code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> bool: """simple docstring""" if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> bool: """simple docstring""" if curr_ind == len(__snake_case ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0, len(__snake_case ) ): if valid_connection(__snake_case, __snake_case, __snake_case, __snake_case ): # Insert current vertex into path as next transition _UpperCamelCase = next_ver # Validate created path if util_hamilton_cycle(__snake_case, __snake_case, curr_ind + 1 ): return True # Backtrack _UpperCamelCase = -1 return False def lowerCamelCase__ ( __snake_case, __snake_case = 0 ) -> list[int]: """simple docstring""" _UpperCamelCase = [-1] * (len(__snake_case ) + 1) # initialize start and end of path with starting index _UpperCamelCase = _UpperCamelCase = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(__snake_case, __snake_case, 1 ) else []
19
"""simple docstring""" from collections.abc import Callable import numpy as np def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> np.array: """simple docstring""" _UpperCamelCase = int(np.ceil((x_end - xa) / step_size ) ) _UpperCamelCase = np.zeros((n + 1,) ) _UpperCamelCase = ya _UpperCamelCase = xa for k in range(__snake_case ): _UpperCamelCase = y[k] + step_size * ode_func(__snake_case, y[k] ) _UpperCamelCase = y[k] + ( (step_size / 2) * (ode_func(__snake_case, y[k] ) + ode_func(x + step_size, __snake_case )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
19
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
19
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _a = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _a = parser.parse_args() if args.model_type == "bert": _a = BertForMaskedLM.from_pretrained(args.model_name) _a = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _a = model.state_dict() _a = {} for w in ["word_embeddings", "position_embeddings"]: _a = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _a = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] _a = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _a = state_dict["""cls.predictions.decoder.weight"""] _a = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _a = state_dict[F"""cls.predictions.transform.dense.{w}"""] _a = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
19
1
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=64 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Dict: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = embedding_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> str: '''simple docstring''' _UpperCamelCase = MobileBertModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = MobileBertForMaskedLM(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> str: '''simple docstring''' _UpperCamelCase = MobileBertForNextSentencePrediction(config=__a) model.to(__a) model.eval() _UpperCamelCase = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = MobileBertForPreTraining(config=__a) model.to(__a) model.eval() _UpperCamelCase = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , next_sentence_label=__a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = MobileBertForQuestionAnswering(config=__a) model.to(__a) model.eval() _UpperCamelCase = model( __a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = MobileBertForSequenceClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> int: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = MobileBertForTokenClassification(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> List[str]: '''simple docstring''' _UpperCamelCase = self.num_choices _UpperCamelCase = MobileBertForMultipleChoice(config=__a) model.to(__a) model.eval() _UpperCamelCase = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowercase__ = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True def UpperCAmelCase ( self , __a , __a , __a=False) -> Tuple: '''simple docstring''' _UpperCamelCase = super()._prepare_for_class(__a , __a , return_labels=__a) if return_labels: if model_class in get_values(__a): _UpperCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__a) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a) return inputs_dict def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = MobileBertModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> int: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a) def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" return torch.tensor( __snake_case, dtype=torch.long, device=__snake_case, ) _a = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = MobileBertModel.from_pretrained('''google/mobilebert-uncased''').to(__a) _UpperCamelCase = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]]) with torch.no_grad(): _UpperCamelCase = model(__a)[0] _UpperCamelCase = torch.Size((1, 9, 5_12)) self.assertEqual(output.shape , __a) _UpperCamelCase = torch.tensor( [ [ [-2.4_736_526e07, 8.2_691_656e04, 1.6_521_838e05], [-5.7_541_704e-01, 3.9_056_022e00, 4.4_011_507e00], [2.6_047_359e00, 1.5_677_652e00, -1.7_324_188e-01], ] ] , device=__a , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE _UpperCamelCase = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE) _UpperCamelCase = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE) self.assertTrue(lower_bound and upper_bound)
19
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _a = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class _UpperCAmelCase: lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = 'gelu' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=False , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a=0.1 , __a=0.1 , __a=20 , __a=2 , __a=1 , __a=0 , ) -> int: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) _UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) _UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCamelCase = prepare_pegasus_inputs_dict(__a , __a , __a) return config, inputs_dict def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids''']) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a) _UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''') _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __a , decoder_attention_mask=__a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__a , ) _UpperCamelCase = model.decode(__a , __a) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''') def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids''']) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a) _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__a , decoder_position_ids=__a , ) _UpperCamelCase = model.decode(__a , __a , decoder_attention_mask=__a) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''') def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=None, __snake_case=None, ) -> Union[str, Any]: """simple docstring""" if attention_mask is None: _UpperCamelCase = np.not_equal(__snake_case, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _UpperCamelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = FlaxPegasusModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = self._prepare_for_class(__a , __a) _UpperCamelCase = model_class(__a) @jax.jit def encode_jitted(__a , __a=None , **__a): return model.encode(input_ids=__a , attention_mask=__a) with self.subTest('''JIT Enabled'''): _UpperCamelCase = encode_jitted(**__a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): _UpperCamelCase = encode_jitted(**__a).to_tuple() self.assertEqual(len(__a) , len(__a)) for jitted_output, output in zip(__a , __a): self.assertEqual(jitted_output.shape , output.shape) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = model_class(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask''']) _UpperCamelCase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(__a , __a , __a): return model.decode( decoder_input_ids=__a , decoder_attention_mask=__a , encoder_outputs=__a , ) with self.subTest('''JIT Enabled'''): _UpperCamelCase = decode_jitted(**__a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): _UpperCamelCase = decode_jitted(**__a).to_tuple() self.assertEqual(len(__a) , len(__a)) for jitted_output, output in zip(__a , __a): self.assertEqual(jitted_output.shape , output.shape) @slow def UpperCAmelCase ( self) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=__a) _UpperCamelCase = np.ones((1, 1)) _UpperCamelCase = model(__a) self.assertIsNotNone(__a) @slow def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''') _UpperCamelCase = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''') _UpperCamelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] _UpperCamelCase = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] _UpperCamelCase = tokenizer(__a , return_tensors='''np''' , truncation=__a , max_length=5_12 , padding=__a) _UpperCamelCase = model.generate(**__a , num_beams=2).sequences _UpperCamelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a) assert tgt_text == decoded
19
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _a = logging.get_logger(__name__) _a = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off _a = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 1_0563, 1_0786, 1_1420, 1_1709, 1_1907, 1_3163, 1_3697, 1_3700, 1_4808, 1_5306, 1_6410, 1_6791, 1_7992, 1_9203, 1_9510, 2_0724, 2_2305, 2_2935, 2_7007, 3_0109, 3_0420, 3_3409, 3_4949, 4_0283, 4_0493, 4_0549, 4_7282, 4_9146, 5_0257, 5_0359, 5_0360, 5_0361 ] _a = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 1_0428, 1_0929, 1_1938, 1_2033, 1_2331, 1_2562, 1_3793, 1_4157, 1_4635, 1_5265, 1_5618, 1_6553, 1_6604, 1_8362, 1_8956, 2_0075, 2_1675, 2_2520, 2_6130, 2_6161, 2_6435, 2_8279, 2_9464, 3_1650, 3_2302, 3_2470, 3_6865, 4_2863, 4_7425, 4_9870, 5_0254, 5_0258, 5_0360, 5_0361, 5_0362 ] class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'whisper' lowercase__ = ['past_key_values'] lowercase__ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , __a=5_18_65 , __a=80 , __a=6 , __a=4 , __a=6 , __a=4 , __a=15_36 , __a=15_36 , __a=0.0 , __a=0.0 , __a=5_02_57 , __a=True , __a=True , __a="gelu" , __a=2_56 , __a=0.0 , __a=0.0 , __a=0.0 , __a=0.02 , __a=False , __a=15_00 , __a=4_48 , __a=5_02_56 , __a=5_02_56 , __a=5_02_56 , __a=None , __a=[2_20, 5_02_56] , __a=False , __a=2_56 , __a=False , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a=7 , **__a , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = vocab_size _UpperCamelCase = num_mel_bins _UpperCamelCase = d_model _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = encoder_layers _UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCamelCase = max_source_positions _UpperCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. _UpperCamelCase = classifier_proj_size _UpperCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCamelCase = apply_spec_augment _UpperCamelCase = mask_time_prob _UpperCamelCase = mask_time_length _UpperCamelCase = mask_time_min_masks _UpperCamelCase = mask_feature_prob _UpperCamelCase = mask_feature_length _UpperCamelCase = mask_feature_min_masks _UpperCamelCase = median_filter_width super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , suppress_tokens=__a , begin_suppress_tokens=__a , **__a , ) class _UpperCAmelCase( lowerCamelCase ): @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' _UpperCamelCase = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ]) if self.use_past: _UpperCamelCase = {0: '''batch'''} else: _UpperCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__a , direction='''inputs''') return common_inputs def UpperCAmelCase ( self , __a , __a = -1 , __a = -1 , __a = False , __a = None , __a = 2_20_50 , __a = 5.0 , __a = 2_20 , ) -> Mapping[str, Any]: '''simple docstring''' _UpperCamelCase = OrderedDict() _UpperCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=__a , framework=__a , sampling_rate=__a , time_duration=__a , frequency=__a , ) _UpperCamelCase = encoder_inputs['''input_features'''].shape[2] _UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length _UpperCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , __a , __a , __a , __a) _UpperCamelCase = encoder_inputs.pop('''input_features''') _UpperCamelCase = decoder_inputs.pop('''decoder_input_ids''') if "past_key_values" in decoder_inputs: _UpperCamelCase = decoder_inputs.pop('''past_key_values''') return dummy_inputs @property def UpperCAmelCase ( self) -> float: '''simple docstring''' return 1e-3
19
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , __a=0 , ) -> Any: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope _UpperCamelCase = projection_dim def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) _UpperCamelCase = DPRConfig(projection_dim=self.projection_dim , **config.to_dict()) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = TFDPRContextEncoder(config=__a) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFDPRQuestionEncoder(config=__a) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = TFDPRReader(config=__a) _UpperCamelCase = model(__a , attention_mask=__a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,)) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowercase__ = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDPRModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__a) @slow def UpperCAmelCase ( self) -> str: '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRContextEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRContextEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRQuestionEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRReader.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''') _UpperCamelCase = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]]) # [CLS] hello, is my dog cute? [SEP] _UpperCamelCase = model(__a)[0] # embedding shape = (1, 768) # compare the actual values for a slice. _UpperCamelCase = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ]) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4))
19
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) _UpperCamelCase = { '''do_resize''': True, '''size''': {'''height''': 2_24, '''width''': 2_24}, '''do_center_crop''': True, '''crop_size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], '''do_convert_rgb''': True, } _UpperCamelCase = os.path.join(self.tmpdirname , __a) with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp: json.dump(__a , __a) def UpperCAmelCase ( self , **__a) -> List[Any]: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **__a) def UpperCAmelCase ( self , **__a) -> Any: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **__a) def UpperCAmelCase ( self , **__a) -> List[str]: '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta)] _UpperCamelCase = [Image.fromarray(np.moveaxis(__a , 0 , -1)) for x in image_inputs] return image_inputs def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = self.get_image_processor() _UpperCamelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _UpperCamelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__a) _UpperCamelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _UpperCamelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , __a) self.assertIsInstance(processor_fast.tokenizer , __a) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , __a) self.assertIsInstance(processor_fast.image_processor , __a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _UpperCamelCase = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''') _UpperCamelCase = self.get_image_processor(do_normalize=__a) _UpperCamelCase = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=__a) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , __a) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , __a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.get_image_processor() _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a) _UpperCamelCase = self.prepare_image_inputs() _UpperCamelCase = image_processor(__a , return_tensors='''np''') _UpperCamelCase = processor(images=__a , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.get_image_processor() _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a) _UpperCamelCase = '''Alexandra,T-shirt的价格是15便士。''' _UpperCamelCase = processor(text=__a) _UpperCamelCase = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.get_image_processor() _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a) _UpperCamelCase = '''Alexandra,T-shirt的价格是15便士。''' _UpperCamelCase = self.prepare_image_inputs() _UpperCamelCase = processor(text=__a , images=__a) self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values''']) # test if it raises when no input is passed with pytest.raises(__a): processor() def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.get_image_processor() _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a) _UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCamelCase = processor.batch_decode(__a) _UpperCamelCase = tokenizer.batch_decode(__a) self.assertListEqual(__a , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.get_image_processor() _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a) _UpperCamelCase = '''Alexandra,T-shirt的价格是15便士。''' _UpperCamelCase = self.prepare_image_inputs() _UpperCamelCase = processor(text=__a , images=__a) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
19
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x2_0000 and cp <= 0x2_A6DF) # or (cp >= 0x2_A700 and cp <= 0x2_B73F) # or (cp >= 0x2_B740 and cp <= 0x2_B81F) # or (cp >= 0x2_B820 and cp <= 0x2_CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2_F800 and cp <= 0x2_FA1F) # ): # return True return False def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" for char in word: _UpperCamelCase = ord(__snake_case ) if not _is_chinese_char(__snake_case ): return 0 return 1 def lowerCamelCase__ ( __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = set() for token in tokens: _UpperCamelCase = len(__snake_case ) > 1 and is_chinese(__snake_case ) if chinese_word: word_set.add(__snake_case ) _UpperCamelCase = list(__snake_case ) return word_list def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" if not chinese_word_set: return bert_tokens _UpperCamelCase = max([len(__snake_case ) for w in chinese_word_set] ) _UpperCamelCase = bert_tokens _UpperCamelCase , _UpperCamelCase = 0, len(__snake_case ) while start < end: _UpperCamelCase = True if is_chinese(bert_word[start] ): _UpperCamelCase = min(end - start, __snake_case ) for i in range(__snake_case, 1, -1 ): _UpperCamelCase = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _UpperCamelCase = '''##''' + bert_word[j] _UpperCamelCase = start + i _UpperCamelCase = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws _UpperCamelCase = [get_chinese_word(__snake_case ) for r in res] ltp_res.extend(__snake_case ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=__snake_case, truncation=__snake_case, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for input_ids, chinese_word in zip(__snake_case, __snake_case ): _UpperCamelCase = [] for id in input_ids: _UpperCamelCase = bert_tokenizer._convert_id_to_token(__snake_case ) input_tokens.append(__snake_case ) _UpperCamelCase = add_sub_symbol(__snake_case, __snake_case ) _UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__snake_case ): if token[:2] == "##": _UpperCamelCase = token[2:] # save chinese tokens' pos if len(__snake_case ) == 1 and _is_chinese_char(ord(__snake_case ) ): ref_id.append(__snake_case ) ref_ids.append(__snake_case ) assert len(__snake_case ) == len(__snake_case ) return ref_ids def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _UpperCamelCase = f.readlines() _UpperCamelCase = [line.strip() for line in data if len(__snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _UpperCamelCase = LTP(args.ltp ) # faster in GPU device _UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) _UpperCamelCase = prepare_ref(__snake_case, __snake_case, __snake_case ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _UpperCamelCase = [json.dumps(__snake_case ) + '''\n''' for ref in ref_ids] f.writelines(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) _a = parser.parse_args() main(args)
19
1
