clova-ix/donut-base''': '''https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json''', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Union[str, Any] = "donut-swin" __UpperCamelCase : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self :Tuple , SCREAMING_SNAKE_CASE :Tuple=2_2_4 , SCREAMING_SNAKE_CASE :Union[str, Any]=4 , SCREAMING_SNAKE_CASE :Optional[Any]=3 , SCREAMING_SNAKE_CASE :Union[str, Any]=9_6 , SCREAMING_SNAKE_CASE :Optional[Any]=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE :Tuple=[3, 6, 1_2, 2_4] , SCREAMING_SNAKE_CASE :Tuple=7 , SCREAMING_SNAKE_CASE :Any=4.0 , SCREAMING_SNAKE_CASE :int=True , SCREAMING_SNAKE_CASE :Dict=0.0 , SCREAMING_SNAKE_CASE :str=0.0 , SCREAMING_SNAKE_CASE :Dict=0.1 , SCREAMING_SNAKE_CASE :List[str]="gelu" , SCREAMING_SNAKE_CASE :List[Any]=False , SCREAMING_SNAKE_CASE :Optional[int]=0.02 , SCREAMING_SNAKE_CASE :Union[str, Any]=1e-5 , **SCREAMING_SNAKE_CASE :Optional[Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) _a : List[str] =image_size _a : str =patch_size _a : int =num_channels _a : Optional[Any] =embed_dim _a : Dict =depths _a : List[Any] =len(_lowerCAmelCase ) _a : Optional[Any] =num_heads _a : Union[str, Any] =window_size _a : Optional[Any] =mlp_ratio _a : Dict =qkv_bias _a : Optional[int] =hidden_dropout_prob _a : Any =attention_probs_dropout_prob _a : List[Any] =drop_path_rate _a : Optional[Any] =hidden_act _a : Optional[int] =use_absolute_embeddings _a : Optional[Any] =layer_norm_eps _a : List[str] =initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _a : str =int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
694
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "swinv2" __lowerCamelCase : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=32 , **_lowerCAmelCase , ) -> Tuple: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) _lowerCAmelCase = (0, 0, 0, 0)
18
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class snake_case ( unittest.TestCase ): def __init__( self : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict=7 , UpperCamelCase__ : Any=3 , UpperCamelCase__ : Union[str, Any]=3_0 , UpperCamelCase__ : int=4_0_0 , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : int=True , UpperCamelCase__ : str=[0.5, 0.5, 0.5] , UpperCamelCase__ : str=[0.5, 0.5, 0.5] , UpperCamelCase__ : int=True , UpperCamelCase__ : str=1 / 2_5_5 , UpperCamelCase__ : Union[str, Any]=True , )-> int: '''simple docstring''' __lowerCAmelCase: List[Any] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} __lowerCAmelCase: Optional[int] = parent __lowerCAmelCase: Optional[Any] = batch_size __lowerCAmelCase: Optional[Any] = num_channels __lowerCAmelCase: List[str] = min_resolution __lowerCAmelCase: str = max_resolution __lowerCAmelCase: List[Any] = do_resize __lowerCAmelCase: Dict = size __lowerCAmelCase: Optional[int] = do_normalize __lowerCAmelCase: Optional[Any] = image_mean __lowerCAmelCase: Any = image_std __lowerCAmelCase: List[str] = do_rescale __lowerCAmelCase: Any = rescale_factor __lowerCAmelCase: Optional[int] = do_pad def lowercase_ ( self : Dict)-> Dict: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any=False)-> Union[str, Any]: '''simple docstring''' if not batched: __lowerCAmelCase: Optional[Any] = image_inputs[0] if isinstance(_lowerCAmelCase , Image.Image): __lowerCAmelCase , __lowerCAmelCase: int = image.size else: __lowerCAmelCase , __lowerCAmelCase: Dict = image.shape[1], image.shape[2] if w < h: __lowerCAmelCase: Any = int(self.size["shortest_edge"] * h / w) __lowerCAmelCase: Optional[int] = self.size["shortest_edge"] elif w > h: __lowerCAmelCase: Optional[int] = self.size["shortest_edge"] __lowerCAmelCase: str = int(self.size["shortest_edge"] * w / h) else: __lowerCAmelCase: Optional[Any] = self.size["shortest_edge"] __lowerCAmelCase: List[str] = self.size["shortest_edge"] else: __lowerCAmelCase: Optional[Any] = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase: Union[str, Any] = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) __lowerCAmelCase: Optional[Any] = max(_lowerCAmelCase , key=lambda UpperCamelCase__: item[0])[0] __lowerCAmelCase: List[str] = max(_lowerCAmelCase , key=lambda UpperCamelCase__: item[1])[1] return expected_height, expected_width @require_torch @require_vision class snake_case ( __snake_case, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ConditionalDetrImageProcessor if is_vision_available() else None def lowercase_ ( self : str)-> List[str]: '''simple docstring''' __lowerCAmelCase: Any = ConditionalDetrImageProcessingTester(self) @property def lowercase_ ( self : Dict)-> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : Optional[Any])-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: List[Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowerCAmelCase , "image_mean")) self.assertTrue(hasattr(_lowerCAmelCase , "image_std")) self.assertTrue(hasattr(_lowerCAmelCase , "do_normalize")) self.assertTrue(hasattr(_lowerCAmelCase , "do_resize")) self.assertTrue(hasattr(_lowerCAmelCase , "size")) def lowercase_ ( self : Optional[Any])-> Dict: '''simple docstring''' __lowerCAmelCase: List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3}) self.assertEqual(image_processor.do_pad , _lowerCAmelCase) __lowerCAmelCase: Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=_lowerCAmelCase) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4}) self.assertEqual(image_processor.do_pad , _lowerCAmelCase) def lowercase_ ( self : Optional[int])-> Tuple: '''simple docstring''' pass def lowercase_ ( self : Optional[int])-> List[str]: '''simple docstring''' __lowerCAmelCase: Tuple = self.image_processing_class(**self.image_processor_dict) # create random PIL images __lowerCAmelCase: Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image) # Test not batched input __lowerCAmelCase: Any = image_processing(image_inputs[0] , return_tensors="pt").pixel_values __lowerCAmelCase , __lowerCAmelCase: List[Any] = self.image_processor_tester.get_expected_values(_lowerCAmelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase: int = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase) __lowerCAmelCase: str = image_processing(_lowerCAmelCase , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : str)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: List[str] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __lowerCAmelCase: int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray) # Test not batched input __lowerCAmelCase: Any = image_processing(image_inputs[0] , return_tensors="pt").pixel_values __lowerCAmelCase , __lowerCAmelCase: str = self.image_processor_tester.get_expected_values(_lowerCAmelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase: Tuple = image_processing(_lowerCAmelCase , return_tensors="pt").pixel_values __lowerCAmelCase , __lowerCAmelCase: int = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Optional[int])-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Tuple = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __lowerCAmelCase: List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor) # Test not batched input __lowerCAmelCase: List[Any] = image_processing(image_inputs[0] , return_tensors="pt").pixel_values __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = self.image_processor_tester.get_expected_values(_lowerCAmelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase: Dict = image_processing(_lowerCAmelCase , return_tensors="pt").pixel_values __lowerCAmelCase , __lowerCAmelCase: Optional[int] = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase_ ( self : Optional[Any])-> str: '''simple docstring''' __lowerCAmelCase: Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r") as f: __lowerCAmelCase: List[Any] = json.loads(f.read()) __lowerCAmelCase: Union[str, Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them __lowerCAmelCase: List[Any] = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50") __lowerCAmelCase: Dict = image_processing(images=_lowerCAmelCase , annotations=_lowerCAmelCase , return_tensors="pt") # verify pixel values __lowerCAmelCase: Dict = torch.Size([1, 3, 8_0_0, 1_0_6_6]) self.assertEqual(encoding["pixel_values"].shape , _lowerCAmelCase) __lowerCAmelCase: Union[str, Any] = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _lowerCAmelCase , atol=1e-4)) # verify area __lowerCAmelCase: str = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _lowerCAmelCase)) # verify boxes __lowerCAmelCase: int = torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape , _lowerCAmelCase) __lowerCAmelCase: Tuple = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _lowerCAmelCase , atol=1e-3)) # verify image_id __lowerCAmelCase: int = torch.tensor([3_9_7_6_9]) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _lowerCAmelCase)) # verify is_crowd __lowerCAmelCase: str = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _lowerCAmelCase)) # verify class_labels __lowerCAmelCase: Optional[Any] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7]) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _lowerCAmelCase)) # verify orig_size __lowerCAmelCase: int = torch.tensor([4_8_0, 6_4_0]) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _lowerCAmelCase)) # verify size __lowerCAmelCase: List[str] = torch.tensor([8_0_0, 1_0_6_6]) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _lowerCAmelCase)) @slow def lowercase_ ( self : Tuple)-> List[Any]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r") as f: __lowerCAmelCase: Union[str, Any] = json.loads(f.read()) __lowerCAmelCase: Any = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} __lowerCAmelCase: List[str] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic") # encode them __lowerCAmelCase: Union[str, Any] = ConditionalDetrImageProcessor(format="coco_panoptic") __lowerCAmelCase: int = image_processing(images=_lowerCAmelCase , annotations=_lowerCAmelCase , masks_path=_lowerCAmelCase , return_tensors="pt") # verify pixel values __lowerCAmelCase: str = torch.Size([1, 3, 8_0_0, 1_0_6_6]) self.assertEqual(encoding["pixel_values"].shape , _lowerCAmelCase) __lowerCAmelCase: str = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _lowerCAmelCase , atol=1e-4)) # verify area __lowerCAmelCase: Union[str, Any] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _lowerCAmelCase)) # verify boxes __lowerCAmelCase: Optional[int] = torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape , _lowerCAmelCase) __lowerCAmelCase: Dict = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _lowerCAmelCase , atol=1e-3)) # verify image_id __lowerCAmelCase: List[Any] = torch.tensor([3_9_7_6_9]) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _lowerCAmelCase)) # verify is_crowd __lowerCAmelCase: Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _lowerCAmelCase)) # verify class_labels __lowerCAmelCase: Any = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3]) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _lowerCAmelCase)) # verify masks __lowerCAmelCase: Tuple = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , _lowerCAmelCase) # verify orig_size __lowerCAmelCase: Union[str, Any] = torch.tensor([4_8_0, 6_4_0]) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _lowerCAmelCase)) # verify size __lowerCAmelCase: Dict = torch.tensor([8_0_0, 1_0_6_6]) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _lowerCAmelCase))
346
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ): __lowerCamelCase : Optional[Any] = AutoencoderKL __lowerCamelCase : List[Any] = "sample" __lowerCamelCase : Tuple = 1e-2 @property def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = 4 _lowerCAmelCase = 3 _lowerCAmelCase = (32, 32) _lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCAmelCase ) return {"sample": image} @property def _snake_case ( self ) -> Any: return (3, 32, 32) @property def _snake_case ( self ) -> List[Any]: return (3, 32, 32) def _snake_case ( self ) -> str: _lowerCAmelCase = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def _snake_case ( self ) -> Optional[int]: pass def _snake_case ( self ) -> Any: pass @unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" ) def _snake_case ( self ) -> str: # enable deterministic behavior for gradient checkpointing _lowerCAmelCase , _lowerCAmelCase = self.prepare_init_args_and_inputs_for_common() _lowerCAmelCase = self.model_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) assert not model.is_gradient_checkpointing and model.training _lowerCAmelCase = model(**_lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() _lowerCAmelCase = torch.randn_like(_lowerCAmelCase ) _lowerCAmelCase = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing _lowerCAmelCase = self.model_class(**_lowerCAmelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_lowerCAmelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training _lowerCAmelCase = model_a(**_lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() _lowerCAmelCase = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) _lowerCAmelCase = dict(model.named_parameters() ) _lowerCAmelCase = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(_lowerCAmelCase ) _lowerCAmelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _snake_case ( self ) -> Dict: _lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) _lowerCAmelCase = model.to(_lowerCAmelCase ) model.eval() if torch_device == "mps": _lowerCAmelCase = torch.manual_seed(0 ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) _lowerCAmelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _lowerCAmelCase = image.to(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , sample_posterior=_lowerCAmelCase , generator=_lowerCAmelCase ).sample _lowerCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": _lowerCAmelCase = torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ] ) elif torch_device == "cpu": _lowerCAmelCase = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: _lowerCAmelCase = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(_lowerCAmelCase , _lowerCAmelCase , rtol=1E-2 ) ) @slow class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy''' def _snake_case ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _lowerCAmelCase=0 , _lowerCAmelCase=(4, 3, 512, 512) , _lowerCAmelCase=False ) -> Tuple: _lowerCAmelCase = torch.floataa if fpaa else torch.floataa _lowerCAmelCase = torch.from_numpy(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) ).to(_lowerCAmelCase ).to(_lowerCAmelCase ) return image def _snake_case ( self , _lowerCAmelCase="CompVis/stable-diffusion-v1-4" , _lowerCAmelCase=False ) -> Tuple: _lowerCAmelCase = "fp16" if fpaa else None _lowerCAmelCase = torch.floataa if fpaa else torch.floataa _lowerCAmelCase = AutoencoderKL.from_pretrained( _lowerCAmelCase , subfolder="vae" , torch_dtype=_lowerCAmelCase , revision=_lowerCAmelCase , ) model.to(_lowerCAmelCase ).eval() return model def _snake_case ( self , _lowerCAmelCase=0 ) -> str: if torch_device == "mps": return torch.manual_seed(_lowerCAmelCase ) return torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase ) _lowerCAmelCase = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] _lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> str: _lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] _lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def _snake_case ( self , _lowerCAmelCase ) -> List[str]: _lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def _snake_case ( self , _lowerCAmelCase ) -> Any: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase ) _lowerCAmelCase = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model.encode(_lowerCAmelCase ).latent_dist _lowerCAmelCase = dist.sample(generator=_lowerCAmelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] _lowerCAmelCase = sample[0, -1, -3:, -3:].flatten().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) _lowerCAmelCase = 3E-3 if torch_device != "mps" else 1E-2 assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=_lowerCAmelCase )
18
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _A , _A=2 , _A=3 , _A=4 , _A=2 , _A=7 , _A=True , _A=True , _A=True , _A=True , _A=99 , _A=36 , _A=3 , _A=4 , _A=37 , _A="gelu" , _A=0.1 , _A=0.1 , _A=512 , _A=16 , _A=2 , _A=0.0_2 , _A=6 , _A=6 , _A=3 , _A=4 , _A=None , _A=1_000 , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = text_seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = coordinate_size __SCREAMING_SNAKE_CASE = shape_size __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __SCREAMING_SNAKE_CASE = text_seq_length __SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 + 1 __SCREAMING_SNAKE_CASE = self.text_seq_length + self.image_seq_length def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __SCREAMING_SNAKE_CASE = bbox[i, j, 3] __SCREAMING_SNAKE_CASE = bbox[i, j, 1] __SCREAMING_SNAKE_CASE = t if bbox[i, j, 2] < bbox[i, j, 0]: __SCREAMING_SNAKE_CASE = bbox[i, j, 2] __SCREAMING_SNAKE_CASE = bbox[i, j, 0] __SCREAMING_SNAKE_CASE = t __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.text_seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _A ( self , _A , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = LayoutLMvaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # text + image __SCREAMING_SNAKE_CASE = model(_lowerCAmelCase , pixel_values=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = model( _lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = model(_lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = model(_lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __SCREAMING_SNAKE_CASE = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __SCREAMING_SNAKE_CASE = model(pixel_values=_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _A ( self , _A , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = LayoutLMvaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE = model( _lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self , _A , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = LayoutLMvaForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE = model( _lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _A ( self , _A , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = LayoutLMvaForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE = model( _lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : Optional[int] = False UpperCamelCase__ : Tuple = False UpperCamelCase__ : Dict = False UpperCamelCase__ : Tuple = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase__ : Union[str, Any] = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def _A ( self , _A , _A , _A , _A , _A ): '''simple docstring''' return True def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = LayoutLMvaModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def _A ( self , _A , _A , _A=False ): '''simple docstring''' __SCREAMING_SNAKE_CASE = copy.deepcopy(_lowerCAmelCase ) if model_class in get_values(_lowerCAmelCase ): __SCREAMING_SNAKE_CASE = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(_lowerCAmelCase , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_lowerCAmelCase ): __SCREAMING_SNAKE_CASE = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) elif model_class in get_values(_lowerCAmelCase ): __SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) elif model_class in [ *get_values(_lowerCAmelCase ), ]: __SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) elif model_class in [ *get_values(_lowerCAmelCase ), ]: __SCREAMING_SNAKE_CASE = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=_lowerCAmelCase , ) return inputs_dict def _A ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) @slow def _A ( self ): '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = LayoutLMvaModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def __lowercase ( ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _A ( self ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=_lowerCAmelCase ) if is_vision_available() else None @slow def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=_lowerCAmelCase , return_tensors='pt' ).pixel_values.to(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = torch.tensor([[1, 2]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __SCREAMING_SNAKE_CASE = model( input_ids=input_ids.to(_lowerCAmelCase ) , bbox=bbox.to(_lowerCAmelCase ) , pixel_values=pixel_values.to(_lowerCAmelCase ) , ) # verify the logits __SCREAMING_SNAKE_CASE = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1e-4 ) )
148
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : str = "gpt_bigcode" __lowerCamelCase : Optional[int] = ["past_key_values"] __lowerCamelCase : List[str] = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _lowerCAmelCase=50257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=50256 , _lowerCAmelCase=50256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]: _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_embd _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = attention_softmax_in_fpaa _lowerCAmelCase = scale_attention_softmax_in_fpaa _lowerCAmelCase = multi_query _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
18
0
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = "M-CLIP" def __init__( self ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=7_68 ,**_lowerCAmelCase ): lowerCamelCase__ = transformerDimSize lowerCamelCase__ = imageDimSize super().__init__(**_lowerCAmelCase ) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = MCLIPConfig def __init__( self ,_lowerCAmelCase ,*_lowerCAmelCase ,**_lowerCAmelCase ): super().__init__(_lowerCAmelCase ,*_lowerCAmelCase ,**_lowerCAmelCase ) lowerCamelCase__ = XLMRobertaModel(_lowerCAmelCase ) lowerCamelCase__ = torch.nn.Linear( in_features=config.transformerDimensions ,out_features=config.numDims ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = self.transformer(input_ids=_lowerCAmelCase ,attention_mask=_lowerCAmelCase )[0] lowerCamelCase__ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_lowerCAmelCase ), embs
50
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[Any] = "data2vec-audio" def __init__( self , _lowerCAmelCase=32 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase="gelu" , _lowerCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _lowerCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase=False , _lowerCAmelCase=16 , _lowerCAmelCase=19 , _lowerCAmelCase=5 , _lowerCAmelCase=0.05 , _lowerCAmelCase=10 , _lowerCAmelCase=2 , _lowerCAmelCase=0.0 , _lowerCAmelCase=10 , _lowerCAmelCase=0 , _lowerCAmelCase="sum" , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=256 , _lowerCAmelCase=(512, 512, 512, 512, 1500) , _lowerCAmelCase=(5, 3, 3, 1, 1) , _lowerCAmelCase=(1, 2, 3, 1, 1) , _lowerCAmelCase=512 , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=False , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Dict: super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = feat_extract_activation _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = conv_bias _lowerCAmelCase = num_conv_pos_embeddings _lowerCAmelCase = num_conv_pos_embedding_groups _lowerCAmelCase = conv_pos_kernel_size _lowerCAmelCase = len(self.conv_dim ) _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = feat_proj_dropout _lowerCAmelCase = final_dropout _lowerCAmelCase = layerdrop _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = vocab_size _lowerCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase = mask_time_prob _lowerCAmelCase = mask_time_length _lowerCAmelCase = mask_time_min_masks _lowerCAmelCase = mask_feature_prob _lowerCAmelCase = mask_feature_length _lowerCAmelCase = mask_feature_min_masks # ctc loss _lowerCAmelCase = ctc_loss_reduction _lowerCAmelCase = ctc_zero_infinity # adapter _lowerCAmelCase = add_adapter _lowerCAmelCase = adapter_kernel_size _lowerCAmelCase = adapter_stride _lowerCAmelCase = num_adapter_layers _lowerCAmelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = xvector_output_dim @property def _snake_case ( self ) -> str: return math.prod(self.conv_stride )
18
0
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.17.0.dev0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') A__ : List[str] = logging.getLogger(__name__) @dataclass class __magic_name__ : UpperCamelCase_ = field( default='''tab_fact''' , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase_ = field( default='''tab_fact''' , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} , ) UpperCamelCase_ = field( default=1024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) UpperCamelCase_ = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) UpperCamelCase_ = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''A csv or a json file containing the training data.'''} ) UpperCamelCase_ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) UpperCamelCase_ = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''A csv or a json file containing the test data.'''} ) def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: _lowercase: Tuple = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." _lowercase: Any = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __magic_name__ : UpperCamelCase_ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase_ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase_ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase_ = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def _lowerCAmelCase ( ): """simple docstring""" _lowercase: List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowercase , _lowercase , _lowercase: Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowercase , _lowercase , _lowercase: str = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowercase: Optional[int] = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE_ ) datasets.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE_ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _lowercase: str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowercase: Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _lowercase: Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. _lowercase: Tuple = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: _lowercase: Union[str, Any] = data_args.train_file.split('''.''' )[-1] _lowercase: Optional[Any] = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." _lowercase: Any = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(f'''load a local file for {key}: {data_files[key]}''' ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files _lowercase: int = load_dataset('''csv''' , data_files=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files _lowercase: str = load_dataset('''json''' , data_files=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels _lowercase: Any = raw_datasets['''train'''].features['''label'''].names _lowercase: Any = len(SCREAMING_SNAKE_CASE_ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowercase: Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer _lowercase: Dict = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=SCREAMING_SNAKE_CASE_ , ) _lowercase: str = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: _lowercase: Union[str, Any] = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _lowercase: List[Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. _lowercase: str = {'''Refused''': 0, '''Entailed''': 1} _lowercase: int = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) _lowercase: List[str] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_UpperCamelCase ): # Tokenize the texts def _convert_table_text_to_pandas(_UpperCamelCase ): _lowercase: Any = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] _lowercase: List[Any] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd _lowercase: List[str] = examples['''statement'''] _lowercase: Tuple = list(map(_convert_table_text_to_pandas , examples['''table_text'''] ) ) _lowercase: Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ) _lowercase: Union[str, Any] = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): _lowercase: str = raw_datasets.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on dataset''' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) _lowercase: Any = raw_datasets['''train'''] if data_args.max_train_samples is not None: _lowercase: Tuple = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) _lowercase: Optional[int] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: _lowercase: int = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) _lowercase: Union[str, Any] = raw_datasets['''test'''] if data_args.max_predict_samples is not None: _lowercase: Optional[int] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(SCREAMING_SNAKE_CASE_ ) ) , 3 ): logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase ): _lowercase: Union[str, Any] = p.predictions[0] if isinstance(p.predictions , SCREAMING_SNAKE_CASE_ ) else p.predictions _lowercase: str = np.argmax(SCREAMING_SNAKE_CASE_ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _lowercase: Tuple = default_data_collator elif training_args.fpaa: _lowercase: str = DataCollatorWithPadding(SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=8 ) else: _lowercase: Any = None # Initialize our Trainer _lowercase: Union[str, Any] = Trainer( model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , data_collator=SCREAMING_SNAKE_CASE_ , ) # Training if training_args.do_train: _lowercase: int = None if training_args.resume_from_checkpoint is not None: _lowercase: Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowercase: Optional[Any] = last_checkpoint _lowercase: List[Any] = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE_ ) _lowercase: Any = train_result.metrics _lowercase: List[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE_ ) ) _lowercase: Dict = min(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , SCREAMING_SNAKE_CASE_ ) trainer.save_metrics('''train''' , SCREAMING_SNAKE_CASE_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _lowercase: Union[str, Any] = trainer.evaluate(eval_dataset=SCREAMING_SNAKE_CASE_ ) _lowercase: int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(SCREAMING_SNAKE_CASE_ ) _lowercase: int = min(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) trainer.log_metrics('''eval''' , SCREAMING_SNAKE_CASE_ ) trainer.save_metrics('''eval''' , SCREAMING_SNAKE_CASE_ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. _lowercase: Optional[int] = predict_dataset.remove_columns('''label''' ) _lowercase: Tuple = trainer.predict(SCREAMING_SNAKE_CASE_ , metric_key_prefix='''predict''' ).predictions _lowercase: int = np.argmax(SCREAMING_SNAKE_CASE_ , axis=1 ) _lowercase: Optional[int] = os.path.join(training_args.output_dir , '''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE_ , '''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(SCREAMING_SNAKE_CASE_ ): _lowercase: str = label_list[item] writer.write(f'''{index}\t{item}\n''' ) _lowercase: Dict = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE_ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE_ ) def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" main() if __name__ == "__main__": main()
353
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = (DDPMParallelScheduler,) def _snake_case ( self , **_lowerCAmelCase ) -> int: _lowerCAmelCase = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**_lowerCAmelCase ) return config def _snake_case ( self ) -> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def _snake_case ( self ) -> Any: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _snake_case ( self ) -> List[str]: self.check_over_configs(thresholding=_lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , ) def _snake_case ( self ) -> int: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _snake_case ( self ) -> Dict: for t in [0, 500, 999]: self.check_over_forward(time_step=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = self.dummy_sample_deter + 0.1 _lowerCAmelCase = self.dummy_sample_deter - 0.1 _lowerCAmelCase = samplea.shape[0] _lowerCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) _lowerCAmelCase = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase ) _lowerCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _lowerCAmelCase = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowerCAmelCase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowerCAmelCase ): if i == len(_lowerCAmelCase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowerCAmelCase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowerCAmelCase , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowerCAmelCase ) with self.assertRaises(_lowerCAmelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=_lowerCAmelCase , timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowerCAmelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=_lowerCAmelCase )
18
0
"""simple docstring""" import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=18 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=False , ): __a = size if size is not None else {"height": 20, "width": 20} __a = crop_size if crop_size is not None else {"height": 18, "width": 18} __a = parent __a = batch_size __a = num_channels __a = image_size __a = min_resolution __a = max_resolution __a = do_resize __a = size __a = do_center_crop __a = crop_size __a = do_normalize __a = image_mean __a = image_std __a = do_reduce_labels def a__ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def _lowerCamelCase( ): __a = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __a = Image.open(dataset[0]["file"] ) __a = Image.open(dataset[1]["file"] ) return image, map def _lowerCamelCase( ): __a = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __a = Image.open(ds[0]["file"] ) __a = Image.open(ds[1]["file"] ) __a = Image.open(ds[2]["file"] ) __a = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class snake_case__ ( snake_case_, unittest.TestCase ): _snake_case : int = BeitImageProcessor if is_vision_available() else None def a__ ( self ): __a = BeitImageProcessingTester(self ) @property def a__ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ): __a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "size" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "do_center_crop" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "center_crop" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "image_std" ) ) def a__ ( self ): __a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCAmelCase ) __a = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_lowerCAmelCase ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCAmelCase ) def a__ ( self ): pass def a__ ( self ): # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __a = image_processing(_lowerCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def a__ ( self ): # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __a = image_processing(_lowerCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def a__ ( self ): # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __a = image_processing(_lowerCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def a__ ( self ): # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) __a = [] for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __a = image_processing(image_inputs[0] , maps[0] , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test batched __a = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test not batched input (PIL images) __a , __a = prepare_semantic_single_inputs() __a = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test batched input (PIL images) __a , __a = prepare_semantic_batch_inputs() __a = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) def a__ ( self ): # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __a , __a = prepare_semantic_single_inputs() __a = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 150 ) __a = True __a = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 )
528
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "spiece.model"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<sep>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<cls>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=["<eop>", "<eod>"] , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: _lowerCAmelCase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) _lowerCAmelCase = 3 _lowerCAmelCase = do_lower_case _lowerCAmelCase = remove_space _lowerCAmelCase = keep_accents _lowerCAmelCase = vocab_file _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) _lowerCAmelCase = jieba _lowerCAmelCase = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _snake_case ( self ) -> Optional[int]: return len(self.sp_model ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__( self , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , _lowerCAmelCase ) -> str: if self.remove_space: _lowerCAmelCase = " ".join(inputs.strip().split() ) else: _lowerCAmelCase = inputs _lowerCAmelCase = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _lowerCAmelCase = unicodedata.normalize("NFKD" , _lowerCAmelCase ) _lowerCAmelCase = "".join([c for c in outputs if not unicodedata.combining(_lowerCAmelCase )] ) if self.do_lower_case: _lowerCAmelCase = outputs.lower() return outputs def _snake_case ( self , _lowerCAmelCase ) -> List[str]: _lowerCAmelCase = self.preprocess_text(_lowerCAmelCase ) _lowerCAmelCase = self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) _lowerCAmelCase = [] for piece in pieces: if len(_lowerCAmelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCAmelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase = cur_pieces[1:] else: _lowerCAmelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowerCAmelCase ) else: new_pieces.append(_lowerCAmelCase ) return new_pieces def _snake_case ( self , _lowerCAmelCase ) -> str: return self.sp_model.PieceToId(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]: return self.sp_model.IdToPiece(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = "".join(_lowerCAmelCase ).replace(_lowerCAmelCase , " " ).strip() return out_string def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is not None: return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] return ([0] * len(_lowerCAmelCase )) + [1, 1] def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(_lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , "wb" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,) def _snake_case ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: _lowerCAmelCase = super()._decode(*_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
18
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a = { 'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'], 'tokenization_deberta': ['DebertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['DebertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'DebertaForMaskedLM', 'DebertaForQuestionAnswering', 'DebertaForSequenceClassification', 'DebertaForTokenClassification', 'DebertaModel', 'DebertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDebertaForMaskedLM', 'TFDebertaForQuestionAnswering', 'TFDebertaForSequenceClassification', 'TFDebertaForTokenClassification', 'TFDebertaModel', 'TFDebertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
412
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _SCREAMING_SNAKE_CASE = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" _SCREAMING_SNAKE_CASE = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" _SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def _snake_case ( self ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def _snake_case ( self ) -> Tuple: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="uniform_average" , _lowerCAmelCase=True ) -> Union[str, Any]: _lowerCAmelCase = mean_squared_error( _lowerCAmelCase , _lowerCAmelCase , sample_weight=_lowerCAmelCase , multioutput=_lowerCAmelCase , squared=_lowerCAmelCase ) return {"mse": mse}
18
0
"""simple docstring""" def _a ( _snake_case , _snake_case , _snake_case = 0 , _snake_case = 0 ): """simple docstring""" UpperCAmelCase = right or len(SCREAMING_SNAKE_CASE_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
341
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
18
0
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline __magic_name__ = logging.get_logger(__name__) # pylint: disable=invalid-name class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): super().__init__() self.register_modules(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) @torch.no_grad() def __call__( self , _UpperCAmelCase = 1 , _UpperCAmelCase = 100 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , ): if audio_length_in_s is None: __snake_case : Any = self.unet.config.sample_size / self.unet.config.sample_rate __snake_case : Union[str, Any] = audio_length_in_s * self.unet.config.sample_rate __snake_case : str = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F"""{audio_length_in_s} is too small. Make sure it\'s bigger or equal to""" F""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) __snake_case : Optional[int] = int(_lowerCAmelCase ) if sample_size % down_scale_factor != 0: __snake_case : List[Any] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" F""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" ' process.' ) __snake_case : Optional[int] = int(_lowerCAmelCase ) __snake_case : Optional[int] = next(iter(self.unet.parameters() ) ).dtype __snake_case : List[Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(_lowerCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __snake_case : Tuple = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=self.device , dtype=_lowerCAmelCase ) # set step values self.scheduler.set_timesteps(_lowerCAmelCase , device=audio.device ) __snake_case : Any = self.scheduler.timesteps.to(_lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __snake_case : Optional[int] = self.unet(_lowerCAmelCase , _lowerCAmelCase ).sample # 2. compute previous image: x_t -> t_t-1 __snake_case : Tuple = self.scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample __snake_case : Any = audio.clamp(-1 , 1 ).float().cpu().numpy() __snake_case : Dict = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_lowerCAmelCase )
576
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : int | float | str , SCREAMING_SNAKE_CASE_ : int | float | str ): '''simple docstring''' if nth_term == "": return [""] _lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = [] for temp in range(int(SCREAMING_SNAKE_CASE_ ) ): series.append(F'''1 / {pow(temp + 1 , int(SCREAMING_SNAKE_CASE_ ) )}''' if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = int(input("Enter the last number (nth term) of the P-Series")) _SCREAMING_SNAKE_CASE = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
18
0
'''simple docstring''' from math import factorial def snake_case_ ( SCREAMING_SNAKE_CASE__ = 20 ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... _SCREAMING_SNAKE_CASE : List[str] = n // 2 return int(factorial(SCREAMING_SNAKE_CASE_ ) / (factorial(SCREAMING_SNAKE_CASE_ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: UpperCAmelCase_ : Tuple = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
533
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] )
18
0