"""simple docstring""" import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = AutoencoderKL lowercase__ = 'sample' lowercase__ = 1E-2 @property def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = 4 _UpperCamelCase = 3 _UpperCamelCase = (32, 32) _UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes).to(__a) return {"sample": image} @property def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (3, 32, 32) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return (3, 32, 32) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } _UpperCamelCase = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase ( self) -> int: '''simple docstring''' pass def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''') def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' # enable deterministic behavior for gradient checkpointing _UpperCamelCase , _UpperCamelCase = self.prepare_init_args_and_inputs_for_common() _UpperCamelCase = self.model_class(**__a) model.to(__a) assert not model.is_gradient_checkpointing and model.training _UpperCamelCase = model(**__a).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() _UpperCamelCase = torch.randn_like(__a) _UpperCamelCase = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing _UpperCamelCase = self.model_class(**__a) # clone model model_a.load_state_dict(model.state_dict()) model_a.to(__a) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training _UpperCamelCase = model_a(**__a).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() _UpperCamelCase = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5) _UpperCamelCase = dict(model.named_parameters()) _UpperCamelCase = dict(model_a.named_parameters()) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5)) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=__a) self.assertIsNotNone(__a) self.assertEqual(len(loading_info['''missing_keys''']) , 0) model.to(__a) _UpperCamelCase = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''') _UpperCamelCase = model.to(__a) model.eval() if torch_device == "mps": _UpperCamelCase = torch.manual_seed(0) else: _UpperCamelCase = torch.Generator(device=__a).manual_seed(0) _UpperCamelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0) , ) _UpperCamelCase = image.to(__a) with torch.no_grad(): _UpperCamelCase = model(__a , sample_posterior=__a , generator=__a).sample _UpperCamelCase = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": _UpperCamelCase = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ]) elif torch_device == "cpu": _UpperCamelCase = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026]) else: _UpperCamelCase = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485]) self.assertTrue(torch_all_close(__a , __a , rtol=1e-2)) @slow class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self , __a , __a) -> Optional[Any]: '''simple docstring''' return F'''gaussian_noise_s={seed}_shape={"_".join([str(__a) for s in shape])}.npy''' def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self , __a=0 , __a=(4, 3, 5_12, 5_12) , __a=False) -> str: '''simple docstring''' _UpperCamelCase = torch.floataa if fpaa else torch.floataa _UpperCamelCase = torch.from_numpy(load_hf_numpy(self.get_file_format(__a , __a))).to(__a).to(__a) return image def UpperCAmelCase ( self , __a="CompVis/stable-diffusion-v1-4" , __a=False) -> Any: '''simple docstring''' _UpperCamelCase = '''fp16''' if fpaa else None _UpperCamelCase = torch.floataa if fpaa else torch.floataa _UpperCamelCase = AutoencoderKL.from_pretrained( __a , subfolder='''vae''' , torch_dtype=__a , revision=__a , ) model.to(__a).eval() return model def UpperCAmelCase ( self , __a=0) -> Optional[Any]: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(__a) return torch.Generator(device=__a).manual_seed(__a) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ]) def UpperCAmelCase ( self , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.get_sd_vae_model() _UpperCamelCase = self.get_sd_image(__a) _UpperCamelCase = self.get_generator(__a) with torch.no_grad(): _UpperCamelCase = model(__a , generator=__a , sample_posterior=__a).sample assert sample.shape == image.shape _UpperCamelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _UpperCamelCase = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice) assert torch_all_close(__a , __a , atol=3e-3) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ]) @require_torch_gpu def UpperCAmelCase ( self , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.get_sd_vae_model(fpaa=__a) _UpperCamelCase = self.get_sd_image(__a , fpaa=__a) _UpperCamelCase = self.get_generator(__a) with torch.no_grad(): _UpperCamelCase = model(__a , generator=__a , sample_posterior=__a).sample assert sample.shape == image.shape _UpperCamelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _UpperCamelCase = torch.tensor(__a) assert torch_all_close(__a , __a , atol=1e-2) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ]) def UpperCAmelCase ( self , __a , __a , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.get_sd_vae_model() _UpperCamelCase = self.get_sd_image(__a) with torch.no_grad(): _UpperCamelCase = model(__a).sample assert sample.shape == image.shape _UpperCamelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _UpperCamelCase = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice) assert torch_all_close(__a , __a , atol=3e-3) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ]) @require_torch_gpu def UpperCAmelCase ( self , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.get_sd_vae_model() _UpperCamelCase = self.get_sd_image(__a , shape=(3, 4, 64, 64)) with torch.no_grad(): _UpperCamelCase = model.decode(__a).sample assert list(sample.shape) == [3, 3, 5_12, 5_12] _UpperCamelCase = sample[-1, -2:, :2, -2:].flatten().cpu() _UpperCamelCase = torch.tensor(__a) assert torch_all_close(__a , __a , atol=1e-3) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ]) @require_torch_gpu def UpperCAmelCase ( self , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = self.get_sd_vae_model(fpaa=__a) _UpperCamelCase = self.get_sd_image(__a , shape=(3, 4, 64, 64) , fpaa=__a) with torch.no_grad(): _UpperCamelCase = model.decode(__a).sample assert list(sample.shape) == [3, 3, 5_12, 5_12] _UpperCamelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _UpperCamelCase = torch.tensor(__a) assert torch_all_close(__a , __a , atol=5e-3) @parameterized.expand([(13,), (16,), (27,)]) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''') def UpperCAmelCase ( self , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.get_sd_vae_model(fpaa=__a) _UpperCamelCase = self.get_sd_image(__a , shape=(3, 4, 64, 64) , fpaa=__a) with torch.no_grad(): _UpperCamelCase = model.decode(__a).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _UpperCamelCase = model.decode(__a).sample assert list(sample.shape) == [3, 3, 5_12, 5_12] assert torch_all_close(__a , __a , atol=1e-1) @parameterized.expand([(13,), (16,), (37,)]) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''') def UpperCAmelCase ( self , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.get_sd_vae_model() _UpperCamelCase = self.get_sd_image(__a , shape=(3, 4, 64, 64)) with torch.no_grad(): _UpperCamelCase = model.decode(__a).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _UpperCamelCase = model.decode(__a).sample assert list(sample.shape) == [3, 3, 5_12, 5_12] assert torch_all_close(__a , __a , atol=1e-2) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ]) def UpperCAmelCase ( self , __a , __a) -> List[str]: '''simple docstring''' _UpperCamelCase = self.get_sd_vae_model() _UpperCamelCase = self.get_sd_image(__a) _UpperCamelCase = self.get_generator(__a) with torch.no_grad(): _UpperCamelCase = model.encode(__a).latent_dist _UpperCamelCase = dist.sample(generator=__a) assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] _UpperCamelCase = sample[0, -1, -3:, -3:].flatten().cpu() _UpperCamelCase = torch.tensor(__a) _UpperCamelCase = 3e-3 if torch_device != '''mps''' else 1e-2 assert torch_all_close(__a , __a , atol=__a)
19
"""simple docstring""" import heapq def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" _UpperCamelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__snake_case, [-1 * len(__snake_case ), (key, value)] ) # chosen_vertices = set of chosen vertices _UpperCamelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _UpperCamelCase = heapq.heappop(__snake_case )[1][0] chosen_vertices.add(__snake_case ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _UpperCamelCase = elem[1][1].index(__snake_case ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__snake_case ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _a = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
19
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ["""GPTSw3Tokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
19
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _UpperCamelCase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj ) assert isinstance(_test_patching.os.path, _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" assert _test_patching.open is open _UpperCamelCase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, '''open''', __snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching, '''pandas.read_csv''', __snake_case ): pass def lowerCamelCase__ ( ) -> Dict: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, '''len''', __snake_case ) is None with patch_submodule(_test_patching, '''len''', __snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_start_and_stop_mock__''' _UpperCamelCase = patch_submodule(_test_patching, '''open''', __snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _UpperCamelCase = '''__test_patch_submodule_successive_join__''' _UpperCamelCase = '''__test_patch_submodule_successive_dirname__''' _UpperCamelCase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> str: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching, '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''', __snake_case ): pass with patch_submodule(_test_patching, '''os.__attribute_that_doesn_exist__''', __snake_case ): pass
19
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): def __init__( self , *__a , **__a) -> None: '''simple docstring''' warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , __a , ) super().__init__(*__a , **__a)
19
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = original_name.split('''.''' )[0] _UpperCamelCase = key.split('''.''' ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 2] ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 1] ) _UpperCamelCase = orig_block_num - offset _UpperCamelCase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''', F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = OrderedDict() _UpperCamelCase , _UpperCamelCase = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): _UpperCamelCase = key.replace('''network''', '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 _UpperCamelCase = key[: key.find('''proj''' )] _UpperCamelCase = key.replace(__snake_case, F'''patch_embeddings.{total_embed_found}.''' ) _UpperCamelCase = key.replace('''proj''', '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: _UpperCamelCase = '''poolformer.encoder.''' + key if "mlp.fc1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc1''', '''output.conv1''' ) if "mlp.fc2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc2''', '''output.conv2''' ) if "norm1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm1''', '''before_norm''' ) if "norm2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm2''', '''after_norm''' ) if "layer_scale_1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_1''', '''layer_scale_1''' ) if "layer_scale_2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_2''', '''layer_scale_2''' ) if "head" in key: _UpperCamelCase = key.replace('''head''', '''classifier''' ) _UpperCamelCase = value return new_state_dict def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase = Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return image @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = PoolFormerConfig() # set attributes based on model_name _UpperCamelCase = '''huggingface/label-files''' _UpperCamelCase = model_name[-3:] _UpperCamelCase = 10_00 _UpperCamelCase = '''imagenet-1k-id2label.json''' _UpperCamelCase = (1, 10_00) # set config attributes _UpperCamelCase = json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type='''dataset''' ), '''r''' ) ) _UpperCamelCase = {int(__snake_case ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} if size == "s12": _UpperCamelCase = [2, 2, 6, 2] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s24": _UpperCamelCase = [4, 4, 12, 4] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.9 elif size == "m36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 elif size == "m48": _UpperCamelCase = [8, 8, 24, 8] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) # Prepare image _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__snake_case, return_tensors='''pt''' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict _UpperCamelCase = torch.load(__snake_case, map_location=torch.device('''cpu''' ) ) # rename keys _UpperCamelCase = rename_keys(__snake_case ) # create HuggingFace model and load state dict _UpperCamelCase = PoolFormerForImageClassification(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # Define image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) _UpperCamelCase = image_processor(images=prepare_img(), return_tensors='''pt''' ).pixel_values # forward pass _UpperCamelCase = model(__snake_case ) _UpperCamelCase = outputs.logits # define expected logit slices for different models if size == "s12": _UpperCamelCase = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": _UpperCamelCase = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": _UpperCamelCase = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": _UpperCamelCase = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": _UpperCamelCase = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3], __snake_case, atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _a = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
19
1
"""simple docstring""" def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> list: """simple docstring""" _UpperCamelCase = len(__snake_case ) _UpperCamelCase = [[0] * n for i in range(__snake_case )] for i in range(__snake_case ): _UpperCamelCase = y_points[i] for i in range(2, __snake_case ): for j in range(__snake_case, __snake_case ): _UpperCamelCase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
19
"""simple docstring""" import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class _UpperCAmelCase( lowerCamelCase ): lowercase__ = (DPMSolverSDEScheduler,) lowercase__ = 10 def UpperCAmelCase ( self , **__a) -> int: '''simple docstring''' _UpperCamelCase = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**__a) return config def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02]): self.check_over_configs(beta_start=__a , beta_end=__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a) def UpperCAmelCase ( self) -> str: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''') _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a , use_karras_sigmas=__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2
19
1
"""simple docstring""" import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = MobileBertTokenizer lowercase__ = MobileBertTokenizerFast lowercase__ = True lowercase__ = True lowercase__ = filter_non_english lowercase__ = 'google/mobilebert-uncased' def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' super().setUp() _UpperCamelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) _UpperCamelCase = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def UpperCAmelCase ( self , __a) -> List[str]: '''simple docstring''' _UpperCamelCase = '''UNwant\u00E9d,running''' _UpperCamelCase = '''unwanted, running''' return input_text, output_text def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.tokenizer_class(self.vocab_file) _UpperCamelCase = tokenizer.tokenize('''UNwant\u00E9d,running''') self.assertListEqual(__a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a) , [9, 6, 7, 12, 10, 11]) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' if not self.test_rust_tokenizer: return _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''UNwant\u00E9d,running''' _UpperCamelCase = tokenizer.tokenize(__a) _UpperCamelCase = rust_tokenizer.tokenize(__a) self.assertListEqual(__a , __a) _UpperCamelCase = tokenizer.encode(__a , add_special_tokens=__a) _UpperCamelCase = rust_tokenizer.encode(__a , add_special_tokens=__a) self.assertListEqual(__a , __a) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(__a) _UpperCamelCase = rust_tokenizer.encode(__a) self.assertListEqual(__a , __a) # With lower casing _UpperCamelCase = self.get_tokenizer(do_lower_case=__a) _UpperCamelCase = self.get_rust_tokenizer(do_lower_case=__a) _UpperCamelCase = '''UNwant\u00E9d,running''' _UpperCamelCase = tokenizer.tokenize(__a) _UpperCamelCase = rust_tokenizer.tokenize(__a) self.assertListEqual(__a , __a) _UpperCamelCase = tokenizer.encode(__a , add_special_tokens=__a) _UpperCamelCase = rust_tokenizer.encode(__a , add_special_tokens=__a) self.assertListEqual(__a , __a) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(__a) _UpperCamelCase = rust_tokenizer.encode(__a) self.assertListEqual(__a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''') , ['''ah''', '''\u535A''', '''\u63A8''', '''zz''']) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = BasicTokenizer(do_lower_case=__a) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''') , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') , ['''hello''']) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = BasicTokenizer(do_lower_case=__a , strip_accents=__a) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') , ['''h\u00E9llo''']) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = BasicTokenizer(do_lower_case=__a , strip_accents=__a) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') , ['''hello''']) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = BasicTokenizer(do_lower_case=__a) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') , ['''hello''']) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = BasicTokenizer(do_lower_case=__a) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''') , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = BasicTokenizer(do_lower_case=__a , strip_accents=__a) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = BasicTokenizer(do_lower_case=__a , strip_accents=__a) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = BasicTokenizer(do_lower_case=__a , never_split=['''[UNK]''']) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''') , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]''']) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] _UpperCamelCase = {} for i, token in enumerate(__a): _UpperCamelCase = i _UpperCamelCase = WordpieceTokenizer(vocab=__a , unk_token='''[UNK]''') self.assertListEqual(tokenizer.tokenize('''''') , []) self.assertListEqual(tokenizer.tokenize('''unwanted running''') , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing''']) self.assertListEqual(tokenizer.tokenize('''unwantedX running''') , ['''[UNK]''', '''runn''', '''##ing''']) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' self.assertTrue(_is_whitespace(''' ''')) self.assertTrue(_is_whitespace('''\t''')) self.assertTrue(_is_whitespace('''\r''')) self.assertTrue(_is_whitespace('''\n''')) self.assertTrue(_is_whitespace('''\u00A0''')) self.assertFalse(_is_whitespace('''A''')) self.assertFalse(_is_whitespace('''-''')) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' self.assertTrue(_is_control('''\u0005''')) self.assertFalse(_is_control('''A''')) self.assertFalse(_is_control(''' ''')) self.assertFalse(_is_control('''\t''')) self.assertFalse(_is_control('''\r''')) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' self.assertTrue(_is_punctuation('''-''')) self.assertTrue(_is_punctuation('''$''')) self.assertTrue(_is_punctuation('''`''')) self.assertTrue(_is_punctuation('''.''')) self.assertFalse(_is_punctuation('''A''')) self.assertFalse(_is_punctuation(''' ''')) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']]) self.assertListEqual( [rust_tokenizer.tokenize(__a) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']]) @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''') _UpperCamelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__a) _UpperCamelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__a) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(__a) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(__a , __a) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})'''): _UpperCamelCase = self.rust_tokenizer_class.from_pretrained(__a , **__a) _UpperCamelCase = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _UpperCamelCase = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) _UpperCamelCase = tokenizer_r.do_lower_case if hasattr(__a , '''do_lower_case''') else False _UpperCamelCase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''])) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping''']) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = ['''的''', '''人''', '''有'''] _UpperCamelCase = ''''''.join(__a) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})'''): _UpperCamelCase = True _UpperCamelCase = self.tokenizer_class.from_pretrained(__a , **__a) _UpperCamelCase = self.rust_tokenizer_class.from_pretrained(__a , **__a) _UpperCamelCase = tokenizer_p.encode(__a , add_special_tokens=__a) _UpperCamelCase = tokenizer_r.encode(__a , add_special_tokens=__a) _UpperCamelCase = tokenizer_r.convert_ids_to_tokens(__a) _UpperCamelCase = tokenizer_p.convert_ids_to_tokens(__a) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a) self.assertListEqual(__a , __a) _UpperCamelCase = False _UpperCamelCase = self.rust_tokenizer_class.from_pretrained(__a , **__a) _UpperCamelCase = self.tokenizer_class.from_pretrained(__a , **__a) _UpperCamelCase = tokenizer_r.encode(__a , add_special_tokens=__a) _UpperCamelCase = tokenizer_p.encode(__a , add_special_tokens=__a) _UpperCamelCase = tokenizer_r.convert_ids_to_tokens(__a) _UpperCamelCase = tokenizer_p.convert_ids_to_tokens(__a) # it is expected that only the first Chinese character is not preceded by "##". _UpperCamelCase = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__a) ] self.assertListEqual(__a , __a) self.assertListEqual(__a , __a)
19
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['pixel_values'] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BICUBIC , __a = True , __a = True , __a = 1 / 2_55 , __a = None , __a = True , __a = None , __a = None , **__a , ) -> None: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a , default_to_square=__a , param_name='''crop_size''') _UpperCamelCase = do_resize _UpperCamelCase = do_rescale _UpperCamelCase = do_normalize _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = rescale_factor _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BILINEAR , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "shortest_edge" in size: _UpperCamelCase = get_resize_output_image_size(__a , size=size['''shortest_edge'''] , default_to_square=__a) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''') return resize(__a , size=__a , resample=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''') return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a) -> np.ndarray: '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> BatchFeature: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(__a , param_name='''crop_size''' , default_to_square=__a) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(__a) if not is_batched(__a): _UpperCamelCase = [images] if not valid_images(__a): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(__a) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=__a , size=__a , resample=__a) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=__a , size=__a) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=__a , scale=__a) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=__a , mean=__a , std=__a) for image in images] _UpperCamelCase = [to_channel_dimension_format(__a , __a) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=__a , tensor_type=__a)
19
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 42 lowercase__ = 42 def __init__( self , __a , __a) -> str: '''simple docstring''' super().__init__() self.register_modules(unet=__a , scheduler=__a) @torch.no_grad() def __call__( self , __a = 1 , __a = 20_00 , __a = None , __a = "pil" , __a = True , **__a , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' _UpperCamelCase = self.unet.config.sample_size _UpperCamelCase = (batch_size, 3, img_size, img_size) _UpperCamelCase = self.unet _UpperCamelCase = randn_tensor(__a , generator=__a) * self.scheduler.init_noise_sigma _UpperCamelCase = sample.to(self.device) self.scheduler.set_timesteps(__a) self.scheduler.set_sigmas(__a) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): _UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device) # correction step for _ in range(self.scheduler.config.correct_steps): _UpperCamelCase = self.unet(__a , __a).sample _UpperCamelCase = self.scheduler.step_correct(__a , __a , generator=__a).prev_sample # prediction step _UpperCamelCase = model(__a , __a).sample _UpperCamelCase = self.scheduler.step_pred(__a , __a , __a , generator=__a) _UpperCamelCase , _UpperCamelCase = output.prev_sample, output.prev_sample_mean _UpperCamelCase = sample_mean.clamp(0 , 1) _UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(__a) if not return_dict: return (sample,) return ImagePipelineOutput(images=__a)
19
"""simple docstring""" # Imports import numpy as np class _UpperCAmelCase: def __init__( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) def UpperCAmelCase ( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' if red is not None: _UpperCamelCase = red if green is not None: _UpperCamelCase = green if blue is not None: _UpperCamelCase = blue if red_edge is not None: _UpperCamelCase = red_edge if nir is not None: _UpperCamelCase = nir return True def UpperCAmelCase ( self , __a="" , __a=None , __a=None , __a=None , __a=None , __a=None) -> List[str]: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) _UpperCamelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''') return False def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self) -> Any: '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self , __a=0.08 , __a=1.22 , __a=0.03) -> Optional[Any]: '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir / self.green) - 1 def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.red - self.blue) / self.red def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir - self.green def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def UpperCAmelCase ( self , __a=0.16) -> Optional[Any]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self , __a=0.5) -> Dict: '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self , __a=None , __a=None) -> Any: '''simple docstring''' return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self) -> Any: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> str: '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) _UpperCamelCase = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Any: '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
19
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['image_processor', 'tokenizer'] lowercase__ = 'ViTImageProcessor' lowercase__ = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __a=None , __a=None , **__a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __a , ) _UpperCamelCase = kwargs.pop('''feature_extractor''') _UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(__a , __a) def __call__( self , __a=None , __a=None , __a=None , __a=None , **__a) -> Tuple: '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''') if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''') if text is not None: _UpperCamelCase = self.tokenizer(__a , return_tensors=__a , **__a) if visual_prompt is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if images is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if visual_prompt is not None and images is not None: _UpperCamelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _UpperCamelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__a) , tensor_type=__a) def UpperCAmelCase ( self , *__a , **__a) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*__a , **__a) def UpperCAmelCase ( self , *__a , **__a) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*__a , **__a) @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __a , ) return self.image_processor_class @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __a , ) return self.image_processor
19
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=64 , __a=2 , __a=3 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a=[1, 16, 4, 4] , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _UpperCamelCase = (self.image_size // 32) ** 2 _UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__a , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.type_sequence_label_size _UpperCamelCase = ViTHybridForImageClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowercase__ = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''') def UpperCAmelCase ( self) -> Dict: '''simple docstring''' pass def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear)) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _UpperCamelCase = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = ViTHybridModel.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase( unittest.TestCase ): @cached_property def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( __a) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''').to(__a) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__a) # verify the logits _UpperCamelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor([-1.9090, -0.4993, -0.2389]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4)) @slow @require_accelerate def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''') _UpperCamelCase = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''') _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''') _UpperCamelCase = model(**__a) _UpperCamelCase = outputs.logits # model predicts one of the 1000 ImageNet classes _UpperCamelCase = logits.argmax(-1).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''')
19
1
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=10 , __a=3 , __a=2 , __a=2 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a="divided_space_time" , __a=None , ) -> List[str]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = num_channels _UpperCamelCase = patch_size _UpperCamelCase = num_frames _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = attention_type _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token _UpperCamelCase = (image_size // patch_size) ** 2 _UpperCamelCase = (num_frames) * self.num_patches_per_frame + 1 def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) _UpperCamelCase = self.num_labels return config def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = TimesformerModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = TimesformerForVideoClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) # verify the logits shape _UpperCamelCase = torch.Size((self.batch_size, self.num_labels)) self.parent.assertEqual(result.logits.shape , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__ = ( {'feature-extraction': TimesformerModel, 'video-classification': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TimesformerModelTester(self) _UpperCamelCase = ConfigTester( self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self , __a , __a , __a=False) -> List[str]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(__a) if return_labels: if model_class in get_values(__a): _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a) return inputs_dict def UpperCAmelCase ( self) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear)) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__a) @slow def UpperCAmelCase ( self) -> int: '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TimesformerModel.from_pretrained(__a) self.assertIsNotNone(__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' if not self.has_attentions: pass else: _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = True for model_class in self.all_model_classes: _UpperCamelCase = self.model_tester.seq_length _UpperCamelCase = self.model_tester.num_frames _UpperCamelCase = True _UpperCamelCase = False _UpperCamelCase = True _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.attentions self.assertEqual(len(__a) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCamelCase = True _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.attentions self.assertEqual(len(__a) , self.model_tester.num_hidden_layers) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) _UpperCamelCase = len(__a) # Check attention is always last and order is fine _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) self.assertEqual(out_len + 1 , len(__a)) _UpperCamelCase = outputs.attentions self.assertEqual(len(__a) , self.model_tester.num_hidden_layers) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def UpperCAmelCase ( self) -> int: '''simple docstring''' def check_hidden_states_output(__a , __a , __a): _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.hidden_states _UpperCamelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__a) , __a) _UpperCamelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) def lowerCamelCase__ ( ) -> List[Any]: """simple docstring""" _UpperCamelCase = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''', filename='''eating_spaghetti.npy''', repo_type='''dataset''' ) _UpperCamelCase = np.load(__snake_case ) return list(__snake_case ) @require_torch @require_vision class _UpperCAmelCase( unittest.TestCase ): @cached_property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5]) if is_vision_available() else None ) @slow def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''').to( __a) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_video() _UpperCamelCase = image_processor(video[:8] , return_tensors='''pt''').to(__a) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__a) # verify the logits _UpperCamelCase = torch.Size((1, 4_00)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor([-0.3016, -0.7713, -0.4205]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4))
19
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['vqvae'] def __init__( self , __a , __a , __a , __a , ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules(unet=__a , scheduler=__a , mel=__a , vqvae=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' return 50 if isinstance(self.scheduler , __a) else 10_00 @torch.no_grad() def __call__( self , __a = 1 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = 0 , __a = None , __a = None , __a=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' _UpperCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(__a) _UpperCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: _UpperCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _UpperCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__a , device=self.device , ) _UpperCamelCase = noise _UpperCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__a , __a) _UpperCamelCase = self.mel.audio_slice_to_image(__a) _UpperCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''').reshape( (input_image.height, input_image.width)) _UpperCamelCase = (input_image / 2_55) * 2 - 1 _UpperCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: _UpperCamelCase = self.vqvae.encode(torch.unsqueeze(__a , 0)).latent_dist.sample( generator=__a)[0] _UpperCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _UpperCamelCase = self.scheduler.add_noise(__a , __a , self.scheduler.timesteps[start_step - 1]) _UpperCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _UpperCamelCase = int(mask_start_secs * pixels_per_second) _UpperCamelCase = int(mask_end_secs * pixels_per_second) _UpperCamelCase = self.scheduler.add_noise(__a , __a , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , __a): _UpperCamelCase = self.unet(__a , __a , __a)['''sample'''] else: _UpperCamelCase = self.unet(__a , __a)['''sample'''] if isinstance(self.scheduler , __a): _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , eta=__a , generator=__a , )['''prev_sample'''] else: _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , generator=__a , )['''prev_sample'''] if mask is not None: if mask_start > 0: _UpperCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _UpperCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _UpperCamelCase = 1 / self.vqvae.config.scaling_factor * images _UpperCamelCase = self.vqvae.decode(__a)['''sample'''] _UpperCamelCase = (images / 2 + 0.5).clamp(0 , 1) _UpperCamelCase = images.cpu().permute(0 , 2 , 3 , 1).numpy() _UpperCamelCase = (images * 2_55).round().astype('''uint8''') _UpperCamelCase = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__a , mode='''RGB''').convert('''L''') for _ in images)) _UpperCamelCase = [self.mel.image_to_audio(__a) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__a)[:, np.newaxis, :]) , **ImagePipelineOutput(__a)) @torch.no_grad() def UpperCAmelCase ( self , __a , __a = 50) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , __a) self.scheduler.set_timesteps(__a) _UpperCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''').reshape((1, image.height, image.width)) for image in images]) _UpperCamelCase = (sample / 2_55) * 2 - 1 _UpperCamelCase = torch.Tensor(__a).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): _UpperCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _UpperCamelCase = self.scheduler.alphas_cumprod[t] _UpperCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _UpperCamelCase = 1 - alpha_prod_t _UpperCamelCase = self.unet(__a , __a)['''sample'''] _UpperCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _UpperCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _UpperCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase ( __a , __a , __a) -> torch.Tensor: '''simple docstring''' _UpperCamelCase = acos(torch.dot(torch.flatten(__a) , torch.flatten(__a)) / torch.norm(__a) / torch.norm(__a)) return sin((1 - alpha) * theta) * xa / sin(__a) + sin(alpha * theta) * xa / sin(__a)
19
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase ) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = field(default='automatic-speech-recognition' , metadata={'include_in_asdict_even_if_is_default': True} ) lowercase__ = Features({'audio': Audio()} ) lowercase__ = Features({'transcription': Value('string' )} ) lowercase__ = "audio" lowercase__ = "transcription" def UpperCAmelCase ( self , __a) -> int: '''simple docstring''' if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''') if not isinstance(features[self.audio_column] , __a): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''') _UpperCamelCase = copy.deepcopy(self) _UpperCamelCase = self.input_schema.copy() _UpperCamelCase = features[self.audio_column] _UpperCamelCase = input_schema return task_template @property def UpperCAmelCase ( self) -> Dict[str, str]: '''simple docstring''' return {self.audio_column: "audio", self.transcription_column: "transcription"}
19
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'detr' lowercase__ = ['past_key_values'] lowercase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __a=True , __a=None , __a=3 , __a=1_00 , __a=6 , __a=20_48 , __a=8 , __a=6 , __a=20_48 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=2_56 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=1 , __a=1 , __a=5 , __a=2 , __a=0.1 , **__a , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__a , __a): _UpperCamelCase = backbone_config.get('''model_type''') _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(__a) # set timm attributes to None _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None, None, None _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = encoder_layers _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase ( cls , __a , **__a) -> int: '''simple docstring''' return cls(backbone_config=__a , **__a) def UpperCAmelCase ( self) -> Dict[str, any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output class _UpperCAmelCase( lowerCamelCase ): lowercase__ = version.parse('1.11' ) @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def UpperCAmelCase ( self) -> float: '''simple docstring''' return 1e-5 @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return 12
19
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'sew-d' def __init__( self , __a=32 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a=2 , __a=5_12 , __a=2_56 , __a=True , __a=True , __a=("p2c", "c2p") , __a="layer_norm" , __a="gelu_python" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.02 , __a=1e-7 , __a=1e-5 , __a="group" , __a="gelu" , __a=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a=False , __a=1_28 , __a=16 , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="mean" , __a=False , __a=False , __a=2_56 , __a=0 , __a=1 , __a=2 , **__a , ) -> int: '''simple docstring''' super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a) _UpperCamelCase = hidden_size _UpperCamelCase = feat_extract_norm _UpperCamelCase = feat_extract_activation _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = conv_bias _UpperCamelCase = num_conv_pos_embeddings _UpperCamelCase = num_conv_pos_embedding_groups _UpperCamelCase = len(self.conv_dim) _UpperCamelCase = num_hidden_layers _UpperCamelCase = intermediate_size _UpperCamelCase = squeeze_factor _UpperCamelCase = max_position_embeddings _UpperCamelCase = position_buckets _UpperCamelCase = share_att_key _UpperCamelCase = relative_attention _UpperCamelCase = norm_rel_ebd _UpperCamelCase = list(__a) _UpperCamelCase = hidden_act _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = feat_proj_dropout _UpperCamelCase = final_dropout _UpperCamelCase = layer_norm_eps _UpperCamelCase = feature_layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'''but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCamelCase = apply_spec_augment _UpperCamelCase = mask_time_prob _UpperCamelCase = mask_time_length _UpperCamelCase = mask_time_min_masks _UpperCamelCase = mask_feature_prob _UpperCamelCase = mask_feature_length _UpperCamelCase = mask_feature_min_masks # ctc loss _UpperCamelCase = ctc_loss_reduction _UpperCamelCase = ctc_zero_infinity # sequence classification _UpperCamelCase = use_weighted_layer_sum _UpperCamelCase = classifier_proj_size @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
19