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : List[str] =CTRLTokenizer lowerCamelCase : int =False lowerCamelCase : Optional[Any] =False def __a ( self ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a : List[str] = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] a : Any = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) a : Tuple = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] a : Any = {"unk_token": "<unk>"} a : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) a : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_lowerCAmelCase ) ) def __a ( self , **lowerCAmelCase__ ) -> Tuple: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self , lowerCAmelCase__ ) -> Union[str, Any]: a : Optional[int] = "adapt react readapt apt" a : Optional[int] = "adapt react readapt apt" return input_text, output_text def __a ( self ) -> Union[str, Any]: a : str = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) a : List[Any] = "adapt react readapt apt" a : Any = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() a : Optional[int] = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) a : Tuple = tokens + [tokenizer.unk_token] a : List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase )
633
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() _lowerCAmelCase = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) _lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict=None ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() _lowerCAmelCase = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) _lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = result.headers["Location"] _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F'''{artifact_name}.zip''' ) with open(SCREAMING_SNAKE_CASE_ , "wb" ) as fp: fp.write(response.content ) def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=None ): '''simple docstring''' _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE_ ) as f: for line in f: _lowerCAmelCase = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _lowerCAmelCase = line[: line.index(": " )] _lowerCAmelCase = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed _lowerCAmelCase = line[len("FAILED " ) :] failed_tests.append(SCREAMING_SNAKE_CASE_ ) elif filename == "job_name.txt": _lowerCAmelCase = line if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( F'''`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE_ )} for `errors` ''' F'''and {len(SCREAMING_SNAKE_CASE_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' " problem." ) _lowerCAmelCase = None if job_name and job_links: _lowerCAmelCase = job_links.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # A list with elements of the form (line of error, error, failed test) _lowerCAmelCase = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] return result def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = [] _lowerCAmelCase = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for p in os.listdir(SCREAMING_SNAKE_CASE_ ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE_ , job_links=SCREAMING_SNAKE_CASE_ ) ) return errors def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str=None ): '''simple docstring''' _lowerCAmelCase = Counter() counter.update([x[1] for x in logs] ) _lowerCAmelCase = counter.most_common() _lowerCAmelCase = {} for error, count in counts: if error_filter is None or error not in error_filter: _lowerCAmelCase = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} _lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def __a(SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' _lowerCAmelCase = test.split("::" )[0] if test.startswith("tests/models/" ): _lowerCAmelCase = test.split("/" )[2] else: _lowerCAmelCase = None return test def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs] _lowerCAmelCase = [x for x in logs if x[2] is not None] _lowerCAmelCase = {x[2] for x in logs} _lowerCAmelCase = {} for test in tests: _lowerCAmelCase = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _lowerCAmelCase = counter.most_common() _lowerCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _lowerCAmelCase = sum(error_counts.values() ) if n_errors > 0: _lowerCAmelCase = {"count": n_errors, "errors": error_counts} _lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase = "| no. | error | status |" _lowerCAmelCase = "|-:|:-|:-|" _lowerCAmelCase = [header, sep] for error in reduced_by_error: _lowerCAmelCase = reduced_by_error[error]["count"] _lowerCAmelCase = F'''| {count} | {error[:100]} | |''' lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase = "| model | no. of errors | major error | count |" _lowerCAmelCase = "|-:|-:|-:|-:|" _lowerCAmelCase = [header, sep] for model in reduced_by_model: _lowerCAmelCase = reduced_by_model[model]["count"] _lowerCAmelCase , _lowerCAmelCase = list(reduced_by_model[model]["errors"].items() )[0] _lowerCAmelCase = F'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _SCREAMING_SNAKE_CASE = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _SCREAMING_SNAKE_CASE = get_job_links(args.workflow_run_id, token=args.token) _SCREAMING_SNAKE_CASE = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _SCREAMING_SNAKE_CASE = k.find(" / ") _SCREAMING_SNAKE_CASE = k[index + len(" / ") :] _SCREAMING_SNAKE_CASE = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _SCREAMING_SNAKE_CASE = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _SCREAMING_SNAKE_CASE = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _SCREAMING_SNAKE_CASE = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = reduce_by_error(errors) _SCREAMING_SNAKE_CASE = reduce_by_model(errors) _SCREAMING_SNAKE_CASE = make_github_table(reduced_by_error) _SCREAMING_SNAKE_CASE = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
18
0
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path A__: Any = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) A__: List[str] = [ord(letter) for letter in string.ascii_lowercase] A__: Union[str, Any] = {ord(char) for char in VALID_CHARS} A__: Optional[Any] = ['''the''', '''be''', '''to''', '''of''', '''and''', '''in''', '''that''', '''have'''] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : tuple[int, ...] ) -> List[str]: _a : int ="""""" _a : int =42 _a : List[str] =42 _a : Dict =42 for keychar, cipherchar in zip(cycle(SCREAMING_SNAKE_CASE_ ) ,SCREAMING_SNAKE_CASE_ ): _a : List[Any] =cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(SCREAMING_SNAKE_CASE_ ) return decoded def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[int] ) -> Any: _a : Any =[] for key in product(SCREAMING_SNAKE_CASE_ ,repeat=3 ): _a : Dict =try_key(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if encoded is not None: possibles.append(SCREAMING_SNAKE_CASE_ ) return possibles def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list[str] ,_UpperCAmelCase : str ) -> int: return [possible for possible in possibles if common_word in possible.lower()] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str = "p059_cipher.txt" ) -> Optional[Any]: _a : str =42 _a : Any =42 _a : Dict =42 _a : Union[str, Any] =42 _a : List[str] =Path(SCREAMING_SNAKE_CASE_ ).parent.joinpath(SCREAMING_SNAKE_CASE_ ).read_text(encoding="""utf-8""" ) _a : Union[str, Any] =[int(SCREAMING_SNAKE_CASE_ ) for number in data.strip().split(""",""" )] _a : Dict =filter_valid_chars(SCREAMING_SNAKE_CASE_ ) for common_word in COMMON_WORDS: _a : Tuple =filter_common_word(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) == 1: break _a : int =possibles[0] return sum(ord(SCREAMING_SNAKE_CASE_ ) for char in decoded_text ) if __name__ == "__main__": print(F"{solution() = }")
694
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = (DPMSolverSinglestepScheduler,) __lowerCamelCase : int = (("num_inference_steps", 25),) def _snake_case ( self , **_lowerCAmelCase ) -> Any: _lowerCAmelCase = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf" ), "variance_type": None, } config.update(**_lowerCAmelCase ) return config def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> List[Any]: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) _lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase ) new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase , _lowerCAmelCase = sample, sample for t in range(_lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self ) -> int: pass def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) _lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Tuple: if scheduler is None: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample return sample def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = 50 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults _lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 _lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _snake_case ( self ) -> str: self.check_over_configs(thresholding=_lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , algorithm_type="dpmsolver++" , solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , ) def _snake_case ( self ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , ) _lowerCAmelCase = self.full_loop( solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , ) assert not torch.isnan(_lowerCAmelCase ).any(), "Samples have nan numbers" def _snake_case ( self ) -> Optional[Any]: self.check_over_configs(lower_order_final=_lowerCAmelCase ) self.check_over_configs(lower_order_final=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: self.check_over_configs(lambda_min_clipped=-float("inf" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def _snake_case ( self ) -> str: self.check_over_configs(variance_type=_lowerCAmelCase ) self.check_over_configs(variance_type="learned_range" ) def _snake_case ( self ) -> int: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowerCAmelCase , time_step=0 ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.full_loop() _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.full_loop(use_karras_sigmas=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.full_loop(prediction_type="v_prediction" ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def _snake_case ( self ) -> Any: _lowerCAmelCase = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(thresholding=_lowerCAmelCase , dynamic_thresholding_ratio=0 ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa
18
0
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def a__ ( __SCREAMING_SNAKE_CASE ) -> Optional[Any]: return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) __A = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class snake_case ( __snake_case ): @staticmethod def lowercase_ ( UpperCamelCase__ : List[Any])-> str: '''simple docstring''' __lowerCAmelCase: Dict = parser.add_parser( "convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , ) train_parser.add_argument("--model_type" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Model's type.") train_parser.add_argument( "--tf_checkpoint" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="TensorFlow checkpoint path or folder.") train_parser.add_argument( "--pytorch_dump_output" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to the PyTorch saved model output.") train_parser.add_argument("--config" , type=_lowerCAmelCase , default="" , help="Configuration file path or folder.") train_parser.add_argument( "--finetuning_task_name" , type=_lowerCAmelCase , default=_lowerCAmelCase , help="Optional fine-tuning task name if the TF model was a finetuned model." , ) train_parser.set_defaults(func=_lowerCAmelCase) def __init__( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , *UpperCamelCase__ : Union[str, Any] , )-> Dict: '''simple docstring''' __lowerCAmelCase: List[Any] = logging.get_logger("transformers-cli/converting") self._logger.info(f"Loading model {model_type}") __lowerCAmelCase: Optional[Any] = model_type __lowerCAmelCase: List[Any] = tf_checkpoint __lowerCAmelCase: List[Any] = pytorch_dump_output __lowerCAmelCase: Optional[int] = config __lowerCAmelCase: Any = finetuning_task_name def lowercase_ ( self : Tuple)-> str: '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_lowerCAmelCase) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase) if "ckpt" in self._tf_checkpoint.lower(): __lowerCAmelCase: Dict = self._tf_checkpoint __lowerCAmelCase: str = "" else: __lowerCAmelCase: Dict = self._tf_checkpoint __lowerCAmelCase: Optional[Any] = "" convert_transfo_xl_checkpoint_to_pytorch( _lowerCAmelCase , self._config , self._pytorch_dump_output , _lowerCAmelCase) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]")
346
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : list ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
18
0
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Any = (DDPMParallelScheduler,) def _A ( self , **_A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = { 'num_train_timesteps': 1_000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_lowerCAmelCase ) return config def _A ( self ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _A ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def _A ( self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def _A ( self ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _A ( self ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _A ( self ): '''simple docstring''' self.check_over_configs(thresholding=_lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , ) def _A ( self ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _A ( self ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=_lowerCAmelCase ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = len(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = self.dummy_model() __SCREAMING_SNAKE_CASE = self.dummy_sample_deter __SCREAMING_SNAKE_CASE = self.dummy_sample_deter + 0.1 __SCREAMING_SNAKE_CASE = self.dummy_sample_deter - 0.1 __SCREAMING_SNAKE_CASE = samplea.shape[0] __SCREAMING_SNAKE_CASE = torch.stack([samplea, samplea, samplea] , dim=0 ) __SCREAMING_SNAKE_CASE = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __SCREAMING_SNAKE_CASE = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1e-2 assert abs(result_mean.item() - 0.5_0_0_5 ) < 1e-3 def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = len(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = self.dummy_model() __SCREAMING_SNAKE_CASE = self.dummy_sample_deter __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual __SCREAMING_SNAKE_CASE = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __SCREAMING_SNAKE_CASE = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __SCREAMING_SNAKE_CASE = pred_prev_sample __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config(prediction_type='v_prediction' ) __SCREAMING_SNAKE_CASE = scheduler_class(**_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = len(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = self.dummy_model() __SCREAMING_SNAKE_CASE = self.dummy_sample_deter __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual __SCREAMING_SNAKE_CASE = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __SCREAMING_SNAKE_CASE = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __SCREAMING_SNAKE_CASE = pred_prev_sample __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = scheduler.timesteps for i, timestep in enumerate(_lowerCAmelCase ): if i == len(_lowerCAmelCase ) - 1: __SCREAMING_SNAKE_CASE = -1 else: __SCREAMING_SNAKE_CASE = timesteps[i + 1] __SCREAMING_SNAKE_CASE = scheduler.previous_timestep(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = prev_t.item() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = [100, 87, 50, 51, 0] with self.assertRaises(_lowerCAmelCase , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_lowerCAmelCase ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = [100, 87, 50, 1, 0] __SCREAMING_SNAKE_CASE = len(_lowerCAmelCase ) with self.assertRaises(_lowerCAmelCase , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_lowerCAmelCase , timesteps=_lowerCAmelCase ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowerCAmelCase , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_lowerCAmelCase )
148
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCAmelCase = cs.out[:-1] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) _lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase ) _lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase ) thread.start() _lowerCAmelCase = "" for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) _lowerCAmelCase = greedy_ids[:, input_ids.shape[1] :] _lowerCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_prompt=_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCAmelCase = cs.out[:-1] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Dict: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _lowerCAmelCase = AutoTokenizer.from_pretrained("distilgpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = torch.ones((1, 5) , device=_lowerCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=1 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _lowerCAmelCase = cs.out[:-1] # Remove the final "\n" _lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase , timeout=0.001 ) _lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = "" for new_text in streamer: streamer_text += new_text
18
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCamelCase : int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase : List[str] = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } UpperCamelCase : Dict = { 'google/electra-small-generator': 5_12, 'google/electra-base-generator': 5_12, 'google/electra-large-generator': 5_12, 'google/electra-small-discriminator': 5_12, 'google/electra-base-discriminator': 5_12, 'google/electra-large-discriminator': 5_12, } UpperCamelCase : Any = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = ElectraTokenizer def __init__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase="[UNK]" ,_lowerCAmelCase="[SEP]" ,_lowerCAmelCase="[PAD]" ,_lowerCAmelCase="[CLS]" ,_lowerCAmelCase="[MASK]" ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,**_lowerCAmelCase ,): super().__init__( _lowerCAmelCase ,tokenizer_file=_lowerCAmelCase ,do_lower_case=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,tokenize_chinese_chars=_lowerCAmelCase ,strip_accents=_lowerCAmelCase ,**_lowerCAmelCase ,) lowerCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" ,_lowerCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" ,_lowerCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" ,_lowerCAmelCase ) != tokenize_chinese_chars ): lowerCamelCase__ = getattr(_lowerCAmelCase ,normalizer_state.pop("""type""" ) ) lowerCamelCase__ = do_lower_case lowerCamelCase__ = strip_accents lowerCamelCase__ = tokenize_chinese_chars lowerCamelCase__ = normalizer_class(**_lowerCAmelCase ) lowerCamelCase__ = do_lower_case def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=None ): lowerCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = self._tokenizer.model.save(_lowerCAmelCase ,name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
50
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "blenderbot-small" __lowerCamelCase : Optional[Any] = ["past_key_values"] __lowerCamelCase : str = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , _lowerCAmelCase=50265 , _lowerCAmelCase=512 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="gelu" , _lowerCAmelCase=512 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=2 , **_lowerCAmelCase , ) -> Dict: _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = d_model _lowerCAmelCase = encoder_ffn_dim _lowerCAmelCase = encoder_layers _lowerCAmelCase = encoder_attention_heads _lowerCAmelCase = decoder_ffn_dim _lowerCAmelCase = decoder_layers _lowerCAmelCase = decoder_attention_heads _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = activation_function _lowerCAmelCase = init_std _lowerCAmelCase = encoder_layerdrop _lowerCAmelCase = decoder_layerdrop _lowerCAmelCase = use_cache _lowerCAmelCase = encoder_layers _lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) class lowerCAmelCase_ ( __magic_name__ ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _lowerCAmelCase = {0: "batch"} _lowerCAmelCase = {0: "batch", 1: "past_decoder_sequence + sequence"} else: _lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} _lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _lowerCAmelCase , _lowerCAmelCase = self.num_layers for i in range(_lowerCAmelCase ): _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} else: _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = super().outputs else: _lowerCAmelCase = super(_lowerCAmelCase , self ).outputs if self.use_past: _lowerCAmelCase , _lowerCAmelCase = self.num_layers for i in range(_lowerCAmelCase ): _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Generate decoder inputs _lowerCAmelCase = seq_length if not self.use_past else 1 _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} _lowerCAmelCase = dict(**_lowerCAmelCase , **_lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape _lowerCAmelCase = common_inputs["decoder_input_ids"].shape[1] _lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads _lowerCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase = decoder_seq_length + 3 _lowerCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCAmelCase = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase )] , dim=1 ) _lowerCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCAmelCase , _lowerCAmelCase = self.num_layers _lowerCAmelCase = min(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = max(_lowerCAmelCase , _lowerCAmelCase ) - min_num_layers _lowerCAmelCase = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(_lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), ) ) # TODO: test this. _lowerCAmelCase = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(_lowerCAmelCase , _lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape # Not using the same length for past_key_values _lowerCAmelCase = seqlen + 2 _lowerCAmelCase , _lowerCAmelCase = self.num_layers _lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads _lowerCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase = common_inputs["attention_mask"].dtype _lowerCAmelCase = torch.cat( [common_inputs["attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase )] , dim=1 ) _lowerCAmelCase = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase ) ] return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCAmelCase = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCAmelCase = tokenizer.num_special_tokens_to_add(_lowerCAmelCase ) _lowerCAmelCase = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence _lowerCAmelCase = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCAmelCase = dict(tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) elif self.task == "causal-lm": _lowerCAmelCase = self._generate_dummy_inputs_for_causal_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) else: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = super()._flatten_past_key_values_(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCAmelCase = super(_lowerCAmelCase , self )._flatten_past_key_values_( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
18
0
"""simple docstring""" from collections import namedtuple A__ : List[Any] = namedtuple('from_to', 'from_ to') A__ : Dict = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.001, 1_0_0_0), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.00454, 264.172), 'cubicyard': from_to(0.76455, 1.30795), 'cubicfoot': from_to(0.028, 35.3147), 'cup': from_to(0.000236588, 4226.75), } def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if from_type not in METRIC_CONVERSION: raise ValueError( f'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + ''', '''.join(SCREAMING_SNAKE_CASE_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + ''', '''.join(SCREAMING_SNAKE_CASE_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
353
'''simple docstring''' import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" _SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" _SCREAMING_SNAKE_CASE = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def _snake_case ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: _lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in predictions] ) _lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in references] ) else: _lowerCAmelCase = np.asarray(_lowerCAmelCase ) _lowerCAmelCase = np.asarray(_lowerCAmelCase ) if ignore_case: _lowerCAmelCase = np.char.lower(_lowerCAmelCase ) _lowerCAmelCase = np.char.lower(_lowerCAmelCase ) if ignore_punctuation: _lowerCAmelCase = string.punctuation.maketrans("" , "" , string.punctuation ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) if ignore_numbers: _lowerCAmelCase = string.digits.maketrans("" , "" , string.digits ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _lowerCAmelCase = predictions == references return {"exact_match": np.mean(_lowerCAmelCase ) * 100}
18
0
"""simple docstring""" import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel SCREAMING_SNAKE_CASE__:Tuple = { """gwf-440k""": { """url""": """https://model-server.zqevans2.workers.dev/gwf-440k.ckpt""", """sample_rate""": 48000, """sample_size""": 65536, }, """jmann-small-190k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt""", """sample_rate""": 48000, """sample_size""": 65536, }, """jmann-large-580k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt""", """sample_rate""": 48000, """sample_size""": 131072, }, """maestro-uncond-150k""": { """url""": """https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt""", """sample_rate""": 16000, """sample_size""": 65536, }, """unlocked-uncond-250k""": { """url""": """https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt""", """sample_rate""": 16000, """sample_size""": 65536, }, """honk-140k""": { """url""": """https://model-server.zqevans2.workers.dev/honk-140k.ckpt""", """sample_rate""": 16000, """sample_size""": 65536, }, } def _lowerCamelCase( a , a ): return torch.atana(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) / math.pi * 2 def _lowerCamelCase( a ): __a = torch.sin(t * math.pi / 2 ) ** 2 __a = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) class snake_case__ ( snake_case_ ): pass class snake_case__ ( nn.Module ): def __init__( self , lowerCamelCase ): super().__init__() __a = DiffusionAttnUnetaD(_lowerCAmelCase , n_attn_layers=4 ) __a = deepcopy(self.diffusion ) __a = torch.quasirandom.SobolEngine(1 , scramble=_lowerCAmelCase ) def _lowerCamelCase( a ): __a = MODELS_MAP[model_name]["url"] os.system(F"wget {url} ./" ) return F"./{model_name}.ckpt" SCREAMING_SNAKE_CASE__:Optional[Any] = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", } SCREAMING_SNAKE_CASE__:Tuple = { """8""": """resnets.0""", """9""": """attentions.0""", """10""": """resnets.1""", """11""": """attentions.1""", """12""": """resnets.2""", """13""": """attentions.2""", } SCREAMING_SNAKE_CASE__:List[Any] = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", """8""": """resnets.3""", """9""": """attentions.3""", """10""": """resnets.4""", """11""": """attentions.4""", """12""": """resnets.5""", """13""": """attentions.5""", } SCREAMING_SNAKE_CASE__:Dict = { """0""": """resnets.0""", """1""": """resnets.1""", """2""": """resnets.2""", """4""": """resnets.0""", """5""": """resnets.1""", """6""": """resnets.2""", } SCREAMING_SNAKE_CASE__:List[Any] = { """skip""": """conv_skip""", """main.0""": """conv_1""", """main.1""": """group_norm_1""", """main.3""": """conv_2""", """main.4""": """group_norm_2""", } SCREAMING_SNAKE_CASE__:List[str] = { """norm""": """group_norm""", """qkv_proj""": ["""query""", """key""", """value"""], """out_proj""": ["""proj_attn"""], } def _lowerCamelCase( a ): if name.startswith("skip" ): return name.replace("skip" , RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(F"ResConvBlock error with {name}" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def _lowerCamelCase( a ): for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE_ ) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif name.startswith(SCREAMING_SNAKE_CASE_ ): return [name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for v in value] raise ValueError(F"Attn error with {name}" ) def _lowerCamelCase( a , a=1_3 ): __a = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" , "time_proj" ) __a = 0 if string.startswith("net.3." ): depth += 1 __a = string[6:] elif string.startswith("net." ): __a = string[4:] while string.startswith("main.7." ): depth += 1 __a = string[7:] if string.startswith("main." ): __a = string[5:] # mid block if string[:2].isdigit(): __a = string[:2] __a = string[2:] else: __a = string[0] __a = string[1:] if depth == max_depth: __a = MID_NUM_TO_LAYER[layer_num] __a = "mid_block" elif depth > 0 and int(SCREAMING_SNAKE_CASE_ ) < 7: __a = DOWN_NUM_TO_LAYER[layer_num] __a = F"down_blocks.{depth}" elif depth > 0 and int(SCREAMING_SNAKE_CASE_ ) > 7: __a = UP_NUM_TO_LAYER[layer_num] __a = F"up_blocks.{max_depth - depth - 1}" elif depth == 0: __a = DEPTH_0_TO_LAYER[layer_num] __a = F"up_blocks.{max_depth - 1}" if int(SCREAMING_SNAKE_CASE_ ) > 3 else "down_blocks.0" if not string_left.startswith("." ): raise ValueError(F"Naming error with {input_string} and string_left: {string_left}." ) __a = string_left[1:] if "resnets" in new_layer: __a = convert_resconv_naming(SCREAMING_SNAKE_CASE_ ) elif "attentions" in new_layer: __a = convert_attn_naming(SCREAMING_SNAKE_CASE_ ) __a = new_string_left if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __a = prefix + "." + new_layer + "." + string_left else: __a = [prefix + "." + new_layer + "." + s for s in string_left] return new_string def _lowerCamelCase( a ): __a = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue __a = rename(SCREAMING_SNAKE_CASE_ ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __a = transform_conv_attns(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: __a = v return new_state_dict def _lowerCamelCase( a , a , a ): if len(SCREAMING_SNAKE_CASE_ ) == 1: if len(v.shape ) == 3: # weight __a = v[:, :, 0] else: # bias __a = v else: # qkv matrices __a = v.shape[0] __a = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: __a = v[i * single_shape : (i + 1) * single_shape, :, 0] else: __a = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def _lowerCamelCase( a ): __a = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) __a = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F"Make sure to provide one of the official model names {MODELS_MAP.keys()}" __a = download(SCREAMING_SNAKE_CASE_ ) __a = MODELS_MAP[model_name]["sample_rate"] __a = MODELS_MAP[model_name]["sample_size"] __a = Object() __a = sample_size __a = sample_rate __a = 0 __a = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE_ , sample_rate=SCREAMING_SNAKE_CASE_ ) __a = diffusers_model.state_dict() __a = DiffusionUncond(SCREAMING_SNAKE_CASE_ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE_ )["state_dict"] ) __a = orig_model.diffusion_ema.eval() __a = orig_model.state_dict() __a = rename_orig_weights(SCREAMING_SNAKE_CASE_ ) __a = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) __a = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE_ ) == 0, F"Problem with {renamed_minus_diffusers}" assert all(k.endswith("kernel" ) for k in list(SCREAMING_SNAKE_CASE_ ) ), F"Problem with {diffusers_minus_renamed}" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F"Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}" if key == "time_proj.weight": __a = value.squeeze() __a = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) __a = 1_0_0 __a = 3_3 __a = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) __a = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) __a = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) __a = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE_ )[:-1] __a = get_crash_schedule(SCREAMING_SNAKE_CASE_ ) __a = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) __a = torch.manual_seed(3_3 ) __a = pipe(num_inference_steps=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).audios __a = sampling.iplms_sample(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {} ) __a = generated.clamp(-1 , 1 ) __a = (generated - audio).abs().sum() __a = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" , SCREAMING_SNAKE_CASE_ ) print("Diff max" , SCREAMING_SNAKE_CASE_ ) assert diff_max < 1E-3, F"Diff max: {diff_max} is too much :-/" print(F"Conversion for {model_name} successful!" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") SCREAMING_SNAKE_CASE__:Any = parser.parse_args() main(args)
528
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> None: warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
18
0
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=__magic_name__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = ["torch", "scipy"] def __init__( self : str , *UpperCamelCase__ : List[str] , **UpperCamelCase__ : List[Any] ): '''simple docstring''' requires_backends(self , ["""torch""", """scipy"""] ) @classmethod def UpperCAmelCase__ ( cls : Dict , *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : int ): '''simple docstring''' requires_backends(cls , ["""torch""", """scipy"""] ) @classmethod def UpperCAmelCase__ ( cls : str , *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : Optional[int] ): '''simple docstring''' requires_backends(cls , ["""torch""", """scipy"""] )
412
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = "falcon" __lowerCamelCase : List[str] = ["past_key_values"] def __init__( self , _lowerCAmelCase=65024 , _lowerCAmelCase=4544 , _lowerCAmelCase=32 , _lowerCAmelCase=71 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=11 , _lowerCAmelCase=11 , **_lowerCAmelCase , ) -> Union[str, Any]: _lowerCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _lowerCAmelCase = kwargs.pop("n_embed" , _lowerCAmelCase ) _lowerCAmelCase = hidden_size if n_embed is None else n_embed _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = use_cache _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id _lowerCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _lowerCAmelCase = alibi _lowerCAmelCase = new_decoder_architecture _lowerCAmelCase = multi_query # Ignored when new_decoder_architecture is True _lowerCAmelCase = parallel_attn _lowerCAmelCase = bias super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) @property def _snake_case ( self ) -> Optional[Any]: return self.hidden_size // self.num_attention_heads @property def _snake_case ( self ) -> Optional[Any]: return not self.alibi
18
0
"""simple docstring""" from __future__ import annotations def _a ( _snake_case ): """simple docstring""" if not nums: raise ValueError("""List is empty""" ) return sum(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
341
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/deit-base-distilled-patch16-224": ( "https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Optional[int] = "deit" def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=16 , **_lowerCAmelCase , ) -> Dict: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = qkv_bias _lowerCAmelCase = encoder_stride class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self ) -> float: return 1E-4
18
0
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ): if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path __snake_case : List[Any] = quote(SCREAMING_SNAKE_CASE_ ) return hfh.hf_hub_url(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='dataset' , revision=SCREAMING_SNAKE_CASE_ )
576
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
18
0
'''simple docstring''' import re import string import numpy as np import datasets UpperCAmelCase_ : List[str] = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' UpperCAmelCase_ : List[str] = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It\'s like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It\'s like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n' UpperCAmelCase_ : Any = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case=None , __snake_case=False , __snake_case=False , __snake_case=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: _SCREAMING_SNAKE_CASE : Optional[int] = np.array([re.sub(_lowerCAmelCase , """""" , _lowerCAmelCase ) for x in predictions] ) _SCREAMING_SNAKE_CASE : List[str] = np.array([re.sub(_lowerCAmelCase , """""" , _lowerCAmelCase ) for x in references] ) else: _SCREAMING_SNAKE_CASE : List[Any] = np.asarray(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.asarray(_lowerCAmelCase ) if ignore_case: _SCREAMING_SNAKE_CASE : List[str] = np.char.lower(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Dict = np.char.lower(_lowerCAmelCase ) if ignore_punctuation: _SCREAMING_SNAKE_CASE : List[Any] = string.punctuation.maketrans("""""" , """""" , string.punctuation ) _SCREAMING_SNAKE_CASE : Union[str, Any] = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : List[Any] = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) if ignore_numbers: _SCREAMING_SNAKE_CASE : int = string.digits.maketrans("""""" , """""" , string.digits ) _SCREAMING_SNAKE_CASE : str = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : List[Any] = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Dict = predictions == references return {"exact_match": np.mean(_lowerCAmelCase ) * 100}
533
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : int = ["pixel_values"] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = IMAGENET_DEFAULT_MEAN , _lowerCAmelCase = IMAGENET_DEFAULT_STD , **_lowerCAmelCase , ) -> None: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = size if size is not None else {"shortest_edge": 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else {"height": 224, "width": 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = resample _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _lowerCAmelCase = int((256 / 224) * size["shortest_edge"] ) _lowerCAmelCase = get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = {"height": output_size[0], "width": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( _lowerCAmelCase , size=(size_dict["height"], size_dict["width"]) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ) -> BatchFeature: _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase = image_std if image_std is not None else self.image_std _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) _lowerCAmelCase = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _lowerCAmelCase = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: _lowerCAmelCase = [self.resize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_center_crop: _lowerCAmelCase = [self.center_crop(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_rescale: _lowerCAmelCase = [self.rescale(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_normalize: _lowerCAmelCase = [self.normalize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase = {"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
18
0
"""simple docstring""" import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=128 , lowerCAmelCase__=32 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ) -> str: a : Union[str, Any] = parent a : List[Any] = batch_size a : Union[str, Any] = seq_length a : Any = is_training a : Optional[Any] = use_input_mask a : Dict = use_token_type_ids a : str = use_labels a : List[str] = vocab_size a : Any = hidden_size a : str = num_hidden_layers a : Dict = num_attention_heads a : Any = intermediate_size a : List[Any] = hidden_act a : Optional[Any] = hidden_dropout_prob a : List[Any] = attention_probs_dropout_prob a : Tuple = max_position_embeddings a : Union[str, Any] = type_vocab_size a : str = type_sequence_label_size a : Any = initializer_range a : Tuple = num_labels a : Any = num_choices a : Optional[Any] = scope def __a ( self ) -> Optional[int]: a : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a : str = None if self.use_input_mask: a : Any = random_attention_mask([self.batch_size, self.seq_length] ) a : Tuple = None if self.use_token_type_ids: a : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a : Optional[int] = None a : Optional[int] = None a : Dict = None if self.use_labels: a : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a : List[str] = ids_tensor([self.batch_size] , self.num_choices ) a : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self ) -> Dict: return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def __a ( self ) -> str: ( ( a ), ( a ), ( a ), ( a ), ( a ), ( a ), ( a ), ) : List[Any] = self.prepare_config_and_inputs() a : Optional[Any] = True a : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) a : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: a : Optional[int] = NezhaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() a : List[str] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) a : List[Any] = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) a : List[Any] = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Optional[int]: a : Dict = True a : Union[str, Any] = NezhaModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() a : Dict = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) a : Union[str, Any] = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) a : Union[str, Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: a : List[str] = NezhaForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() a : Dict = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: a : str = NezhaForNextSentencePrediction(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() a : str = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: a : Optional[int] = NezhaForPreTraining(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() a : int = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , next_sentence_label=_lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: a : Optional[Any] = NezhaForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() a : str = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: a : Tuple = self.num_labels a : List[str] = NezhaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() a : List[str] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: a : str = self.num_labels a : Optional[int] = NezhaForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() a : str = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: a : int = self.num_choices a : int = NezhaForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() a : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a : str = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self ) -> Tuple: a : List[Any] = self.prepare_config_and_inputs() ( ( a ), ( a ), ( a ), ( a ), ( a ), ( a ), ( a ), ) : Dict = config_and_inputs a : Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( a__ , a__ , a__ , unittest.TestCase ): lowerCamelCase : Dict =( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase : str =( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase : str =True def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> Any: a : Any = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): a : List[str] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCAmelCase ) a : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def __a ( self ) -> str: a : List[str] = NezhaModelTester(self ) a : int = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def __a ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def __a ( self ) -> List[str]: a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ) -> Dict: a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_lowerCAmelCase ) def __a ( self ) -> str: # This regression test was failing with PyTorch < 1.3 ( ( a ), ( a ), ( a ), ( a ), ( a ), ( a ), ( a ), ( a ), ( a ), ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() a : List[str] = None self.model_tester.create_and_check_model_as_decoder( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) def __a ( self ) -> Dict: a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __a ( self ) -> Optional[int]: a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def __a ( self ) -> Union[str, Any]: a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*_lowerCAmelCase ) def __a ( self ) -> Union[str, Any]: a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) def __a ( self ) -> Any: a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def __a ( self ) -> str: a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ) -> Dict: a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) @slow def __a ( self ) -> Optional[Any]: for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Any = NezhaModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @slow @require_torch_gpu def __a ( self ) -> Union[str, Any]: a, a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return a : Optional[int] = True a : str = model_class(config=_lowerCAmelCase ) a : Optional[Any] = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) a : Optional[int] = torch.jit.trace( _lowerCAmelCase , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , "bert.pt" ) ) a : Tuple = torch.jit.load(os.path.join(_lowerCAmelCase , "bert.pt" ) , map_location=_lowerCAmelCase ) loaded(inputs_dict["input_ids"].to(_lowerCAmelCase ) , inputs_dict["attention_mask"].to(_lowerCAmelCase ) ) @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def __a ( self ) -> Tuple: a : Dict = NezhaModel.from_pretrained("sijunhe/nezha-cn-base" ) a : Any = torch.tensor([[0, 1, 2, 3, 4, 5]] ) a : List[Any] = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): a : Optional[int] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] a : List[str] = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) a : Tuple = torch.tensor([[[0.0_685, 0.2_441, 0.1_102], [0.0_600, 0.1_906, 0.1_349], [0.0_221, 0.0_819, 0.0_586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __a ( self ) -> Union[str, Any]: a : str = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base" ) a : Union[str, Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) a : Any = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): a : List[Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] a : Tuple = torch.Size((1, 6, 2_1128) ) self.assertEqual(output.shape , _lowerCAmelCase ) a : int = torch.tensor( [[-2.7_939, -1.7_902, -2.2_189], [-2.8_585, -1.8_908, -2.3_723], [-2.6_499, -1.7_750, -2.2_558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1E-4 ) )