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'wavlm' def __init__( self , __a=32 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.1 , __a=0.02 , __a=1e-5 , __a="group" , __a="gelu" , __a=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __a=(5, 2, 2, 2, 2, 2, 2) , __a=(10, 3, 3, 3, 3, 2, 2) , __a=False , __a=1_28 , __a=16 , __a=3_20 , __a=8_00 , __a=False , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=3_20 , __a=2 , __a=0.1 , __a=1_00 , __a=2_56 , __a=2_56 , __a=0.1 , __a="mean" , __a=False , __a=False , __a=2_56 , __a=(5_12, 5_12, 5_12, 5_12, 15_00) , __a=(5, 3, 3, 1, 1) , __a=(1, 2, 3, 1, 1) , __a=5_12 , __a=80 , __a=0 , __a=1 , __a=2 , __a=False , __a=3 , __a=2 , __a=3 , __a=None , **__a , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a) _UpperCamelCase = hidden_size _UpperCamelCase = feat_extract_norm _UpperCamelCase = feat_extract_activation _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = conv_bias _UpperCamelCase = num_buckets _UpperCamelCase = max_bucket_distance _UpperCamelCase = num_conv_pos_embeddings _UpperCamelCase = num_conv_pos_embedding_groups _UpperCamelCase = len(self.conv_dim) _UpperCamelCase = num_hidden_layers _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = feat_proj_dropout _UpperCamelCase = final_dropout _UpperCamelCase = layerdrop _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = num_ctc_classes _UpperCamelCase = vocab_size _UpperCamelCase = do_stable_layer_norm _UpperCamelCase = use_weighted_layer_sum _UpperCamelCase = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCamelCase = apply_spec_augment _UpperCamelCase = mask_time_prob _UpperCamelCase = mask_time_length _UpperCamelCase = mask_time_min_masks _UpperCamelCase = mask_feature_prob _UpperCamelCase = mask_feature_length # parameters for pretraining with codevector quantized representations _UpperCamelCase = num_codevectors_per_group _UpperCamelCase = num_codevector_groups _UpperCamelCase = contrastive_logits_temperature _UpperCamelCase = num_negatives _UpperCamelCase = codevector_dim _UpperCamelCase = proj_codevector_dim _UpperCamelCase = diversity_loss_weight # ctc loss _UpperCamelCase = ctc_loss_reduction _UpperCamelCase = ctc_zero_infinity # adapter _UpperCamelCase = add_adapter _UpperCamelCase = adapter_kernel_size _UpperCamelCase = adapter_stride _UpperCamelCase = num_adapter_layers _UpperCamelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = xvector_output_dim @property def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
19
1
"""simple docstring""" from collections import defaultdict from math import gcd def lowerCamelCase__ ( __snake_case = 1_50_00_00 ) -> int: """simple docstring""" _UpperCamelCase = defaultdict(__snake_case ) _UpperCamelCase = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1, __snake_case, 2 ): if gcd(__snake_case, __snake_case ) > 1: continue _UpperCamelCase = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__snake_case, limit + 1, __snake_case ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
19
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _a = """bart""" _a = True @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> Dict: """simple docstring""" if LOAD_DENSE_INDEX: _UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _UpperCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _UpperCamelCase = qar_model.eval() else: _UpperCamelCase , _UpperCamelCase = (None, None) if MODEL_TYPE == "bart": _UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _UpperCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _UpperCamelCase = sas_model.eval() else: _UpperCamelCase , _UpperCamelCase = make_qa_sas_model( model_name='''t5-small''', from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''', device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: _UpperCamelCase = faiss.StandardGpuResources() _UpperCamelCase = datasets.load_dataset(path='''wiki_snippets''', name='''wiki40b_en_100_0''' )['''train'''] _UpperCamelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''', dtype='''float32''', mode='''r''', shape=(wikiaab_passages.num_rows, 1_28), ) _UpperCamelCase = faiss.IndexFlatIP(1_28 ) _UpperCamelCase = faiss.index_cpu_to_gpu(__snake_case, 1, __snake_case ) wikiaab_gpu_index_flat.add(__snake_case ) # TODO fix for larger GPU else: _UpperCamelCase , _UpperCamelCase = (None, None) _UpperCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = datasets.load_dataset('''eli5''', name='''LFQA_reddit''' ) _UpperCamelCase = elia['''train_eli5'''] _UpperCamelCase = np.memmap( '''eli5_questions_reps.dat''', dtype='''float32''', mode='''r''', shape=(elia_train.num_rows, 1_28) ) _UpperCamelCase = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(__snake_case ) return (elia_train, eli5_train_q_index) _a , _a , _a = load_indexes() _a , _a , _a , _a = load_models() _a , _a = load_train_data() def lowerCamelCase__ ( __snake_case, __snake_case=10 ) -> List[Any]: """simple docstring""" _UpperCamelCase = embed_questions_for_retrieval([question], __snake_case, __snake_case ) _UpperCamelCase , _UpperCamelCase = eli5_train_q_index.search(__snake_case, __snake_case ) _UpperCamelCase = [elia_train[int(__snake_case )] for i in I[0]] return nn_examples def lowerCamelCase__ ( __snake_case, __snake_case="wiki40b", __snake_case="dense", __snake_case=10 ) -> List[str]: """simple docstring""" if source == "none": _UpperCamelCase , _UpperCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _UpperCamelCase , _UpperCamelCase = query_qa_dense_index( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) else: _UpperCamelCase , _UpperCamelCase = query_es_index( __snake_case, __snake_case, index_name='''english_wiki40b_snippets_100w''', n_results=__snake_case, ) _UpperCamelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _UpperCamelCase = '''question: {} context: {}'''.format(__snake_case, __snake_case ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __snake_case : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __snake_case : None), } ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=64, __snake_case=2_56, __snake_case=False, __snake_case=2, __snake_case=0.95, __snake_case=0.8 ) -> Dict: """simple docstring""" with torch.no_grad(): _UpperCamelCase = qa_sas_generate( __snake_case, __snake_case, __snake_case, num_answers=1, num_beams=__snake_case, min_len=__snake_case, max_len=__snake_case, do_sample=__snake_case, temp=__snake_case, top_p=__snake_case, top_k=__snake_case, max_input_length=10_24, device='''cuda:0''', )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar _a = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" _a = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _a = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) _a = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] _a = st.sidebar.checkbox("""Demo options""") if demo_options: _a = st.sidebar.selectbox( """""", action_list, index=3, ) _a = action_list.index(action_st) _a = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) _a = show_type == """Show full text of passages""" else: _a = 3 _a = True _a = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: _a = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) _a = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) _a = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: _a = """wiki40b""" _a = """dense""" _a = """beam""" _a = 2 _a = 64 _a = 256 _a = None _a = None _a = st.sidebar.checkbox("""Generation options""") if generate_options: _a = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) _a = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) _a = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) _a = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": _a = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _a = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _a = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _a = None # start main text _a = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] _a = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": _a = st.text_input("""Enter your question here:""", """""") else: _a = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": _a , _a = make_support(question, source=wiki_source, method="""dense""", n_results=10) _a , _a = make_support(question, source=wiki_source, method="""sparse""", n_results=10) _a = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _a = support_list[:10] _a = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: _a , _a = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _a , _a = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): _a = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) _a = res[1].strip() if sec_titles == "": _a = """[{}]({})""".format(res[0], wiki_url) else: _a = sec_titles.split(""" & """) _a = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: _a = find_nearest_training(question) _a = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) _a = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) _a = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
19
1
"""simple docstring""" from collections.abc import Callable def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> float: """simple docstring""" _UpperCamelCase = a _UpperCamelCase = b if function(__snake_case ) == 0: # one of the a or b is a root for the function return a elif function(__snake_case ) == 0: return b elif ( function(__snake_case ) * function(__snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: _UpperCamelCase = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(__snake_case ) == 0: return mid elif function(__snake_case ) * function(__snake_case ) < 0: _UpperCamelCase = mid else: _UpperCamelCase = mid _UpperCamelCase = start + (end - start) / 2.0 return mid def lowerCamelCase__ ( __snake_case ) -> float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
19
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } _a = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> Tuple: """simple docstring""" for attribute in key.split('''.''' ): _UpperCamelCase = getattr(__snake_case, __snake_case ) if weight_type is not None: _UpperCamelCase = getattr(__snake_case, __snake_case ).shape else: _UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase = value elif weight_type == "weight_g": _UpperCamelCase = value elif weight_type == "weight_v": _UpperCamelCase = value elif weight_type == "bias": _UpperCamelCase = value else: _UpperCamelCase = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = fairseq_model.state_dict() _UpperCamelCase = hf_model.feature_extractor _UpperCamelCase = hf_model.adapter for name, value in fairseq_dict.items(): _UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __snake_case, __snake_case, __snake_case, __snake_case, hf_model.config.feat_extract_norm == '''group''', ) _UpperCamelCase = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(__snake_case, __snake_case, __snake_case, __snake_case ) _UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCamelCase = True if "*" in mapped_key: _UpperCamelCase = name.split(__snake_case )[0].split('''.''' )[-2] _UpperCamelCase = mapped_key.replace('''*''', __snake_case ) if "weight_g" in name: _UpperCamelCase = '''weight_g''' elif "weight_v" in name: _UpperCamelCase = '''weight_v''' elif "bias" in name: _UpperCamelCase = '''bias''' elif "weight" in name: _UpperCamelCase = '''weight''' else: _UpperCamelCase = None set_recursively(__snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = full_name.split('''conv_layers.''' )[-1] _UpperCamelCase = name.split('''.''' ) _UpperCamelCase = int(items[0] ) _UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = full_name.split('''adaptor.''' )[-1] _UpperCamelCase = name.split('''.''' ) if items[1].isdigit(): _UpperCamelCase = int(items[1] ) else: _UpperCamelCase = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' _UpperCamelCase = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(__snake_case, __snake_case ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase , _UpperCamelCase = emb.weight.shape _UpperCamelCase = nn.Linear(__snake_case, __snake_case, bias=__snake_case ) _UpperCamelCase = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = WavaVecaConfig.from_pretrained( __snake_case, add_adapter=__snake_case, adapter_stride=__snake_case, adapter_kernel_size=__snake_case, use_auth_token=__snake_case, output_hidden_size=__snake_case, ) _UpperCamelCase = MBartConfig.from_pretrained(__snake_case ) # load model _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, }, ) _UpperCamelCase = model[0].eval() # load feature extractor _UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(__snake_case, use_auth_token=__snake_case ) # set weights for wav2vec2 encoder _UpperCamelCase = WavaVecaModel(__snake_case ) recursively_load_weights_wavaveca(model.encoder, __snake_case ) # load decoder weights _UpperCamelCase = MBartForCausalLM(__snake_case ) _UpperCamelCase , _UpperCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=__snake_case ) logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) _UpperCamelCase = SpeechEncoderDecoderModel(encoder=__snake_case, decoder=__snake_case ) _UpperCamelCase = False _UpperCamelCase = MBartaaTokenizer(__snake_case ) tokenizer.save_pretrained(__snake_case ) _UpperCamelCase = hf_wavavec.config.to_dict() _UpperCamelCase = tokenizer.pad_token_id _UpperCamelCase = tokenizer.bos_token_id _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = '''mbart50''' _UpperCamelCase = '''wav2vec2''' _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = 25_00_04 _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = SpeechEncoderDecoderConfig.from_dict(__snake_case ) hf_wavavec.save_pretrained(__snake_case ) feature_extractor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1024, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=25_0004, type=int, help="""`decoder_start_token_id` of model config""") _a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
19
1
"""simple docstring""" from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class _UpperCAmelCase: lowercase__ = 42 # [batch_size x 3] lowercase__ = 42 # [batch_size x 3] lowercase__ = 42 # [batch_size x 3] lowercase__ = 42 # [batch_size x 3] lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape) == len(self.y.shape) == len(self.z.shape) == len(self.origin.shape) == 2 def UpperCAmelCase ( self) -> int: '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa)) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa)) def UpperCAmelCase ( self) -> torch.Tensor: '''simple docstring''' _UpperCamelCase = torch.arange(self.height * self.width) _UpperCamelCase = torch.stack( [ pixel_indices % self.width, torch.div(__a , self.width , rounding_mode='''trunc'''), ] , axis=1 , ) return coords @property def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase , *_UpperCamelCase = self.shape _UpperCamelCase = int(np.prod(__a)) _UpperCamelCase = self.get_image_coords() _UpperCamelCase = torch.broadcast_to(coords.unsqueeze(0) , [batch_size * inner_batch_size, *coords.shape]) _UpperCamelCase = self.get_camera_rays(__a) _UpperCamelCase = rays.view(__a , inner_batch_size * self.height * self.width , 2 , 3) return rays def UpperCAmelCase ( self , __a) -> torch.Tensor: '''simple docstring''' _UpperCamelCase , *_UpperCamelCase , _UpperCamelCase = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _UpperCamelCase = coords.view(__a , -1 , 2) _UpperCamelCase = self.resolution() _UpperCamelCase = self.fov() _UpperCamelCase = (flat.float() / (res - 1)) * 2 - 1 _UpperCamelCase = fracs * torch.tan(fov / 2) _UpperCamelCase = fracs.view(__a , -1 , 2) _UpperCamelCase = ( self.z.view(__a , 1 , 3) + self.x.view(__a , 1 , 3) * fracs[:, :, :1] + self.y.view(__a , 1 , 3) * fracs[:, :, 1:] ) _UpperCamelCase = directions / directions.norm(dim=-1 , keepdim=__a) _UpperCamelCase = torch.stack( [ torch.broadcast_to(self.origin.view(__a , 1 , 3) , [batch_size, directions.shape[1], 3]), directions, ] , dim=2 , ) return rays.view(__a , *__a , 2 , 3) def UpperCAmelCase ( self , __a , __a) -> "DifferentiableProjectiveCamera": '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__a , height=__a , x_fov=self.x_fov , y_fov=self.y_fov , ) def lowerCamelCase__ ( __snake_case ) -> DifferentiableProjectiveCamera: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = [] for theta in np.linspace(0, 2 * np.pi, num=20 ): _UpperCamelCase = np.array([np.sin(__snake_case ), np.cos(__snake_case ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _UpperCamelCase = -z * 4 _UpperCamelCase = np.array([np.cos(__snake_case ), -np.sin(__snake_case ), 0.0] ) _UpperCamelCase = np.cross(__snake_case, __snake_case ) origins.append(__snake_case ) xs.append(__snake_case ) ys.append(__snake_case ) zs.append(__snake_case ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__snake_case, axis=0 ) ).float(), x=torch.from_numpy(np.stack(__snake_case, axis=0 ) ).float(), y=torch.from_numpy(np.stack(__snake_case, axis=0 ) ).float(), z=torch.from_numpy(np.stack(__snake_case, axis=0 ) ).float(), width=__snake_case, height=__snake_case, x_fov=0.7, y_fov=0.7, shape=(1, len(__snake_case )), )
19
"""simple docstring""" import fire from utils import calculate_rouge, save_json def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case=None, **__snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()] _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()][: len(__snake_case )] _UpperCamelCase = calculate_rouge(__snake_case, __snake_case, **__snake_case ) if save_path is not None: save_json(__snake_case, __snake_case, indent=__snake_case ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
19
1
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> str: """simple docstring""" if gpta_config_file == "": _UpperCamelCase = GPTaConfig() else: _UpperCamelCase = GPTaConfig.from_json_file(__snake_case ) _UpperCamelCase = GPTaModel(__snake_case ) # Load weights from numpy load_tf_weights_in_gpta(__snake_case, __snake_case, __snake_case ) # Save pytorch-model _UpperCamelCase = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME _UpperCamelCase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict(), __snake_case ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__snake_case, '''w''', encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) _a = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
19
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['image_processor', 'tokenizer'] lowercase__ = 'ViTImageProcessor' lowercase__ = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __a=None , __a=None , **__a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __a , ) _UpperCamelCase = kwargs.pop('''feature_extractor''') _UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(__a , __a) def __call__( self , __a=None , __a=None , __a=None , __a=None , **__a) -> Tuple: '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''') if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''') if text is not None: _UpperCamelCase = self.tokenizer(__a , return_tensors=__a , **__a) if visual_prompt is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if images is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if visual_prompt is not None and images is not None: _UpperCamelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _UpperCamelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__a) , tensor_type=__a) def UpperCAmelCase ( self , *__a , **__a) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*__a , **__a) def UpperCAmelCase ( self , *__a , **__a) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*__a , **__a) @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __a , ) return self.image_processor_class @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __a , ) return self.image_processor
19
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'wavlm' def __init__( self , __a=32 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.1 , __a=0.02 , __a=1e-5 , __a="group" , __a="gelu" , __a=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __a=(5, 2, 2, 2, 2, 2, 2) , __a=(10, 3, 3, 3, 3, 2, 2) , __a=False , __a=1_28 , __a=16 , __a=3_20 , __a=8_00 , __a=False , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=3_20 , __a=2 , __a=0.1 , __a=1_00 , __a=2_56 , __a=2_56 , __a=0.1 , __a="mean" , __a=False , __a=False , __a=2_56 , __a=(5_12, 5_12, 5_12, 5_12, 15_00) , __a=(5, 3, 3, 1, 1) , __a=(1, 2, 3, 1, 1) , __a=5_12 , __a=80 , __a=0 , __a=1 , __a=2 , __a=False , __a=3 , __a=2 , __a=3 , __a=None , **__a , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a) _UpperCamelCase = hidden_size _UpperCamelCase = feat_extract_norm _UpperCamelCase = feat_extract_activation _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = conv_bias _UpperCamelCase = num_buckets _UpperCamelCase = max_bucket_distance _UpperCamelCase = num_conv_pos_embeddings _UpperCamelCase = num_conv_pos_embedding_groups _UpperCamelCase = len(self.conv_dim) _UpperCamelCase = num_hidden_layers _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = feat_proj_dropout _UpperCamelCase = final_dropout _UpperCamelCase = layerdrop _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = num_ctc_classes _UpperCamelCase = vocab_size _UpperCamelCase = do_stable_layer_norm _UpperCamelCase = use_weighted_layer_sum _UpperCamelCase = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCamelCase = apply_spec_augment _UpperCamelCase = mask_time_prob _UpperCamelCase = mask_time_length _UpperCamelCase = mask_time_min_masks _UpperCamelCase = mask_feature_prob _UpperCamelCase = mask_feature_length # parameters for pretraining with codevector quantized representations _UpperCamelCase = num_codevectors_per_group _UpperCamelCase = num_codevector_groups _UpperCamelCase = contrastive_logits_temperature _UpperCamelCase = num_negatives _UpperCamelCase = codevector_dim _UpperCamelCase = proj_codevector_dim _UpperCamelCase = diversity_loss_weight # ctc loss _UpperCamelCase = ctc_loss_reduction _UpperCamelCase = ctc_zero_infinity # adapter _UpperCamelCase = add_adapter _UpperCamelCase = adapter_kernel_size _UpperCamelCase = adapter_stride _UpperCamelCase = num_adapter_layers _UpperCamelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = xvector_output_dim @property def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
19
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=32 , __a=3 , __a=4 , __a=[10, 20, 30, 40] , __a=[2, 2, 3, 2] , __a=True , __a=True , __a=37 , __a="gelu" , __a=10 , __a=0.02 , __a=["stage2", "stage3", "stage4"] , __a=3 , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = num_channels _UpperCamelCase = num_stages _UpperCamelCase = hidden_sizes _UpperCamelCase = depths _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = out_features _UpperCamelCase = num_labels _UpperCamelCase = scope _UpperCamelCase = num_stages def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Any: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__a , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=__a , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = UperNetForSemanticSegmentation(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__ = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = UperNetModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a) @unittest.skip(reason='''UperNet does not use inputs_embeds''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not support input and output embeddings''') def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''') def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''') def UpperCAmelCase ( self) -> int: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''') def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' def check_hidden_states_output(__a , __a , __a): _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(__a) , expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) _UpperCamelCase = _config_zero_init(configs_no_init.backbone_config) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason='''UperNet does not have tied weights''') def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' pass @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''', repo_type='''dataset''', filename='''ADE_val_00000001.jpg''' ) _UpperCamelCase = Image.open(__snake_case ).convert('''RGB''' ) return image @require_torch @require_vision @slow class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''') _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''').to(__a) _UpperCamelCase = prepare_img() _UpperCamelCase = processor(images=__a , return_tensors='''pt''').to(__a) with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''') _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''').to(__a) _UpperCamelCase = prepare_img() _UpperCamelCase = processor(images=__a , return_tensors='''pt''').to(__a) with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4))
19
1
"""simple docstring""" import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = 0 @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): _UpperCamelCase = AutoTokenizer.from_pretrained(__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , (BertTokenizer, BertTokenizerFast)) self.assertGreater(len(__a) , 0) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): _UpperCamelCase = AutoTokenizer.from_pretrained(__a) self.assertIsNotNone(__a) self.assertIsInstance(__a , (GPTaTokenizer, GPTaTokenizerFast)) self.assertGreater(len(__a) , 0) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = AutoTokenizer.from_pretrained(__a) self.assertIsInstance(__a , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 12) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = AutoTokenizer.from_pretrained(__a) self.assertIsInstance(__a , (RobertaTokenizer, RobertaTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 20) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = AutoConfig.from_pretrained(__a) self.assertIsInstance(__a , __a) # Check that tokenizer_type ≠ model_type _UpperCamelCase = AutoTokenizer.from_pretrained(__a , config=__a) self.assertIsInstance(__a , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 12) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__a , '''vocab.txt''')) _UpperCamelCase = AutoTokenizer.from_pretrained(__a , tokenizer_type='''bert''' , use_fast=__a) self.assertIsInstance(__a , __a) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__a , '''vocab.json''')) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__a , '''merges.txt''')) _UpperCamelCase = AutoTokenizer.from_pretrained(__a , tokenizer_type='''gpt2''' , use_fast=__a) self.assertIsInstance(__a , __a) @require_tokenizers def UpperCAmelCase ( self) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__a , '''vocab.txt''')) _UpperCamelCase = AutoTokenizer.from_pretrained(__a , tokenizer_type='''bert''') self.assertIsInstance(__a , __a) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__a , '''vocab.json''')) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__a , '''merges.txt''')) _UpperCamelCase = AutoTokenizer.from_pretrained(__a , tokenizer_type='''gpt2''') self.assertIsInstance(__a , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' with pytest.raises(__a): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''') @require_tokenizers def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: _UpperCamelCase = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''') self.assertIsInstance(__a , (BertTokenizer, BertTokenizerFast)) if isinstance(__a , __a): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __a) else: self.assertEqual(tokenizer.do_lower_case , __a) self.assertEqual(tokenizer.model_max_length , 5_12) @require_tokenizers def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __a , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): _UpperCamelCase = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai _UpperCamelCase = TOKENIZER_MAPPING.values() _UpperCamelCase = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__a) @require_tokenizers def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=__a) , __a) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''') , __a) @require_tokenizers def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=__a) _UpperCamelCase = '''Hello, world. How are you?''' _UpperCamelCase = tokenizer.tokenize(__a) self.assertEqual('''[UNK]''' , tokens[0]) _UpperCamelCase = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=__a) _UpperCamelCase = tokenizer.tokenize(__a) self.assertEqual('''[UNK]''' , tokens[0]) @require_tokenizers def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''') self.assertEqual(type(__a) , __a) self.assertEqual(tokenizer.model_max_length , 5_12) self.assertEqual(tokenizer.vocab_size , 3_00_00) self.assertEqual(tokenizer.unk_token , '''[UNK]''') self.assertEqual(tokenizer.padding_side , '''right''') self.assertEqual(tokenizer.truncation_side , '''right''') def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = AutoTokenizer.from_pretrained(__a) self.assertIsInstance(__a , (BertTokenizer, BertTokenizerFast)) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a) _UpperCamelCase = AutoTokenizer.from_pretrained(__a) self.assertIsInstance(__a , tokenizer.__class__) self.assertEqual(tokenizera.vocab_size , 12) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = AutoTokenizer.from_pretrained('''ctrl''') # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__a , __a) def UpperCAmelCase ( self) -> int: '''simple docstring''' # Check we can load the tokenizer config of an online model. _UpperCamelCase = get_tokenizer_config('''bert-base-cased''') _UpperCamelCase = config.pop('''_commit_hash''' , __a) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__a , {'''do_lower_case''': False}) # This model does not have a tokenizer_config so we get back an empty dict. _UpperCamelCase = get_tokenizer_config(__a) self.assertDictEqual(__a , {}) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. _UpperCamelCase = AutoTokenizer.from_pretrained(__a) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a) _UpperCamelCase = get_tokenizer_config(__a) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''') def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' try: AutoConfig.register('''custom''' , __a) AutoTokenizer.register(__a , slow_tokenizer_class=__a) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a): AutoTokenizer.register(__a , slow_tokenizer_class=__a) _UpperCamelCase = CustomTokenizer.from_pretrained(__a) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a) _UpperCamelCase = AutoTokenizer.from_pretrained(__a) self.assertIsInstance(__a , __a) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def UpperCAmelCase ( self) -> str: '''simple docstring''' try: AutoConfig.register('''custom''' , __a) # Can register in two steps AutoTokenizer.register(__a , slow_tokenizer_class=__a) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None)) AutoTokenizer.register(__a , fast_tokenizer_class=__a) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __a , slow_tokenizer_class=__a , fast_tokenizer_class=__a) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a): AutoTokenizer.register(__a , fast_tokenizer_class=__a) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase = BertTokenizerFast.from_pretrained(__a) bert_tokenizer.save_pretrained(__a) _UpperCamelCase = CustomTokenizerFast.from_pretrained(__a) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a) _UpperCamelCase = AutoTokenizer.from_pretrained(__a) self.assertIsInstance(__a , __a) _UpperCamelCase = AutoTokenizer.from_pretrained(__a , use_fast=__a) self.assertIsInstance(__a , __a) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__a): _UpperCamelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''') # If remote code is disabled, we can't load this config. with self.assertRaises(__a): _UpperCamelCase = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__a) _UpperCamelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__a) self.assertTrue(tokenizer.special_attribute_present) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a) _UpperCamelCase = AutoTokenizer.from_pretrained(__a , trust_remote_code=__a) self.assertTrue(reloaded_tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''') self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''') # Test we can also load the slow version _UpperCamelCase = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__a , use_fast=__a) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a) _UpperCamelCase = AutoTokenizer.from_pretrained(__a , trust_remote_code=__a , use_fast=__a) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''') self.assertTrue(reloaded_tokenizer.special_attribute_present) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''') @require_tokenizers def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' class _UpperCAmelCase( lowerCamelCase ): lowercase__ = False class _UpperCAmelCase( lowerCamelCase ): lowercase__ = NewTokenizer lowercase__ = False try: AutoConfig.register('''custom''' , __a) AutoTokenizer.register(__a , slow_tokenizer_class=__a) AutoTokenizer.register(__a , fast_tokenizer_class=__a) # If remote code is not set, the default is to use local _UpperCamelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''') self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''') self.assertFalse(tokenizer.special_attribute_present) _UpperCamelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=__a) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') self.assertFalse(tokenizer.special_attribute_present) # If remote code is disabled, we load the local one. _UpperCamelCase = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__a) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''') self.assertFalse(tokenizer.special_attribute_present) _UpperCamelCase = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__a , use_fast=__a) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') self.assertFalse(tokenizer.special_attribute_present) # If remote is enabled, we load from the Hub _UpperCamelCase = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__a) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''') self.assertTrue(tokenizer.special_attribute_present) _UpperCamelCase = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__a , use_fast=__a) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') self.assertTrue(tokenizer.special_attribute_present) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__a) self.assertTrue(tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''') # Test we can also load the slow version _UpperCamelCase = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__a , use_fast=__a) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') def UpperCAmelCase ( self) -> int: '''simple docstring''' with self.assertRaisesRegex( __a , '''bert-base is not a local folder and is not a valid model identifier'''): _UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base''') def UpperCAmelCase ( self) -> int: '''simple docstring''' with self.assertRaisesRegex( __a , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'''): _UpperCamelCase = AutoTokenizer.from_pretrained(__a , revision='''aaaaaa''') def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' # Make sure we have cached the tokenizer. _UpperCamelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''') with RequestCounter() as counter: _UpperCamelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''') self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0)
19
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase( lowerCamelCase ): lowercase__ = (DDPMScheduler,) def UpperCAmelCase ( self , **__a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__a) return config def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=__a , beta_end=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.check_over_configs(thresholding=__a) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0979)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.02)) < 1e-5 def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = len(__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = torch.manual_seed(0) for t in reversed(range(__a)): # 1. predict noise residual _UpperCamelCase = model(__a , __a) # 2. predict previous mean of sample x_t-1 _UpperCamelCase = scheduler.step(__a , __a , __a , generator=__a).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCamelCase = pred_prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 258.9606) < 1e-2 assert abs(result_mean.item() - 0.3372) < 1e-3 def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''') _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = len(__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = torch.manual_seed(0) for t in reversed(range(__a)): # 1. predict noise residual _UpperCamelCase = model(__a , __a) # 2. predict previous mean of sample x_t-1 _UpperCamelCase = scheduler.step(__a , __a , __a , generator=__a).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCamelCase = pred_prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 202.0296) < 1e-2 assert abs(result_mean.item() - 0.2631) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__a) _UpperCamelCase = scheduler.timesteps for i, timestep in enumerate(__a): if i == len(__a) - 1: _UpperCamelCase = -1 else: _UpperCamelCase = timesteps[i + 1] _UpperCamelCase = scheduler.previous_timestep(__a) _UpperCamelCase = prev_t.item() self.assertEqual(__a , __a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 51, 0] with self.assertRaises(__a , msg='''`custom_timesteps` must be in descending order.'''): scheduler.set_timesteps(timesteps=__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 1, 0] _UpperCamelCase = len(__a) with self.assertRaises(__a , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.'''): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=__a)
19
1
"""simple docstring""" from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCamelCase__ ( ) -> Any: """simple docstring""" _UpperCamelCase , _UpperCamelCase = 9, 14 # noqa: F841 _UpperCamelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _UpperCamelCase = defaultdict(__snake_case ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _UpperCamelCase = mst(__snake_case ) _UpperCamelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _UpperCamelCase = tuple(answer[:2] ) _UpperCamelCase = tuple(edge[::-1] ) assert edge in result or reverse in result
19
"""simple docstring""" from __future__ import annotations from functools import lru_cache from math import ceil _a = 100 _a = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} _UpperCamelCase = set() _UpperCamelCase = 42 _UpperCamelCase = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def lowerCamelCase__ ( __snake_case = 50_00 ) -> int | None: """simple docstring""" for number_to_partition in range(1, __snake_case ): if len(partition(__snake_case ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"""{solution() = }""")
19
1
"""simple docstring""" from __future__ import annotations from collections import Counter from random import random class _UpperCAmelCase: def __init__( self) -> Dict: '''simple docstring''' _UpperCamelCase = {} def UpperCAmelCase ( self , __a) -> None: '''simple docstring''' _UpperCamelCase = {} def UpperCAmelCase ( self , __a , __a , __a) -> None: '''simple docstring''' if nodea not in self.connections: self.add_node(__a) if nodea not in self.connections: self.add_node(__a) _UpperCamelCase = probability def UpperCAmelCase ( self) -> list[str]: '''simple docstring''' return list(self.connections) def UpperCAmelCase ( self , __a) -> str: '''simple docstring''' _UpperCamelCase = 0 _UpperCamelCase = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> dict[str, int]: """simple docstring""" _UpperCamelCase = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__snake_case, __snake_case, __snake_case ) _UpperCamelCase = Counter(graph.get_nodes() ) _UpperCamelCase = start for _ in range(__snake_case ): _UpperCamelCase = graph.transition(__snake_case ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
19
"""simple docstring""" from collections.abc import Callable import numpy as np def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> np.array: """simple docstring""" _UpperCamelCase = int(np.ceil((x_end - xa) / step_size ) ) _UpperCamelCase = np.zeros((n + 1,) ) _UpperCamelCase = ya _UpperCamelCase = xa for k in range(__snake_case ): _UpperCamelCase = y[k] + step_size * ode_func(__snake_case, y[k] ) _UpperCamelCase = y[k] + ( (step_size / 2) * (ode_func(__snake_case, y[k] ) + ode_func(x + step_size, __snake_case )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
19
1
"""simple docstring""" from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a = None , __a = None , __a = None , __a = None , __a = False , __a = False , __a = None , **__a , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = path_or_paths _UpperCamelCase = split if split or isinstance(__a , __a) else '''train''' _UpperCamelCase = features _UpperCamelCase = cache_dir _UpperCamelCase = keep_in_memory _UpperCamelCase = streaming _UpperCamelCase = num_proc _UpperCamelCase = kwargs @abstractmethod def UpperCAmelCase ( self) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: '''simple docstring''' pass class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a = None , __a = None , __a = False , __a = False , __a = None , **__a , ) -> Dict: '''simple docstring''' _UpperCamelCase = features _UpperCamelCase = cache_dir _UpperCamelCase = keep_in_memory _UpperCamelCase = streaming _UpperCamelCase = num_proc _UpperCamelCase = kwargs @abstractmethod def UpperCAmelCase ( self) -> Union[Dataset, IterableDataset]: '''simple docstring''' pass
19
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _a = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _a = parser.parse_args() if args.model_type == "bert": _a = BertForMaskedLM.from_pretrained(args.model_name) _a = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _a = model.state_dict() _a = {} for w in ["word_embeddings", "position_embeddings"]: _a = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _a = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] _a = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _a = state_dict["""cls.predictions.decoder.weight"""] _a = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _a = state_dict[F"""cls.predictions.transform.dense.{w}"""] _a = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