633
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "donut-swin" __lowerCamelCase : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , **_lowerCAmelCase , ) -> Optional[Any]: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
18
0
'''simple docstring''' from __future__ import annotations class A__ : def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Any ) -> None: '''simple docstring''' _a : str =data _a : Any =None _a : List[Any] =None def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Node | None ) -> Dict: # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Node | None ) -> Dict: return 1 + max(depth_of_tree(tree.left ) ,depth_of_tree(tree.right ) ) if tree else 0 def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Node ) -> int: if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: # Main function for testing. _a : List[str] =Node(1 ) _a : List[Any] =Node(2 ) _a : Optional[Any] =Node(3 ) _a : str =Node(4 ) _a : Union[str, Any] =Node(5 ) _a : str =Node(6 ) _a : Dict =Node(7 ) _a : int =Node(8 ) _a : Dict =Node(9 ) print(is_full_binary_tree(SCREAMING_SNAKE_CASE_ ) ) print(depth_of_tree(SCREAMING_SNAKE_CASE_ ) ) print("""Tree is: """ ) display(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
694
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "swinv2" __lowerCamelCase : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=32 , **_lowerCAmelCase , ) -> Tuple: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) _lowerCAmelCase = (0, 0, 0, 0)
18
0
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__snake_case ) class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : str = field(default="""language-modeling""", metadata={"""include_in_asdict_even_if_is_default""": True} ) SCREAMING_SNAKE_CASE_ : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) SCREAMING_SNAKE_CASE_ : ClassVar[Features] = Features({} ) SCREAMING_SNAKE_CASE_ : str = "text" @property def lowercase_ ( self : int)-> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
346
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ): __lowerCamelCase : Optional[Any] = AutoencoderKL __lowerCamelCase : List[Any] = "sample" __lowerCamelCase : Tuple = 1e-2 @property def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = 4 _lowerCAmelCase = 3 _lowerCAmelCase = (32, 32) _lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCAmelCase ) return {"sample": image} @property def _snake_case ( self ) -> Any: return (3, 32, 32) @property def _snake_case ( self ) -> List[Any]: return (3, 32, 32) def _snake_case ( self ) -> str: _lowerCAmelCase = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def _snake_case ( self ) -> Optional[int]: pass def _snake_case ( self ) -> Any: pass @unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" ) def _snake_case ( self ) -> str: # enable deterministic behavior for gradient checkpointing _lowerCAmelCase , _lowerCAmelCase = self.prepare_init_args_and_inputs_for_common() _lowerCAmelCase = self.model_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) assert not model.is_gradient_checkpointing and model.training _lowerCAmelCase = model(**_lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() _lowerCAmelCase = torch.randn_like(_lowerCAmelCase ) _lowerCAmelCase = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing _lowerCAmelCase = self.model_class(**_lowerCAmelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_lowerCAmelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training _lowerCAmelCase = model_a(**_lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() _lowerCAmelCase = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) _lowerCAmelCase = dict(model.named_parameters() ) _lowerCAmelCase = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(_lowerCAmelCase ) _lowerCAmelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _snake_case ( self ) -> Dict: _lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) _lowerCAmelCase = model.to(_lowerCAmelCase ) model.eval() if torch_device == "mps": _lowerCAmelCase = torch.manual_seed(0 ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) _lowerCAmelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _lowerCAmelCase = image.to(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , sample_posterior=_lowerCAmelCase , generator=_lowerCAmelCase ).sample _lowerCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": _lowerCAmelCase = torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ] ) elif torch_device == "cpu": _lowerCAmelCase = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: _lowerCAmelCase = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(_lowerCAmelCase , _lowerCAmelCase , rtol=1E-2 ) ) @slow class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy''' def _snake_case ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _lowerCAmelCase=0 , _lowerCAmelCase=(4, 3, 512, 512) , _lowerCAmelCase=False ) -> Tuple: _lowerCAmelCase = torch.floataa if fpaa else torch.floataa _lowerCAmelCase = torch.from_numpy(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) ).to(_lowerCAmelCase ).to(_lowerCAmelCase ) return image def _snake_case ( self , _lowerCAmelCase="CompVis/stable-diffusion-v1-4" , _lowerCAmelCase=False ) -> Tuple: _lowerCAmelCase = "fp16" if fpaa else None _lowerCAmelCase = torch.floataa if fpaa else torch.floataa _lowerCAmelCase = AutoencoderKL.from_pretrained( _lowerCAmelCase , subfolder="vae" , torch_dtype=_lowerCAmelCase , revision=_lowerCAmelCase , ) model.to(_lowerCAmelCase ).eval() return model def _snake_case ( self , _lowerCAmelCase=0 ) -> str: if torch_device == "mps": return torch.manual_seed(_lowerCAmelCase ) return torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase ) _lowerCAmelCase = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] _lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> str: _lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] _lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def _snake_case ( self , _lowerCAmelCase ) -> List[str]: _lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def _snake_case ( self , _lowerCAmelCase ) -> Any: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase ) _lowerCAmelCase = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model.encode(_lowerCAmelCase ).latent_dist _lowerCAmelCase = dist.sample(generator=_lowerCAmelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] _lowerCAmelCase = sample[0, -1, -3:, -3:].flatten().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) _lowerCAmelCase = 3E-3 if torch_device != "mps" else 1E-2 assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=_lowerCAmelCase )
18
0
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowerCAmelCase ) ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowerCAmelCase ) ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowerCAmelCase ) ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowerCAmelCase ) ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowerCAmelCase ) ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __SCREAMING_SNAKE_CASE = 'fp16' self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __SCREAMING_SNAKE_CASE = 'fp16' self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] __SCREAMING_SNAKE_CASE = 'fp16' self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __SCREAMING_SNAKE_CASE = 'fp16' self.assertFalse(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] __SCREAMING_SNAKE_CASE = 'fp16' self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] __SCREAMING_SNAKE_CASE = 'fp16' self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __SCREAMING_SNAKE_CASE = 'fp16' self.assertFalse(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) )
148
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : str = "gpt_bigcode" __lowerCamelCase : Optional[int] = ["past_key_values"] __lowerCamelCase : List[str] = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _lowerCAmelCase=50257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=50256 , _lowerCAmelCase=50256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]: _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_embd _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = attention_softmax_in_fpaa _lowerCAmelCase = scale_attention_softmax_in_fpaa _lowerCAmelCase = multi_query _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
18
0
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCamelCase : Dict = { 'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json', 'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json', } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = "ernie_m" _UpperCamelCase = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self ,_lowerCAmelCase = 25_00_02 ,_lowerCAmelCase = 7_68 ,_lowerCAmelCase = 12 ,_lowerCAmelCase = 12 ,_lowerCAmelCase = 30_72 ,_lowerCAmelCase = "gelu" ,_lowerCAmelCase = 0.1 ,_lowerCAmelCase = 0.1 ,_lowerCAmelCase = 5_14 ,_lowerCAmelCase = 0.02 ,_lowerCAmelCase = 1 ,_lowerCAmelCase = 1E-05 ,_lowerCAmelCase=None ,_lowerCAmelCase=False ,_lowerCAmelCase=0.0 ,**_lowerCAmelCase ,): super().__init__(pad_token_id=_lowerCAmelCase ,**_lowerCAmelCase ) lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = classifier_dropout lowerCamelCase__ = is_decoder lowerCamelCase__ = act_dropout
50
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[Any] = "data2vec-audio" def __init__( self , _lowerCAmelCase=32 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase="gelu" , _lowerCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _lowerCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase=False , _lowerCAmelCase=16 , _lowerCAmelCase=19 , _lowerCAmelCase=5 , _lowerCAmelCase=0.05 , _lowerCAmelCase=10 , _lowerCAmelCase=2 , _lowerCAmelCase=0.0 , _lowerCAmelCase=10 , _lowerCAmelCase=0 , _lowerCAmelCase="sum" , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=256 , _lowerCAmelCase=(512, 512, 512, 512, 1500) , _lowerCAmelCase=(5, 3, 3, 1, 1) , _lowerCAmelCase=(1, 2, 3, 1, 1) , _lowerCAmelCase=512 , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=False , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Dict: super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = feat_extract_activation _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = conv_bias _lowerCAmelCase = num_conv_pos_embeddings _lowerCAmelCase = num_conv_pos_embedding_groups _lowerCAmelCase = conv_pos_kernel_size _lowerCAmelCase = len(self.conv_dim ) _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = feat_proj_dropout _lowerCAmelCase = final_dropout _lowerCAmelCase = layerdrop _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = vocab_size _lowerCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase = mask_time_prob _lowerCAmelCase = mask_time_length _lowerCAmelCase = mask_time_min_masks _lowerCAmelCase = mask_feature_prob _lowerCAmelCase = mask_feature_length _lowerCAmelCase = mask_feature_min_masks # ctc loss _lowerCAmelCase = ctc_loss_reduction _lowerCAmelCase = ctc_zero_infinity # adapter _lowerCAmelCase = add_adapter _lowerCAmelCase = adapter_kernel_size _lowerCAmelCase = adapter_stride _lowerCAmelCase = num_adapter_layers _lowerCAmelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = xvector_output_dim @property def _snake_case ( self ) -> str: return math.prod(self.conv_stride )
18
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Optional[int] = logging.get_logger(__name__) A__ : List[Any] = { 'SCUT-DLVCLab/lilt-roberta-en-base': ( 'https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json' ), } class __magic_name__ ( SCREAMING_SNAKE_CASE__ ): UpperCamelCase_ = "lilt" def __init__( self , A_=3_0522 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1E-12 , A_=0 , A_="absolute" , A_=None , A_=4 , A_=1024 , **A_ , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowercase: List[str] = vocab_size _lowercase: Optional[Any] = hidden_size _lowercase: Union[str, Any] = num_hidden_layers _lowercase: Union[str, Any] = num_attention_heads _lowercase: List[Any] = hidden_act _lowercase: List[Any] = intermediate_size _lowercase: int = hidden_dropout_prob _lowercase: List[str] = attention_probs_dropout_prob _lowercase: Tuple = max_position_embeddings _lowercase: Optional[int] = type_vocab_size _lowercase: str = initializer_range _lowercase: Optional[int] = layer_norm_eps _lowercase: Dict = position_embedding_type _lowercase: int = classifier_dropout _lowercase: Optional[Any] = channel_shrink_ratio _lowercase: Optional[Any] = max_ad_position_embeddings
353
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = (DDPMParallelScheduler,) def _snake_case ( self , **_lowerCAmelCase ) -> int: _lowerCAmelCase = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**_lowerCAmelCase ) return config def _snake_case ( self ) -> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def _snake_case ( self ) -> Any: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _snake_case ( self ) -> List[str]: self.check_over_configs(thresholding=_lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , ) def _snake_case ( self ) -> int: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _snake_case ( self ) -> Dict: for t in [0, 500, 999]: self.check_over_forward(time_step=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = self.dummy_sample_deter + 0.1 _lowerCAmelCase = self.dummy_sample_deter - 0.1 _lowerCAmelCase = samplea.shape[0] _lowerCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) _lowerCAmelCase = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase ) _lowerCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _lowerCAmelCase = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowerCAmelCase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowerCAmelCase ): if i == len(_lowerCAmelCase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowerCAmelCase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowerCAmelCase , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowerCAmelCase ) with self.assertRaises(_lowerCAmelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=_lowerCAmelCase , timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowerCAmelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=_lowerCAmelCase )
18
0
"""simple docstring""" def _lowerCamelCase( a , a = 0 ): __a = length or len(SCREAMING_SNAKE_CASE_ ) __a = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: __a , __a = list_data[i + 1], list_data[i] __a = True return list_data if not swapped else bubble_sort(SCREAMING_SNAKE_CASE_ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
528
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "spiece.model"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<sep>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<cls>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=["<eop>", "<eod>"] , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: _lowerCAmelCase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) _lowerCAmelCase = 3 _lowerCAmelCase = do_lower_case _lowerCAmelCase = remove_space _lowerCAmelCase = keep_accents _lowerCAmelCase = vocab_file _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) _lowerCAmelCase = jieba _lowerCAmelCase = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _snake_case ( self ) -> Optional[int]: return len(self.sp_model ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__( self , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , _lowerCAmelCase ) -> str: if self.remove_space: _lowerCAmelCase = " ".join(inputs.strip().split() ) else: _lowerCAmelCase = inputs _lowerCAmelCase = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _lowerCAmelCase = unicodedata.normalize("NFKD" , _lowerCAmelCase ) _lowerCAmelCase = "".join([c for c in outputs if not unicodedata.combining(_lowerCAmelCase )] ) if self.do_lower_case: _lowerCAmelCase = outputs.lower() return outputs def _snake_case ( self , _lowerCAmelCase ) -> List[str]: _lowerCAmelCase = self.preprocess_text(_lowerCAmelCase ) _lowerCAmelCase = self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) _lowerCAmelCase = [] for piece in pieces: if len(_lowerCAmelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCAmelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase = cur_pieces[1:] else: _lowerCAmelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowerCAmelCase ) else: new_pieces.append(_lowerCAmelCase ) return new_pieces def _snake_case ( self , _lowerCAmelCase ) -> str: return self.sp_model.PieceToId(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]: return self.sp_model.IdToPiece(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = "".join(_lowerCAmelCase ).replace(_lowerCAmelCase , " " ).strip() return out_string def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is not None: return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] return ([0] * len(_lowerCAmelCase )) + [1, 1] def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(_lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , "wb" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,) def _snake_case ( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: _lowerCAmelCase = super()._decode(*_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
18
0
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Union[List[PIL.Image.Image], np.ndarray] __SCREAMING_SNAKE_CASE : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
412
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _SCREAMING_SNAKE_CASE = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" _SCREAMING_SNAKE_CASE = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" _SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def _snake_case ( self ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def _snake_case ( self ) -> Tuple: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="uniform_average" , _lowerCAmelCase=True ) -> Union[str, Any]: _lowerCAmelCase = mean_squared_error( _lowerCAmelCase , _lowerCAmelCase , sample_weight=_lowerCAmelCase , multioutput=_lowerCAmelCase , squared=_lowerCAmelCase ) return {"mse": mse}
18
0
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures _UpperCamelCase = logging.get_logger(__name__) @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) SCREAMING_SNAKE_CASE = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) SCREAMING_SNAKE_CASE = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) SCREAMING_SNAKE_CASE = field( default=snake_case , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def _UpperCamelCase ( self ): UpperCAmelCase = self.task_name.lower() class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = "train" SCREAMING_SNAKE_CASE = "dev" SCREAMING_SNAKE_CASE = "test" class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 def __init__( self ,A ,A ,A = None ,A = Split.train ,A = None ,): warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ,_lowerCAmelCase ,) UpperCAmelCase = args UpperCAmelCase = glue_processors[args.task_name]() UpperCAmelCase = glue_output_modes[args.task_name] if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): try: UpperCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file UpperCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir ,F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' ,) UpperCAmelCase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase = label_list[2], label_list[1] UpperCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase = cached_features_file + """.lock""" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: UpperCAmelCase = time.time() UpperCAmelCase = torch.load(_lowerCAmelCase ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''' ,time.time() - start ) else: logger.info(F'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: UpperCAmelCase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: UpperCAmelCase = self.processor.get_test_examples(args.data_dir ) else: UpperCAmelCase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: UpperCAmelCase = examples[:limit_length] UpperCAmelCase = glue_convert_examples_to_features( _lowerCAmelCase ,_lowerCAmelCase ,max_length=args.max_seq_length ,label_list=_lowerCAmelCase ,output_mode=self.output_mode ,) UpperCAmelCase = time.time() torch.save(self.features ,_lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ): return len(self.features ) def __getitem__( self ,A ): return self.features[i] def _UpperCamelCase ( self ): return self.label_list
341
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
18
0
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = BertJapaneseTokenizer __UpperCAmelCase = False __UpperCAmelCase = True def lowercase_ ( self ): super().setUp() __snake_case : Any = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] __snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[Any] = 'こんにちは、世界。 \nこんばんは、世界。' __snake_case : Optional[int] = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def lowercase_ ( self , _UpperCAmelCase ): __snake_case , __snake_case : Tuple = self.get_input_output_texts(_lowerCAmelCase ) __snake_case : Dict = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) __snake_case : Union[str, Any] = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) return text, ids def lowercase_ ( self ): pass # TODO add if relevant def lowercase_ ( self ): pass # TODO add if relevant def lowercase_ ( self ): pass # TODO add if relevant def lowercase_ ( self ): __snake_case : Optional[Any] = self.tokenizer_class(self.vocab_file ) __snake_case : Tuple = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' ) self.assertListEqual(_lowerCAmelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def lowercase_ ( self ): __snake_case : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab' ) self.assertIsNotNone(_lowerCAmelCase ) __snake_case : Optional[int] = 'こんにちは、世界。\nこんばんは、世界。' __snake_case : int = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __snake_case : List[str] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(_lowerCAmelCase , 'wb' ) as handle: pickle.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(_lowerCAmelCase , 'rb' ) as handle: __snake_case : str = pickle.load(_lowerCAmelCase ) __snake_case : Tuple = tokenizer_new.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def lowercase_ ( self ): __snake_case : int = MecabTokenizer(mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase_ ( self ): try: __snake_case : Optional[Any] = MecabTokenizer(mecab_dic='unidic_lite' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase_ ( self ): try: __snake_case : Any = MecabTokenizer(mecab_dic='unidic' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase_ ( self ): __snake_case : Optional[int] = MecabTokenizer(do_lower_case=_lowerCAmelCase , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase_ ( self ): try: __snake_case : Optional[int] = MecabTokenizer( do_lower_case=_lowerCAmelCase , normalize_text=_lowerCAmelCase , mecab_option='-d /usr/local/lib/mecab/dic/jumandic' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , ) def lowercase_ ( self ): __snake_case : List[str] = MecabTokenizer(normalize_text=_lowerCAmelCase , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , ) @require_sudachi def lowercase_ ( self ): __snake_case : Tuple = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi' ) self.assertIsNotNone(_lowerCAmelCase ) __snake_case : Dict = 'こんにちは、世界。\nこんばんは、世界。' __snake_case : Any = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __snake_case : Union[str, Any] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(_lowerCAmelCase , 'wb' ) as handle: pickle.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(_lowerCAmelCase , 'rb' ) as handle: __snake_case : int = pickle.load(_lowerCAmelCase ) __snake_case : List[Any] = tokenizer_new.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) @require_sudachi def lowercase_ ( self ): __snake_case : Dict = SudachiTokenizer(sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def lowercase_ ( self ): __snake_case : List[str] = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国', '人', '参政', '権'] ) @require_sudachi def lowercase_ ( self ): __snake_case : Union[str, Any] = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人', '参政権'] ) @require_sudachi def lowercase_ ( self ): __snake_case : Any = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人参政権'] ) @require_sudachi def lowercase_ ( self ): __snake_case : Dict = SudachiTokenizer(do_lower_case=_lowerCAmelCase , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def lowercase_ ( self ): __snake_case : str = SudachiTokenizer(normalize_text=_lowerCAmelCase , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , ) @require_sudachi def lowercase_ ( self ): __snake_case : str = SudachiTokenizer(trim_whitespace=_lowerCAmelCase , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) @require_jumanpp def lowercase_ ( self ): __snake_case : List[Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp' ) self.assertIsNotNone(_lowerCAmelCase ) __snake_case : Union[str, Any] = 'こんにちは、世界。\nこんばんは、世界。' __snake_case : str = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __snake_case : Optional[int] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(_lowerCAmelCase , 'wb' ) as handle: pickle.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(_lowerCAmelCase , 'rb' ) as handle: __snake_case : str = pickle.load(_lowerCAmelCase ) __snake_case : Optional[Any] = tokenizer_new.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) @require_jumanpp def lowercase_ ( self ): __snake_case : Union[str, Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowercase_ ( self ): __snake_case : str = JumanppTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowercase_ ( self ): __snake_case : Dict = JumanppTokenizer(normalize_text=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowercase_ ( self ): __snake_case : List[str] = JumanppTokenizer(trim_whitespace=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , ) @require_jumanpp def lowercase_ ( self ): __snake_case : Optional[Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , ) def lowercase_ ( self ): __snake_case : int = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] __snake_case : List[Any] = {} for i, token in enumerate(_lowerCAmelCase ): __snake_case : Dict = i __snake_case : int = WordpieceTokenizer(vocab=_lowerCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こんにちは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは' ) , ['こん', '##ばんは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) , ['こん', '##ばんは', '[UNK]', 'こんにちは'] ) def lowercase_ ( self ): __snake_case : Optional[int] = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' ) __snake_case : List[str] = tokenizer.subword_tokenizer __snake_case : str = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' ) self.assertListEqual(_lowerCAmelCase , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] ) __snake_case : str = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' ) self.assertListEqual(_lowerCAmelCase , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] ) def lowercase_ ( self ): __snake_case : List[Any] = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' ) __snake_case : List[str] = tokenizer.encode('ありがとう。' , add_special_tokens=_lowerCAmelCase ) __snake_case : int = tokenizer.encode('どういたしまして。' , add_special_tokens=_lowerCAmelCase ) __snake_case : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) __snake_case : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = BertJapaneseTokenizer __UpperCAmelCase = False def lowercase_ ( self ): super().setUp() __snake_case : int = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] __snake_case : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowercase_ ( self , **_UpperCAmelCase ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **_lowerCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Optional[Any] = 'こんにちは、世界。 \nこんばんは、世界。' __snake_case : int = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def lowercase_ ( self ): pass # TODO add if relevant def lowercase_ ( self ): pass # TODO add if relevant def lowercase_ ( self ): pass # TODO add if relevant def lowercase_ ( self ): __snake_case : Union[str, Any] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character' ) __snake_case : int = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' ) self.assertListEqual( _lowerCAmelCase , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def lowercase_ ( self ): __snake_case : Optional[int] = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] __snake_case : Optional[int] = {} for i, token in enumerate(_lowerCAmelCase ): __snake_case : Union[str, Any] = i __snake_case : Optional[int] = CharacterTokenizer(vocab=_lowerCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こ', 'ん', 'に', 'ち', 'は'] ) self.assertListEqual(tokenizer.tokenize('こんにちほ' ) , ['こ', 'ん', 'に', 'ち', '[UNK]'] ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' ) __snake_case : Dict = tokenizer.encode('ありがとう。' , add_special_tokens=_lowerCAmelCase ) __snake_case : List[Any] = tokenizer.encode('どういたしまして。' , add_special_tokens=_lowerCAmelCase ) __snake_case : Dict = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) __snake_case : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): __snake_case : int = 'cl-tohoku/bert-base-japanese' __snake_case : Optional[Any] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): __snake_case : str = 'cl-tohoku/bert-base-japanese' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertTokenizer.from_pretrained(_lowerCAmelCase ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) ) __snake_case : Optional[int] = 'bert-base-cased' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertJapaneseTokenizer.from_pretrained(_lowerCAmelCase ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) )
576
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : int | float | str , SCREAMING_SNAKE_CASE_ : int | float | str ): '''simple docstring''' if nth_term == "": return [""] _lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = [] for temp in range(int(SCREAMING_SNAKE_CASE_ ) ): series.append(F'''1 / {pow(temp + 1 , int(SCREAMING_SNAKE_CASE_ ) )}''' if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = int(input("Enter the last number (nth term) of the P-Series")) _SCREAMING_SNAKE_CASE = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
18
0
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase_ : Tuple = 'platform' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , ): """simple docstring""" if attention_mask is None: _SCREAMING_SNAKE_CASE : Any = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _SCREAMING_SNAKE_CASE : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _SCREAMING_SNAKE_CASE : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _SCREAMING_SNAKE_CASE : Dict = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _SCREAMING_SNAKE_CASE : Optional[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowercase__ : '''simple docstring''' def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=False , __snake_case=99 , __snake_case=16 , __snake_case=2 , __snake_case=4 , __snake_case=4 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=32 , __snake_case=2 , __snake_case=1 , __snake_case=0 , __snake_case=0.02 , ): _SCREAMING_SNAKE_CASE : str = parent _SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size _SCREAMING_SNAKE_CASE : Tuple = seq_length _SCREAMING_SNAKE_CASE : Optional[Any] = is_training _SCREAMING_SNAKE_CASE : Tuple = use_labels _SCREAMING_SNAKE_CASE : Tuple = vocab_size _SCREAMING_SNAKE_CASE : List[Any] = hidden_size _SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers _SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads _SCREAMING_SNAKE_CASE : List[str] = intermediate_size _SCREAMING_SNAKE_CASE : List[str] = hidden_act _SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings _SCREAMING_SNAKE_CASE : int = eos_token_id _SCREAMING_SNAKE_CASE : List[str] = pad_token_id _SCREAMING_SNAKE_CASE : str = bos_token_id _SCREAMING_SNAKE_CASE : int = initializer_range def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Union[str, Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _SCREAMING_SNAKE_CASE : List[str] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _SCREAMING_SNAKE_CASE : int = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) _SCREAMING_SNAKE_CASE : List[Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCAmelCase , ) _SCREAMING_SNAKE_CASE : Optional[Any] = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : int = 20 _SCREAMING_SNAKE_CASE : List[Any] = model_class_name(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = model.encode(inputs_dict["""input_ids"""] ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _SCREAMING_SNAKE_CASE : Tuple = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) _SCREAMING_SNAKE_CASE : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _SCREAMING_SNAKE_CASE : Any = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _SCREAMING_SNAKE_CASE : Tuple = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCAmelCase , ) _SCREAMING_SNAKE_CASE : List[Any] = model.decode(_lowerCAmelCase , _lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : List[Any] = 20 _SCREAMING_SNAKE_CASE : Optional[Any] = model_class_name(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = model.encode(inputs_dict["""input_ids"""] ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _SCREAMING_SNAKE_CASE : Dict = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _SCREAMING_SNAKE_CASE : Tuple = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _SCREAMING_SNAKE_CASE : str = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _SCREAMING_SNAKE_CASE : List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _SCREAMING_SNAKE_CASE : List[str] = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _SCREAMING_SNAKE_CASE : Any = model.decode(_lowerCAmelCase , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class lowercase__ ( unittest.TestCase ): '''simple docstring''' A_ : str = 99 def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Union[str, Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _SCREAMING_SNAKE_CASE : Optional[int] = input_ids.shape[0] _SCREAMING_SNAKE_CASE : Dict = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = self._get_config_and_data() _SCREAMING_SNAKE_CASE : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = lm_model(input_ids=_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Tuple = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , _lowerCAmelCase ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Tuple = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _SCREAMING_SNAKE_CASE : Optional[Any] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _SCREAMING_SNAKE_CASE : Tuple = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _SCREAMING_SNAKE_CASE : Union[str, Any] = lm_model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , _lowerCAmelCase ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : str = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _SCREAMING_SNAKE_CASE : str = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) _SCREAMING_SNAKE_CASE : Any = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() _SCREAMING_SNAKE_CASE : int = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowerCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowercase__ ( _snake_case , unittest.TestCase , _snake_case ): '''simple docstring''' A_ : List[Any] = True A_ : List[str] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) A_ : Optional[Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[str] = FlaxBlenderbotSmallModelTester(self ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _SCREAMING_SNAKE_CASE : Optional[int] = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = model_class(_lowerCAmelCase ) @jax.jit def encode_jitted(__snake_case , __snake_case=None , **__snake_case ): return model.encode(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) with self.subTest("""JIT Enabled""" ): _SCREAMING_SNAKE_CASE : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _SCREAMING_SNAKE_CASE : Any = encode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _SCREAMING_SNAKE_CASE : Dict = model_class(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : int = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) _SCREAMING_SNAKE_CASE : int = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(__snake_case , __snake_case , __snake_case ): return model.decode( decoder_input_ids=_lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , encoder_outputs=_lowerCAmelCase , ) with self.subTest("""JIT Enabled""" ): _SCREAMING_SNAKE_CASE : Union[str, Any] = decode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _SCREAMING_SNAKE_CASE : Union[str, Any] = decode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase_ ( self ): for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE : List[Any] = model_class_name.from_pretrained("""facebook/blenderbot_small-90M""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _SCREAMING_SNAKE_CASE : Optional[int] = np.ones((1, 1) ) * model.config.eos_token_id _SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase )
533
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] )
18
0
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __UpperCamelCase ( unittest.TestCase ): @property def __a ( self ) -> Optional[Any]: torch.manual_seed(0 ) a : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model @property def __a ( self ) -> Optional[int]: torch.manual_seed(0 ) a : int = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , ) return model @property def __a ( self ) -> Any: torch.manual_seed(0 ) a : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(_lowerCAmelCase ) def __a ( self ) -> List[Any]: a : Any = self.dummy_uncond_unet a : List[str] = DDIMScheduler() a : Tuple = self.dummy_vq_model a : str = LDMPipeline(unet=_lowerCAmelCase , vqvae=_lowerCAmelCase , scheduler=_lowerCAmelCase ) ldm.to(_lowerCAmelCase ) ldm.set_progress_bar_config(disable=_lowerCAmelCase ) a : Optional[int] = torch.manual_seed(0 ) a : Optional[Any] = ldm(generator=_lowerCAmelCase , num_inference_steps=2 , output_type="numpy" ).images a : List[str] = torch.manual_seed(0 ) a : Union[str, Any] = ldm(generator=_lowerCAmelCase , num_inference_steps=2 , output_type="numpy" , return_dict=_lowerCAmelCase )[0] a : Tuple = image[0, -3:, -3:, -1] a : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a : Optional[int] = np.array([0.8_512, 0.818, 0.6_411, 0.6_808, 0.4_465, 0.5_618, 0.46, 0.6_231, 0.5_172] ) a : Optional[Any] = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class __UpperCamelCase ( unittest.TestCase ): def __a ( self ) -> List[str]: a : str = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256" ) ldm.to(_lowerCAmelCase ) ldm.set_progress_bar_config(disable=_lowerCAmelCase ) a : List[str] = torch.manual_seed(0 ) a : Tuple = ldm(generator=_lowerCAmelCase , num_inference_steps=5 , output_type="numpy" ).images a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) a : Dict = np.array([0.4_399, 0.44_975, 0.46_825, 0.474, 0.4_359, 0.4_581, 0.45_095, 0.4_341, 0.4_447] ) a : Optional[Any] = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
633