19
1
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _a = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase ) class _UpperCAmelCase( lowerCamelCase ): def __init__( self , *__a , **__a) -> List[str]: '''simple docstring''' super().__init__(*__a , **__a) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def UpperCAmelCase ( self , __a=None) -> Dict: '''simple docstring''' _UpperCamelCase = {} if top_k is not None: _UpperCamelCase = top_k return {}, {}, postprocess_params def __call__( self , __a , **__a) -> Optional[Any]: '''simple docstring''' return super().__call__(__a , **__a) def UpperCAmelCase ( self , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = load_image(__a) _UpperCamelCase = self.image_processor(images=__a , return_tensors=self.framework) return model_inputs def UpperCAmelCase ( self , __a) -> str: '''simple docstring''' _UpperCamelCase = self.model(**__a) return model_outputs def UpperCAmelCase ( self , __a , __a=5) -> int: '''simple docstring''' if top_k > self.model.config.num_labels: _UpperCamelCase = self.model.config.num_labels if self.framework == "pt": _UpperCamelCase = model_outputs.logits.softmax(-1)[0] _UpperCamelCase , _UpperCamelCase = probs.topk(__a) elif self.framework == "tf": _UpperCamelCase = stable_softmax(model_outputs.logits , axis=-1)[0] _UpperCamelCase = tf.math.top_k(__a , k=__a) _UpperCamelCase , _UpperCamelCase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'''Unsupported framework: {self.framework}''') _UpperCamelCase = scores.tolist() _UpperCamelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__a , __a)]
19
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _a = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class _UpperCAmelCase: lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = 'gelu' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=False , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a=0.1 , __a=0.1 , __a=20 , __a=2 , __a=1 , __a=0 , ) -> int: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) _UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) _UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCamelCase = prepare_pegasus_inputs_dict(__a , __a , __a) return config, inputs_dict def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids''']) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a) _UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''') _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __a , decoder_attention_mask=__a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__a , ) _UpperCamelCase = model.decode(__a , __a) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''') def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids''']) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a) _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__a , decoder_position_ids=__a , ) _UpperCamelCase = model.decode(__a , __a , decoder_attention_mask=__a) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''') def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=None, __snake_case=None, ) -> Union[str, Any]: """simple docstring""" if attention_mask is None: _UpperCamelCase = np.not_equal(__snake_case, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _UpperCamelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = FlaxPegasusModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = self._prepare_for_class(__a , __a) _UpperCamelCase = model_class(__a) @jax.jit def encode_jitted(__a , __a=None , **__a): return model.encode(input_ids=__a , attention_mask=__a) with self.subTest('''JIT Enabled'''): _UpperCamelCase = encode_jitted(**__a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): _UpperCamelCase = encode_jitted(**__a).to_tuple() self.assertEqual(len(__a) , len(__a)) for jitted_output, output in zip(__a , __a): self.assertEqual(jitted_output.shape , output.shape) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = model_class(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask''']) _UpperCamelCase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(__a , __a , __a): return model.decode( decoder_input_ids=__a , decoder_attention_mask=__a , encoder_outputs=__a , ) with self.subTest('''JIT Enabled'''): _UpperCamelCase = decode_jitted(**__a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): _UpperCamelCase = decode_jitted(**__a).to_tuple() self.assertEqual(len(__a) , len(__a)) for jitted_output, output in zip(__a , __a): self.assertEqual(jitted_output.shape , output.shape) @slow def UpperCAmelCase ( self) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=__a) _UpperCamelCase = np.ones((1, 1)) _UpperCamelCase = model(__a) self.assertIsNotNone(__a) @slow def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''') _UpperCamelCase = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''') _UpperCamelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] _UpperCamelCase = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] _UpperCamelCase = tokenizer(__a , return_tensors='''np''' , truncation=__a , max_length=5_12 , padding=__a) _UpperCamelCase = model.generate(**__a , num_beams=2).sequences _UpperCamelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a) assert tgt_text == decoded
19
1
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports _a = """ import os """ _a = """ def foo(): import os return False """ _a = """ def foo(): def bar(): if True: import os return False return bar() """ _a = """ import os try: import bar except ImportError: raise ValueError() """ _a = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ _a = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ _a = """ import os try: import bar except ImportError as e: raise ValueError() """ _a = """ import os try: import bar except: raise ValueError() """ _a = """ import os try: import bar import baz except ImportError: raise ValueError() """ _a = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ _a = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''', __snake_case ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = os.path.join(__snake_case, '''test_file.py''' ) with open(__snake_case, '''w''' ) as _tmp_file: _tmp_file.write(__snake_case ) _UpperCamelCase = get_imports(__snake_case ) assert parsed_imports == ["os"]
19
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , __a=0 , ) -> Any: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope _UpperCamelCase = projection_dim def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) _UpperCamelCase = DPRConfig(projection_dim=self.projection_dim , **config.to_dict()) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = TFDPRContextEncoder(config=__a) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFDPRQuestionEncoder(config=__a) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = TFDPRReader(config=__a) _UpperCamelCase = model(__a , attention_mask=__a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,)) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowercase__ = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDPRModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__a) @slow def UpperCAmelCase ( self) -> str: '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRContextEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRContextEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRQuestionEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRReader.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''') _UpperCamelCase = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]]) # [CLS] hello, is my dog cute? [SEP] _UpperCamelCase = model(__a)[0] # embedding shape = (1, 768) # compare the actual values for a slice. _UpperCamelCase = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ]) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4))
19
1
"""simple docstring""" def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def lowerCamelCase__ ( ) -> None: """simple docstring""" print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(F'''| 0 | 0 | {nor_gate(0, 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0, 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1, 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1, 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
19
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x2_0000 and cp <= 0x2_A6DF) # or (cp >= 0x2_A700 and cp <= 0x2_B73F) # or (cp >= 0x2_B740 and cp <= 0x2_B81F) # or (cp >= 0x2_B820 and cp <= 0x2_CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2_F800 and cp <= 0x2_FA1F) # ): # return True return False def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" for char in word: _UpperCamelCase = ord(__snake_case ) if not _is_chinese_char(__snake_case ): return 0 return 1 def lowerCamelCase__ ( __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = set() for token in tokens: _UpperCamelCase = len(__snake_case ) > 1 and is_chinese(__snake_case ) if chinese_word: word_set.add(__snake_case ) _UpperCamelCase = list(__snake_case ) return word_list def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" if not chinese_word_set: return bert_tokens _UpperCamelCase = max([len(__snake_case ) for w in chinese_word_set] ) _UpperCamelCase = bert_tokens _UpperCamelCase , _UpperCamelCase = 0, len(__snake_case ) while start < end: _UpperCamelCase = True if is_chinese(bert_word[start] ): _UpperCamelCase = min(end - start, __snake_case ) for i in range(__snake_case, 1, -1 ): _UpperCamelCase = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _UpperCamelCase = '''##''' + bert_word[j] _UpperCamelCase = start + i _UpperCamelCase = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws _UpperCamelCase = [get_chinese_word(__snake_case ) for r in res] ltp_res.extend(__snake_case ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=__snake_case, truncation=__snake_case, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for input_ids, chinese_word in zip(__snake_case, __snake_case ): _UpperCamelCase = [] for id in input_ids: _UpperCamelCase = bert_tokenizer._convert_id_to_token(__snake_case ) input_tokens.append(__snake_case ) _UpperCamelCase = add_sub_symbol(__snake_case, __snake_case ) _UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__snake_case ): if token[:2] == "##": _UpperCamelCase = token[2:] # save chinese tokens' pos if len(__snake_case ) == 1 and _is_chinese_char(ord(__snake_case ) ): ref_id.append(__snake_case ) ref_ids.append(__snake_case ) assert len(__snake_case ) == len(__snake_case ) return ref_ids def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _UpperCamelCase = f.readlines() _UpperCamelCase = [line.strip() for line in data if len(__snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _UpperCamelCase = LTP(args.ltp ) # faster in GPU device _UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) _UpperCamelCase = prepare_ref(__snake_case, __snake_case, __snake_case ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _UpperCamelCase = [json.dumps(__snake_case ) + '''\n''' for ref in ref_ids] f.writelines(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) _a = parser.parse_args() main(args)
19
1
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = {"""vocab_file""": """vocab.json"""} _a = { """vocab_file""": { """mgp-str""": """https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json""", } } _a = {"""mgp-str""": 27} class _UpperCAmelCase( lowerCamelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __a , __a="[GO]" , __a="[GO]" , __a="[s]" , __a="[GO]" , **__a) -> Dict: '''simple docstring''' super().__init__( unk_token=__a , bos_token=__a , eos_token=__a , pad_token=__a , **__a , ) with open(__a , encoding='''utf-8''') as vocab_handle: _UpperCamelCase = json.load(__a) _UpperCamelCase = {v: k for k, v in self.vocab.items()} @property def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return len(self.vocab) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder) def UpperCAmelCase ( self , __a) -> List[str]: '''simple docstring''' _UpperCamelCase = [] for s in text: char_tokens.extend(__a) return char_tokens def UpperCAmelCase ( self , __a) -> Optional[Any]: '''simple docstring''' return self.vocab.get(__a , self.vocab.get(self.unk_token)) def UpperCAmelCase ( self , __a) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(__a) def UpperCAmelCase ( self , __a , __a = None) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__a): logger.error('''Vocabulary path ({}) should be a directory'''.format(__a)) return _UpperCamelCase = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) with open(__a , '''w''' , encoding='''utf-8''') as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__a , ensure_ascii=__a) + '''\n''') return (vocab_file,)
19
"""simple docstring""" import heapq def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" _UpperCamelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__snake_case, [-1 * len(__snake_case ), (key, value)] ) # chosen_vertices = set of chosen vertices _UpperCamelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _UpperCamelCase = heapq.heappop(__snake_case )[1][0] chosen_vertices.add(__snake_case ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _UpperCamelCase = elem[1][1].index(__snake_case ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__snake_case ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _a = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
19
1
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _a = False class _UpperCAmelCase( unittest.TestCase ): pass @nightly @require_torch_gpu class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> Dict: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa) pipe.to(__a) pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''') _UpperCamelCase = torch.manual_seed(0) _UpperCamelCase = pipe.dual_guided( prompt='''first prompt''' , image=__a , text_to_image_strength=0.75 , generator=__a , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__a) _UpperCamelCase = VersatileDiffusionPipeline.from_pretrained(__a , torch_dtype=torch.floataa) pipe.to(__a) pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = generator.manual_seed(0) _UpperCamelCase = pipe.dual_guided( prompt='''first prompt''' , image=__a , text_to_image_strength=0.75 , generator=__a , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass" def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa) pipe.to(__a) pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = '''cyberpunk 2077''' _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''') _UpperCamelCase = torch.manual_seed(0) _UpperCamelCase = pipe.dual_guided( prompt=__a , image=__a , text_to_image_strength=0.75 , generator=__a , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images _UpperCamelCase = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCamelCase = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 _UpperCamelCase = '''A painting of a squirrel eating a burger ''' _UpperCamelCase = torch.manual_seed(0) _UpperCamelCase = pipe.text_to_image( prompt=__a , generator=__a , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''').images _UpperCamelCase = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCamelCase = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 _UpperCamelCase = pipe.image_variation(__a , generator=__a , output_type='''numpy''').images _UpperCamelCase = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCamelCase = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
19
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _UpperCamelCase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj ) assert isinstance(_test_patching.os.path, _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" assert _test_patching.open is open _UpperCamelCase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, '''open''', __snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching, '''pandas.read_csv''', __snake_case ): pass def lowerCamelCase__ ( ) -> Dict: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, '''len''', __snake_case ) is None with patch_submodule(_test_patching, '''len''', __snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_start_and_stop_mock__''' _UpperCamelCase = patch_submodule(_test_patching, '''open''', __snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _UpperCamelCase = '''__test_patch_submodule_successive_join__''' _UpperCamelCase = '''__test_patch_submodule_successive_dirname__''' _UpperCamelCase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> str: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching, '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''', __snake_case ): pass with patch_submodule(_test_patching, '''os.__attribute_that_doesn_exist__''', __snake_case ): pass
19
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: _a = None _a = logging.get_logger(__name__) _a = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} _a = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } _a = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } _a = """▁""" class _UpperCAmelCase( lowerCamelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = AlbertTokenizer def __init__( self , __a=None , __a=None , __a=True , __a=True , __a=False , __a="[CLS]" , __a="[SEP]" , __a="<unk>" , __a="[SEP]" , __a="<pad>" , __a="[CLS]" , __a="[MASK]" , **__a , ) -> str: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _UpperCamelCase = ( AddedToken(__a , lstrip=__a , rstrip=__a , normalized=__a) if isinstance(__a , __a) else mask_token ) super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , **__a , ) _UpperCamelCase = do_lower_case _UpperCamelCase = remove_space _UpperCamelCase = keep_accents _UpperCamelCase = vocab_file _UpperCamelCase = False if not self.vocab_file else True def UpperCAmelCase ( self , __a , __a = None) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase ( self , __a , __a = None) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCAmelCase ( self , __a , __a = None) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''') if not os.path.isdir(__a): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCamelCase = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(__a): copyfile(self.vocab_file , __a) return (out_vocab_file,)
19
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = original_name.split('''.''' )[0] _UpperCamelCase = key.split('''.''' ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 2] ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 1] ) _UpperCamelCase = orig_block_num - offset _UpperCamelCase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''', F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = OrderedDict() _UpperCamelCase , _UpperCamelCase = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): _UpperCamelCase = key.replace('''network''', '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 _UpperCamelCase = key[: key.find('''proj''' )] _UpperCamelCase = key.replace(__snake_case, F'''patch_embeddings.{total_embed_found}.''' ) _UpperCamelCase = key.replace('''proj''', '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: _UpperCamelCase = '''poolformer.encoder.''' + key if "mlp.fc1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc1''', '''output.conv1''' ) if "mlp.fc2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc2''', '''output.conv2''' ) if "norm1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm1''', '''before_norm''' ) if "norm2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm2''', '''after_norm''' ) if "layer_scale_1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_1''', '''layer_scale_1''' ) if "layer_scale_2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_2''', '''layer_scale_2''' ) if "head" in key: _UpperCamelCase = key.replace('''head''', '''classifier''' ) _UpperCamelCase = value return new_state_dict def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase = Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return image @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = PoolFormerConfig() # set attributes based on model_name _UpperCamelCase = '''huggingface/label-files''' _UpperCamelCase = model_name[-3:] _UpperCamelCase = 10_00 _UpperCamelCase = '''imagenet-1k-id2label.json''' _UpperCamelCase = (1, 10_00) # set config attributes _UpperCamelCase = json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type='''dataset''' ), '''r''' ) ) _UpperCamelCase = {int(__snake_case ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} if size == "s12": _UpperCamelCase = [2, 2, 6, 2] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s24": _UpperCamelCase = [4, 4, 12, 4] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.9 elif size == "m36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 elif size == "m48": _UpperCamelCase = [8, 8, 24, 8] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) # Prepare image _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__snake_case, return_tensors='''pt''' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict _UpperCamelCase = torch.load(__snake_case, map_location=torch.device('''cpu''' ) ) # rename keys _UpperCamelCase = rename_keys(__snake_case ) # create HuggingFace model and load state dict _UpperCamelCase = PoolFormerForImageClassification(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # Define image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) _UpperCamelCase = image_processor(images=prepare_img(), return_tensors='''pt''' ).pixel_values # forward pass _UpperCamelCase = model(__snake_case ) _UpperCamelCase = outputs.logits # define expected logit slices for different models if size == "s12": _UpperCamelCase = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": _UpperCamelCase = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": _UpperCamelCase = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": _UpperCamelCase = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": _UpperCamelCase = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3], __snake_case, atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _a = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
19
1
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowerCamelCase__ ( __snake_case ) -> Dict: """simple docstring""" return EnvironmentCommand() def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" return EnvironmentCommand(args.accelerate_config_file ) class _UpperCAmelCase( lowerCamelCase ): @staticmethod def UpperCAmelCase ( __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = parser.add_parser('''env''') download_parser.set_defaults(func=__a) download_parser.add_argument( '''--accelerate-config_file''' , default=__a , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=__a) def __init__( self , __a , *__a) -> None: '''simple docstring''' _UpperCamelCase = accelerate_config_file def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = '''not installed''' if is_safetensors_available(): import safetensors _UpperCamelCase = safetensors.__version__ elif importlib.util.find_spec('''safetensors''') is not None: import safetensors _UpperCamelCase = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' _UpperCamelCase = '''not installed''' _UpperCamelCase = _UpperCamelCase = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file _UpperCamelCase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(__a): _UpperCamelCase = load_config_from_file(self._accelerate_config_file).to_dict() _UpperCamelCase = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()]) if isinstance(__a , __a) else F'''\t{accelerate_config}''' ) _UpperCamelCase = '''not installed''' _UpperCamelCase = '''NA''' if is_torch_available(): import torch _UpperCamelCase = torch.__version__ _UpperCamelCase = torch.cuda.is_available() _UpperCamelCase = '''not installed''' _UpperCamelCase = '''NA''' if is_tf_available(): import tensorflow as tf _UpperCamelCase = tf.__version__ try: # deprecated in v2.1 _UpperCamelCase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool _UpperCamelCase = bool(tf.config.list_physical_devices('''GPU''')) _UpperCamelCase = '''not installed''' _UpperCamelCase = '''not installed''' _UpperCamelCase = '''not installed''' _UpperCamelCase = '''NA''' if is_flax_available(): import flax import jax import jaxlib _UpperCamelCase = flax.__version__ _UpperCamelCase = jax.__version__ _UpperCamelCase = jaxlib.__version__ _UpperCamelCase = jax.lib.xla_bridge.get_backend().platform _UpperCamelCase = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F'''{safetensors_version}''', '''Accelerate version''': F'''{accelerate_version}''', '''Accelerate config''': F'''{accelerate_config_str}''', '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''', '''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''', '''Jax version''': F'''{jax_version}''', '''JaxLib version''': F'''{jaxlib_version}''', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''') print(self.format_dict(__a)) return info @staticmethod def UpperCAmelCase ( __a) -> Union[str, Any]: '''simple docstring''' return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()]) + "\n"
19
"""simple docstring""" import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class _UpperCAmelCase( lowerCamelCase ): lowercase__ = (DPMSolverSDEScheduler,) lowercase__ = 10 def UpperCAmelCase ( self , **__a) -> int: '''simple docstring''' _UpperCamelCase = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**__a) return config def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02]): self.check_over_configs(beta_start=__a , beta_end=__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a) def UpperCAmelCase ( self) -> str: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''') _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a , use_karras_sigmas=__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2
19
1
"""simple docstring""" import argparse import os import re import packaging.version _a = """examples/""" _a = { """examples""": (re.compile(R"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(R"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(R"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), R"""\1version=\"VERSION\","""), """doc""": (re.compile(R"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _a = { """init""": """src/diffusers/__init__.py""", """setup""": """setup.py""", } _a = """README.md""" def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Union[str, Any]: """simple docstring""" with open(__snake_case, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: _UpperCamelCase = f.read() _UpperCamelCase , _UpperCamelCase = REPLACE_PATTERNS[pattern] _UpperCamelCase = replace.replace('''VERSION''', __snake_case ) _UpperCamelCase = re_pattern.sub(__snake_case, __snake_case ) with open(__snake_case, '''w''', encoding='''utf-8''', newline='''\n''' ) as f: f.write(__snake_case ) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" for folder, directories, fnames in os.walk(__snake_case ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__snake_case, __snake_case ), __snake_case, pattern='''examples''' ) def lowerCamelCase__ ( __snake_case, __snake_case=False ) -> Dict: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__snake_case, __snake_case, __snake_case ) if not patch: update_version_in_examples(__snake_case ) def lowerCamelCase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = '''🤗 Transformers currently provides the following architectures''' _UpperCamelCase = '''1. Want to contribute a new model?''' with open(__snake_case, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: _UpperCamelCase = f.readlines() # Find the start of the list. _UpperCamelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _UpperCamelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): _UpperCamelCase = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''', '''https://huggingface.co/docs/diffusers/model_doc''', ) index += 1 with open(__snake_case, '''w''', encoding='''utf-8''', newline='''\n''' ) as f: f.writelines(__snake_case ) def lowerCamelCase__ ( ) -> str: """simple docstring""" with open(REPLACE_FILES['''init'''], '''r''' ) as f: _UpperCamelCase = f.read() _UpperCamelCase = REPLACE_PATTERNS['''init'''][0].search(__snake_case ).groups()[0] return packaging.version.parse(__snake_case ) def lowerCamelCase__ ( __snake_case=False ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: _UpperCamelCase = default_version.base_version elif patch: _UpperCamelCase = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: _UpperCamelCase = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. _UpperCamelCase = input(F'''Which version are you releasing? [{default_version}]''' ) if len(__snake_case ) == 0: _UpperCamelCase = default_version print(F'''Updating version to {version}.''' ) global_version_update(__snake_case, patch=__snake_case ) def lowerCamelCase__ ( ) -> Any: """simple docstring""" _UpperCamelCase = get_version() _UpperCamelCase = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' _UpperCamelCase = current_version.base_version # Check with the user we got that right. _UpperCamelCase = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(__snake_case ) == 0: _UpperCamelCase = dev_version print(F'''Updating version to {version}.''' ) global_version_update(__snake_case ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _a = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
19
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['pixel_values'] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BICUBIC , __a = True , __a = True , __a = 1 / 2_55 , __a = None , __a = True , __a = None , __a = None , **__a , ) -> None: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a , default_to_square=__a , param_name='''crop_size''') _UpperCamelCase = do_resize _UpperCamelCase = do_rescale _UpperCamelCase = do_normalize _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = rescale_factor _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BILINEAR , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "shortest_edge" in size: _UpperCamelCase = get_resize_output_image_size(__a , size=size['''shortest_edge'''] , default_to_square=__a) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''') return resize(__a , size=__a , resample=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''') return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a) -> np.ndarray: '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> BatchFeature: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(__a , param_name='''crop_size''' , default_to_square=__a) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(__a) if not is_batched(__a): _UpperCamelCase = [images] if not valid_images(__a): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(__a) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=__a , size=__a , resample=__a) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=__a , size=__a) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=__a , scale=__a) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=__a , mean=__a , std=__a) for image in images] _UpperCamelCase = [to_channel_dimension_format(__a , __a) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=__a , tensor_type=__a)
19
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = StableDiffusionInpaintPipeline lowercase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS lowercase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase__ = frozenset([] ) def UpperCAmelCase ( self) -> str: '''simple docstring''' torch.manual_seed(0) _UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__a , ) _UpperCamelCase = PNDMScheduler(skip_prk_steps=__a) torch.manual_seed(0) _UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) _UpperCamelCase = CLIPTextModel(__a) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') _UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase ( self , __a , __a=0) -> Optional[int]: '''simple docstring''' # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched _UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a)).to(__a) _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] _UpperCamelCase = Image.fromarray(np.uinta(__a)).convert('''RGB''').resize((64, 64)) _UpperCamelCase = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((64, 64)) if str(__a).startswith('''mps'''): _UpperCamelCase = torch.manual_seed(__a) else: _UpperCamelCase = torch.Generator(device=__a).manual_seed(__a) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = StableDiffusionInpaintPipeline(**__a) _UpperCamelCase = sd_pipe.to(__a) sd_pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_dummy_inputs(__a) _UpperCamelCase = sd_pipe(**__a).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase ( self) -> Any: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') _UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' _UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(__a , safety_checker=__a) pipe.to(__a) pipe.set_progress_bar_config(disable=__a) pipe.enable_attention_slicing() _UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' _UpperCamelCase = torch.manual_seed(0) _UpperCamelCase = pipe( prompt=__a , image=__a , mask_image=__a , generator=__a , output_type='''np''' , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image).max() < 9e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') _UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' _UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( __a , torch_dtype=torch.floataa , safety_checker=__a , ) pipe.to(__a) pipe.set_progress_bar_config(disable=__a) pipe.enable_attention_slicing() _UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' _UpperCamelCase = torch.manual_seed(0) _UpperCamelCase = pipe( prompt=__a , image=__a , mask_image=__a , generator=__a , output_type='''np''' , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image).max() < 5e-1 def UpperCAmelCase ( self) -> str: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') _UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' _UpperCamelCase = PNDMScheduler.from_pretrained(__a , subfolder='''scheduler''') _UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( __a , safety_checker=__a , scheduler=__a , torch_dtype=torch.floataa , ) pipe.to(__a) pipe.set_progress_bar_config(disable=__a) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() _UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' _UpperCamelCase = torch.manual_seed(0) _UpperCamelCase = pipe( prompt=__a , image=__a , mask_image=__a , generator=__a , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
19
"""simple docstring""" # Imports import numpy as np class _UpperCAmelCase: def __init__( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) def UpperCAmelCase ( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' if red is not None: _UpperCamelCase = red if green is not None: _UpperCamelCase = green if blue is not None: _UpperCamelCase = blue if red_edge is not None: _UpperCamelCase = red_edge if nir is not None: _UpperCamelCase = nir return True def UpperCAmelCase ( self , __a="" , __a=None , __a=None , __a=None , __a=None , __a=None) -> List[str]: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) _UpperCamelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''') return False def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self) -> Any: '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self , __a=0.08 , __a=1.22 , __a=0.03) -> Optional[Any]: '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir / self.green) - 1 def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.red - self.blue) / self.red def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir - self.green def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def UpperCAmelCase ( self , __a=0.16) -> Optional[Any]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self , __a=0.5) -> Dict: '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self , __a=None , __a=None) -> Any: '''simple docstring''' return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self) -> Any: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> str: '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) _UpperCamelCase = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Any: '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
19
1
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _a = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''', __snake_case, ) if isinstance(__snake_case, torch.Tensor ): return image elif isinstance(__snake_case, PIL.Image.Image ): _UpperCamelCase = [image] if isinstance(image[0], PIL.Image.Image ): _UpperCamelCase , _UpperCamelCase = image[0].size _UpperCamelCase , _UpperCamelCase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 _UpperCamelCase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] _UpperCamelCase = np.concatenate(__snake_case, axis=0 ) _UpperCamelCase = np.array(__snake_case ).astype(np.floataa ) / 255.0 _UpperCamelCase = image.transpose(0, 3, 1, 2 ) _UpperCamelCase = 2.0 * image - 1.0 _UpperCamelCase = torch.from_numpy(__snake_case ) elif isinstance(image[0], torch.Tensor ): _UpperCamelCase = torch.cat(__snake_case, dim=0 ) return image def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" if isinstance(__snake_case, torch.Tensor ): return mask elif isinstance(__snake_case, PIL.Image.Image ): _UpperCamelCase = [mask] if isinstance(mask[0], PIL.Image.Image ): _UpperCamelCase , _UpperCamelCase = mask[0].size _UpperCamelCase , _UpperCamelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _UpperCamelCase = [np.array(m.convert('''L''' ).resize((w, h), resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] _UpperCamelCase = np.concatenate(__snake_case, axis=0 ) _UpperCamelCase = mask.astype(np.floataa ) / 255.0 _UpperCamelCase = 0 _UpperCamelCase = 1 _UpperCamelCase = torch.from_numpy(__snake_case ) elif isinstance(mask[0], torch.Tensor ): _UpperCamelCase = torch.cat(__snake_case, dim=0 ) return mask class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 42 lowercase__ = 42 def __init__( self , __a , __a) -> List[str]: '''simple docstring''' super().__init__() self.register_modules(unet=__a , scheduler=__a) @torch.no_grad() def __call__( self , __a , __a , __a = 2_50 , __a = 0.0 , __a = 10 , __a = 10 , __a = None , __a = "pil" , __a = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' _UpperCamelCase = image _UpperCamelCase = _preprocess_image(__a) _UpperCamelCase = original_image.to(device=self.device , dtype=self.unet.dtype) _UpperCamelCase = _preprocess_mask(__a) _UpperCamelCase = mask_image.to(device=self.device , dtype=self.unet.dtype) _UpperCamelCase = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__a , __a) and len(__a) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(__a)}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''') _UpperCamelCase = original_image.shape _UpperCamelCase = randn_tensor(__a , generator=__a , device=self.device , dtype=self.unet.dtype) # set step values self.scheduler.set_timesteps(__a , __a , __a , self.device) _UpperCamelCase = eta _UpperCamelCase = self.scheduler.timesteps[0] + 1 _UpperCamelCase = generator[0] if isinstance(__a , __a) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): if t < t_last: # predict the noise residual _UpperCamelCase = self.unet(__a , __a).sample # compute previous image: x_t -> x_t-1 _UpperCamelCase = self.scheduler.step(__a , __a , __a , __a , __a , __a).prev_sample else: # compute the reverse: x_t-1 -> x_t _UpperCamelCase = self.scheduler.undo_step(__a , __a , __a) _UpperCamelCase = t _UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1) _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(__a) if not return_dict: return (image,) return ImagePipelineOutput(images=__a)
19
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=64 , __a=2 , __a=3 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a=[1, 16, 4, 4] , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _UpperCamelCase = (self.image_size // 32) ** 2 _UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__a , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.type_sequence_label_size _UpperCamelCase = ViTHybridForImageClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowercase__ = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''') def UpperCAmelCase ( self) -> Dict: '''simple docstring''' pass def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear)) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _UpperCamelCase = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = ViTHybridModel.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase( unittest.TestCase ): @cached_property def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( __a) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''').to(__a) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__a) # verify the logits _UpperCamelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor([-1.9090, -0.4993, -0.2389]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4)) @slow @require_accelerate def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''') _UpperCamelCase = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''') _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''') _UpperCamelCase = model(**__a) _UpperCamelCase = outputs.logits # model predicts one of the 1000 ImageNet classes _UpperCamelCase = logits.argmax(-1).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''')
19
1