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() _lowerCAmelCase = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) _lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict=None ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() _lowerCAmelCase = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) _lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = result.headers["Location"] _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F'''{artifact_name}.zip''' ) with open(SCREAMING_SNAKE_CASE_ , "wb" ) as fp: fp.write(response.content ) def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=None ): '''simple docstring''' _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE_ ) as f: for line in f: _lowerCAmelCase = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _lowerCAmelCase = line[: line.index(": " )] _lowerCAmelCase = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed _lowerCAmelCase = line[len("FAILED " ) :] failed_tests.append(SCREAMING_SNAKE_CASE_ ) elif filename == "job_name.txt": _lowerCAmelCase = line if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( F'''`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE_ )} for `errors` ''' F'''and {len(SCREAMING_SNAKE_CASE_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' " problem." ) _lowerCAmelCase = None if job_name and job_links: _lowerCAmelCase = job_links.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # A list with elements of the form (line of error, error, failed test) _lowerCAmelCase = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] return result def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = [] _lowerCAmelCase = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for p in os.listdir(SCREAMING_SNAKE_CASE_ ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE_ , job_links=SCREAMING_SNAKE_CASE_ ) ) return errors def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str=None ): '''simple docstring''' _lowerCAmelCase = Counter() counter.update([x[1] for x in logs] ) _lowerCAmelCase = counter.most_common() _lowerCAmelCase = {} for error, count in counts: if error_filter is None or error not in error_filter: _lowerCAmelCase = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} _lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def __a(SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' _lowerCAmelCase = test.split("::" )[0] if test.startswith("tests/models/" ): _lowerCAmelCase = test.split("/" )[2] else: _lowerCAmelCase = None return test def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs] _lowerCAmelCase = [x for x in logs if x[2] is not None] _lowerCAmelCase = {x[2] for x in logs} _lowerCAmelCase = {} for test in tests: _lowerCAmelCase = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _lowerCAmelCase = counter.most_common() _lowerCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _lowerCAmelCase = sum(error_counts.values() ) if n_errors > 0: _lowerCAmelCase = {"count": n_errors, "errors": error_counts} _lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase = "| no. | error | status |" _lowerCAmelCase = "|-:|:-|:-|" _lowerCAmelCase = [header, sep] for error in reduced_by_error: _lowerCAmelCase = reduced_by_error[error]["count"] _lowerCAmelCase = F'''| {count} | {error[:100]} | |''' lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase = "| model | no. of errors | major error | count |" _lowerCAmelCase = "|-:|-:|-:|-:|" _lowerCAmelCase = [header, sep] for model in reduced_by_model: _lowerCAmelCase = reduced_by_model[model]["count"] _lowerCAmelCase , _lowerCAmelCase = list(reduced_by_model[model]["errors"].items() )[0] _lowerCAmelCase = F'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _SCREAMING_SNAKE_CASE = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _SCREAMING_SNAKE_CASE = get_job_links(args.workflow_run_id, token=args.token) _SCREAMING_SNAKE_CASE = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _SCREAMING_SNAKE_CASE = k.find(" / ") _SCREAMING_SNAKE_CASE = k[index + len(" / ") :] _SCREAMING_SNAKE_CASE = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _SCREAMING_SNAKE_CASE = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _SCREAMING_SNAKE_CASE = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _SCREAMING_SNAKE_CASE = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = reduce_by_error(errors) _SCREAMING_SNAKE_CASE = reduce_by_model(errors) _SCREAMING_SNAKE_CASE = make_github_table(reduced_by_error) _SCREAMING_SNAKE_CASE = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
18
0
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Union[str, Any] ) -> Dict: def wrapper(*_UpperCAmelCase : Dict ,**_UpperCAmelCase : Tuple ): _a : Any =timeit.default_timer() _a : Optional[Any] =func(*SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) _a : Any =timeit.default_timer() - starttime return delta _a : Optional[Any] =func.__name__ return wrapper def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : dict ,_UpperCAmelCase : List[Any]=100 ,_UpperCAmelCase : Optional[int]=None ) -> Union[str, Any]: _a : Tuple =[] _a : Dict =seq_shapes or {} for i in range(SCREAMING_SNAKE_CASE_ ): _a : List[Any] ={} for col_id, (k, v) in enumerate(features.items() ): if isinstance(SCREAMING_SNAKE_CASE_ ,_ArrayXD ): _a : List[Any] =np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(SCREAMING_SNAKE_CASE_ ,datasets.Value ): if v.dtype == "string": _a : str ="""The small grey turtle was surprisingly fast when challenged.""" else: _a : int =np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(SCREAMING_SNAKE_CASE_ ,datasets.Sequence ): while isinstance(SCREAMING_SNAKE_CASE_ ,datasets.Sequence ): _a : List[Any] =v.feature _a : Tuple =seq_shapes[k] _a : Any =np.random.rand(*SCREAMING_SNAKE_CASE_ ).astype(v.dtype ) _a : Optional[int] =data dummy_data.append((i, example) ) return dummy_data def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Dict=100 ,_UpperCAmelCase : int=None ) -> Tuple: _a : Optional[Any] =generate_examples(SCREAMING_SNAKE_CASE_ ,num_examples=SCREAMING_SNAKE_CASE_ ,seq_shapes=SCREAMING_SNAKE_CASE_ ) with ArrowWriter(features=SCREAMING_SNAKE_CASE_ ,path=SCREAMING_SNAKE_CASE_ ) as writer: for key, record in dummy_data: _a : List[str] =features.encode_example(SCREAMING_SNAKE_CASE_ ) writer.write(SCREAMING_SNAKE_CASE_ ) _a , _a : str =writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) _a : Dict =datasets.Dataset.from_file(filename=SCREAMING_SNAKE_CASE_ ,info=datasets.DatasetInfo(features=SCREAMING_SNAKE_CASE_ ) ) return dataset
694
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = (DPMSolverSinglestepScheduler,) __lowerCamelCase : int = (("num_inference_steps", 25),) def _snake_case ( self , **_lowerCAmelCase ) -> Any: _lowerCAmelCase = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf" ), "variance_type": None, } config.update(**_lowerCAmelCase ) return config def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> List[Any]: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) _lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase ) new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase , _lowerCAmelCase = sample, sample for t in range(_lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self ) -> int: pass def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) _lowerCAmelCase = scheduler_class.from_pretrained(_lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Tuple: if scheduler is None: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample return sample def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = 50 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults _lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 _lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase = self.full_loop(scheduler=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _snake_case ( self ) -> str: self.check_over_configs(thresholding=_lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , algorithm_type="dpmsolver++" , solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , ) def _snake_case ( self ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , ) _lowerCAmelCase = self.full_loop( solver_order=_lowerCAmelCase , solver_type=_lowerCAmelCase , prediction_type=_lowerCAmelCase , algorithm_type=_lowerCAmelCase , ) assert not torch.isnan(_lowerCAmelCase ).any(), "Samples have nan numbers" def _snake_case ( self ) -> Optional[Any]: self.check_over_configs(lower_order_final=_lowerCAmelCase ) self.check_over_configs(lower_order_final=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: self.check_over_configs(lambda_min_clipped=-float("inf" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def _snake_case ( self ) -> str: self.check_over_configs(variance_type=_lowerCAmelCase ) self.check_over_configs(variance_type="learned_range" ) def _snake_case ( self ) -> int: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowerCAmelCase , time_step=0 ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.full_loop() _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.full_loop(use_karras_sigmas=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.full_loop(prediction_type="v_prediction" ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def _snake_case ( self ) -> Any: _lowerCAmelCase = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=_lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(thresholding=_lowerCAmelCase , dynamic_thresholding_ratio=0 ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa
18
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
346
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : list ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
18
0
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _A ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = (32, 32) __SCREAMING_SNAKE_CASE = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase ) return image @property def _A ( self ): '''simple docstring''' torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def _A ( self ): '''simple docstring''' torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def _A ( self ): '''simple docstring''' torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(_lowerCAmelCase ) @property def _A ( self ): '''simple docstring''' def extract(*_A , **_A ): class UpperCAmelCase_ : '''simple docstring''' def __init__( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.ones([0] ) def _A ( self , _A ): '''simple docstring''' self.pixel_values.to(_lowerCAmelCase ) return self return Out() return extract def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.dummy_cond_unet __SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_lowerCAmelCase , set_alpha_to_one=_lowerCAmelCase , ) __SCREAMING_SNAKE_CASE = self.dummy_vae __SCREAMING_SNAKE_CASE = self.dummy_text_encoder __SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk __SCREAMING_SNAKE_CASE = StableDiffusionPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) __SCREAMING_SNAKE_CASE = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = 'A painting of a squirrel eating a burger' __SCREAMING_SNAKE_CASE = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) __SCREAMING_SNAKE_CASE = sd_pipe([prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) __SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=_lowerCAmelCase , )[0] __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.dummy_cond_unet __SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = self.dummy_vae __SCREAMING_SNAKE_CASE = self.dummy_text_encoder __SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk __SCREAMING_SNAKE_CASE = StableDiffusionPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) __SCREAMING_SNAKE_CASE = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = 'A painting of a squirrel eating a burger' __SCREAMING_SNAKE_CASE = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) __SCREAMING_SNAKE_CASE = sd_pipe([prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) __SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=_lowerCAmelCase , )[0] __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert isinstance(pipe.scheduler , _lowerCAmelCase ) assert pipe.safety_checker is None __SCREAMING_SNAKE_CASE = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained(_lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __SCREAMING_SNAKE_CASE = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.dummy_cond_unet __SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = self.dummy_vae __SCREAMING_SNAKE_CASE = self.dummy_text_encoder __SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 __SCREAMING_SNAKE_CASE = unet.half() __SCREAMING_SNAKE_CASE = vae.half() __SCREAMING_SNAKE_CASE = bert.half() # make sure here that pndm scheduler skips prk __SCREAMING_SNAKE_CASE = StableDiffusionPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) __SCREAMING_SNAKE_CASE = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = 'A painting of a squirrel eating a burger' __SCREAMING_SNAKE_CASE = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _A ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __SCREAMING_SNAKE_CASE = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) __SCREAMING_SNAKE_CASE = 4_003_660_346 __SCREAMING_SNAKE_CASE = 7 # without safety guidance (sld_guidance_scale = 0) __SCREAMING_SNAKE_CASE = torch.manual_seed(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=_lowerCAmelCase , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) __SCREAMING_SNAKE_CASE = torch.manual_seed(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=_lowerCAmelCase , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __SCREAMING_SNAKE_CASE = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = 'padme amidala taking a bath artwork, safe for work, no nudity' __SCREAMING_SNAKE_CASE = 2_734_971_755 __SCREAMING_SNAKE_CASE = 7 __SCREAMING_SNAKE_CASE = torch.manual_seed(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=_lowerCAmelCase , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 __SCREAMING_SNAKE_CASE = torch.manual_seed(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=_lowerCAmelCase , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) __SCREAMING_SNAKE_CASE = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) __SCREAMING_SNAKE_CASE = 1_044_355_234 __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = torch.manual_seed(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=_lowerCAmelCase , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 __SCREAMING_SNAKE_CASE = torch.manual_seed(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=_lowerCAmelCase , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
148
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCAmelCase = cs.out[:-1] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) _lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase ) _lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase ) thread.start() _lowerCAmelCase = "" for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase ) _lowerCAmelCase = greedy_ids[:, input_ids.shape[1] :] _lowerCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_prompt=_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=10 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCAmelCase = cs.out[:-1] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Dict: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _lowerCAmelCase = AutoTokenizer.from_pretrained("distilgpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = torch.ones((1, 5) , device=_lowerCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) model.generate(_lowerCAmelCase , max_new_tokens=1 , do_sample=_lowerCAmelCase , streamer=_lowerCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _lowerCAmelCase = cs.out[:-1] # Remove the final "\n" _lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(_lowerCAmelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCAmelCase ) _lowerCAmelCase = TextIteratorStreamer(_lowerCAmelCase , timeout=0.001 ) _lowerCAmelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _lowerCAmelCase = Thread(target=model.generate , kwargs=_lowerCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = "" for new_text in streamer: streamer_text += new_text
18
0
'''simple docstring''' from math import sqrt def A__ ( __lowerCAmelCase : int = 100_0000 ): lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(SCREAMING_SNAKE_CASE_ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F'{solution() = }')
50
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "blenderbot-small" __lowerCamelCase : Optional[Any] = ["past_key_values"] __lowerCamelCase : str = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , _lowerCAmelCase=50265 , _lowerCAmelCase=512 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="gelu" , _lowerCAmelCase=512 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=2 , **_lowerCAmelCase , ) -> Dict: _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = d_model _lowerCAmelCase = encoder_ffn_dim _lowerCAmelCase = encoder_layers _lowerCAmelCase = encoder_attention_heads _lowerCAmelCase = decoder_ffn_dim _lowerCAmelCase = decoder_layers _lowerCAmelCase = decoder_attention_heads _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = activation_function _lowerCAmelCase = init_std _lowerCAmelCase = encoder_layerdrop _lowerCAmelCase = decoder_layerdrop _lowerCAmelCase = use_cache _lowerCAmelCase = encoder_layers _lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) class lowerCAmelCase_ ( __magic_name__ ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _lowerCAmelCase = {0: "batch"} _lowerCAmelCase = {0: "batch", 1: "past_decoder_sequence + sequence"} else: _lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} _lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _lowerCAmelCase , _lowerCAmelCase = self.num_layers for i in range(_lowerCAmelCase ): _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} else: _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = super().outputs else: _lowerCAmelCase = super(_lowerCAmelCase , self ).outputs if self.use_past: _lowerCAmelCase , _lowerCAmelCase = self.num_layers for i in range(_lowerCAmelCase ): _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Generate decoder inputs _lowerCAmelCase = seq_length if not self.use_past else 1 _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} _lowerCAmelCase = dict(**_lowerCAmelCase , **_lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape _lowerCAmelCase = common_inputs["decoder_input_ids"].shape[1] _lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads _lowerCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase = decoder_seq_length + 3 _lowerCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCAmelCase = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase )] , dim=1 ) _lowerCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCAmelCase , _lowerCAmelCase = self.num_layers _lowerCAmelCase = min(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = max(_lowerCAmelCase , _lowerCAmelCase ) - min_num_layers _lowerCAmelCase = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(_lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), ) ) # TODO: test this. _lowerCAmelCase = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(_lowerCAmelCase , _lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape # Not using the same length for past_key_values _lowerCAmelCase = seqlen + 2 _lowerCAmelCase , _lowerCAmelCase = self.num_layers _lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads _lowerCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase = common_inputs["attention_mask"].dtype _lowerCAmelCase = torch.cat( [common_inputs["attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase )] , dim=1 ) _lowerCAmelCase = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase ) ] return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCAmelCase = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCAmelCase = tokenizer.num_special_tokens_to_add(_lowerCAmelCase ) _lowerCAmelCase = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence _lowerCAmelCase = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCAmelCase = dict(tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) elif self.task == "causal-lm": _lowerCAmelCase = self._generate_dummy_inputs_for_causal_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) else: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = super()._flatten_past_key_values_(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCAmelCase = super(_lowerCAmelCase , self )._flatten_past_key_values_( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
18
0
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput A__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , SCREAMING_SNAKE_CASE_ , ) if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): return image elif isinstance(SCREAMING_SNAKE_CASE_ , PIL.Image.Image ): _lowercase: Optional[int] = [image] if isinstance(image[0] , PIL.Image.Image ): _lowercase , _lowercase: str = image[0].size _lowercase , _lowercase: Tuple = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 _lowercase: Dict = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] _lowercase: Optional[Any] = np.concatenate(SCREAMING_SNAKE_CASE_ , axis=0 ) _lowercase: Union[str, Any] = np.array(SCREAMING_SNAKE_CASE_ ).astype(np.floataa ) / 255.0 _lowercase: Tuple = image.transpose(0 , 3 , 1 , 2 ) _lowercase: Optional[Any] = 2.0 * image - 1.0 _lowercase: str = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) elif isinstance(image[0] , torch.Tensor ): _lowercase: int = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 ) return image def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): return mask elif isinstance(SCREAMING_SNAKE_CASE_ , PIL.Image.Image ): _lowercase: Tuple = [mask] if isinstance(mask[0] , PIL.Image.Image ): _lowercase , _lowercase: Optional[Any] = mask[0].size _lowercase , _lowercase: int = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _lowercase: str = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] _lowercase: List[str] = np.concatenate(SCREAMING_SNAKE_CASE_ , axis=0 ) _lowercase: str = mask.astype(np.floataa ) / 255.0 _lowercase: Optional[Any] = 0 _lowercase: int = 1 _lowercase: int = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) elif isinstance(mask[0] , torch.Tensor ): _lowercase: Optional[Any] = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 ) return mask class __magic_name__ ( SCREAMING_SNAKE_CASE__ ): UpperCamelCase_ = 42 UpperCamelCase_ = 42 def __init__( self , A_ , A_ ) -> Dict: """simple docstring""" super().__init__() self.register_modules(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) @torch.no_grad() def __call__( self , A_ , A_ , A_ = 250 , A_ = 0.0 , A_ = 10 , A_ = 10 , A_ = None , A_ = "pil" , A_ = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" _lowercase: List[Any] = image _lowercase: Any = _preprocess_image(_lowerCAmelCase ) _lowercase: List[str] = original_image.to(device=self.device , dtype=self.unet.dtype ) _lowercase: Tuple = _preprocess_mask(_lowerCAmelCase ) _lowercase: Tuple = mask_image.to(device=self.device , dtype=self.unet.dtype ) _lowercase: Optional[Any] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(_lowerCAmelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) _lowercase: Tuple = original_image.shape _lowercase: Optional[Any] = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , self.device ) _lowercase: int = eta _lowercase: Any = self.scheduler.timesteps[0] + 1 _lowercase: Tuple = generator[0] if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual _lowercase: List[Any] = self.unet(_lowerCAmelCase , _lowerCAmelCase ).sample # compute previous image: x_t -> x_t-1 _lowercase: Optional[int] = self.scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample else: # compute the reverse: x_t-1 -> x_t _lowercase: str = self.scheduler.undo_step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowercase: Optional[int] = t _lowercase: List[str] = (image / 2 + 0.5).clamp(0 , 1 ) _lowercase: Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowercase: Any = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCAmelCase )
353
'''simple docstring''' import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" _SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" _SCREAMING_SNAKE_CASE = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def _snake_case ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: _lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in predictions] ) _lowerCAmelCase = np.array([re.sub(_lowerCAmelCase , "" , _lowerCAmelCase ) for x in references] ) else: _lowerCAmelCase = np.asarray(_lowerCAmelCase ) _lowerCAmelCase = np.asarray(_lowerCAmelCase ) if ignore_case: _lowerCAmelCase = np.char.lower(_lowerCAmelCase ) _lowerCAmelCase = np.char.lower(_lowerCAmelCase ) if ignore_punctuation: _lowerCAmelCase = string.punctuation.maketrans("" , "" , string.punctuation ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) if ignore_numbers: _lowerCAmelCase = string.digits.maketrans("" , "" , string.digits ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _lowerCAmelCase = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _lowerCAmelCase = predictions == references return {"exact_match": np.mean(_lowerCAmelCase ) * 100}
18
0
"""simple docstring""" import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class snake_case__ ( snake_case_, snake_case_, unittest.TestCase ): _snake_case : Optional[Any] = AutoencoderKL _snake_case : List[Any] = "sample" _snake_case : Tuple = 1E-2 @property def a__ ( self ): __a = 4 __a = 3 __a = (32, 32) __a = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCAmelCase ) return {"sample": image} @property def a__ ( self ): return (3, 32, 32) @property def a__ ( self ): return (3, 32, 32) def a__ ( self ): __a = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } __a = self.dummy_input return init_dict, inputs_dict def a__ ( self ): pass def a__ ( self ): pass @unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" ) def a__ ( self ): # enable deterministic behavior for gradient checkpointing __a , __a = self.prepare_init_args_and_inputs_for_common() __a = self.model_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) assert not model.is_gradient_checkpointing and model.training __a = model(**_lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __a = torch.randn_like(_lowerCAmelCase ) __a = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __a = self.model_class(**_lowerCAmelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_lowerCAmelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __a = model_a(**_lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __a = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) __a = dict(model.named_parameters() ) __a = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def a__ ( self ): __a , __a = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(_lowerCAmelCase ) __a = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def a__ ( self ): __a = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) __a = model.to(_lowerCAmelCase ) model.eval() if torch_device == "mps": __a = torch.manual_seed(0 ) else: __a = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) __a = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __a = image.to(_lowerCAmelCase ) with torch.no_grad(): __a = model(_lowerCAmelCase , sample_posterior=_lowerCAmelCase , generator=_lowerCAmelCase ).sample __a = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __a = torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ] ) elif torch_device == "cpu": __a = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: __a = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(_lowerCAmelCase , _lowerCAmelCase , rtol=1E-2 ) ) @slow class snake_case__ ( unittest.TestCase ): def a__ ( self , lowerCamelCase , lowerCamelCase ): return F"gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy" def a__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self , lowerCamelCase=0 , lowerCamelCase=(4, 3, 512, 512) , lowerCamelCase=False ): __a = torch.floataa if fpaa else torch.floataa __a = torch.from_numpy(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) ).to(_lowerCAmelCase ).to(_lowerCAmelCase ) return image def a__ ( self , lowerCamelCase="CompVis/stable-diffusion-v1-4" , lowerCamelCase=False ): __a = "fp16" if fpaa else None __a = torch.floataa if fpaa else torch.floataa __a = AutoencoderKL.from_pretrained( _lowerCAmelCase , subfolder="vae" , torch_dtype=_lowerCAmelCase , revision=_lowerCAmelCase , ) model.to(_lowerCAmelCase ).eval() return model def a__ ( self , lowerCamelCase=0 ): if torch_device == "mps": return torch.manual_seed(_lowerCAmelCase ) return torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = self.get_sd_vae_model() __a = self.get_sd_image(_lowerCAmelCase ) __a = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): __a = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def a__ ( self , lowerCamelCase , lowerCamelCase ): __a = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) __a = self.get_sd_image(_lowerCAmelCase , fpaa=_lowerCAmelCase ) __a = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): __a = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample assert sample.shape == image.shape __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = self.get_sd_vae_model() __a = self.get_sd_image(_lowerCAmelCase ) with torch.no_grad(): __a = model(_lowerCAmelCase ).sample assert sample.shape == image.shape __a = sample[-1, -2:, -2:, :2].flatten().float().cpu() __a = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def a__ ( self , lowerCamelCase , lowerCamelCase ): __a = self.get_sd_vae_model() __a = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().cpu() __a = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def a__ ( self , lowerCamelCase , lowerCamelCase ): __a = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) __a = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase ) with torch.no_grad(): __a = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] __a = sample[-1, -2:, :2, -2:].flatten().float().cpu() __a = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def a__ ( self , lowerCamelCase ): __a = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) __a = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase ) with torch.no_grad(): __a = model.decode(_lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def a__ ( self , lowerCamelCase ): __a = self.get_sd_vae_model() __a = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): __a = model.decode(_lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __a = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def a__ ( self , lowerCamelCase , lowerCamelCase ): __a = self.get_sd_vae_model() __a = self.get_sd_image(_lowerCAmelCase ) __a = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): __a = model.encode(_lowerCAmelCase ).latent_dist __a = dist.sample(generator=_lowerCAmelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __a = sample[0, -1, -3:, -3:].flatten().cpu() __a = torch.tensor(_lowerCAmelCase ) __a = 3E-3 if torch_device != "mps" else 1E-2 assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=_lowerCAmelCase )
528
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> None: warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
18
0
import math def UpperCAmelCase_ ( UpperCAmelCase__ ): return math.sqrt(SCREAMING_SNAKE_CASE_ ) * math.sqrt(SCREAMING_SNAKE_CASE_ ) == num def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = 0 lowercase_ = n while left <= right: lowercase_ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowercase_ = mid - 1 else: lowercase_ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
412
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = "falcon" __lowerCamelCase : List[str] = ["past_key_values"] def __init__( self , _lowerCAmelCase=65024 , _lowerCAmelCase=4544 , _lowerCAmelCase=32 , _lowerCAmelCase=71 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=11 , _lowerCAmelCase=11 , **_lowerCAmelCase , ) -> Union[str, Any]: _lowerCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _lowerCAmelCase = kwargs.pop("n_embed" , _lowerCAmelCase ) _lowerCAmelCase = hidden_size if n_embed is None else n_embed _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = use_cache _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id _lowerCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _lowerCAmelCase = alibi _lowerCAmelCase = new_decoder_architecture _lowerCAmelCase = multi_query # Ignored when new_decoder_architecture is True _lowerCAmelCase = parallel_attn _lowerCAmelCase = bias super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) @property def _snake_case ( self ) -> Optional[Any]: return self.hidden_size // self.num_attention_heads @property def _snake_case ( self ) -> Optional[Any]: return not self.alibi
18
0
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCamelCase = """\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n""" def _a ( _snake_case , _snake_case , _snake_case=8 ): """simple docstring""" UpperCAmelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase__ ( snake_case ): def __init__( self ,A ,A ,A ,): super().__init__() self.register_modules( unet=_lowerCAmelCase ,scheduler=_lowerCAmelCase ,movq=_lowerCAmelCase ,) UpperCAmelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _UpperCamelCase ( self ,A ,A ,A ,A ,A ,A ): if latents is None: UpperCAmelCase = randn_tensor(_lowerCAmelCase ,generator=_lowerCAmelCase ,device=_lowerCAmelCase ,dtype=_lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) UpperCAmelCase = latents.to(_lowerCAmelCase ) UpperCAmelCase = latents * scheduler.init_noise_sigma return latents def _UpperCamelCase ( self ,A=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) UpperCAmelCase = torch.device(F'''cuda:{gpu_id}''' ) UpperCAmelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowerCAmelCase ,_lowerCAmelCase ) def _UpperCamelCase ( self ,A=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" ,"""0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) UpperCAmelCase = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("""cpu""" ,silence_dtype_warnings=_lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase , UpperCAmelCase = cpu_offload_with_hook(_lowerCAmelCase ,_lowerCAmelCase ,prev_module_hook=_lowerCAmelCase ) # We'll offload the last model manually. UpperCAmelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _UpperCamelCase ( self ): if not hasattr(self.unet ,"""_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(_lowerCAmelCase ,"""_hf_hook""" ) and hasattr(module._hf_hook ,"""execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowerCAmelCase ) def __call__( self ,A ,A ,A = 512 ,A = 512 ,A = 100 ,A = 4.0 ,A = 1 ,A = None ,A = None ,A = "pil" ,A = True ,): UpperCAmelCase = self._execution_device UpperCAmelCase = guidance_scale > 1.0 if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): UpperCAmelCase = torch.cat(_lowerCAmelCase ,dim=0 ) UpperCAmelCase = image_embeds.shape[0] * num_images_per_prompt if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): UpperCAmelCase = torch.cat(_lowerCAmelCase ,dim=0 ) if do_classifier_free_guidance: UpperCAmelCase = image_embeds.repeat_interleave(_lowerCAmelCase ,dim=0 ) UpperCAmelCase = negative_image_embeds.repeat_interleave(_lowerCAmelCase ,dim=0 ) UpperCAmelCase = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=_lowerCAmelCase ) self.scheduler.set_timesteps(_lowerCAmelCase ,device=_lowerCAmelCase ) UpperCAmelCase = self.scheduler.timesteps UpperCAmelCase = self.unet.config.in_channels UpperCAmelCase , UpperCAmelCase = downscale_height_and_width(_lowerCAmelCase ,_lowerCAmelCase ,self.movq_scale_factor ) # create initial latent UpperCAmelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) ,image_embeds.dtype ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,self.scheduler ,) for i, t in enumerate(self.progress_bar(_lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase = {"""image_embeds""": image_embeds} UpperCAmelCase = self.unet( sample=_lowerCAmelCase ,timestep=_lowerCAmelCase ,encoder_hidden_states=_lowerCAmelCase ,added_cond_kwargs=_lowerCAmelCase ,return_dict=_lowerCAmelCase ,)[0] if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase = noise_pred.split(latents.shape[1] ,dim=1 ) UpperCAmelCase , UpperCAmelCase = noise_pred.chunk(2 ) UpperCAmelCase , UpperCAmelCase = variance_pred.chunk(2 ) UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,"""variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase , UpperCAmelCase = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase = self.scheduler.step( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,generator=_lowerCAmelCase ,)[0] # post-processing UpperCAmelCase = self.movq.decode(_lowerCAmelCase ,force_not_quantize=_lowerCAmelCase )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: UpperCAmelCase = image * 0.5 + 0.5 UpperCAmelCase = image.clamp(0 ,1 ) UpperCAmelCase = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCAmelCase )
341
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/deit-base-distilled-patch16-224": ( "https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Optional[int] = "deit" def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=16 , **_lowerCAmelCase , ) -> Dict: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = qkv_bias _lowerCAmelCase = encoder_stride class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self ) -> float: return 1E-4
18
0
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) # TODO Update this __magic_name__ = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "esm" def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1_026 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(pad_token_id=_lowerCAmelCase , mask_token_id=_lowerCAmelCase , **_lowerCAmelCase ) __snake_case : int = vocab_size __snake_case : Dict = hidden_size __snake_case : List[Any] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Tuple = hidden_dropout_prob __snake_case : str = attention_probs_dropout_prob __snake_case : Dict = max_position_embeddings __snake_case : List[Any] = initializer_range __snake_case : Optional[int] = layer_norm_eps __snake_case : Optional[int] = position_embedding_type __snake_case : List[str] = use_cache __snake_case : Dict = emb_layer_norm_before __snake_case : Any = token_dropout __snake_case : Dict = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) __snake_case : Optional[Any] = EsmFoldConfig() elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): __snake_case : List[str] = EsmFoldConfig(**_lowerCAmelCase ) __snake_case : Any = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) __snake_case : int = get_default_vocab_list() else: __snake_case : Optional[int] = vocab_list else: __snake_case : str = None __snake_case : Optional[int] = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , _lowerCAmelCase ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def lowercase_ ( self ): __snake_case : Dict = super().to_dict() if isinstance(self.esmfold_config , _lowerCAmelCase ): __snake_case : int = self.esmfold_config.to_dict() return output @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = 0 __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = 1_2_8 __UpperCAmelCase = None def lowercase_ ( self ): if self.trunk is None: __snake_case : int = TrunkConfig() elif isinstance(self.trunk , _lowerCAmelCase ): __snake_case : Tuple = TrunkConfig(**self.trunk ) def lowercase_ ( self ): __snake_case : Optional[int] = asdict(self ) __snake_case : Tuple = self.trunk.to_dict() return output @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 4_8 __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = 1_2_8 __UpperCAmelCase = 3_2 __UpperCAmelCase = 3_2 __UpperCAmelCase = 3_2 __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = False __UpperCAmelCase = 4 __UpperCAmelCase = 1_2_8 __UpperCAmelCase = None def lowercase_ ( self ): if self.structure_module is None: __snake_case : int = StructureModuleConfig() elif isinstance(self.structure_module , _lowerCAmelCase ): __snake_case : Optional[int] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) __snake_case : Any = self.sequence_state_dim // self.sequence_head_width __snake_case : Dict = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def lowercase_ ( self ): __snake_case : Tuple = asdict(self ) __snake_case : Optional[Any] = self.structure_module.to_dict() return output @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 3_8_4 __UpperCAmelCase = 1_2_8 __UpperCAmelCase = 1_6 __UpperCAmelCase = 1_2_8 __UpperCAmelCase = 1_2 __UpperCAmelCase = 4 __UpperCAmelCase = 8 __UpperCAmelCase = 0.1 __UpperCAmelCase = 8 __UpperCAmelCase = 1 __UpperCAmelCase = 2 __UpperCAmelCase = 7 __UpperCAmelCase = 1_0 __UpperCAmelCase = 1E-8 __UpperCAmelCase = 1E5 def lowercase_ ( self ): return asdict(self ) def UpperCAmelCase__( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
576
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
18
0
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCamelCase__ ( __snake_case ) -> int: """simple docstring""" _UpperCamelCase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__snake_case, __snake_case ) def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase , _UpperCamelCase = emb.weight.shape _UpperCamelCase = nn.Linear(__snake_case, __snake_case, bias=__snake_case ) _UpperCamelCase = emb.weight.data return lin_layer def lowerCamelCase__ ( __snake_case, __snake_case=None ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = {} for old_key in state_dict.keys(): _UpperCamelCase = old_key if "moe_layer.experts." in key: if expert_idx is not None: _UpperCamelCase = key.replace('''moe_layer.experts.0''', F'''ffn.experts.expert_{expert_idx}''' ) else: _UpperCamelCase = key.replace('''moe_layer.experts.''', '''ffn.experts.expert_''' ) if "gate" in key: _UpperCamelCase = key.replace('''.moe_layer.gate.wg''', '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: _UpperCamelCase = key.replace('''.fc2.''', '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: _UpperCamelCase = key.replace('''.fc1.''', '''.ffn.fc1.''' ) if ".encoder_attn." in key: _UpperCamelCase = key.replace('''.encoder_attn.''', '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: _UpperCamelCase = key.replace('''encoder_attn_layer_norm''', '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: _UpperCamelCase = key.replace('''final_layer_norm''', '''ff_layer_norm''' ) _UpperCamelCase = state_dict[old_key] return new_dict def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case = WEIGHTS_NAME ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = 0 os.makedirs(__snake_case, exist_ok=__snake_case ) for expert in range(__snake_case ): _UpperCamelCase = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(__snake_case ): _UpperCamelCase = torch.load(__snake_case )['''model'''] remove_ignore_keys_(__snake_case ) _UpperCamelCase = rename_fairseq_keys(__snake_case, __snake_case ) _UpperCamelCase = os.path.join( __snake_case, weights_name.replace('''.bin''', F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) torch.save(__snake_case, __snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__snake_case )[0]].dtype ) # Add the last block _UpperCamelCase = os.path.join(__snake_case, weights_name.replace('''.bin''', F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) _UpperCamelCase = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(__snake_case ) _UpperCamelCase = rename_fairseq_keys(__snake_case, __snake_case ) _UpperCamelCase = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__snake_case ) == 1: _UpperCamelCase = os.path.join(__snake_case, __snake_case ) torch.save(__snake_case, __snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__snake_case, __snake_case ) # Otherwise, let's build the index _UpperCamelCase = {} for idx, shard in enumerate(__snake_case ): _UpperCamelCase = weights_name.replace('''.bin''', F'''-{idx+1:05d}-of-{len(__snake_case ):05d}.bin''' ) _UpperCamelCase = os.path.join(__snake_case, weights_name.replace('''.bin''', F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__snake_case, os.path.join(__snake_case, __snake_case ) ) for key in shard: _UpperCamelCase = shard_file # Add the metadata _UpperCamelCase = {'''total_size''': total_size} _UpperCamelCase = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(__snake_case, __snake_case ), '''w''', encoding='''utf-8''' ) as f: _UpperCamelCase = json.dumps(__snake_case, indent=2, sort_keys=__snake_case ) + '''\n''' f.write(__snake_case ) return metadata, index if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) _a = parser.parse_args() _a , _a = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _a = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _a = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
19
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x2_0000 and cp <= 0x2_A6DF) # or (cp >= 0x2_A700 and cp <= 0x2_B73F) # or (cp >= 0x2_B740 and cp <= 0x2_B81F) # or (cp >= 0x2_B820 and cp <= 0x2_CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2_F800 and cp <= 0x2_FA1F) # ): # return True return False def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" for char in word: _UpperCamelCase = ord(__snake_case ) if not _is_chinese_char(__snake_case ): return 0 return 1 def lowerCamelCase__ ( __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = set() for token in tokens: _UpperCamelCase = len(__snake_case ) > 1 and is_chinese(__snake_case ) if chinese_word: word_set.add(__snake_case ) _UpperCamelCase = list(__snake_case ) return word_list def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" if not chinese_word_set: return bert_tokens _UpperCamelCase = max([len(__snake_case ) for w in chinese_word_set] ) _UpperCamelCase = bert_tokens _UpperCamelCase , _UpperCamelCase = 0, len(__snake_case ) while start < end: _UpperCamelCase = True if is_chinese(bert_word[start] ): _UpperCamelCase = min(end - start, __snake_case ) for i in range(__snake_case, 1, -1 ): _UpperCamelCase = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _UpperCamelCase = '''##''' + bert_word[j] _UpperCamelCase = start + i _UpperCamelCase = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws _UpperCamelCase = [get_chinese_word(__snake_case ) for r in res] ltp_res.extend(__snake_case ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=__snake_case, truncation=__snake_case, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for input_ids, chinese_word in zip(__snake_case, __snake_case ): _UpperCamelCase = [] for id in input_ids: _UpperCamelCase = bert_tokenizer._convert_id_to_token(__snake_case ) input_tokens.append(__snake_case ) _UpperCamelCase = add_sub_symbol(__snake_case, __snake_case ) _UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__snake_case ): if token[:2] == "##": _UpperCamelCase = token[2:] # save chinese tokens' pos if len(__snake_case ) == 1 and _is_chinese_char(ord(__snake_case ) ): ref_id.append(__snake_case ) ref_ids.append(__snake_case ) assert len(__snake_case ) == len(__snake_case ) return ref_ids def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _UpperCamelCase = f.readlines() _UpperCamelCase = [line.strip() for line in data if len(__snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _UpperCamelCase = LTP(args.ltp ) # faster in GPU device _UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) _UpperCamelCase = prepare_ref(__snake_case, __snake_case, __snake_case ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _UpperCamelCase = [json.dumps(__snake_case ) + '''\n''' for ref in ref_ids] f.writelines(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) _a = parser.parse_args() main(args)
19
1
"""simple docstring""" def lowerCamelCase__ ( __snake_case ) -> int: """simple docstring""" _UpperCamelCase = [1] _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0, 0, 0 _UpperCamelCase = ugly_nums[ia] * 2 _UpperCamelCase = ugly_nums[ia] * 3 _UpperCamelCase = ugly_nums[ia] * 5 for _ in range(1, __snake_case ): _UpperCamelCase = min(__snake_case, __snake_case, __snake_case ) ugly_nums.append(__snake_case ) if next_num == next_a: ia += 1 _UpperCamelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 _UpperCamelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 _UpperCamelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"""{ugly_numbers(200) = }""")
19
"""simple docstring""" import heapq def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" _UpperCamelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__snake_case, [-1 * len(__snake_case ), (key, value)] ) # chosen_vertices = set of chosen vertices _UpperCamelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _UpperCamelCase = heapq.heappop(__snake_case )[1][0] chosen_vertices.add(__snake_case ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _UpperCamelCase = elem[1][1].index(__snake_case ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__snake_case ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _a = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
19
1
"""simple docstring""" import math def lowerCamelCase__ ( __snake_case ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(__snake_case ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase__ ( __snake_case = 1_00_01 ) -> int: """simple docstring""" try: _UpperCamelCase = int(__snake_case ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) _UpperCamelCase = [] _UpperCamelCase = 2 while len(__snake_case ) < nth: if is_prime(__snake_case ): primes.append(__snake_case ) num += 1 else: num += 1 return primes[len(__snake_case ) - 1] if __name__ == "__main__": print(F"""{solution() = }""")
19
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _UpperCamelCase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj ) assert isinstance(_test_patching.os.path, _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" assert _test_patching.open is open _UpperCamelCase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, '''open''', __snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching, '''pandas.read_csv''', __snake_case ): pass def lowerCamelCase__ ( ) -> Dict: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, '''len''', __snake_case ) is None with patch_submodule(_test_patching, '''len''', __snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_start_and_stop_mock__''' _UpperCamelCase = patch_submodule(_test_patching, '''open''', __snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _UpperCamelCase = '''__test_patch_submodule_successive_join__''' _UpperCamelCase = '''__test_patch_submodule_successive_dirname__''' _UpperCamelCase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> str: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching, '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''', __snake_case ): pass with patch_submodule(_test_patching, '''os.__attribute_that_doesn_exist__''', __snake_case ): pass
19
1
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = LxmertConfig.from_json_file(__snake_case ) print(F'''Building PyTorch model from configuration: {config}''' ) _UpperCamelCase = LxmertForPreTraining(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(__snake_case, __snake_case, __snake_case ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict(), __snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _a = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
19
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = original_name.split('''.''' )[0] _UpperCamelCase = key.split('''.''' ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 2] ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 1] ) _UpperCamelCase = orig_block_num - offset _UpperCamelCase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''', F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = OrderedDict() _UpperCamelCase , _UpperCamelCase = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): _UpperCamelCase = key.replace('''network''', '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 _UpperCamelCase = key[: key.find('''proj''' )] _UpperCamelCase = key.replace(__snake_case, F'''patch_embeddings.{total_embed_found}.''' ) _UpperCamelCase = key.replace('''proj''', '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: _UpperCamelCase = '''poolformer.encoder.''' + key if "mlp.fc1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc1''', '''output.conv1''' ) if "mlp.fc2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc2''', '''output.conv2''' ) if "norm1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm1''', '''before_norm''' ) if "norm2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm2''', '''after_norm''' ) if "layer_scale_1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_1''', '''layer_scale_1''' ) if "layer_scale_2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_2''', '''layer_scale_2''' ) if "head" in key: _UpperCamelCase = key.replace('''head''', '''classifier''' ) _UpperCamelCase = value return new_state_dict def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase = Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return image @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = PoolFormerConfig() # set attributes based on model_name _UpperCamelCase = '''huggingface/label-files''' _UpperCamelCase = model_name[-3:] _UpperCamelCase = 10_00 _UpperCamelCase = '''imagenet-1k-id2label.json''' _UpperCamelCase = (1, 10_00) # set config attributes _UpperCamelCase = json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type='''dataset''' ), '''r''' ) ) _UpperCamelCase = {int(__snake_case ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} if size == "s12": _UpperCamelCase = [2, 2, 6, 2] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s24": _UpperCamelCase = [4, 4, 12, 4] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.9 elif size == "m36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 elif size == "m48": _UpperCamelCase = [8, 8, 24, 8] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) # Prepare image _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__snake_case, return_tensors='''pt''' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict _UpperCamelCase = torch.load(__snake_case, map_location=torch.device('''cpu''' ) ) # rename keys _UpperCamelCase = rename_keys(__snake_case ) # create HuggingFace model and load state dict _UpperCamelCase = PoolFormerForImageClassification(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # Define image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) _UpperCamelCase = image_processor(images=prepare_img(), return_tensors='''pt''' ).pixel_values # forward pass _UpperCamelCase = model(__snake_case ) _UpperCamelCase = outputs.logits # define expected logit slices for different models if size == "s12": _UpperCamelCase = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": _UpperCamelCase = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": _UpperCamelCase = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": _UpperCamelCase = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": _UpperCamelCase = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3], __snake_case, atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _a = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
19
1
"""simple docstring""" from itertools import product def lowerCamelCase__ ( __snake_case, __snake_case ) -> list[int]: """simple docstring""" _UpperCamelCase = sides_number _UpperCamelCase = max_face_number * dice_number _UpperCamelCase = [0] * (max_total + 1) _UpperCamelCase = 1 _UpperCamelCase = range(__snake_case, max_face_number + 1 ) for dice_numbers in product(__snake_case, repeat=__snake_case ): _UpperCamelCase = sum(__snake_case ) totals_frequencies[total] += 1 return totals_frequencies def lowerCamelCase__ ( ) -> float: """simple docstring""" _UpperCamelCase = total_frequency_distribution( sides_number=4, dice_number=9 ) _UpperCamelCase = total_frequency_distribution( sides_number=6, dice_number=6 ) _UpperCamelCase = 0 _UpperCamelCase = 9 _UpperCamelCase = 4 * 9 _UpperCamelCase = 6 for peter_total in range(__snake_case, max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _UpperCamelCase = (4**9) * (6**6) _UpperCamelCase = peter_wins_count / total_games_number _UpperCamelCase = round(__snake_case, ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
19
"""simple docstring""" import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class _UpperCAmelCase( lowerCamelCase ): lowercase__ = (DPMSolverSDEScheduler,) lowercase__ = 10 def UpperCAmelCase ( self , **__a) -> int: '''simple docstring''' _UpperCamelCase = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**__a) return config def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02]): self.check_over_configs(beta_start=__a , beta_end=__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a) def UpperCAmelCase ( self) -> str: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''') _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a , use_karras_sigmas=__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2
19
1
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase__ ( __snake_case, __snake_case ) -> Tuple: """simple docstring""" assert isinstance(__snake_case, __snake_case ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''', [False, True] ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = tmp_path / '''cache''' _UpperCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCamelCase = JsonDatasetReader(__snake_case, cache_dir=__snake_case, keep_in_memory=__snake_case ).read() _check_json_dataset(__snake_case, __snake_case ) @pytest.mark.parametrize( '''features''', [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ], ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = tmp_path / '''cache''' _UpperCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _UpperCamelCase = features.copy() if features else default_expected_features _UpperCamelCase = ( Features({feature: Value(__snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCamelCase = JsonDatasetReader(__snake_case, features=__snake_case, cache_dir=__snake_case ).read() _check_json_dataset(__snake_case, __snake_case ) @pytest.mark.parametrize( '''features''', [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ], ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = tmp_path / '''cache''' _UpperCamelCase = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} _UpperCamelCase = features.copy() if features else default_expected_features _UpperCamelCase = ( Features({feature: Value(__snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCamelCase = JsonDatasetReader(__snake_case, features=__snake_case, cache_dir=__snake_case ).read() assert isinstance(__snake_case, __snake_case ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} _UpperCamelCase = features.copy() _UpperCamelCase = ( Features({feature: Value(__snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCamelCase = tmp_path / '''cache''' _UpperCamelCase = JsonDatasetReader(__snake_case, features=__snake_case, cache_dir=__snake_case ).read() assert isinstance(__snake_case, __snake_case ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''', [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = tmp_path / '''cache''' _UpperCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _UpperCamelCase = JsonDatasetReader(__snake_case, cache_dir=__snake_case, split=__snake_case ).read() _check_json_dataset(__snake_case, __snake_case ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''', [str, list] ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Optional[Any]: """simple docstring""" if issubclass(__snake_case, __snake_case ): _UpperCamelCase = jsonl_path elif issubclass(__snake_case, __snake_case ): _UpperCamelCase = [jsonl_path] _UpperCamelCase = tmp_path / '''cache''' _UpperCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _UpperCamelCase = JsonDatasetReader(__snake_case, cache_dir=__snake_case ).read() _check_json_dataset(__snake_case, __snake_case ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case=("train",) ) -> str: """simple docstring""" assert isinstance(__snake_case, __snake_case ) for split in splits: _UpperCamelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''', [False, True] ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = tmp_path / '''cache''' _UpperCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCamelCase = JsonDatasetReader({'''train''': jsonl_path}, cache_dir=__snake_case, keep_in_memory=__snake_case ).read() _check_json_datasetdict(__snake_case, __snake_case ) @pytest.mark.parametrize( '''features''', [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ], ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = tmp_path / '''cache''' _UpperCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _UpperCamelCase = features.copy() if features else default_expected_features _UpperCamelCase = ( Features({feature: Value(__snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCamelCase = JsonDatasetReader({'''train''': jsonl_path}, features=__snake_case, cache_dir=__snake_case ).read() _check_json_datasetdict(__snake_case, __snake_case ) @pytest.mark.parametrize('''split''', [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" if split: _UpperCamelCase = {split: jsonl_path} else: _UpperCamelCase = '''train''' _UpperCamelCase = {'''train''': jsonl_path, '''test''': jsonl_path} _UpperCamelCase = tmp_path / '''cache''' _UpperCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _UpperCamelCase = JsonDatasetReader(__snake_case, cache_dir=__snake_case ).read() _check_json_datasetdict(__snake_case, __snake_case, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" return json.load(__snake_case ) def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" return [json.loads(__snake_case ) for line in buffer] class _UpperCAmelCase: @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)]) def UpperCAmelCase ( self , __a , __a , __a) -> Dict: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(__a , __a , lines=__a).write() buffer.seek(0) _UpperCamelCase = load_json_function(__a) assert isinstance(__a , __a) assert isinstance(exported_content[0] , __a) assert len(__a) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789'''), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def UpperCAmelCase ( self , __a , __a , __a , __a , __a) -> List[Any]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(__a , __a , lines=__a , orient=__a).write() buffer.seek(0) _UpperCamelCase = load_json(__a) assert isinstance(__a , __a) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__a , '''keys''') and not hasattr(exported_content[0] , '''keys''') if len_at: assert len(exported_content[len_at]) == 10 else: assert len(__a) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)]) def UpperCAmelCase ( self , __a , __a , __a) -> int: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(__a , __a , lines=__a , num_proc=2).write() buffer.seek(0) _UpperCamelCase = load_json_function(__a) assert isinstance(__a , __a) assert isinstance(exported_content[0] , __a) assert len(__a) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789'''), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def UpperCAmelCase ( self , __a , __a , __a , __a , __a) -> Optional[int]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(__a , __a , lines=__a , orient=__a , num_proc=2).write() buffer.seek(0) _UpperCamelCase = load_json(__a) assert isinstance(__a , __a) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__a , '''keys''') and not hasattr(exported_content[0] , '''keys''') if len_at: assert len(exported_content[len_at]) == 10 else: assert len(__a) == 10 def UpperCAmelCase ( self , __a) -> List[Any]: '''simple docstring''' with pytest.raises(__a): with io.BytesIO() as buffer: JsonDatasetWriter(__a , __a , num_proc=0) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')]) def UpperCAmelCase ( self , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = tmp_path_factory.mktemp('''data''') / F'''test.json.{extension}''' _UpperCamelCase = str(shared_datadir / F'''test_file.json.{extension}''') JsonDatasetWriter(__a , __a , compression=__a).write() with fsspec.open(__a , '''rb''' , compression='''infer''') as f: _UpperCamelCase = f.read() with fsspec.open(__a , '''rb''' , compression='''infer''') as f: _UpperCamelCase = f.read() assert exported_content == original_content
19
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['pixel_values'] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BICUBIC , __a = True , __a = True , __a = 1 / 2_55 , __a = None , __a = True , __a = None , __a = None , **__a , ) -> None: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a , default_to_square=__a , param_name='''crop_size''') _UpperCamelCase = do_resize _UpperCamelCase = do_rescale _UpperCamelCase = do_normalize _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = rescale_factor _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BILINEAR , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "shortest_edge" in size: _UpperCamelCase = get_resize_output_image_size(__a , size=size['''shortest_edge'''] , default_to_square=__a) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''') return resize(__a , size=__a , resample=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''') return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a) -> np.ndarray: '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> BatchFeature: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(__a , param_name='''crop_size''' , default_to_square=__a) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(__a) if not is_batched(__a): _UpperCamelCase = [images] if not valid_images(__a): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(__a) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=__a , size=__a , resample=__a) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=__a , size=__a) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=__a , scale=__a) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=__a , mean=__a , std=__a) for image in images] _UpperCamelCase = [to_channel_dimension_format(__a , __a) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=__a , tensor_type=__a)
19
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """BridgeTower/bridgetower-base""": """https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json""", """BridgeTower/bridgetower-base-itm-mlm""": ( """https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json""" ), } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'bridgetower_vision_model' def __init__( self , __a=7_68 , __a=12 , __a=3 , __a=16 , __a=2_88 , __a=1 , __a=1e-05 , __a=False , __a=True , __a=False , **__a , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_channels _UpperCamelCase = patch_size _UpperCamelCase = image_size _UpperCamelCase = initializer_factor _UpperCamelCase = layer_norm_eps _UpperCamelCase = stop_gradient _UpperCamelCase = share_layernorm _UpperCamelCase = remove_last_layer @classmethod def UpperCAmelCase ( cls , __a , **__a) -> "PretrainedConfig": '''simple docstring''' _UpperCamelCase , _UpperCamelCase = cls.get_config_dict(__a , **__a) if config_dict.get('''model_type''') == "bridgetower": _UpperCamelCase = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(__a , **__a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'bridgetower_text_model' def __init__( self , __a=5_02_65 , __a=7_68 , __a=12 , __a=12 , __a=1 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_14 , __a=1 , __a=1e-05 , __a=1 , __a=0 , __a=2 , __a="absolute" , __a=True , **__a , ) -> Any: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = initializer_factor _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = use_cache _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id _UpperCamelCase = eos_token_id @classmethod def UpperCAmelCase ( cls , __a , **__a) -> "PretrainedConfig": '''simple docstring''' _UpperCamelCase , _UpperCamelCase = cls.get_config_dict(__a , **__a) if config_dict.get('''model_type''') == "bridgetower": _UpperCamelCase = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(__a , **__a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'bridgetower' def __init__( self , __a=True , __a="gelu" , __a=7_68 , __a=1 , __a=1e-05 , __a=False , __a="add" , __a=12 , __a=6 , __a=False , __a=False , __a=None , __a=None , **__a , ) -> Optional[int]: '''simple docstring''' # TODO: remove this once the Hub files are updated. _UpperCamelCase = kwargs.pop('''text_config_dict''' , __a) _UpperCamelCase = kwargs.pop('''vision_config_dict''' , __a) super().__init__(**__a) _UpperCamelCase = share_cross_modal_transformer_layers _UpperCamelCase = hidden_act _UpperCamelCase = hidden_size _UpperCamelCase = initializer_factor _UpperCamelCase = layer_norm_eps _UpperCamelCase = share_link_tower_layers _UpperCamelCase = link_tower_type _UpperCamelCase = num_attention_heads _UpperCamelCase = num_hidden_layers _UpperCamelCase = tie_word_embeddings _UpperCamelCase = init_layernorm_from_vision_encoder if text_config is None: _UpperCamelCase = {} logger.info('''`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.''') if vision_config is None: _UpperCamelCase = {} logger.info('''`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.''') _UpperCamelCase = BridgeTowerTextConfig(**__a) _UpperCamelCase = BridgeTowerVisionConfig(**__a) @classmethod def UpperCAmelCase ( cls , __a , __a , **__a) -> str: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) _UpperCamelCase = self.text_config.to_dict() _UpperCamelCase = self.vision_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
19
"""simple docstring""" # Imports import numpy as np class _UpperCAmelCase: def __init__( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) def UpperCAmelCase ( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' if red is not None: _UpperCamelCase = red if green is not None: _UpperCamelCase = green if blue is not None: _UpperCamelCase = blue if red_edge is not None: _UpperCamelCase = red_edge if nir is not None: _UpperCamelCase = nir return True def UpperCAmelCase ( self , __a="" , __a=None , __a=None , __a=None , __a=None , __a=None) -> List[str]: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) _UpperCamelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''') return False def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self) -> Any: '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self , __a=0.08 , __a=1.22 , __a=0.03) -> Optional[Any]: '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir / self.green) - 1 def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.red - self.blue) / self.red def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir - self.green def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def UpperCAmelCase ( self , __a=0.16) -> Optional[Any]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self , __a=0.5) -> Dict: '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self , __a=None , __a=None) -> Any: '''simple docstring''' return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self) -> Any: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> str: '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) _UpperCamelCase = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Any: '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
19
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _a = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" if isinstance(__snake_case, torch.Tensor ): return image elif isinstance(__snake_case, PIL.Image.Image ): _UpperCamelCase = [image] _UpperCamelCase = [trans(img.convert('''RGB''' ) ) for img in image] _UpperCamelCase = torch.stack(__snake_case ) return image class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a , __a) -> Dict: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _UpperCamelCase = DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=__a , scheduler=__a) def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''') def UpperCAmelCase ( self , __a , __a , __a) -> Dict: '''simple docstring''' # get the original timestep using init_timestep _UpperCamelCase = min(int(num_inference_steps * strength) , __a) _UpperCamelCase = max(num_inference_steps - init_timestep , 0) _UpperCamelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a=None) -> int: '''simple docstring''' if not isinstance(__a , (torch.Tensor, PIL.Image.Image, list)): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__a)}''') _UpperCamelCase = image.to(device=__a , dtype=__a) if isinstance(__a , __a) and len(__a) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(__a)}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''') _UpperCamelCase = init_latents.shape _UpperCamelCase = randn_tensor(__a , generator=__a , device=__a , dtype=__a) # get latents print('''add noise to latents at timestep''' , __a) _UpperCamelCase = self.scheduler.add_noise(__a , __a , __a) _UpperCamelCase = init_latents return latents @torch.no_grad() def __call__( self , __a = None , __a = 0.8 , __a = 1 , __a = None , __a = 0.0 , __a = 50 , __a = None , __a = "pil" , __a = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(__a) # 2. Preprocess image _UpperCamelCase = preprocess(__a) # 3. set timesteps self.scheduler.set_timesteps(__a , device=self.device) _UpperCamelCase , _UpperCamelCase = self.get_timesteps(__a , __a , self.device) _UpperCamelCase = timesteps[:1].repeat(__a) # 4. Prepare latent variables _UpperCamelCase = self.prepare_latents(__a , __a , __a , self.unet.dtype , self.device , __a) _UpperCamelCase = latents # 5. Denoising loop for t in self.progress_bar(__a): # 1. predict noise model_output _UpperCamelCase = self.unet(__a , __a).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCamelCase = self.scheduler.step( __a , __a , __a , eta=__a , use_clipped_model_output=__a , generator=__a , ).prev_sample _UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1) _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(__a) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=__a)
19
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=64 , __a=2 , __a=3 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a=[1, 16, 4, 4] , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _UpperCamelCase = (self.image_size // 32) ** 2 _UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__a , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.type_sequence_label_size _UpperCamelCase = ViTHybridForImageClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowercase__ = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''') def UpperCAmelCase ( self) -> Dict: '''simple docstring''' pass def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear)) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _UpperCamelCase = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = ViTHybridModel.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase( unittest.TestCase ): @cached_property def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( __a) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''').to(__a) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__a) # verify the logits _UpperCamelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor([-1.9090, -0.4993, -0.2389]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4)) @slow @require_accelerate def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''') _UpperCamelCase = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''') _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''') _UpperCamelCase = model(**__a) _UpperCamelCase = outputs.logits # model predicts one of the 1000 ImageNet classes _UpperCamelCase = logits.argmax(-1).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''')
19
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _a = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class _UpperCAmelCase( unittest.TestCase ): lowercase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowercase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowercase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowercase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCAmelCase ( self , __a , __a , __a) -> str: '''simple docstring''' _UpperCamelCase = ZeroShotClassificationPipeline( model=__a , tokenizer=__a , candidate_labels=['''polics''', '''health''']) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCAmelCase ( self , __a , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''') self.assertEqual(__a , {'''sequence''': ANY(__a), '''labels''': [ANY(__a)], '''scores''': [ANY(__a)]}) # No kwarg _UpperCamelCase = classifier('''Who are you voting for in 2020?''' , ['''politics''']) self.assertEqual(__a , {'''sequence''': ANY(__a), '''labels''': [ANY(__a)], '''scores''': [ANY(__a)]}) _UpperCamelCase = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''']) self.assertEqual(__a , {'''sequence''': ANY(__a), '''labels''': [ANY(__a)], '''scores''': [ANY(__a)]}) _UpperCamelCase = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''') self.assertEqual( __a , {'''sequence''': ANY(__a), '''labels''': [ANY(__a), ANY(__a)], '''scores''': [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''])) , 1.0) _UpperCamelCase = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''']) self.assertEqual( __a , {'''sequence''': ANY(__a), '''labels''': [ANY(__a), ANY(__a)], '''scores''': [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''])) , 1.0) _UpperCamelCase = classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''') self.assertEqual(__a , {'''sequence''': ANY(__a), '''labels''': [ANY(__a)], '''scores''': [ANY(__a)]}) # https://github.com/huggingface/transformers/issues/13846 _UpperCamelCase = classifier(['''I am happy'''] , ['''positive''', '''negative''']) self.assertEqual( __a , [ {'''sequence''': ANY(__a), '''labels''': [ANY(__a), ANY(__a)], '''scores''': [ANY(__a), ANY(__a)]} for i in range(1) ] , ) _UpperCamelCase = classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative''']) self.assertEqual( __a , [ {'''sequence''': ANY(__a), '''labels''': [ANY(__a), ANY(__a)], '''scores''': [ANY(__a), ANY(__a)]} for i in range(2) ] , ) with self.assertRaises(__a): classifier('''''' , candidate_labels='''politics''') with self.assertRaises(__a): classifier(__a , candidate_labels='''politics''') with self.assertRaises(__a): classifier('''Who are you voting for in 2020?''' , candidate_labels='''''') with self.assertRaises(__a): classifier('''Who are you voting for in 2020?''' , candidate_labels=__a) with self.assertRaises(__a): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , ) with self.assertRaises(__a): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=__a , ) self.run_entailment_id(__a) def UpperCAmelCase ( self , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = zero_shot_classifier.model.config _UpperCamelCase = config.labelaid _UpperCamelCase = zero_shot_classifier.entailment_id _UpperCamelCase = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1) _UpperCamelCase = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0) _UpperCamelCase = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0) _UpperCamelCase = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2) _UpperCamelCase = original_labelaid self.assertEqual(__a , zero_shot_classifier.entailment_id) @require_torch def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 1_00 , candidate_labels=['''politics''', '''public health''', '''science''']) @require_torch def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) _UpperCamelCase = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science''']) self.assertEqual( nested_simplify(__a) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } , ) @require_tf def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , ) _UpperCamelCase = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science''']) self.assertEqual( nested_simplify(__a) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } , ) @slow @require_torch def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''') _UpperCamelCase = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science''']) self.assertEqual( nested_simplify(__a) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } , ) _UpperCamelCase = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=__a , ) self.assertEqual( nested_simplify(__a) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''') _UpperCamelCase = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science''']) self.assertEqual( nested_simplify(__a) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } , ) _UpperCamelCase = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=__a , ) self.assertEqual( nested_simplify(__a) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } , )
19
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['vqvae'] def __init__( self , __a , __a , __a , __a , ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules(unet=__a , scheduler=__a , mel=__a , vqvae=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' return 50 if isinstance(self.scheduler , __a) else 10_00 @torch.no_grad() def __call__( self , __a = 1 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = 0 , __a = None , __a = None , __a=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' _UpperCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(__a) _UpperCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: _UpperCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _UpperCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__a , device=self.device , ) _UpperCamelCase = noise _UpperCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__a , __a) _UpperCamelCase = self.mel.audio_slice_to_image(__a) _UpperCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''').reshape( (input_image.height, input_image.width)) _UpperCamelCase = (input_image / 2_55) * 2 - 1 _UpperCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: _UpperCamelCase = self.vqvae.encode(torch.unsqueeze(__a , 0)).latent_dist.sample( generator=__a)[0] _UpperCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _UpperCamelCase = self.scheduler.add_noise(__a , __a , self.scheduler.timesteps[start_step - 1]) _UpperCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _UpperCamelCase = int(mask_start_secs * pixels_per_second) _UpperCamelCase = int(mask_end_secs * pixels_per_second) _UpperCamelCase = self.scheduler.add_noise(__a , __a , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , __a): _UpperCamelCase = self.unet(__a , __a , __a)['''sample'''] else: _UpperCamelCase = self.unet(__a , __a)['''sample'''] if isinstance(self.scheduler , __a): _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , eta=__a , generator=__a , )['''prev_sample'''] else: _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , generator=__a , )['''prev_sample'''] if mask is not None: if mask_start > 0: _UpperCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _UpperCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _UpperCamelCase = 1 / self.vqvae.config.scaling_factor * images _UpperCamelCase = self.vqvae.decode(__a)['''sample'''] _UpperCamelCase = (images / 2 + 0.5).clamp(0 , 1) _UpperCamelCase = images.cpu().permute(0 , 2 , 3 , 1).numpy() _UpperCamelCase = (images * 2_55).round().astype('''uint8''') _UpperCamelCase = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__a , mode='''RGB''').convert('''L''') for _ in images)) _UpperCamelCase = [self.mel.image_to_audio(__a) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__a)[:, np.newaxis, :]) , **ImagePipelineOutput(__a)) @torch.no_grad() def UpperCAmelCase ( self , __a , __a = 50) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , __a) self.scheduler.set_timesteps(__a) _UpperCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''').reshape((1, image.height, image.width)) for image in images]) _UpperCamelCase = (sample / 2_55) * 2 - 1 _UpperCamelCase = torch.Tensor(__a).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): _UpperCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _UpperCamelCase = self.scheduler.alphas_cumprod[t] _UpperCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _UpperCamelCase = 1 - alpha_prod_t _UpperCamelCase = self.unet(__a , __a)['''sample'''] _UpperCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _UpperCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _UpperCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase ( __a , __a , __a) -> torch.Tensor: '''simple docstring''' _UpperCamelCase = acos(torch.dot(torch.flatten(__a) , torch.flatten(__a)) / torch.norm(__a) / torch.norm(__a)) return sin((1 - alpha) * theta) * xa / sin(__a) + sin(alpha * theta) * xa / sin(__a)
19
1
"""simple docstring""" import argparse import datetime def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } _UpperCamelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(__snake_case ) < 11: raise ValueError('''Must be 10 characters long''' ) # Get month _UpperCamelCase = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('''Month must be between 1 - 12''' ) _UpperCamelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get day _UpperCamelCase = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('''Date must be between 1 - 31''' ) # Get second separator _UpperCamelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get year _UpperCamelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 85_00: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''' ) # Get datetime obj for validation _UpperCamelCase = datetime.date(int(__snake_case ), int(__snake_case ), int(__snake_case ) ) # Start math if m <= 2: _UpperCamelCase = y - 1 _UpperCamelCase = m + 12 # maths var _UpperCamelCase = int(str(__snake_case )[:2] ) _UpperCamelCase = int(str(__snake_case )[2:] ) _UpperCamelCase = int(2.6 * m - 5.39 ) _UpperCamelCase = int(c / 4 ) _UpperCamelCase = int(k / 4 ) _UpperCamelCase = int(d + k ) _UpperCamelCase = int(t + u + v + x ) _UpperCamelCase = int(z - (2 * c) ) _UpperCamelCase = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' ) # Response _UpperCamelCase = F'''Your date {date_input}, is a {days[str(__snake_case )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() _a = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) _a = parser.parse_args() zeller(args.date_input)
19
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'detr' lowercase__ = ['past_key_values'] lowercase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __a=True , __a=None , __a=3 , __a=1_00 , __a=6 , __a=20_48 , __a=8 , __a=6 , __a=20_48 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=2_56 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=1 , __a=1 , __a=5 , __a=2 , __a=0.1 , **__a , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__a , __a): _UpperCamelCase = backbone_config.get('''model_type''') _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(__a) # set timm attributes to None _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None, None, None _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = encoder_layers _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase ( cls , __a , **__a) -> int: '''simple docstring''' return cls(backbone_config=__a , **__a) def UpperCAmelCase ( self) -> Dict[str, any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output class _UpperCAmelCase( lowerCamelCase ): lowercase__ = version.parse('1.11' ) @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def UpperCAmelCase ( self) -> float: '''simple docstring''' return 1e-5 @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return 12
19
1
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() _a = logging.get_logger("""transformers.models.encodec""") _a = { """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } _a = { """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } _a = { """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } _a = { """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } _a = { """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } _a = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } _a = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } _a = [] _a = [] def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" for attribute in key.split('''.''' ): _UpperCamelCase = getattr(__snake_case, __snake_case ) if weight_type is not None: _UpperCamelCase = getattr(__snake_case, __snake_case ).shape else: _UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase = value elif weight_type == "weight_g": _UpperCamelCase = value elif weight_type == "weight_v": _UpperCamelCase = value elif weight_type == "bias": _UpperCamelCase = value elif weight_type == "running_mean": _UpperCamelCase = value elif weight_type == "running_var": _UpperCamelCase = value elif weight_type == "num_batches_tracked": _UpperCamelCase = value elif weight_type == "weight_ih_l0": _UpperCamelCase = value elif weight_type == "weight_hh_l0": _UpperCamelCase = value elif weight_type == "bias_ih_l0": _UpperCamelCase = value elif weight_type == "bias_hh_l0": _UpperCamelCase = value elif weight_type == "weight_ih_l1": _UpperCamelCase = value elif weight_type == "weight_hh_l1": _UpperCamelCase = value elif weight_type == "bias_ih_l1": _UpperCamelCase = value elif weight_type == "bias_hh_l1": _UpperCamelCase = value else: _UpperCamelCase = value logger.info(F'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _UpperCamelCase , _UpperCamelCase = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": _UpperCamelCase = MAPPING_24K elif model_name == "encodec_48khz": _UpperCamelCase = MAPPING_48K else: raise ValueError(F'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(__snake_case, __snake_case ): logger.info(F'''{name} was ignored''' ) continue _UpperCamelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: _UpperCamelCase , _UpperCamelCase = key.split('''.*.''' ) if prefix in name and suffix in name: _UpperCamelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue _UpperCamelCase = True if "*" in mapped_key: _UpperCamelCase = name.split(__snake_case )[0].split('''.''' )[-2] _UpperCamelCase = mapped_key.replace('''*''', __snake_case ) if "weight_g" in name: _UpperCamelCase = '''weight_g''' elif "weight_v" in name: _UpperCamelCase = '''weight_v''' elif "weight_ih_l0" in name: _UpperCamelCase = '''weight_ih_l0''' elif "weight_hh_l0" in name: _UpperCamelCase = '''weight_hh_l0''' elif "bias_ih_l0" in name: _UpperCamelCase = '''bias_ih_l0''' elif "bias_hh_l0" in name: _UpperCamelCase = '''bias_hh_l0''' elif "weight_ih_l1" in name: _UpperCamelCase = '''weight_ih_l1''' elif "weight_hh_l1" in name: _UpperCamelCase = '''weight_hh_l1''' elif "bias_ih_l1" in name: _UpperCamelCase = '''bias_ih_l1''' elif "bias_hh_l1" in name: _UpperCamelCase = '''bias_hh_l1''' elif "bias" in name: _UpperCamelCase = '''bias''' elif "weight" in name: _UpperCamelCase = '''weight''' elif "running_mean" in name: _UpperCamelCase = '''running_mean''' elif "running_var" in name: _UpperCamelCase = '''running_var''' elif "num_batches_tracked" in name: _UpperCamelCase = '''num_batches_tracked''' else: _UpperCamelCase = None set_recursively(__snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=None, __snake_case=None, ) -> Dict: """simple docstring""" if config_path is not None: _UpperCamelCase = EncodecConfig.from_pretrained(__snake_case ) else: _UpperCamelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _UpperCamelCase = [8, 5, 4, 4] _UpperCamelCase = [2.2] _UpperCamelCase = 64 _UpperCamelCase = 3_20_00 _UpperCamelCase = 20_48 _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False elif model_name == "encodec_48khz": _UpperCamelCase = [8, 5, 4, 2] _UpperCamelCase = [3.0, 6.0, 12.0, 24.0] _UpperCamelCase = 4_80_00 _UpperCamelCase = 2 _UpperCamelCase = False _UpperCamelCase = '''time_group_norm''' _UpperCamelCase = True _UpperCamelCase = 1.0 _UpperCamelCase = 0.01 else: raise ValueError(F'''Unknown model name: {model_name}''' ) _UpperCamelCase = EncodecModel(__snake_case ) _UpperCamelCase = EncodecFeatureExtractor( feature_size=config.audio_channels, sampling_rate=config.sampling_rate, chunk_length_s=config.chunk_length_s, overlap=config.overlap, ) feature_extractor.save_pretrained(__snake_case ) _UpperCamelCase = torch.load(__snake_case ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _UpperCamelCase = original_checkpoint['''best_state'''] recursively_load_weights(__snake_case, __snake_case, __snake_case ) model.save_pretrained(__snake_case ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(__snake_case ) model.push_to_hub(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _a = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
19
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'wavlm' def __init__( self , __a=32 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.1 , __a=0.02 , __a=1e-5 , __a="group" , __a="gelu" , __a=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __a=(5, 2, 2, 2, 2, 2, 2) , __a=(10, 3, 3, 3, 3, 2, 2) , __a=False , __a=1_28 , __a=16 , __a=3_20 , __a=8_00 , __a=False , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=3_20 , __a=2 , __a=0.1 , __a=1_00 , __a=2_56 , __a=2_56 , __a=0.1 , __a="mean" , __a=False , __a=False , __a=2_56 , __a=(5_12, 5_12, 5_12, 5_12, 15_00) , __a=(5, 3, 3, 1, 1) , __a=(1, 2, 3, 1, 1) , __a=5_12 , __a=80 , __a=0 , __a=1 , __a=2 , __a=False , __a=3 , __a=2 , __a=3 , __a=None , **__a , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a) _UpperCamelCase = hidden_size _UpperCamelCase = feat_extract_norm _UpperCamelCase = feat_extract_activation _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = conv_bias _UpperCamelCase = num_buckets _UpperCamelCase = max_bucket_distance _UpperCamelCase = num_conv_pos_embeddings _UpperCamelCase = num_conv_pos_embedding_groups _UpperCamelCase = len(self.conv_dim) _UpperCamelCase = num_hidden_layers _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = feat_proj_dropout _UpperCamelCase = final_dropout _UpperCamelCase = layerdrop _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = num_ctc_classes _UpperCamelCase = vocab_size _UpperCamelCase = do_stable_layer_norm _UpperCamelCase = use_weighted_layer_sum _UpperCamelCase = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCamelCase = apply_spec_augment _UpperCamelCase = mask_time_prob _UpperCamelCase = mask_time_length _UpperCamelCase = mask_time_min_masks _UpperCamelCase = mask_feature_prob _UpperCamelCase = mask_feature_length # parameters for pretraining with codevector quantized representations _UpperCamelCase = num_codevectors_per_group _UpperCamelCase = num_codevector_groups _UpperCamelCase = contrastive_logits_temperature _UpperCamelCase = num_negatives _UpperCamelCase = codevector_dim _UpperCamelCase = proj_codevector_dim _UpperCamelCase = diversity_loss_weight # ctc loss _UpperCamelCase = ctc_loss_reduction _UpperCamelCase = ctc_zero_infinity # adapter _UpperCamelCase = add_adapter _UpperCamelCase = adapter_kernel_size _UpperCamelCase = adapter_stride _UpperCamelCase = num_adapter_layers _UpperCamelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = xvector_output_dim @property def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
19
1
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin _a = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _UpperCAmelCase: def __init__( self , __a , __a=16 , __a=13 , __a=7 , __a=14 , __a=10 , __a=19 , __a=5 , __a=4 , __a=True , __a=16 , __a=2 , __a=4 , __a=4 , __a="gelu" , __a=0.1 , __a=0.1 , __a=[1, 2, 3, 4, 5] , __a=25 , __a=5 , ) -> Tuple: '''simple docstring''' _UpperCamelCase = d_model _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = prediction_length _UpperCamelCase = context_length _UpperCamelCase = cardinality _UpperCamelCase = num_time_features _UpperCamelCase = lags_sequence _UpperCamelCase = embedding_dimension _UpperCamelCase = is_training _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = context_length _UpperCamelCase = prediction_length + label_length _UpperCamelCase = label_length _UpperCamelCase = moving_average _UpperCamelCase = autocorrelation_factor def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = config.context_length + max(config.lags_sequence) _UpperCamelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0]) _UpperCamelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features]) _UpperCamelCase = floats_tensor([self.batch_size, _past_length]) _UpperCamelCase = floats_tensor([self.batch_size, _past_length]) > 0.5 # decoder inputs _UpperCamelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features]) _UpperCamelCase = floats_tensor([self.batch_size, config.prediction_length]) _UpperCamelCase = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.get_config() _UpperCamelCase = self.prepare_autoformer_inputs_dict(__a) return config, inputs_dict def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase ( self , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = AutoformerModel(config=__a).to(__a).eval() _UpperCamelCase = model(**__a) _UpperCamelCase = outputs.encoder_last_hidden_state _UpperCamelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = model.get_encoder() encoder.save_pretrained(__a) _UpperCamelCase = AutoformerEncoder.from_pretrained(__a).to(__a) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = model.create_network_inputs(**__a) _UpperCamelCase , _UpperCamelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...]) _UpperCamelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _UpperCamelCase = encoder(inputs_embeds=__a)[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3) _UpperCamelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1) .unsqueeze(1) .repeat(1 , config.prediction_length , 1) ) _UpperCamelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _UpperCamelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _UpperCamelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = model.get_decoder() decoder.save_pretrained(__a) _UpperCamelCase = AutoformerDecoder.from_pretrained(__a).to(__a) _UpperCamelCase = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3) @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowercase__ = (AutoformerForPrediction,) if is_torch_available() else () lowercase__ = {'feature-extraction': AutoformerModel} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = AutoformerModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a) _UpperCamelCase , _UpperCamelCase = model_class.from_pretrained(__a , output_loading_info=__a) self.assertEqual(info['''missing_keys'''] , []) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a) @unittest.skip(reason='''Model has no tokens embeddings''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = inspect.signature(getattr(__a , '''forward''')) # The main input is the name of the argument after `self` _UpperCamelCase = list(model_signature.parameters.keys())[1] self.assertEqual(AutoformerModel.main_input_name , __a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''') expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ]) self.assertListEqual(arg_names[: len(__a)] , __a) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = True _UpperCamelCase = getattr(self.model_tester , '''seq_length''' , __a) _UpperCamelCase = getattr(self.model_tester , '''decoder_seq_length''' , __a) _UpperCamelCase = getattr(self.model_tester , '''encoder_seq_length''' , __a) _UpperCamelCase = getattr(self.model_tester , '''d_model''' , __a) _UpperCamelCase = getattr(self.model_tester , '''num_attention_heads''' , __a) _UpperCamelCase = d_model // num_attention_heads for model_class in self.all_model_classes: _UpperCamelCase = True _UpperCamelCase = False _UpperCamelCase = True _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCamelCase = True _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.encoder_attentions self.assertEqual(len(__a) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _UpperCamelCase = len(__a) _UpperCamelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a) # decoder attentions _UpperCamelCase = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple)) self.assertEqual(len(__a) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _UpperCamelCase = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple)) self.assertEqual(len(__a) , self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) self.assertEqual(out_len + 2 , len(__a)) _UpperCamelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def lowerCamelCase__ ( __snake_case="train-batch.pt" ) -> Tuple: """simple docstring""" _UpperCamelCase = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''', filename=__snake_case, repo_type='''dataset''' ) _UpperCamelCase = torch.load(__snake_case, map_location=__snake_case ) return batch @require_torch @slow class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''').to(__a) _UpperCamelCase = prepare_batch() with torch.no_grad(): _UpperCamelCase = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] _UpperCamelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size)) self.assertEqual(output.shape , __a) _UpperCamelCase = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__a) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a)) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''').to(__a) _UpperCamelCase = prepare_batch('''val-batch.pt''') with torch.no_grad(): _UpperCamelCase = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state _UpperCamelCase = torch.Size((64, model.config.context_length, model.config.d_model)) self.assertEqual(output.shape , __a) _UpperCamelCase = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__a) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a)) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''').to(__a) _UpperCamelCase = prepare_batch('''val-batch.pt''') with torch.no_grad(): _UpperCamelCase = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) _UpperCamelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length)) self.assertEqual(outputs.sequences.shape , __a) _UpperCamelCase = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__a) _UpperCamelCase = outputs.sequences.mean(dim=1) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1e-1))
19
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _a = """bart""" _a = True @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> Dict: """simple docstring""" if LOAD_DENSE_INDEX: _UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _UpperCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _UpperCamelCase = qar_model.eval() else: _UpperCamelCase , _UpperCamelCase = (None, None) if MODEL_TYPE == "bart": _UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _UpperCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _UpperCamelCase = sas_model.eval() else: _UpperCamelCase , _UpperCamelCase = make_qa_sas_model( model_name='''t5-small''', from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''', device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: _UpperCamelCase = faiss.StandardGpuResources() _UpperCamelCase = datasets.load_dataset(path='''wiki_snippets''', name='''wiki40b_en_100_0''' )['''train'''] _UpperCamelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''', dtype='''float32''', mode='''r''', shape=(wikiaab_passages.num_rows, 1_28), ) _UpperCamelCase = faiss.IndexFlatIP(1_28 ) _UpperCamelCase = faiss.index_cpu_to_gpu(__snake_case, 1, __snake_case ) wikiaab_gpu_index_flat.add(__snake_case ) # TODO fix for larger GPU else: _UpperCamelCase , _UpperCamelCase = (None, None) _UpperCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = datasets.load_dataset('''eli5''', name='''LFQA_reddit''' ) _UpperCamelCase = elia['''train_eli5'''] _UpperCamelCase = np.memmap( '''eli5_questions_reps.dat''', dtype='''float32''', mode='''r''', shape=(elia_train.num_rows, 1_28) ) _UpperCamelCase = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(__snake_case ) return (elia_train, eli5_train_q_index) _a , _a , _a = load_indexes() _a , _a , _a , _a = load_models() _a , _a = load_train_data() def lowerCamelCase__ ( __snake_case, __snake_case=10 ) -> List[Any]: """simple docstring""" _UpperCamelCase = embed_questions_for_retrieval([question], __snake_case, __snake_case ) _UpperCamelCase , _UpperCamelCase = eli5_train_q_index.search(__snake_case, __snake_case ) _UpperCamelCase = [elia_train[int(__snake_case )] for i in I[0]] return nn_examples def lowerCamelCase__ ( __snake_case, __snake_case="wiki40b", __snake_case="dense", __snake_case=10 ) -> List[str]: """simple docstring""" if source == "none": _UpperCamelCase , _UpperCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _UpperCamelCase , _UpperCamelCase = query_qa_dense_index( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) else: _UpperCamelCase , _UpperCamelCase = query_es_index( __snake_case, __snake_case, index_name='''english_wiki40b_snippets_100w''', n_results=__snake_case, ) _UpperCamelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _UpperCamelCase = '''question: {} context: {}'''.format(__snake_case, __snake_case ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __snake_case : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __snake_case : None), } ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=64, __snake_case=2_56, __snake_case=False, __snake_case=2, __snake_case=0.95, __snake_case=0.8 ) -> Dict: """simple docstring""" with torch.no_grad(): _UpperCamelCase = qa_sas_generate( __snake_case, __snake_case, __snake_case, num_answers=1, num_beams=__snake_case, min_len=__snake_case, max_len=__snake_case, do_sample=__snake_case, temp=__snake_case, top_p=__snake_case, top_k=__snake_case, max_input_length=10_24, device='''cuda:0''', )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar _a = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" _a = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _a = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) _a = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] _a = st.sidebar.checkbox("""Demo options""") if demo_options: _a = st.sidebar.selectbox( """""", action_list, index=3, ) _a = action_list.index(action_st) _a = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) _a = show_type == """Show full text of passages""" else: _a = 3 _a = True _a = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: _a = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) _a = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) _a = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: _a = """wiki40b""" _a = """dense""" _a = """beam""" _a = 2 _a = 64 _a = 256 _a = None _a = None _a = st.sidebar.checkbox("""Generation options""") if generate_options: _a = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) _a = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) _a = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) _a = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": _a = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _a = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _a = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _a = None # start main text _a = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] _a = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": _a = st.text_input("""Enter your question here:""", """""") else: _a = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": _a , _a = make_support(question, source=wiki_source, method="""dense""", n_results=10) _a , _a = make_support(question, source=wiki_source, method="""sparse""", n_results=10) _a = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _a = support_list[:10] _a = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: _a , _a = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _a , _a = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): _a = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) _a = res[1].strip() if sec_titles == "": _a = """[{}]({})""".format(res[0], wiki_url) else: _a = sec_titles.split(""" & """) _a = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: _a = find_nearest_training(question) _a = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) _a = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) _a = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
19
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['pixel_values'] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BILINEAR , __a = True , __a = None , __a = True , __a = 1 / 2_55 , __a = True , __a = None , __a = None , **__a , ) -> None: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = size if size is not None else {'''shortest_edge''': 2_56} _UpperCamelCase = get_size_dict(__a , default_to_square=__a) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a , param_name='''crop_size''') _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BICUBIC , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a , default_to_square=__a) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''') _UpperCamelCase = get_resize_output_image_size(__a , size=size['''shortest_edge'''] , default_to_square=__a) return resize(__a , size=__a , resample=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}''') return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a) -> np.ndarray: '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> Dict: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(__a , default_to_square=__a) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(__a , param_name='''crop_size''') _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(__a) if not valid_images(__a): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(__a) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=__a , size=__a , resample=__a) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=__a , size=__a) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=__a , scale=__a) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=__a , mean=__a , std=__a) for image in images] _UpperCamelCase = [to_channel_dimension_format(__a , __a) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=__a , tensor_type=__a) def UpperCAmelCase ( self , __a , __a = None) -> List[Any]: '''simple docstring''' _UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__a) != len(__a): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''') if is_torch_tensor(__a): _UpperCamelCase = target_sizes.numpy() _UpperCamelCase = [] for idx in range(len(__a)): _UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=__a) _UpperCamelCase = resized_logits[0].argmax(dim=0) semantic_segmentation.append(__a) else: _UpperCamelCase = logits.argmax(dim=1) _UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
19
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } _a = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> Tuple: """simple docstring""" for attribute in key.split('''.''' ): _UpperCamelCase = getattr(__snake_case, __snake_case ) if weight_type is not None: _UpperCamelCase = getattr(__snake_case, __snake_case ).shape else: _UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase = value elif weight_type == "weight_g": _UpperCamelCase = value elif weight_type == "weight_v": _UpperCamelCase = value elif weight_type == "bias": _UpperCamelCase = value else: _UpperCamelCase = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = fairseq_model.state_dict() _UpperCamelCase = hf_model.feature_extractor _UpperCamelCase = hf_model.adapter for name, value in fairseq_dict.items(): _UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __snake_case, __snake_case, __snake_case, __snake_case, hf_model.config.feat_extract_norm == '''group''', ) _UpperCamelCase = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(__snake_case, __snake_case, __snake_case, __snake_case ) _UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCamelCase = True if "*" in mapped_key: _UpperCamelCase = name.split(__snake_case )[0].split('''.''' )[-2] _UpperCamelCase = mapped_key.replace('''*''', __snake_case ) if "weight_g" in name: _UpperCamelCase = '''weight_g''' elif "weight_v" in name: _UpperCamelCase = '''weight_v''' elif "bias" in name: _UpperCamelCase = '''bias''' elif "weight" in name: _UpperCamelCase = '''weight''' else: _UpperCamelCase = None set_recursively(__snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = full_name.split('''conv_layers.''' )[-1] _UpperCamelCase = name.split('''.''' ) _UpperCamelCase = int(items[0] ) _UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = full_name.split('''adaptor.''' )[-1] _UpperCamelCase = name.split('''.''' ) if items[1].isdigit(): _UpperCamelCase = int(items[1] ) else: _UpperCamelCase = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' _UpperCamelCase = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(__snake_case, __snake_case ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase , _UpperCamelCase = emb.weight.shape _UpperCamelCase = nn.Linear(__snake_case, __snake_case, bias=__snake_case ) _UpperCamelCase = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = WavaVecaConfig.from_pretrained( __snake_case, add_adapter=__snake_case, adapter_stride=__snake_case, adapter_kernel_size=__snake_case, use_auth_token=__snake_case, output_hidden_size=__snake_case, ) _UpperCamelCase = MBartConfig.from_pretrained(__snake_case ) # load model _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, }, ) _UpperCamelCase = model[0].eval() # load feature extractor _UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(__snake_case, use_auth_token=__snake_case ) # set weights for wav2vec2 encoder _UpperCamelCase = WavaVecaModel(__snake_case ) recursively_load_weights_wavaveca(model.encoder, __snake_case ) # load decoder weights _UpperCamelCase = MBartForCausalLM(__snake_case ) _UpperCamelCase , _UpperCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=__snake_case ) logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) _UpperCamelCase = SpeechEncoderDecoderModel(encoder=__snake_case, decoder=__snake_case ) _UpperCamelCase = False _UpperCamelCase = MBartaaTokenizer(__snake_case ) tokenizer.save_pretrained(__snake_case ) _UpperCamelCase = hf_wavavec.config.to_dict() _UpperCamelCase = tokenizer.pad_token_id _UpperCamelCase = tokenizer.bos_token_id _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = '''mbart50''' _UpperCamelCase = '''wav2vec2''' _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = 25_00_04 _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = SpeechEncoderDecoderConfig.from_dict(__snake_case ) hf_wavavec.save_pretrained(__snake_case ) feature_extractor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1024, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=25_0004, type=int, help="""`decoder_start_token_id` of model config""") _a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
19
1
"""simple docstring""" import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=1_28 , __a=32 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> List[str]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self) -> Any: '''simple docstring''' return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = self.prepare_config_and_inputs() _UpperCamelCase = True _UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = NezhaModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a , __a , ) -> Dict: '''simple docstring''' _UpperCamelCase = True _UpperCamelCase = NezhaModel(__a) model.to(__a) model.eval() _UpperCamelCase = model( __a , attention_mask=__a , token_type_ids=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , ) _UpperCamelCase = model( __a , attention_mask=__a , token_type_ids=__a , encoder_hidden_states=__a , ) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = NezhaForMaskedLM(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Any: '''simple docstring''' _UpperCamelCase = NezhaForNextSentencePrediction(config=__a) model.to(__a) model.eval() _UpperCamelCase = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = NezhaForPreTraining(config=__a) model.to(__a) model.eval() _UpperCamelCase = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , next_sentence_label=__a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = NezhaForQuestionAnswering(config=__a) model.to(__a) model.eval() _UpperCamelCase = model( __a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = NezhaForSequenceClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> List[str]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = NezhaForTokenClassification(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.num_choices _UpperCamelCase = NezhaForMultipleChoice(config=__a) model.to(__a) model.eval() _UpperCamelCase = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) lowercase__ = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True def UpperCAmelCase ( self , __a , __a , __a=False) -> str: '''simple docstring''' _UpperCamelCase = super()._prepare_for_class(__a , __a , return_labels=__a) if return_labels: if model_class in get_values(__a): _UpperCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__a) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a) return inputs_dict def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = NezhaModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' # This regression test was failing with PyTorch < 1.3 ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() _UpperCamelCase = None self.model_tester.create_and_check_model_as_decoder( __a , __a , __a , __a , __a , __a , __a , __a , __a , ) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__a) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a) @slow def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = NezhaModel.from_pretrained(__a) self.assertIsNotNone(__a) @slow @require_torch_gpu def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return _UpperCamelCase = True _UpperCamelCase = model_class(config=__a) _UpperCamelCase = self._prepare_for_class(__a , __a) _UpperCamelCase = torch.jit.trace( __a , (inputs_dict['''input_ids'''].to('''cpu'''), inputs_dict['''attention_mask'''].to('''cpu'''))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__a , os.path.join(__a , '''bert.pt''')) _UpperCamelCase = torch.jit.load(os.path.join(__a , '''bert.pt''') , map_location=__a) loaded(inputs_dict['''input_ids'''].to(__a) , inputs_dict['''attention_mask'''].to(__a)) @require_torch class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''') _UpperCamelCase = torch.tensor([[0, 1, 2, 3, 4, 5]]) _UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1]]) with torch.no_grad(): _UpperCamelCase = model(__a , attention_mask=__a)[0] _UpperCamelCase = torch.Size((1, 6, 7_68)) self.assertEqual(output.shape , __a) _UpperCamelCase = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __a , atol=1e-4)) @slow def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''') _UpperCamelCase = torch.tensor([[0, 1, 2, 3, 4, 5]]) _UpperCamelCase = torch.tensor([[1, 1, 1, 1, 1, 1]]) with torch.no_grad(): _UpperCamelCase = model(__a , attention_mask=__a)[0] _UpperCamelCase = torch.Size((1, 6, 2_11_28)) self.assertEqual(output.shape , __a) _UpperCamelCase = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __a , atol=1e-4))
19
"""simple docstring""" import fire from utils import calculate_rouge, save_json def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case=None, **__snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()] _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()][: len(__snake_case )] _UpperCamelCase = calculate_rouge(__snake_case, __snake_case, **__snake_case ) if save_path is not None: save_json(__snake_case, __snake_case, indent=__snake_case ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
19
1
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCamelCase__ ( __snake_case ) -> Any: """simple docstring""" return 1 / (1 + np.exp(-z )) def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[Any]: """simple docstring""" return (-y * np.log(__snake_case ) - (1 - y) * np.log(1 - h )).mean() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = np.dot(__snake_case, __snake_case ) return np.sum(y * scores - np.log(1 + np.exp(__snake_case ) ) ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=7_00_00 ) -> int: """simple docstring""" _UpperCamelCase = np.zeros(x.shape[1] ) for iterations in range(__snake_case ): _UpperCamelCase = np.dot(__snake_case, __snake_case ) _UpperCamelCase = sigmoid_function(__snake_case ) _UpperCamelCase = np.dot(x.T, h - y ) / y.size _UpperCamelCase = theta - alpha * gradient # updating the weights _UpperCamelCase = np.dot(__snake_case, __snake_case ) _UpperCamelCase = sigmoid_function(__snake_case ) _UpperCamelCase = cost_function(__snake_case, __snake_case ) if iterations % 1_00 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": _a = datasets.load_iris() _a = iris.data[:, :2] _a = (iris.target != 0) * 1 _a = 0.1 _a = logistic_reg(alpha, x, y, max_iterations=7_0000) print("""theta: """, theta) # printing the theta i.e our weights vector def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" return sigmoid_function( np.dot(__snake_case, __snake_case ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""") ((_a) , (_a)) = (x[:, 0].min(), x[:, 0].max()) ((_a) , (_a)) = (x[:, 1].min(), x[:, 1].max()) ((_a) , (_a)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) _a = np.c_[xxa.ravel(), xxa.ravel()] _a = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""") plt.legend() plt.show()
19
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['image_processor', 'tokenizer'] lowercase__ = 'ViTImageProcessor' lowercase__ = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __a=None , __a=None , **__a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __a , ) _UpperCamelCase = kwargs.pop('''feature_extractor''') _UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(__a , __a) def __call__( self , __a=None , __a=None , __a=None , __a=None , **__a) -> Tuple: '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''') if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''') if text is not None: _UpperCamelCase = self.tokenizer(__a , return_tensors=__a , **__a) if visual_prompt is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if images is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if visual_prompt is not None and images is not None: _UpperCamelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _UpperCamelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__a) , tensor_type=__a) def UpperCAmelCase ( self , *__a , **__a) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*__a , **__a) def UpperCAmelCase ( self , *__a , **__a) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*__a , **__a) @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __a , ) return self.image_processor_class @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __a , ) return self.image_processor
19
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _a = logging.getLogger(__name__) @dataclass class _UpperCAmelCase: lowercase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowercase__ = field(default=lowerCamelCase , metadata={'help': 'Whether tp freeze the encoder.'} ) lowercase__ = field(default=lowerCamelCase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class _UpperCAmelCase: lowercase__ = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowercase__ = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) lowercase__ = field( default=10_24 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase__ = field( default=1_28 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase__ = field( default=1_42 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) lowercase__ = field( default=1_42 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase__ = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) lowercase__ = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) lowercase__ = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) lowercase__ = field(default=lowerCamelCase , metadata={'help': 'Source language id for translation.'} ) lowercase__ = field(default=lowerCamelCase , metadata={'help': 'Target language id for translation.'} ) lowercase__ = field(default=lowerCamelCase , metadata={'help': '# num_beams to use for evaluation.'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(__snake_case, os.path.join(__snake_case, F'''{split}_results.json''' ) ) def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() check_output_dir(__snake_case ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''', training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ), training_args.fpaa, ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''', __snake_case ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) _UpperCamelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(__snake_case, __snake_case, __snake_case ): assert hasattr(__snake_case, __snake_case ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(__snake_case, __snake_case, getattr(__snake_case, __snake_case ) ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) _UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path, from_tf='''.ckpt''' in model_args.model_name_or_path, config=__snake_case, cache_dir=model_args.cache_dir, ) # use task specific params use_task_specific_params(__snake_case, data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _UpperCamelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__snake_case, (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__snake_case, __snake_case ): _UpperCamelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _UpperCamelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__snake_case ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _UpperCamelCase = SeqaSeqDataset # Get datasets _UpperCamelCase = ( dataset_class( __snake_case, type_path='''train''', data_dir=data_args.data_dir, n_obs=data_args.n_train, max_target_length=data_args.max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or '''''', ) if training_args.do_train else None ) _UpperCamelCase = ( dataset_class( __snake_case, type_path='''val''', data_dir=data_args.data_dir, n_obs=data_args.n_val, max_target_length=data_args.val_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or '''''', ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _UpperCamelCase = ( dataset_class( __snake_case, type_path='''test''', data_dir=data_args.data_dir, n_obs=data_args.n_test, max_target_length=data_args.test_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or '''''', ) if training_args.do_predict else None ) # Initialize our Trainer _UpperCamelCase = ( build_compute_metrics_fn(data_args.task, __snake_case ) if training_args.predict_with_generate else None ) _UpperCamelCase = SeqaSeqTrainer( model=__snake_case, args=__snake_case, data_args=__snake_case, train_dataset=__snake_case, eval_dataset=__snake_case, data_collator=SeqaSeqDataCollator( __snake_case, __snake_case, model.config.decoder_start_token_id, training_args.tpu_num_cores ), compute_metrics=__snake_case, tokenizer=__snake_case, ) _UpperCamelCase = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) _UpperCamelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _UpperCamelCase = train_result.metrics _UpperCamelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''', __snake_case, training_args.output_dir ) all_metrics.update(__snake_case ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate(metric_key_prefix='''val''' ) _UpperCamelCase = data_args.n_val _UpperCamelCase = round(metrics['''val_loss'''], 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''', __snake_case, training_args.output_dir ) all_metrics.update(__snake_case ) if training_args.do_predict: logger.info('''*** Predict ***''' ) _UpperCamelCase = trainer.predict(test_dataset=__snake_case, metric_key_prefix='''test''' ) _UpperCamelCase = test_output.metrics _UpperCamelCase = data_args.n_test if trainer.is_world_process_zero(): _UpperCamelCase = round(metrics['''test_loss'''], 4 ) handle_metrics('''test''', __snake_case, training_args.output_dir ) all_metrics.update(__snake_case ) if training_args.predict_with_generate: _UpperCamelCase = tokenizer.batch_decode( test_output.predictions, skip_special_tokens=__snake_case, clean_up_tokenization_spaces=__snake_case ) _UpperCamelCase = lmap(str.strip, __snake_case ) write_txt_file(__snake_case, os.path.join(training_args.output_dir, '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(__snake_case, os.path.join(training_args.output_dir, '''all_results.json''' ) ) return all_metrics def lowerCamelCase__ ( __snake_case ) -> List[str]: """simple docstring""" main() if __name__ == "__main__": main()
19
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=32 , __a=3 , __a=4 , __a=[10, 20, 30, 40] , __a=[2, 2, 3, 2] , __a=True , __a=True , __a=37 , __a="gelu" , __a=10 , __a=0.02 , __a=["stage2", "stage3", "stage4"] , __a=3 , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = num_channels _UpperCamelCase = num_stages _UpperCamelCase = hidden_sizes _UpperCamelCase = depths _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = out_features _UpperCamelCase = num_labels _UpperCamelCase = scope _UpperCamelCase = num_stages def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Any: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__a , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=__a , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = UperNetForSemanticSegmentation(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__ = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = UperNetModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a) @unittest.skip(reason='''UperNet does not use inputs_embeds''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not support input and output embeddings''') def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''') def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''') def UpperCAmelCase ( self) -> int: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''') def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' def check_hidden_states_output(__a , __a , __a): _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(__a) , expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) _UpperCamelCase = _config_zero_init(configs_no_init.backbone_config) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason='''UperNet does not have tied weights''') def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' pass @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''', repo_type='''dataset''', filename='''ADE_val_00000001.jpg''' ) _UpperCamelCase = Image.open(__snake_case ).convert('''RGB''' ) return image @require_torch @require_vision @slow class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''') _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''').to(__a) _UpperCamelCase = prepare_img() _UpperCamelCase = processor(images=__a , return_tensors='''pt''').to(__a) with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''') _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''').to(__a) _UpperCamelCase = prepare_img() _UpperCamelCase = processor(images=__a , return_tensors='''pt''').to(__a) with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4))
19
1
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset _a = """bert-base-cased""" _a = """google/pegasus-xsum""" _a = [""" Sam ate lunch today.""", """Sams lunch ingredients."""] _a = ["""A very interesting story about what I ate for lunch.""", """Avocado, celery, turkey, coffee"""] _a = """patrickvonplaten/t5-tiny-random""" _a = """sshleifer/bart-tiny-random""" _a = """sshleifer/tiny-mbart""" _a = """sshleifer/tiny-marian-en-de""" def lowerCamelCase__ ( __snake_case, __snake_case ) -> Any: """simple docstring""" _UpperCamelCase = '''\n'''.join(__snake_case ) Path(__snake_case ).open('''w''' ).writelines(__snake_case ) def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" for split in ["train", "val", "test"]: _dump_articles(os.path.join(__snake_case, F'''{split}.source''' ), __snake_case ) _dump_articles(os.path.join(__snake_case, F'''{split}.target''' ), __snake_case ) return tmp_dir class _UpperCAmelCase( lowerCamelCase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def UpperCAmelCase ( self , __a) -> Dict: '''simple docstring''' _UpperCamelCase = AutoTokenizer.from_pretrained(__a) _UpperCamelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) _UpperCamelCase = max(len(tokenizer.encode(__a)) for a in ARTICLES) _UpperCamelCase = max(len(tokenizer.encode(__a)) for a in SUMMARIES) _UpperCamelCase = 4 _UpperCamelCase = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _UpperCamelCase , _UpperCamelCase = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. _UpperCamelCase = SeqaSeqDataset( __a , data_dir=__a , type_path='''train''' , max_source_length=__a , max_target_length=__a , src_lang=__a , tgt_lang=__a , ) _UpperCamelCase = DataLoader(__a , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert isinstance(__a , __a) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _UpperCamelCase = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED]) def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = AutoTokenizer.from_pretrained(__a) _UpperCamelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) _UpperCamelCase = max(len(tokenizer.encode(__a)) for a in ARTICLES) _UpperCamelCase = max(len(tokenizer.encode(__a)) for a in SUMMARIES) _UpperCamelCase = 4 _UpperCamelCase = LegacySeqaSeqDataset( __a , data_dir=__a , type_path='''train''' , max_source_length=20 , max_target_length=__a , ) _UpperCamelCase = DataLoader(__a , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''') _UpperCamelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) _UpperCamelCase = tmp_dir.joinpath('''train.source''').open().readlines() _UpperCamelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) pack_data_dir(__a , __a , 1_28 , __a) _UpperCamelCase = {x.name for x in tmp_dir.iterdir()} _UpperCamelCase = {x.name for x in save_dir.iterdir()} _UpperCamelCase = save_dir.joinpath('''train.source''').open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__a) < len(__a) assert len(__a) == 1 assert len(packed_examples[0]) == sum(len(__a) for x in orig_examples) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''') def UpperCAmelCase ( self) -> str: '''simple docstring''' if not FAIRSEQ_AVAILABLE: return _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_dataset(max_len=64) _UpperCamelCase = 64 _UpperCamelCase = ds.make_dynamic_sampler(__a , required_batch_size_multiple=__a) _UpperCamelCase = [len(__a) for x in batch_sampler] assert len(set(__a)) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__a) == len(__a) # no dropped or added examples _UpperCamelCase = DataLoader(__a , batch_sampler=__a , collate_fn=ds.collate_fn , num_workers=2) _UpperCamelCase = [] _UpperCamelCase = [] for batch in data_loader: _UpperCamelCase = batch['''input_ids'''].shape _UpperCamelCase = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _UpperCamelCase = np.product(batch['''input_ids'''].shape) num_src_per_batch.append(__a) if num_src_tokens > (max_tokens * 1.1): failures.append(__a) assert num_src_per_batch[0] == max(__a) if failures: raise AssertionError(F'''too many tokens in {len(__a)} batches''') def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_dataset(max_len=5_12) _UpperCamelCase = 2 _UpperCamelCase = ds.make_sortish_sampler(__a , shuffle=__a) _UpperCamelCase = DataLoader(__a , batch_size=__a , collate_fn=ds.collate_fn , num_workers=2) _UpperCamelCase = DataLoader(__a , batch_size=__a , collate_fn=ds.collate_fn , num_workers=2 , sampler=__a) _UpperCamelCase = tokenizer.pad_token_id def count_pad_tokens(__a , __a="input_ids"): return [batch[k].eq(__a).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__a , k='''labels''')) < sum(count_pad_tokens(__a , k='''labels''')) assert sum(count_pad_tokens(__a)) < sum(count_pad_tokens(__a)) assert len(__a) == len(__a) def UpperCAmelCase ( self , __a=10_00 , __a=1_28) -> int: '''simple docstring''' if os.getenv('''USE_REAL_DATA''' , __a): _UpperCamelCase = '''examples/seq2seq/wmt_en_ro''' _UpperCamelCase = max_len * 2 * 64 if not Path(__a).joinpath('''train.len''').exists(): save_len_file(__a , __a) else: _UpperCamelCase = '''examples/seq2seq/test_data/wmt_en_ro''' _UpperCamelCase = max_len * 4 save_len_file(__a , __a) _UpperCamelCase = AutoTokenizer.from_pretrained(__a) _UpperCamelCase = SeqaSeqDataset( __a , data_dir=__a , type_path='''train''' , max_source_length=__a , max_target_length=__a , n_obs=__a , ) return ds, max_tokens, tokenizer def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_dataset() _UpperCamelCase = set(DistributedSortishSampler(__a , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=__a)) _UpperCamelCase = set(DistributedSortishSampler(__a , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=__a)) assert idsa.intersection(__a) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def UpperCAmelCase ( self , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = AutoTokenizer.from_pretrained(__a , use_fast=__a) if tok_name == MBART_TINY: _UpperCamelCase = SeqaSeqDataset( __a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) _UpperCamelCase = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _UpperCamelCase = SeqaSeqDataset( __a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) _UpperCamelCase = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__a) == 1 if tok_name == BART_TINY else len(__a) == 0
19
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase( lowerCamelCase ): lowercase__ = (DDPMScheduler,) def UpperCAmelCase ( self , **__a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__a) return config def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=__a , beta_end=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.check_over_configs(thresholding=__a) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0979)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.02)) < 1e-5 def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = len(__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = torch.manual_seed(0) for t in reversed(range(__a)): # 1. predict noise residual _UpperCamelCase = model(__a , __a) # 2. predict previous mean of sample x_t-1 _UpperCamelCase = scheduler.step(__a , __a , __a , generator=__a).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCamelCase = pred_prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 258.9606) < 1e-2 assert abs(result_mean.item() - 0.3372) < 1e-3 def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''') _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = len(__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = torch.manual_seed(0) for t in reversed(range(__a)): # 1. predict noise residual _UpperCamelCase = model(__a , __a) # 2. predict previous mean of sample x_t-1 _UpperCamelCase = scheduler.step(__a , __a , __a , generator=__a).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCamelCase = pred_prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 202.0296) < 1e-2 assert abs(result_mean.item() - 0.2631) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__a) _UpperCamelCase = scheduler.timesteps for i, timestep in enumerate(__a): if i == len(__a) - 1: _UpperCamelCase = -1 else: _UpperCamelCase = timesteps[i + 1] _UpperCamelCase = scheduler.previous_timestep(__a) _UpperCamelCase = prev_t.item() self.assertEqual(__a , __a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 51, 0] with self.assertRaises(__a , msg='''`custom_timesteps` must be in descending order.'''): scheduler.set_timesteps(timesteps=__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 1, 0] _UpperCamelCase = len(__a) with self.assertRaises(__a , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.'''): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=__a)
19
1
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class _UpperCAmelCase( nn.Module ): def __init__( self , __a = 16 , __a = 88 , __a = None , __a = 1 , __a = 0.0 , __a = 32 , __a = None , __a = False , __a = None , __a = None , __a = "geglu" , __a = None , ) -> str: '''simple docstring''' super().__init__() _UpperCamelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__a , attention_head_dim=__a , in_channels=__a , num_layers=__a , dropout=__a , norm_num_groups=__a , cross_attention_dim=__a , attention_bias=__a , sample_size=__a , num_vector_embeds=__a , activation_fn=__a , num_embeds_ada_norm=__a , ) for _ in range(2) ]) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _UpperCamelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _UpperCamelCase = [77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _UpperCamelCase = [1, 0] def UpperCAmelCase ( self , __a , __a , __a=None , __a=None , __a=None , __a = True , ) -> Dict: '''simple docstring''' _UpperCamelCase = hidden_states _UpperCamelCase = [] _UpperCamelCase = 0 # attention_mask is not used yet for i in range(2): # for each of the two transformers, pass the corresponding condition tokens _UpperCamelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _UpperCamelCase = self.transformer_index_for_condition[i] _UpperCamelCase = self.transformers[transformer_index]( __a , encoder_hidden_states=__a , timestep=__a , cross_attention_kwargs=__a , return_dict=__a , )[0] encoded_states.append(encoded_state - input_states) tokens_start += self.condition_lengths[i] _UpperCamelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _UpperCamelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__a)
19
"""simple docstring""" from __future__ import annotations from functools import lru_cache from math import ceil _a = 100 _a = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} _UpperCamelCase = set() _UpperCamelCase = 42 _UpperCamelCase = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def lowerCamelCase__ ( __snake_case = 50_00 ) -> int | None: """simple docstring""" for number_to_partition in range(1, __snake_case ): if len(partition(__snake_case ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"""{solution() = }""")
19
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _a = { """configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """ResNetForImageClassification""", """ResNetModel""", """ResNetPreTrainedModel""", """ResNetBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFResNetForImageClassification""", """TFResNetModel""", """TFResNetPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """FlaxResNetForImageClassification""", """FlaxResNetModel""", """FlaxResNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys _a = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
19
"""simple docstring""" from collections.abc import Callable import numpy as np def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> np.array: """simple docstring""" _UpperCamelCase = int(np.ceil((x_end - xa) / step_size ) ) _UpperCamelCase = np.zeros((n + 1,) ) _UpperCamelCase = ya _UpperCamelCase = xa for k in range(__snake_case ): _UpperCamelCase = y[k] + step_size * ode_func(__snake_case, y[k] ) _UpperCamelCase = y[k] + ( (step_size / 2) * (ode_func(__snake_case, y[k] ) + ode_func(x + step_size, __snake_case )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
19
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
19
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _a = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _a = parser.parse_args() if args.model_type == "bert": _a = BertForMaskedLM.from_pretrained(args.model_name) _a = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _a = model.state_dict() _a = {} for w in ["word_embeddings", "position_embeddings"]: _a = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _a = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] _a = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _a = state_dict["""cls.predictions.decoder.weight"""] _a = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _a = state_dict[F"""cls.predictions.transform.dense.{w}"""] _a = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
19
1
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class _UpperCAmelCase( unittest.TestCase ): def __init__( self , __a , __a=7 , __a=3 , __a=18 , __a=30 , __a=4_00 , __a=True , __a=None , __a=True , ) -> Any: '''simple docstring''' _UpperCamelCase = size if size is not None else {'''height''': 18, '''width''': 18} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = image_size _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_normalize def UpperCAmelCase ( self) -> int: '''simple docstring''' return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866_4436_3403_3203, 0.6618_8293_6954_4983, 0.3891_7464_0178_6804], [-0.6042_5591_4688_1104, -0.0_2295_0088_6052_8469, 0.5423_7973_6900_3296], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = ImageGPTImageProcessor if is_vision_available() else None def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ImageGPTImageProcessingTester(self) @property def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__a , '''clusters''')) self.assertTrue(hasattr(__a , '''do_resize''')) self.assertTrue(hasattr(__a , '''size''')) self.assertTrue(hasattr(__a , '''do_normalize''')) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18}) _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42}) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) _UpperCamelCase = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(__a , obj[key])) else: self.assertEqual(obj[key] , __a) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = os.path.join(__a , '''image_processor.json''') image_processor_first.to_json_file(__a) _UpperCamelCase = self.image_processing_class.from_json_file(__a).to_dict() _UpperCamelCase = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__a , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , __a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(__a) _UpperCamelCase = self.image_processing_class.from_pretrained(__a).to_dict() _UpperCamelCase = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__a , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , __a) @unittest.skip('''ImageGPT requires clusters at initialization''') def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' pass def lowerCamelCase__ ( ) -> Any: """simple docstring""" _UpperCamelCase = load_dataset('''hf-internal-testing/fixtures_image_utils''', split='''test''' ) _UpperCamelCase = Image.open(dataset[4]['''file'''] ) _UpperCamelCase = Image.open(dataset[5]['''file'''] ) _UpperCamelCase = [imagea, imagea] return images @require_vision @require_torch class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''') _UpperCamelCase = prepare_images() # test non-batched _UpperCamelCase = image_processing(images[0] , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 10_24)) _UpperCamelCase = [3_06, 1_91, 1_91] self.assertEqual(encoding.input_ids[0, :3].tolist() , __a) # test batched _UpperCamelCase = image_processing(__a , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 10_24)) _UpperCamelCase = [3_03, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , __a)
19
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _a = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class _UpperCAmelCase: lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = 'gelu' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=False , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a=0.1 , __a=0.1 , __a=20 , __a=2 , __a=1 , __a=0 , ) -> int: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) _UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) _UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCamelCase = prepare_pegasus_inputs_dict(__a , __a , __a) return config, inputs_dict def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids''']) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a) _UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''') _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __a , decoder_attention_mask=__a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__a , ) _UpperCamelCase = model.decode(__a , __a) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''') def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids''']) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a) _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__a , decoder_position_ids=__a , ) _UpperCamelCase = model.decode(__a , __a , decoder_attention_mask=__a) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''') def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=None, __snake_case=None, ) -> Union[str, Any]: """simple docstring""" if attention_mask is None: _UpperCamelCase = np.not_equal(__snake_case, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _UpperCamelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = FlaxPegasusModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = self._prepare_for_class(__a , __a) _UpperCamelCase = model_class(__a) @jax.jit def encode_jitted(__a , __a=None , **__a): return model.encode(input_ids=__a , attention_mask=__a) with self.subTest('''JIT Enabled'''): _UpperCamelCase = encode_jitted(**__a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): _UpperCamelCase = encode_jitted(**__a).to_tuple() self.assertEqual(len(__a) , len(__a)) for jitted_output, output in zip(__a , __a): self.assertEqual(jitted_output.shape , output.shape) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = model_class(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask''']) _UpperCamelCase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(__a , __a , __a): return model.decode( decoder_input_ids=__a , decoder_attention_mask=__a , encoder_outputs=__a , ) with self.subTest('''JIT Enabled'''): _UpperCamelCase = decode_jitted(**__a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): _UpperCamelCase = decode_jitted(**__a).to_tuple() self.assertEqual(len(__a) , len(__a)) for jitted_output, output in zip(__a , __a): self.assertEqual(jitted_output.shape , output.shape) @slow def UpperCAmelCase ( self) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=__a) _UpperCamelCase = np.ones((1, 1)) _UpperCamelCase = model(__a) self.assertIsNotNone(__a) @slow def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''') _UpperCamelCase = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''') _UpperCamelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] _UpperCamelCase = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] _UpperCamelCase = tokenizer(__a , return_tensors='''np''' , truncation=__a , max_length=5_12 , padding=__a) _UpperCamelCase = model.generate(**__a , num_beams=2).sequences _UpperCamelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a) assert tgt_text == decoded
19
1
"""simple docstring""" def lowerCamelCase__ ( __snake_case ) -> int: """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 _UpperCamelCase = 1 _UpperCamelCase = 1 while repunit: _UpperCamelCase = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def lowerCamelCase__ ( __snake_case = 1_00_00_00 ) -> int: """simple docstring""" _UpperCamelCase = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__snake_case ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"""{solution() = }""")
19
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , __a=0 , ) -> Any: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope _UpperCamelCase = projection_dim def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) _UpperCamelCase = DPRConfig(projection_dim=self.projection_dim , **config.to_dict()) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = TFDPRContextEncoder(config=__a) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFDPRQuestionEncoder(config=__a) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = TFDPRReader(config=__a) _UpperCamelCase = model(__a , attention_mask=__a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,)) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowercase__ = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDPRModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__a) @slow def UpperCAmelCase ( self) -> str: '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRContextEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRContextEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRQuestionEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRReader.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''') _UpperCamelCase = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]]) # [CLS] hello, is my dog cute? [SEP] _UpperCamelCase = model(__a)[0] # embedding shape = (1, 768) # compare the actual values for a slice. _UpperCamelCase = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ]) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4))
19
1
"""simple docstring""" from math import pi, sqrt def lowerCamelCase__ ( __snake_case ) -> float: """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) if num > 171.5: raise OverflowError('''math range error''' ) elif num - int(__snake_case ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(__snake_case ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowerCamelCase__ ( ) -> None: """simple docstring""" assert gamma(0.5 ) == sqrt(__snake_case ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _a = 1.0 while num: _a = float(input("""Gamma of: """)) print(F"""gamma({num}) = {gamma(num)}""") print("""\nEnter 0 to exit...""")
19
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x2_0000 and cp <= 0x2_A6DF) # or (cp >= 0x2_A700 and cp <= 0x2_B73F) # or (cp >= 0x2_B740 and cp <= 0x2_B81F) # or (cp >= 0x2_B820 and cp <= 0x2_CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2_F800 and cp <= 0x2_FA1F) # ): # return True return False def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" for char in word: _UpperCamelCase = ord(__snake_case ) if not _is_chinese_char(__snake_case ): return 0 return 1 def lowerCamelCase__ ( __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = set() for token in tokens: _UpperCamelCase = len(__snake_case ) > 1 and is_chinese(__snake_case ) if chinese_word: word_set.add(__snake_case ) _UpperCamelCase = list(__snake_case ) return word_list def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" if not chinese_word_set: return bert_tokens _UpperCamelCase = max([len(__snake_case ) for w in chinese_word_set] ) _UpperCamelCase = bert_tokens _UpperCamelCase , _UpperCamelCase = 0, len(__snake_case ) while start < end: _UpperCamelCase = True if is_chinese(bert_word[start] ): _UpperCamelCase = min(end - start, __snake_case ) for i in range(__snake_case, 1, -1 ): _UpperCamelCase = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _UpperCamelCase = '''##''' + bert_word[j] _UpperCamelCase = start + i _UpperCamelCase = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws _UpperCamelCase = [get_chinese_word(__snake_case ) for r in res] ltp_res.extend(__snake_case ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=__snake_case, truncation=__snake_case, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for input_ids, chinese_word in zip(__snake_case, __snake_case ): _UpperCamelCase = [] for id in input_ids: _UpperCamelCase = bert_tokenizer._convert_id_to_token(__snake_case ) input_tokens.append(__snake_case ) _UpperCamelCase = add_sub_symbol(__snake_case, __snake_case ) _UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__snake_case ): if token[:2] == "##": _UpperCamelCase = token[2:] # save chinese tokens' pos if len(__snake_case ) == 1 and _is_chinese_char(ord(__snake_case ) ): ref_id.append(__snake_case ) ref_ids.append(__snake_case ) assert len(__snake_case ) == len(__snake_case ) return ref_ids def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _UpperCamelCase = f.readlines() _UpperCamelCase = [line.strip() for line in data if len(__snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _UpperCamelCase = LTP(args.ltp ) # faster in GPU device _UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) _UpperCamelCase = prepare_ref(__snake_case, __snake_case, __snake_case ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _UpperCamelCase = [json.dumps(__snake_case ) + '''\n''' for ref in ref_ids] f.writelines(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) _a = parser.parse_args() main(args)
19
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _a = logging.get_logger(__name__) _a = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _a = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } _a = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } _a = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = RealmTokenizer def __init__( self , __a=None , __a=None , __a=True , __a="[UNK]" , __a="[SEP]" , __a="[PAD]" , __a="[CLS]" , __a="[MASK]" , __a=True , __a=None , **__a , ) -> str: '''simple docstring''' super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , tokenize_chinese_chars=__a , strip_accents=__a , **__a , ) _UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('''lowercase''' , __a) != do_lower_case or normalizer_state.get('''strip_accents''' , __a) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __a) != tokenize_chinese_chars ): _UpperCamelCase = getattr(__a , normalizer_state.pop('''type''')) _UpperCamelCase = do_lower_case _UpperCamelCase = strip_accents _UpperCamelCase = tokenize_chinese_chars _UpperCamelCase = normalizer_class(**__a) _UpperCamelCase = do_lower_case def UpperCAmelCase ( self , __a , **__a) -> List[str]: '''simple docstring''' _UpperCamelCase = PaddingStrategy.MAX_LENGTH _UpperCamelCase = text _UpperCamelCase = kwargs.pop('''text_pair''' , __a) _UpperCamelCase = kwargs.pop('''return_tensors''' , __a) _UpperCamelCase = { '''input_ids''': [], '''attention_mask''': [], '''token_type_ids''': [], } for idx, candidate_text in enumerate(__a): if batch_text_pair is not None: _UpperCamelCase = batch_text_pair[idx] else: _UpperCamelCase = None _UpperCamelCase = super().__call__(__a , __a , return_tensors=__a , **__a) _UpperCamelCase = encoded_candidates.get('''input_ids''') _UpperCamelCase = encoded_candidates.get('''attention_mask''') _UpperCamelCase = encoded_candidates.get('''token_type_ids''') if encoded_input_ids is not None: output_data["input_ids"].append(__a) if encoded_attention_mask is not None: output_data["attention_mask"].append(__a) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(__a) _UpperCamelCase = {key: item for key, item in output_data.items() if len(__a) != 0} return BatchEncoding(__a , tensor_type=__a) def UpperCAmelCase ( self , __a , __a=None) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , __a , __a = None) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCAmelCase ( self , __a , __a = None) -> Tuple[str]: '''simple docstring''' _UpperCamelCase = self._tokenizer.model.save(__a , name=__a) return tuple(__a)
19
"""simple docstring""" import heapq def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" _UpperCamelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__snake_case, [-1 * len(__snake_case ), (key, value)] ) # chosen_vertices = set of chosen vertices _UpperCamelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _UpperCamelCase = heapq.heappop(__snake_case )[1][0] chosen_vertices.add(__snake_case ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _UpperCamelCase = elem[1][1].index(__snake_case ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__snake_case ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _a = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
19
1
"""simple docstring""" import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[32, 64, 1_28] , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1e-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , __a=["stage1", "stage2"] , __a=[1, 2] , ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = embed_dim _UpperCamelCase = hidden_sizes _UpperCamelCase = depths _UpperCamelCase = num_heads _UpperCamelCase = window_size _UpperCamelCase = mlp_ratio _UpperCamelCase = qkv_bias _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = drop_path_rate _UpperCamelCase = hidden_act _UpperCamelCase = use_absolute_embeddings _UpperCamelCase = patch_norm _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = is_training _UpperCamelCase = scope _UpperCamelCase = use_labels _UpperCamelCase = type_sequence_label_size _UpperCamelCase = encoder_stride _UpperCamelCase = out_features _UpperCamelCase = out_indices def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCAmelCase ( self , __a , __a , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = FocalNetModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) _UpperCamelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) _UpperCamelCase = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def UpperCAmelCase ( self , __a , __a , __a) -> List[str]: '''simple docstring''' _UpperCamelCase = FocalNetBackbone(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.image_size, 8, 8]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1]) # verify backbone works with out_features=None _UpperCamelCase = None _UpperCamelCase = FocalNetBackbone(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.image_size * 2, 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def UpperCAmelCase ( self , __a , __a , __a) -> Any: '''simple docstring''' _UpperCamelCase = FocalNetForMaskedImageModeling(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images _UpperCamelCase = 1 _UpperCamelCase = FocalNetForMaskedImageModeling(__a) model.to(__a) model.eval() _UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _UpperCamelCase = model(__a) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.type_sequence_label_size _UpperCamelCase = FocalNetForImageClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images _UpperCamelCase = 1 _UpperCamelCase = FocalNetForImageClassification(__a) model.to(__a) model.eval() _UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _UpperCamelCase = model(__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase__ = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = FocalNetModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , embed_dim=37 , has_text_modality=__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) @unittest.skip(reason='''FocalNet does not use inputs_embeds''') def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='''FocalNet does not use feedforward chunking''') def UpperCAmelCase ( self) -> str: '''simple docstring''' pass def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _UpperCamelCase = model_class(__a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear)) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self , __a , __a , __a , __a) -> int: '''simple docstring''' _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.hidden_states _UpperCamelCase = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths) + 1) self.assertEqual(len(__a) , __a) # FocalNet has a different seq_length _UpperCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) _UpperCamelCase = outputs.reshaped_hidden_states self.assertEqual(len(__a) , __a) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = reshaped_hidden_states[0].shape _UpperCamelCase = ( reshaped_hidden_states[0].view(__a , __a , height * width).permute(0 , 2 , 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _UpperCamelCase = True self.check_hidden_states_output(__a , __a , __a , __a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True self.check_hidden_states_output(__a , __a , __a , __a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = 3 _UpperCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _UpperCamelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCamelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _UpperCamelCase = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width)) @slow def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = FocalNetModel.from_pretrained(__a) self.assertIsNotNone(__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class _UpperCAmelCase( unittest.TestCase ): @cached_property def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' # TODO update organization return AutoImageProcessor.from_pretrained('''microsoft/focalnet-tiny''') if is_vision_available() else None @slow def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = FocalNetForImageClassification.from_pretrained('''microsoft/focalnet-tiny''').to(__a) _UpperCamelCase = self.default_image_processor _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''').to(__a) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__a) # verify the logits _UpperCamelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor([0.2166, -0.4368, 0.2191]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4)) self.assertTrue(outputs.logits.argmax(dim=-1).item() , 2_81) @require_torch class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = (FocalNetBackbone,) if is_torch_available() else () lowercase__ = FocalNetConfig lowercase__ = False def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = FocalNetModelTester(self)
19
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _UpperCamelCase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj ) assert isinstance(_test_patching.os.path, _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" assert _test_patching.open is open _UpperCamelCase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, '''open''', __snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching, '''pandas.read_csv''', __snake_case ): pass def lowerCamelCase__ ( ) -> Dict: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, '''len''', __snake_case ) is None with patch_submodule(_test_patching, '''len''', __snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_start_and_stop_mock__''' _UpperCamelCase = patch_submodule(_test_patching, '''open''', __snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _UpperCamelCase = '''__test_patch_submodule_successive_join__''' _UpperCamelCase = '''__test_patch_submodule_successive_dirname__''' _UpperCamelCase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> str: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching, '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''', __snake_case ): pass with patch_submodule(_test_patching, '''os.__attribute_that_doesn_exist__''', __snake_case ): pass
19
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _a = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
19
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = original_name.split('''.''' )[0] _UpperCamelCase = key.split('''.''' ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 2] ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 1] ) _UpperCamelCase = orig_block_num - offset _UpperCamelCase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''', F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = OrderedDict() _UpperCamelCase , _UpperCamelCase = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): _UpperCamelCase = key.replace('''network''', '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 _UpperCamelCase = key[: key.find('''proj''' )] _UpperCamelCase = key.replace(__snake_case, F'''patch_embeddings.{total_embed_found}.''' ) _UpperCamelCase = key.replace('''proj''', '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: _UpperCamelCase = '''poolformer.encoder.''' + key if "mlp.fc1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc1''', '''output.conv1''' ) if "mlp.fc2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc2''', '''output.conv2''' ) if "norm1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm1''', '''before_norm''' ) if "norm2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm2''', '''after_norm''' ) if "layer_scale_1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_1''', '''layer_scale_1''' ) if "layer_scale_2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_2''', '''layer_scale_2''' ) if "head" in key: _UpperCamelCase = key.replace('''head''', '''classifier''' ) _UpperCamelCase = value return new_state_dict def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase = Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return image @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = PoolFormerConfig() # set attributes based on model_name _UpperCamelCase = '''huggingface/label-files''' _UpperCamelCase = model_name[-3:] _UpperCamelCase = 10_00 _UpperCamelCase = '''imagenet-1k-id2label.json''' _UpperCamelCase = (1, 10_00) # set config attributes _UpperCamelCase = json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type='''dataset''' ), '''r''' ) ) _UpperCamelCase = {int(__snake_case ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} if size == "s12": _UpperCamelCase = [2, 2, 6, 2] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s24": _UpperCamelCase = [4, 4, 12, 4] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.9 elif size == "m36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 elif size == "m48": _UpperCamelCase = [8, 8, 24, 8] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) # Prepare image _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__snake_case, return_tensors='''pt''' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict _UpperCamelCase = torch.load(__snake_case, map_location=torch.device('''cpu''' ) ) # rename keys _UpperCamelCase = rename_keys(__snake_case ) # create HuggingFace model and load state dict _UpperCamelCase = PoolFormerForImageClassification(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # Define image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) _UpperCamelCase = image_processor(images=prepare_img(), return_tensors='''pt''' ).pixel_values # forward pass _UpperCamelCase = model(__snake_case ) _UpperCamelCase = outputs.logits # define expected logit slices for different models if size == "s12": _UpperCamelCase = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": _UpperCamelCase = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": _UpperCamelCase = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": _UpperCamelCase = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": _UpperCamelCase = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3], __snake_case, atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _a = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
19
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00]) _UpperCamelCase = get_activation('''gelu''') self.assertTrue(torch.allclose(gelu_python(__a) , torch_builtin(__a))) self.assertFalse(torch.allclose(gelu_python(__a) , gelu_new(__a))) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00]) _UpperCamelCase = get_activation('''gelu''') _UpperCamelCase = get_activation('''gelu_10''') _UpperCamelCase = torch_builtin(__a) _UpperCamelCase = geluaa(__a) _UpperCamelCase = torch.where(y_gelu_aa < 10.0 , 1 , 0) self.assertTrue(torch.max(__a).item() == 10.0) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' get_activation('''gelu''') get_activation('''gelu_10''') get_activation('''gelu_fast''') get_activation('''gelu_new''') get_activation('''gelu_python''') get_activation('''gelu_pytorch_tanh''') get_activation('''linear''') get_activation('''mish''') get_activation('''quick_gelu''') get_activation('''relu''') get_activation('''sigmoid''') get_activation('''silu''') get_activation('''swish''') get_activation('''tanh''') with self.assertRaises(__a): get_activation('''bogus''') with self.assertRaises(__a): get_activation(__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = get_activation('''gelu''') _UpperCamelCase = 1 _UpperCamelCase = get_activation('''gelu''') self.assertEqual(acta.a , 1) with self.assertRaises(__a): _UpperCamelCase = acta.a
19
"""simple docstring""" import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class _UpperCAmelCase( lowerCamelCase ): lowercase__ = (DPMSolverSDEScheduler,) lowercase__ = 10 def UpperCAmelCase ( self , **__a) -> int: '''simple docstring''' _UpperCamelCase = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**__a) return config def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02]): self.check_over_configs(beta_start=__a , beta_end=__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a) def UpperCAmelCase ( self) -> str: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''') _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a , use_karras_sigmas=__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2
19
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _a = logging.get_logger(__name__) _a = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class _UpperCAmelCase( lowerCamelCase , lowerCamelCase ): lowercase__ = 'nat' lowercase__ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __a=4 , __a=3 , __a=64 , __a=[3, 4, 6, 5] , __a=[2, 4, 8, 16] , __a=7 , __a=3.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=0.02 , __a=1e-5 , __a=0.0 , __a=None , __a=None , **__a , ) -> Tuple: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = embed_dim _UpperCamelCase = depths _UpperCamelCase = len(__a) _UpperCamelCase = num_heads _UpperCamelCase = kernel_size _UpperCamelCase = mlp_ratio _UpperCamelCase = qkv_bias _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = drop_path_rate _UpperCamelCase = hidden_act _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCamelCase = int(embed_dim * 2 ** (len(__a) - 1)) _UpperCamelCase = layer_scale_init_value _UpperCamelCase = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(__a) + 1)] _UpperCamelCase , _UpperCamelCase = get_aligned_output_features_output_indices( out_features=__a , out_indices=__a , stage_names=self.stage_names)
19
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['pixel_values'] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BICUBIC , __a = True , __a = True , __a = 1 / 2_55 , __a = None , __a = True , __a = None , __a = None , **__a , ) -> None: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a , default_to_square=__a , param_name='''crop_size''') _UpperCamelCase = do_resize _UpperCamelCase = do_rescale _UpperCamelCase = do_normalize _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = rescale_factor _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BILINEAR , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "shortest_edge" in size: _UpperCamelCase = get_resize_output_image_size(__a , size=size['''shortest_edge'''] , default_to_square=__a) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''') return resize(__a , size=__a , resample=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''') return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a) -> np.ndarray: '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> BatchFeature: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(__a , param_name='''crop_size''' , default_to_square=__a) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(__a) if not is_batched(__a): _UpperCamelCase = [images] if not valid_images(__a): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(__a) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=__a , size=__a , resample=__a) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=__a , size=__a) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=__a , scale=__a) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=__a , mean=__a , std=__a) for image in images] _UpperCamelCase = [to_channel_dimension_format(__a , __a) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=__a , tensor_type=__a)
19
1
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
19
"""simple docstring""" # Imports import numpy as np class _UpperCAmelCase: def __init__( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) def UpperCAmelCase ( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' if red is not None: _UpperCamelCase = red if green is not None: _UpperCamelCase = green if blue is not None: _UpperCamelCase = blue if red_edge is not None: _UpperCamelCase = red_edge if nir is not None: _UpperCamelCase = nir return True def UpperCAmelCase ( self , __a="" , __a=None , __a=None , __a=None , __a=None , __a=None) -> List[str]: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) _UpperCamelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''') return False def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self) -> Any: '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self , __a=0.08 , __a=1.22 , __a=0.03) -> Optional[Any]: '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir / self.green) - 1 def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.red - self.blue) / self.red def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir - self.green def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def UpperCAmelCase ( self , __a=0.16) -> Optional[Any]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self , __a=0.5) -> Dict: '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self , __a=None , __a=None) -> Any: '''simple docstring''' return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self) -> Any: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> str: '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) _UpperCamelCase = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Any: '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
19
1
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
19
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=64 , __a=2 , __a=3 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a=[1, 16, 4, 4] , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _UpperCamelCase = (self.image_size // 32) ** 2 _UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__a , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.type_sequence_label_size _UpperCamelCase = ViTHybridForImageClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowercase__ = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''') def UpperCAmelCase ( self) -> Dict: '''simple docstring''' pass def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear)) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _UpperCamelCase = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = ViTHybridModel.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase( unittest.TestCase ): @cached_property def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( __a) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''').to(__a) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__a) # verify the logits _UpperCamelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor([-1.9090, -0.4993, -0.2389]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4)) @slow @require_accelerate def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''') _UpperCamelCase = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''') _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''') _UpperCamelCase = model(**__a) _UpperCamelCase = outputs.logits # model predicts one of the 1000 ImageNet classes _UpperCamelCase = logits.argmax(-1).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''')
19
1
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['vqvae'] def __init__( self , __a , __a , __a , __a , ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules(unet=__a , scheduler=__a , mel=__a , vqvae=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' return 50 if isinstance(self.scheduler , __a) else 10_00 @torch.no_grad() def __call__( self , __a = 1 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = 0 , __a = None , __a = None , __a=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' _UpperCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(__a) _UpperCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: _UpperCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _UpperCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__a , device=self.device , ) _UpperCamelCase = noise _UpperCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__a , __a) _UpperCamelCase = self.mel.audio_slice_to_image(__a) _UpperCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''').reshape( (input_image.height, input_image.width)) _UpperCamelCase = (input_image / 2_55) * 2 - 1 _UpperCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: _UpperCamelCase = self.vqvae.encode(torch.unsqueeze(__a , 0)).latent_dist.sample( generator=__a)[0] _UpperCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _UpperCamelCase = self.scheduler.add_noise(__a , __a , self.scheduler.timesteps[start_step - 1]) _UpperCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _UpperCamelCase = int(mask_start_secs * pixels_per_second) _UpperCamelCase = int(mask_end_secs * pixels_per_second) _UpperCamelCase = self.scheduler.add_noise(__a , __a , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , __a): _UpperCamelCase = self.unet(__a , __a , __a)['''sample'''] else: _UpperCamelCase = self.unet(__a , __a)['''sample'''] if isinstance(self.scheduler , __a): _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , eta=__a , generator=__a , )['''prev_sample'''] else: _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , generator=__a , )['''prev_sample'''] if mask is not None: if mask_start > 0: _UpperCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _UpperCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _UpperCamelCase = 1 / self.vqvae.config.scaling_factor * images _UpperCamelCase = self.vqvae.decode(__a)['''sample'''] _UpperCamelCase = (images / 2 + 0.5).clamp(0 , 1) _UpperCamelCase = images.cpu().permute(0 , 2 , 3 , 1).numpy() _UpperCamelCase = (images * 2_55).round().astype('''uint8''') _UpperCamelCase = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__a , mode='''RGB''').convert('''L''') for _ in images)) _UpperCamelCase = [self.mel.image_to_audio(__a) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__a)[:, np.newaxis, :]) , **ImagePipelineOutput(__a)) @torch.no_grad() def UpperCAmelCase ( self , __a , __a = 50) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , __a) self.scheduler.set_timesteps(__a) _UpperCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''').reshape((1, image.height, image.width)) for image in images]) _UpperCamelCase = (sample / 2_55) * 2 - 1 _UpperCamelCase = torch.Tensor(__a).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): _UpperCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _UpperCamelCase = self.scheduler.alphas_cumprod[t] _UpperCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _UpperCamelCase = 1 - alpha_prod_t _UpperCamelCase = self.unet(__a , __a)['''sample'''] _UpperCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _UpperCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _UpperCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase ( __a , __a , __a) -> torch.Tensor: '''simple docstring''' _UpperCamelCase = acos(torch.dot(torch.flatten(__a) , torch.flatten(__a)) / torch.norm(__a) / torch.norm(__a)) return sin((1 - alpha) * theta) * xa / sin(__a) + sin(alpha * theta) * xa / sin(__a)
19
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['vqvae'] def __init__( self , __a , __a , __a , __a , ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules(unet=__a , scheduler=__a , mel=__a , vqvae=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' return 50 if isinstance(self.scheduler , __a) else 10_00 @torch.no_grad() def __call__( self , __a = 1 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = 0 , __a = None , __a = None , __a=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' _UpperCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(__a) _UpperCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: _UpperCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _UpperCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__a , device=self.device , ) _UpperCamelCase = noise _UpperCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__a , __a) _UpperCamelCase = self.mel.audio_slice_to_image(__a) _UpperCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''').reshape( (input_image.height, input_image.width)) _UpperCamelCase = (input_image / 2_55) * 2 - 1 _UpperCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: _UpperCamelCase = self.vqvae.encode(torch.unsqueeze(__a , 0)).latent_dist.sample( generator=__a)[0] _UpperCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _UpperCamelCase = self.scheduler.add_noise(__a , __a , self.scheduler.timesteps[start_step - 1]) _UpperCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _UpperCamelCase = int(mask_start_secs * pixels_per_second) _UpperCamelCase = int(mask_end_secs * pixels_per_second) _UpperCamelCase = self.scheduler.add_noise(__a , __a , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , __a): _UpperCamelCase = self.unet(__a , __a , __a)['''sample'''] else: _UpperCamelCase = self.unet(__a , __a)['''sample'''] if isinstance(self.scheduler , __a): _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , eta=__a , generator=__a , )['''prev_sample'''] else: _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , generator=__a , )['''prev_sample'''] if mask is not None: if mask_start > 0: _UpperCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _UpperCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _UpperCamelCase = 1 / self.vqvae.config.scaling_factor * images _UpperCamelCase = self.vqvae.decode(__a)['''sample'''] _UpperCamelCase = (images / 2 + 0.5).clamp(0 , 1) _UpperCamelCase = images.cpu().permute(0 , 2 , 3 , 1).numpy() _UpperCamelCase = (images * 2_55).round().astype('''uint8''') _UpperCamelCase = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__a , mode='''RGB''').convert('''L''') for _ in images)) _UpperCamelCase = [self.mel.image_to_audio(__a) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__a)[:, np.newaxis, :]) , **ImagePipelineOutput(__a)) @torch.no_grad() def UpperCAmelCase ( self , __a , __a = 50) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , __a) self.scheduler.set_timesteps(__a) _UpperCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''').reshape((1, image.height, image.width)) for image in images]) _UpperCamelCase = (sample / 2_55) * 2 - 1 _UpperCamelCase = torch.Tensor(__a).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): _UpperCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _UpperCamelCase = self.scheduler.alphas_cumprod[t] _UpperCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _UpperCamelCase = 1 - alpha_prod_t _UpperCamelCase = self.unet(__a , __a)['''sample'''] _UpperCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _UpperCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _UpperCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase ( __a , __a , __a) -> torch.Tensor: '''simple docstring''' _UpperCamelCase = acos(torch.dot(torch.flatten(__a) , torch.flatten(__a)) / torch.norm(__a) / torch.norm(__a)) return sin((1 - alpha) * theta) * xa / sin(__a) + sin(alpha * theta) * xa / sin(__a)
19
1
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( __snake_case ) -> bool: """simple docstring""" if len(__snake_case ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) _UpperCamelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
19
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'detr' lowercase__ = ['past_key_values'] lowercase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __a=True , __a=None , __a=3 , __a=1_00 , __a=6 , __a=20_48 , __a=8 , __a=6 , __a=20_48 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=2_56 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=1 , __a=1 , __a=5 , __a=2 , __a=0.1 , **__a , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__a , __a): _UpperCamelCase = backbone_config.get('''model_type''') _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(__a) # set timm attributes to None _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None, None, None _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = encoder_layers _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase ( cls , __a , **__a) -> int: '''simple docstring''' return cls(backbone_config=__a , **__a) def UpperCAmelCase ( self) -> Dict[str, any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output class _UpperCAmelCase( lowerCamelCase ): lowercase__ = version.parse('1.11' ) @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def UpperCAmelCase ( self) -> float: '''simple docstring''' return 1e-5 @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return 12
19
1
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _UpperCAmelCase( unittest.TestCase , lowerCamelCase ): def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = load_tool('''text-classification''') self.tool.setup() _UpperCamelCase = load_tool('''text-classification''' , remote=__a) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.tool('''That\'s quite cool''' , ['''positive''', '''negative''']) self.assertEqual(__a , '''positive''') def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.remote_tool('''That\'s quite cool''' , ['''positive''', '''negative''']) self.assertEqual(__a , '''positive''') def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.tool(text='''That\'s quite cool''' , labels=['''positive''', '''negative''']) self.assertEqual(__a , '''positive''') def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.remote_tool(text='''That\'s quite cool''' , labels=['''positive''', '''negative''']) self.assertEqual(__a , '''positive''')
19
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'wavlm' def __init__( self , __a=32 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.1 , __a=0.02 , __a=1e-5 , __a="group" , __a="gelu" , __a=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __a=(5, 2, 2, 2, 2, 2, 2) , __a=(10, 3, 3, 3, 3, 2, 2) , __a=False , __a=1_28 , __a=16 , __a=3_20 , __a=8_00 , __a=False , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=3_20 , __a=2 , __a=0.1 , __a=1_00 , __a=2_56 , __a=2_56 , __a=0.1 , __a="mean" , __a=False , __a=False , __a=2_56 , __a=(5_12, 5_12, 5_12, 5_12, 15_00) , __a=(5, 3, 3, 1, 1) , __a=(1, 2, 3, 1, 1) , __a=5_12 , __a=80 , __a=0 , __a=1 , __a=2 , __a=False , __a=3 , __a=2 , __a=3 , __a=None , **__a , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a) _UpperCamelCase = hidden_size _UpperCamelCase = feat_extract_norm _UpperCamelCase = feat_extract_activation _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = conv_bias _UpperCamelCase = num_buckets _UpperCamelCase = max_bucket_distance _UpperCamelCase = num_conv_pos_embeddings _UpperCamelCase = num_conv_pos_embedding_groups _UpperCamelCase = len(self.conv_dim) _UpperCamelCase = num_hidden_layers _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = feat_proj_dropout _UpperCamelCase = final_dropout _UpperCamelCase = layerdrop _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = num_ctc_classes _UpperCamelCase = vocab_size _UpperCamelCase = do_stable_layer_norm _UpperCamelCase = use_weighted_layer_sum _UpperCamelCase = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCamelCase = apply_spec_augment _UpperCamelCase = mask_time_prob _UpperCamelCase = mask_time_length _UpperCamelCase = mask_time_min_masks _UpperCamelCase = mask_feature_prob _UpperCamelCase = mask_feature_length # parameters for pretraining with codevector quantized representations _UpperCamelCase = num_codevectors_per_group _UpperCamelCase = num_codevector_groups _UpperCamelCase = contrastive_logits_temperature _UpperCamelCase = num_negatives _UpperCamelCase = codevector_dim _UpperCamelCase = proj_codevector_dim _UpperCamelCase = diversity_loss_weight # ctc loss _UpperCamelCase = ctc_loss_reduction _UpperCamelCase = ctc_zero_infinity # adapter _UpperCamelCase = add_adapter _UpperCamelCase = adapter_kernel_size _UpperCamelCase = adapter_stride _UpperCamelCase = num_adapter_layers _UpperCamelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = xvector_output_dim @property def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
19
1
"""simple docstring""" from __future__ import annotations class _UpperCAmelCase: def __init__( self , __a) -> None: '''simple docstring''' _UpperCamelCase = data _UpperCamelCase = None _UpperCamelCase = None def lowerCamelCase__ ( __snake_case ) -> None: # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowerCamelCase__ ( __snake_case ) -> int: """simple docstring""" return 1 + max(depth_of_tree(tree.left ), depth_of_tree(tree.right ) ) if tree else 0 def lowerCamelCase__ ( __snake_case ) -> bool: """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowerCamelCase__ ( ) -> None: # Main function for testing. """simple docstring""" _UpperCamelCase = Node(1 ) _UpperCamelCase = Node(2 ) _UpperCamelCase = Node(3 ) _UpperCamelCase = Node(4 ) _UpperCamelCase = Node(5 ) _UpperCamelCase = Node(6 ) _UpperCamelCase = Node(7 ) _UpperCamelCase = Node(8 ) _UpperCamelCase = Node(9 ) print(is_full_binary_tree(__snake_case ) ) print(depth_of_tree(__snake_case ) ) print('''Tree is: ''' ) display(__snake_case ) if __name__ == "__main__": main()
19
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _a = """bart""" _a = True @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> Dict: """simple docstring""" if LOAD_DENSE_INDEX: _UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _UpperCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _UpperCamelCase = qar_model.eval() else: _UpperCamelCase , _UpperCamelCase = (None, None) if MODEL_TYPE == "bart": _UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _UpperCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _UpperCamelCase = sas_model.eval() else: _UpperCamelCase , _UpperCamelCase = make_qa_sas_model( model_name='''t5-small''', from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''', device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: _UpperCamelCase = faiss.StandardGpuResources() _UpperCamelCase = datasets.load_dataset(path='''wiki_snippets''', name='''wiki40b_en_100_0''' )['''train'''] _UpperCamelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''', dtype='''float32''', mode='''r''', shape=(wikiaab_passages.num_rows, 1_28), ) _UpperCamelCase = faiss.IndexFlatIP(1_28 ) _UpperCamelCase = faiss.index_cpu_to_gpu(__snake_case, 1, __snake_case ) wikiaab_gpu_index_flat.add(__snake_case ) # TODO fix for larger GPU else: _UpperCamelCase , _UpperCamelCase = (None, None) _UpperCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = datasets.load_dataset('''eli5''', name='''LFQA_reddit''' ) _UpperCamelCase = elia['''train_eli5'''] _UpperCamelCase = np.memmap( '''eli5_questions_reps.dat''', dtype='''float32''', mode='''r''', shape=(elia_train.num_rows, 1_28) ) _UpperCamelCase = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(__snake_case ) return (elia_train, eli5_train_q_index) _a , _a , _a = load_indexes() _a , _a , _a , _a = load_models() _a , _a = load_train_data() def lowerCamelCase__ ( __snake_case, __snake_case=10 ) -> List[Any]: """simple docstring""" _UpperCamelCase = embed_questions_for_retrieval([question], __snake_case, __snake_case ) _UpperCamelCase , _UpperCamelCase = eli5_train_q_index.search(__snake_case, __snake_case ) _UpperCamelCase = [elia_train[int(__snake_case )] for i in I[0]] return nn_examples def lowerCamelCase__ ( __snake_case, __snake_case="wiki40b", __snake_case="dense", __snake_case=10 ) -> List[str]: """simple docstring""" if source == "none": _UpperCamelCase , _UpperCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _UpperCamelCase , _UpperCamelCase = query_qa_dense_index( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) else: _UpperCamelCase , _UpperCamelCase = query_es_index( __snake_case, __snake_case, index_name='''english_wiki40b_snippets_100w''', n_results=__snake_case, ) _UpperCamelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _UpperCamelCase = '''question: {} context: {}'''.format(__snake_case, __snake_case ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __snake_case : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __snake_case : None), } ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=64, __snake_case=2_56, __snake_case=False, __snake_case=2, __snake_case=0.95, __snake_case=0.8 ) -> Dict: """simple docstring""" with torch.no_grad(): _UpperCamelCase = qa_sas_generate( __snake_case, __snake_case, __snake_case, num_answers=1, num_beams=__snake_case, min_len=__snake_case, max_len=__snake_case, do_sample=__snake_case, temp=__snake_case, top_p=__snake_case, top_k=__snake_case, max_input_length=10_24, device='''cuda:0''', )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar _a = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" _a = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _a = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) _a = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] _a = st.sidebar.checkbox("""Demo options""") if demo_options: _a = st.sidebar.selectbox( """""", action_list, index=3, ) _a = action_list.index(action_st) _a = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) _a = show_type == """Show full text of passages""" else: _a = 3 _a = True _a = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: _a = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) _a = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) _a = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: _a = """wiki40b""" _a = """dense""" _a = """beam""" _a = 2 _a = 64 _a = 256 _a = None _a = None _a = st.sidebar.checkbox("""Generation options""") if generate_options: _a = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) _a = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) _a = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) _a = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": _a = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _a = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _a = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _a = None # start main text _a = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] _a = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": _a = st.text_input("""Enter your question here:""", """""") else: _a = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": _a , _a = make_support(question, source=wiki_source, method="""dense""", n_results=10) _a , _a = make_support(question, source=wiki_source, method="""sparse""", n_results=10) _a = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _a = support_list[:10] _a = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: _a , _a = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _a , _a = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): _a = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) _a = res[1].strip() if sec_titles == "": _a = """[{}]({})""".format(res[0], wiki_url) else: _a = sec_titles.split(""" & """) _a = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: _a = find_nearest_training(question) _a = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) _a = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) _a = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
19
1
"""simple docstring""" import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class _UpperCAmelCase: def __init__( self , __a) -> Optional[int]: '''simple docstring''' if isinstance(__a , __a): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden _UpperCamelCase = deepcopy(__a) elif os.path.exists(__a): with io.open(__a , '''r''' , encoding='''utf-8''') as f: _UpperCamelCase = json.load(__a) else: try: _UpperCamelCase = baseaa.urlsafe_baadecode(__a).decode('''utf-8''') _UpperCamelCase = json.loads(__a) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( F'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''') _UpperCamelCase = config self.set_stage_and_offload() def UpperCAmelCase ( self) -> str: '''simple docstring''' # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. _UpperCamelCase = self.get_value('''zero_optimization.stage''' , -1) # offload _UpperCamelCase = False if self.is_zeroa() or self.is_zeroa(): _UpperCamelCase = set(['''cpu''', '''nvme''']) _UpperCamelCase = set( [ self.get_value('''zero_optimization.offload_optimizer.device'''), self.get_value('''zero_optimization.offload_param.device'''), ]) if len(offload_devices & offload_devices_valid) > 0: _UpperCamelCase = True def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = self.config # find the config node of interest if it exists _UpperCamelCase = ds_key_long.split('''.''') _UpperCamelCase = nodes.pop() for node in nodes: _UpperCamelCase = config.get(__a) if config is None: return None, ds_key return config, ds_key def UpperCAmelCase ( self , __a , __a=None) -> Dict: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.find_config_node(__a) if config is None: return default return config.get(__a , __a) def UpperCAmelCase ( self , __a , __a=False) -> int: '''simple docstring''' _UpperCamelCase = self.config # find the config node of interest if it exists _UpperCamelCase = ds_key_long.split('''.''') for node in nodes: _UpperCamelCase = config _UpperCamelCase = config.get(__a) if config is None: if must_exist: raise ValueError(F'''Can\'t find {ds_key_long} entry in the config: {self.config}''') else: return # if found remove it if parent_config is not None: parent_config.pop(__a) def UpperCAmelCase ( self , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.get_value(__a) return False if value is None else bool(__a) def UpperCAmelCase ( self , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.get_value(__a) return False if value is None else not bool(__a) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return self._stage == 2 def UpperCAmelCase ( self) -> int: '''simple docstring''' return self._stage == 3 def UpperCAmelCase ( self) -> str: '''simple docstring''' return self._offload class _UpperCAmelCase: def __init__( self , __a) -> Dict: '''simple docstring''' _UpperCamelCase = engine def UpperCAmelCase ( self , __a , **__a) -> List[str]: '''simple docstring''' # runs backpropagation and handles mixed precision self.engine.backward(__a , **__a) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a) -> List[Any]: '''simple docstring''' super().__init__(__a , device_placement=__a , scaler=__a) _UpperCamelCase = hasattr(self.optimizer , '''overflow''') def UpperCAmelCase ( self , __a=None) -> Tuple: '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def UpperCAmelCase ( self) -> str: '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' if self.__has_overflow__: return self.optimizer.overflow return False class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a , __a) -> Dict: '''simple docstring''' super().__init__(__a , __a) def UpperCAmelCase ( self) -> str: '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class _UpperCAmelCase: def __init__( self , __a , __a=0.001 , __a=0 , **__a) -> Tuple: '''simple docstring''' _UpperCamelCase = params _UpperCamelCase = lr _UpperCamelCase = weight_decay _UpperCamelCase = kwargs class _UpperCAmelCase: def __init__( self , __a , __a=None , __a=0 , **__a) -> List[str]: '''simple docstring''' _UpperCamelCase = optimizer _UpperCamelCase = total_num_steps _UpperCamelCase = warmup_num_steps _UpperCamelCase = kwargs
19
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } _a = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> Tuple: """simple docstring""" for attribute in key.split('''.''' ): _UpperCamelCase = getattr(__snake_case, __snake_case ) if weight_type is not None: _UpperCamelCase = getattr(__snake_case, __snake_case ).shape else: _UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase = value elif weight_type == "weight_g": _UpperCamelCase = value elif weight_type == "weight_v": _UpperCamelCase = value elif weight_type == "bias": _UpperCamelCase = value else: _UpperCamelCase = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = fairseq_model.state_dict() _UpperCamelCase = hf_model.feature_extractor _UpperCamelCase = hf_model.adapter for name, value in fairseq_dict.items(): _UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __snake_case, __snake_case, __snake_case, __snake_case, hf_model.config.feat_extract_norm == '''group''', ) _UpperCamelCase = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(__snake_case, __snake_case, __snake_case, __snake_case ) _UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCamelCase = True if "*" in mapped_key: _UpperCamelCase = name.split(__snake_case )[0].split('''.''' )[-2] _UpperCamelCase = mapped_key.replace('''*''', __snake_case ) if "weight_g" in name: _UpperCamelCase = '''weight_g''' elif "weight_v" in name: _UpperCamelCase = '''weight_v''' elif "bias" in name: _UpperCamelCase = '''bias''' elif "weight" in name: _UpperCamelCase = '''weight''' else: _UpperCamelCase = None set_recursively(__snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = full_name.split('''conv_layers.''' )[-1] _UpperCamelCase = name.split('''.''' ) _UpperCamelCase = int(items[0] ) _UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = full_name.split('''adaptor.''' )[-1] _UpperCamelCase = name.split('''.''' ) if items[1].isdigit(): _UpperCamelCase = int(items[1] ) else: _UpperCamelCase = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' _UpperCamelCase = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(__snake_case, __snake_case ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase , _UpperCamelCase = emb.weight.shape _UpperCamelCase = nn.Linear(__snake_case, __snake_case, bias=__snake_case ) _UpperCamelCase = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = WavaVecaConfig.from_pretrained( __snake_case, add_adapter=__snake_case, adapter_stride=__snake_case, adapter_kernel_size=__snake_case, use_auth_token=__snake_case, output_hidden_size=__snake_case, ) _UpperCamelCase = MBartConfig.from_pretrained(__snake_case ) # load model _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, }, ) _UpperCamelCase = model[0].eval() # load feature extractor _UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(__snake_case, use_auth_token=__snake_case ) # set weights for wav2vec2 encoder _UpperCamelCase = WavaVecaModel(__snake_case ) recursively_load_weights_wavaveca(model.encoder, __snake_case ) # load decoder weights _UpperCamelCase = MBartForCausalLM(__snake_case ) _UpperCamelCase , _UpperCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=__snake_case ) logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) _UpperCamelCase = SpeechEncoderDecoderModel(encoder=__snake_case, decoder=__snake_case ) _UpperCamelCase = False _UpperCamelCase = MBartaaTokenizer(__snake_case ) tokenizer.save_pretrained(__snake_case ) _UpperCamelCase = hf_wavavec.config.to_dict() _UpperCamelCase = tokenizer.pad_token_id _UpperCamelCase = tokenizer.bos_token_id _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = '''mbart50''' _UpperCamelCase = '''wav2vec2''' _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = 25_00_04 _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = SpeechEncoderDecoderConfig.from_dict(__snake_case ) hf_wavavec.save_pretrained(__snake_case ) feature_extractor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1024, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=25_0004, type=int, help="""`decoder_start_token_id` of model config""") _a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
19
1
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['image_processor', 'tokenizer'] lowercase__ = 'AutoImageProcessor' lowercase__ = 'AutoTokenizer' def __init__( self , __a , __a) -> Any: '''simple docstring''' super().__init__(__a , __a) _UpperCamelCase = self.image_processor def __call__( self , __a=None , __a=None , __a=None , **__a) -> Any: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''') if text is not None: _UpperCamelCase = self.tokenizer(__a , return_tensors=__a , **__a) if images is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if text is not None and images is not None: _UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__a) , tensor_type=__a) def UpperCAmelCase ( self , *__a , **__a) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*__a , **__a) def UpperCAmelCase ( self , *__a , **__a) -> Any: '''simple docstring''' return self.tokenizer.decode(*__a , **__a) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
19
"""simple docstring""" import fire from utils import calculate_rouge, save_json def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case=None, **__snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()] _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()][: len(__snake_case )] _UpperCamelCase = calculate_rouge(__snake_case, __snake_case, **__snake_case ) if save_path is not None: save_json(__snake_case, __snake_case, indent=__snake_case ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
19
1
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''') _UpperCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''') _UpperCamelCase = tokenizer('''Hello there''' , return_tensors='''np''').input_ids _UpperCamelCase = tokenizer('''Hi I am''' , return_tensors='''np''').input_ids _UpperCamelCase = shift_tokens_right(__a , model.config.pad_token_id , model.config.decoder_start_token_id) _UpperCamelCase = model(__a , decoder_input_ids=__a).logits _UpperCamelCase = optax.softmax_cross_entropy(__a , onehot(__a , logits.shape[-1])).mean() _UpperCamelCase = -(labels.shape[-1] * loss.item()) _UpperCamelCase = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
19
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['image_processor', 'tokenizer'] lowercase__ = 'ViTImageProcessor' lowercase__ = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __a=None , __a=None , **__a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __a , ) _UpperCamelCase = kwargs.pop('''feature_extractor''') _UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(__a , __a) def __call__( self , __a=None , __a=None , __a=None , __a=None , **__a) -> Tuple: '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''') if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''') if text is not None: _UpperCamelCase = self.tokenizer(__a , return_tensors=__a , **__a) if visual_prompt is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if images is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if visual_prompt is not None and images is not None: _UpperCamelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _UpperCamelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__a) , tensor_type=__a) def UpperCAmelCase ( self , *__a , **__a) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*__a , **__a) def UpperCAmelCase ( self , *__a , **__a) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*__a , **__a) @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __a , ) return self.image_processor_class @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __a , ) return self.image_processor
19
1
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _UpperCAmelCase( pl.LightningModule ): def __init__( self , __a) -> Any: '''simple docstring''' super().__init__() _UpperCamelCase = model _UpperCamelCase = 2 _UpperCamelCase = nn.Linear(self.model.config.hidden_size , self.num_labels) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' pass def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = LongformerModel.from_pretrained(__snake_case ) _UpperCamelCase = LightningModel(__snake_case ) _UpperCamelCase = torch.load(__snake_case, map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model _UpperCamelCase = LongformerForQuestionAnswering.from_pretrained(__snake_case ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__snake_case ) print(F'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--longformer_model""", default=None, type=str, required=True, help="""model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.""", ) parser.add_argument( """--longformer_question_answering_ckpt_path""", default=None, type=str, required=True, help="""Path the official PyTorch Lightning Checkpoint.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
19
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=32 , __a=3 , __a=4 , __a=[10, 20, 30, 40] , __a=[2, 2, 3, 2] , __a=True , __a=True , __a=37 , __a="gelu" , __a=10 , __a=0.02 , __a=["stage2", "stage3", "stage4"] , __a=3 , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = num_channels _UpperCamelCase = num_stages _UpperCamelCase = hidden_sizes _UpperCamelCase = depths _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = out_features _UpperCamelCase = num_labels _UpperCamelCase = scope _UpperCamelCase = num_stages def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Any: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__a , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=__a , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = UperNetForSemanticSegmentation(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__ = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = UperNetModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a) @unittest.skip(reason='''UperNet does not use inputs_embeds''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not support input and output embeddings''') def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''') def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''') def UpperCAmelCase ( self) -> int: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''') def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' def check_hidden_states_output(__a , __a , __a): _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(__a) , expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) _UpperCamelCase = _config_zero_init(configs_no_init.backbone_config) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason='''UperNet does not have tied weights''') def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' pass @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''', repo_type='''dataset''', filename='''ADE_val_00000001.jpg''' ) _UpperCamelCase = Image.open(__snake_case ).convert('''RGB''' ) return image @require_torch @require_vision @slow class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''') _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''').to(__a) _UpperCamelCase = prepare_img() _UpperCamelCase = processor(images=__a , return_tensors='''pt''').to(__a) with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''') _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''').to(__a) _UpperCamelCase = prepare_img() _UpperCamelCase = processor(images=__a , return_tensors='''pt''').to(__a) with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4))
19
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _a = """ Human: <<task>> Assistant: """ _a = """huggingface-tools/default-prompts""" _a = {"""chat""": """chat_prompt_template.txt""", """run""": """run_prompt_template.txt"""} def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case="run" ) -> Any: """simple docstring""" if prompt_or_repo_id is None: _UpperCamelCase = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('''\\s''', __snake_case ) is not None: return prompt_or_repo_id _UpperCamelCase = cached_file( __snake_case, PROMPT_FILES[mode], repo_type='''dataset''', user_agent={'''agent''': agent_name} ) with open(__snake_case, '''r''', encoding='''utf-8''' ) as f: return f.read()
19
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase( lowerCamelCase ): lowercase__ = (DDPMScheduler,) def UpperCAmelCase ( self , **__a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__a) return config def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=__a , beta_end=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.check_over_configs(thresholding=__a) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0979)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.02)) < 1e-5 def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = len(__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = torch.manual_seed(0) for t in reversed(range(__a)): # 1. predict noise residual _UpperCamelCase = model(__a , __a) # 2. predict previous mean of sample x_t-1 _UpperCamelCase = scheduler.step(__a , __a , __a , generator=__a).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCamelCase = pred_prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 258.9606) < 1e-2 assert abs(result_mean.item() - 0.3372) < 1e-3 def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''') _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = len(__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = torch.manual_seed(0) for t in reversed(range(__a)): # 1. predict noise residual _UpperCamelCase = model(__a , __a) # 2. predict previous mean of sample x_t-1 _UpperCamelCase = scheduler.step(__a , __a , __a , generator=__a).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCamelCase = pred_prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 202.0296) < 1e-2 assert abs(result_mean.item() - 0.2631) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__a) _UpperCamelCase = scheduler.timesteps for i, timestep in enumerate(__a): if i == len(__a) - 1: _UpperCamelCase = -1 else: _UpperCamelCase = timesteps[i + 1] _UpperCamelCase = scheduler.previous_timestep(__a) _UpperCamelCase = prev_t.item() self.assertEqual(__a , __a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 51, 0] with self.assertRaises(__a , msg='''`custom_timesteps` must be in descending order.'''): scheduler.set_timesteps(timesteps=__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 1, 0] _UpperCamelCase = len(__a) with self.assertRaises(__a , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.'''): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=__a)
19
1
"""simple docstring""" # Imports import numpy as np class _UpperCAmelCase: def __init__( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) def UpperCAmelCase ( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' if red is not None: _UpperCamelCase = red if green is not None: _UpperCamelCase = green if blue is not None: _UpperCamelCase = blue if red_edge is not None: _UpperCamelCase = red_edge if nir is not None: _UpperCamelCase = nir return True def UpperCAmelCase ( self , __a="" , __a=None , __a=None , __a=None , __a=None , __a=None) -> List[str]: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) _UpperCamelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''') return False def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self) -> Any: '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self , __a=0.08 , __a=1.22 , __a=0.03) -> Optional[Any]: '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir / self.green) - 1 def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.red - self.blue) / self.red def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir - self.green def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def UpperCAmelCase ( self , __a=0.16) -> Optional[Any]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self , __a=0.5) -> Dict: '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self , __a=None , __a=None) -> Any: '''simple docstring''' return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self) -> Any: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> str: '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) _UpperCamelCase = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Any: '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
19
"""simple docstring""" from __future__ import annotations from functools import lru_cache from math import ceil _a = 100 _a = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} _UpperCamelCase = set() _UpperCamelCase = 42 _UpperCamelCase = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def lowerCamelCase__ ( __snake_case = 50_00 ) -> int | None: """simple docstring""" for number_to_partition in range(1, __snake_case ): if len(partition(__snake_case ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"""{solution() = }""")
19
1