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="""%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s""", datefmt="""%Y-%m-%d %H:%M:%S""", level=os.environ.get("""LOGLEVEL""", """INFO""").upper(), stream=sys.stdout, ) _a = logging.getLogger(__name__) _a = {"""facebook/bart-base""": BartForConditionalGeneration} _a = {"""facebook/bart-base""": BartTokenizer} def lowerCamelCase__ ( ) -> List[Any]: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' ) parser.add_argument( '''--validation_file''', type=__snake_case, default=__snake_case, help='''A csv or a json file containing the validation data.''' ) parser.add_argument( '''--max_length''', type=__snake_case, default=5, help='''The maximum total input sequence length after tokenization.''', ) parser.add_argument( '''--num_beams''', type=__snake_case, default=__snake_case, help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ), ) parser.add_argument( '''--model_name_or_path''', type=__snake_case, help='''Path to pretrained model or model identifier from huggingface.co/models.''', required=__snake_case, ) parser.add_argument( '''--config_name''', type=__snake_case, default=__snake_case, help='''Pretrained config name or path if not the same as model_name''', ) parser.add_argument( '''--device''', type=__snake_case, default='''cpu''', help='''Device where the model will be run''', ) parser.add_argument('''--output_file_path''', type=__snake_case, default=__snake_case, help='''Where to store the final ONNX file.''' ) _UpperCamelCase = parser.parse_args() return args def lowerCamelCase__ ( __snake_case, __snake_case="cpu" ) -> int: """simple docstring""" _UpperCamelCase = model_dict[model_name].from_pretrained(__snake_case ).to(__snake_case ) _UpperCamelCase = tokenizer_dict[model_name].from_pretrained(__snake_case ) if model_name in ["facebook/bart-base"]: _UpperCamelCase = 0 _UpperCamelCase = None _UpperCamelCase = 0 return huggingface_model, tokenizer def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> Optional[Any]: """simple docstring""" model.eval() _UpperCamelCase = None _UpperCamelCase = torch.jit.script(BARTBeamSearchGenerator(__snake_case ) ) with torch.no_grad(): _UpperCamelCase = '''My friends are cool but they eat too many carbs.''' _UpperCamelCase = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=10_24, return_tensors='''pt''' ).to(model.device ) _UpperCamelCase = model.generate( inputs['''input_ids'''], attention_mask=inputs['''attention_mask'''], num_beams=__snake_case, max_length=__snake_case, early_stopping=__snake_case, decoder_start_token_id=model.config.decoder_start_token_id, ) torch.onnx.export( __snake_case, ( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ), __snake_case, opset_version=14, input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''], output_names=['''output_ids'''], dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, }, example_outputs=__snake_case, ) logger.info('''Model exported to {}'''.format(__snake_case ) ) _UpperCamelCase = remove_dup_initializers(os.path.abspath(__snake_case ) ) logger.info('''Deduplicated and optimized model written to {}'''.format(__snake_case ) ) _UpperCamelCase = onnxruntime.InferenceSession(__snake_case ) _UpperCamelCase = ort_sess.run( __snake_case, { '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(__snake_case ), '''max_length''': np.array(__snake_case ), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ), }, ) np.testing.assert_allclose(summary_ids.cpu().numpy(), ort_out[0], rtol=1e-3, atol=1e-3 ) logger.info('''Model outputs from torch and ONNX Runtime are similar.''' ) logger.info('''Success.''' ) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = parse_args() _UpperCamelCase = 5 _UpperCamelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCamelCase = torch.device(args.device ) _UpperCamelCase , _UpperCamelCase = load_model_tokenizer(args.model_name_or_path, __snake_case ) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' ) model.to(__snake_case ) if args.max_length: _UpperCamelCase = args.max_length if args.num_beams: _UpperCamelCase = args.num_beams if args.output_file_path: _UpperCamelCase = args.output_file_path else: _UpperCamelCase = '''BART.onnx''' logger.info('''Exporting model to ONNX''' ) export_and_validate_model(__snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) if __name__ == "__main__": main()
19
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['vqvae'] def __init__( self , __a , __a , __a , __a , ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules(unet=__a , scheduler=__a , mel=__a , vqvae=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' return 50 if isinstance(self.scheduler , __a) else 10_00 @torch.no_grad() def __call__( self , __a = 1 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = 0 , __a = None , __a = None , __a=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' _UpperCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(__a) _UpperCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: _UpperCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _UpperCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__a , device=self.device , ) _UpperCamelCase = noise _UpperCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__a , __a) _UpperCamelCase = self.mel.audio_slice_to_image(__a) _UpperCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''').reshape( (input_image.height, input_image.width)) _UpperCamelCase = (input_image / 2_55) * 2 - 1 _UpperCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: _UpperCamelCase = self.vqvae.encode(torch.unsqueeze(__a , 0)).latent_dist.sample( generator=__a)[0] _UpperCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _UpperCamelCase = self.scheduler.add_noise(__a , __a , self.scheduler.timesteps[start_step - 1]) _UpperCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _UpperCamelCase = int(mask_start_secs * pixels_per_second) _UpperCamelCase = int(mask_end_secs * pixels_per_second) _UpperCamelCase = self.scheduler.add_noise(__a , __a , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , __a): _UpperCamelCase = self.unet(__a , __a , __a)['''sample'''] else: _UpperCamelCase = self.unet(__a , __a)['''sample'''] if isinstance(self.scheduler , __a): _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , eta=__a , generator=__a , )['''prev_sample'''] else: _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , generator=__a , )['''prev_sample'''] if mask is not None: if mask_start > 0: _UpperCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _UpperCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _UpperCamelCase = 1 / self.vqvae.config.scaling_factor * images _UpperCamelCase = self.vqvae.decode(__a)['''sample'''] _UpperCamelCase = (images / 2 + 0.5).clamp(0 , 1) _UpperCamelCase = images.cpu().permute(0 , 2 , 3 , 1).numpy() _UpperCamelCase = (images * 2_55).round().astype('''uint8''') _UpperCamelCase = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__a , mode='''RGB''').convert('''L''') for _ in images)) _UpperCamelCase = [self.mel.image_to_audio(__a) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__a)[:, np.newaxis, :]) , **ImagePipelineOutput(__a)) @torch.no_grad() def UpperCAmelCase ( self , __a , __a = 50) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , __a) self.scheduler.set_timesteps(__a) _UpperCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''').reshape((1, image.height, image.width)) for image in images]) _UpperCamelCase = (sample / 2_55) * 2 - 1 _UpperCamelCase = torch.Tensor(__a).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): _UpperCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _UpperCamelCase = self.scheduler.alphas_cumprod[t] _UpperCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _UpperCamelCase = 1 - alpha_prod_t _UpperCamelCase = self.unet(__a , __a)['''sample'''] _UpperCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _UpperCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _UpperCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase ( __a , __a , __a) -> torch.Tensor: '''simple docstring''' _UpperCamelCase = acos(torch.dot(torch.flatten(__a) , torch.flatten(__a)) / torch.norm(__a) / torch.norm(__a)) return sin((1 - alpha) * theta) * xa / sin(__a) + sin(alpha * theta) * xa / sin(__a)
19
1
"""simple docstring""" import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.14.0""", """To fix: pip install -r examples/pytorch/audio-classification/requirements.txt""") def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case = 1_60_00 ) -> int: """simple docstring""" _UpperCamelCase = int(round(sample_rate * max_length ) ) if len(__snake_case ) <= sample_length: return wav _UpperCamelCase = randint(0, len(__snake_case ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class _UpperCAmelCase: lowercase__ = field(default=lowerCamelCase , metadata={'help': 'Name of a dataset from the datasets package'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'A file containing the training audio paths and labels.'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'A file containing the validation audio paths and labels.'} ) lowercase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowercase__ = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowercase__ = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) lowercase__ = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''} ) lowercase__ = field( default=lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowercase__ = field( default=lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowercase__ = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class _UpperCAmelCase: lowercase__ = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'} ) lowercase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Name or path of preprocessor config.'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'} ) lowercase__ = field( default=lowerCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , __a , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''') def lowerCamelCase__ ( ) -> List[Any]: """simple docstring""" _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''', __snake_case, __snake_case ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCamelCase = training_args.get_process_log_level() logger.setLevel(__snake_case ) transformers.utils.logging.set_verbosity(__snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to train from scratch.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset and prepare it for the audio classification task. _UpperCamelCase = DatasetDict() _UpperCamelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCamelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=data_args.eval_split_name, use_auth_token=True if model_args.use_auth_token else None, ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' F'''{", ".join(raw_datasets["train"].column_names )}.''' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' '''Make sure to set `--label_column_name` to the correct text column - one of ''' F'''{", ".join(raw_datasets["train"].column_names )}.''' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _UpperCamelCase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path, return_attention_mask=model_args.attention_mask, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _UpperCamelCase = raw_datasets.cast_column( data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _UpperCamelCase = feature_extractor.model_input_names[0] def train_transforms(__snake_case ): _UpperCamelCase = [] for audio in batch[data_args.audio_column_name]: _UpperCamelCase = random_subsample( audio['''array'''], max_length=data_args.max_length_seconds, sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(__snake_case ) _UpperCamelCase = feature_extractor(__snake_case, sampling_rate=feature_extractor.sampling_rate ) _UpperCamelCase = {model_input_name: inputs.get(__snake_case )} _UpperCamelCase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(__snake_case ): _UpperCamelCase = [audio['''array'''] for audio in batch[data_args.audio_column_name]] _UpperCamelCase = feature_extractor(__snake_case, sampling_rate=feature_extractor.sampling_rate ) _UpperCamelCase = {model_input_name: inputs.get(__snake_case )} _UpperCamelCase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCamelCase = raw_datasets['''train'''].features[data_args.label_column_name].names _UpperCamelCase , _UpperCamelCase = {}, {} for i, label in enumerate(__snake_case ): _UpperCamelCase = str(__snake_case ) _UpperCamelCase = label # Load the accuracy metric from the datasets package _UpperCamelCase = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(__snake_case ): _UpperCamelCase = np.argmax(eval_pred.predictions, axis=1 ) return metric.compute(predictions=__snake_case, references=eval_pred.label_ids ) _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(__snake_case ), labelaid=__snake_case, idalabel=__snake_case, finetuning_task='''audio-classification''', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCamelCase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=__snake_case, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _UpperCamelCase = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(__snake_case, output_all_columns=__snake_case ) if training_args.do_eval: if data_args.max_eval_samples is not None: _UpperCamelCase = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(__snake_case, output_all_columns=__snake_case ) # Initialize our trainer _UpperCamelCase = Trainer( model=__snake_case, args=__snake_case, train_dataset=raw_datasets['''train'''] if training_args.do_train else None, eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None, compute_metrics=__snake_case, tokenizer=__snake_case, ) # Training if training_args.do_train: _UpperCamelCase = None if training_args.resume_from_checkpoint is not None: _UpperCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCamelCase = last_checkpoint _UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() trainer.log_metrics('''train''', train_result.metrics ) trainer.save_metrics('''train''', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCamelCase = trainer.evaluate() trainer.log_metrics('''eval''', __snake_case ) trainer.save_metrics('''eval''', __snake_case ) # Write model card and (optionally) push to hub _UpperCamelCase = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**__snake_case ) else: trainer.create_model_card(**__snake_case ) if __name__ == "__main__": main()
19
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'detr' lowercase__ = ['past_key_values'] lowercase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __a=True , __a=None , __a=3 , __a=1_00 , __a=6 , __a=20_48 , __a=8 , __a=6 , __a=20_48 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=2_56 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=1 , __a=1 , __a=5 , __a=2 , __a=0.1 , **__a , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__a , __a): _UpperCamelCase = backbone_config.get('''model_type''') _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(__a) # set timm attributes to None _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None, None, None _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = encoder_layers _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase ( cls , __a , **__a) -> int: '''simple docstring''' return cls(backbone_config=__a , **__a) def UpperCAmelCase ( self) -> Dict[str, any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output class _UpperCAmelCase( lowerCamelCase ): lowercase__ = version.parse('1.11' ) @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def UpperCAmelCase ( self) -> float: '''simple docstring''' return 1e-5 @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return 12
19
1
"""simple docstring""" from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _a = 1.054571817E-34 # unit of ℏ : J * s _a = 3E8 # unit of c : m * s^-1 def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> dict[str, float]: """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if force < 0: raise ValueError('''Magnitude of force can not be negative''' ) if distance < 0: raise ValueError('''Distance can not be negative''' ) if area < 0: raise ValueError('''Area can not be negative''' ) if force == 0: _UpperCamelCase = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_40 * (distance) ** 4 ) return {"force": force} elif area == 0: _UpperCamelCase = (2_40 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _UpperCamelCase = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_40 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('''One and only one argument must be 0''' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
19
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'wavlm' def __init__( self , __a=32 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.1 , __a=0.02 , __a=1e-5 , __a="group" , __a="gelu" , __a=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __a=(5, 2, 2, 2, 2, 2, 2) , __a=(10, 3, 3, 3, 3, 2, 2) , __a=False , __a=1_28 , __a=16 , __a=3_20 , __a=8_00 , __a=False , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=3_20 , __a=2 , __a=0.1 , __a=1_00 , __a=2_56 , __a=2_56 , __a=0.1 , __a="mean" , __a=False , __a=False , __a=2_56 , __a=(5_12, 5_12, 5_12, 5_12, 15_00) , __a=(5, 3, 3, 1, 1) , __a=(1, 2, 3, 1, 1) , __a=5_12 , __a=80 , __a=0 , __a=1 , __a=2 , __a=False , __a=3 , __a=2 , __a=3 , __a=None , **__a , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a) _UpperCamelCase = hidden_size _UpperCamelCase = feat_extract_norm _UpperCamelCase = feat_extract_activation _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = conv_bias _UpperCamelCase = num_buckets _UpperCamelCase = max_bucket_distance _UpperCamelCase = num_conv_pos_embeddings _UpperCamelCase = num_conv_pos_embedding_groups _UpperCamelCase = len(self.conv_dim) _UpperCamelCase = num_hidden_layers _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = feat_proj_dropout _UpperCamelCase = final_dropout _UpperCamelCase = layerdrop _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = num_ctc_classes _UpperCamelCase = vocab_size _UpperCamelCase = do_stable_layer_norm _UpperCamelCase = use_weighted_layer_sum _UpperCamelCase = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCamelCase = apply_spec_augment _UpperCamelCase = mask_time_prob _UpperCamelCase = mask_time_length _UpperCamelCase = mask_time_min_masks _UpperCamelCase = mask_feature_prob _UpperCamelCase = mask_feature_length # parameters for pretraining with codevector quantized representations _UpperCamelCase = num_codevectors_per_group _UpperCamelCase = num_codevector_groups _UpperCamelCase = contrastive_logits_temperature _UpperCamelCase = num_negatives _UpperCamelCase = codevector_dim _UpperCamelCase = proj_codevector_dim _UpperCamelCase = diversity_loss_weight # ctc loss _UpperCamelCase = ctc_loss_reduction _UpperCamelCase = ctc_zero_infinity # adapter _UpperCamelCase = add_adapter _UpperCamelCase = adapter_kernel_size _UpperCamelCase = adapter_stride _UpperCamelCase = num_adapter_layers _UpperCamelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = xvector_output_dim @property def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
19
1
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case, '''handle_key''', [] ) handle += [key] setattr(__snake_case, '''handle_key''', __snake_case ) return func return decorator def lowerCamelCase__ ( *__snake_case ) -> Optional[int]: """simple docstring""" def decorator(__snake_case ): _UpperCamelCase = getattr(__snake_case, '''handle_key''', [] ) handle += keys setattr(__snake_case, '''handle_key''', __snake_case ) return func return decorator class _UpperCAmelCase( lowerCamelCase ): def __new__( cls , __a , __a , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = super().__new__(cls , __a , __a , __a) if not hasattr(__a , '''key_handler'''): setattr(__a , '''key_handler''' , {}) setattr(__a , '''handle_input''' , KeyHandler.handle_input) for value in attrs.values(): _UpperCamelCase = getattr(__a , '''handle_key''' , []) for key in handled_keys: _UpperCamelCase = value return new_cls @staticmethod def UpperCAmelCase ( cls) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = get_character() if char != KEYMAP["undefined"]: _UpperCamelCase = ord(__a) _UpperCamelCase = cls.key_handler.get(__a) if handler: _UpperCamelCase = char return handler(cls) else: return None def lowerCamelCase__ ( cls ) -> str: """simple docstring""" return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
19
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _a = """bart""" _a = True @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> Dict: """simple docstring""" if LOAD_DENSE_INDEX: _UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _UpperCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _UpperCamelCase = qar_model.eval() else: _UpperCamelCase , _UpperCamelCase = (None, None) if MODEL_TYPE == "bart": _UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _UpperCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _UpperCamelCase = sas_model.eval() else: _UpperCamelCase , _UpperCamelCase = make_qa_sas_model( model_name='''t5-small''', from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''', device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: _UpperCamelCase = faiss.StandardGpuResources() _UpperCamelCase = datasets.load_dataset(path='''wiki_snippets''', name='''wiki40b_en_100_0''' )['''train'''] _UpperCamelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''', dtype='''float32''', mode='''r''', shape=(wikiaab_passages.num_rows, 1_28), ) _UpperCamelCase = faiss.IndexFlatIP(1_28 ) _UpperCamelCase = faiss.index_cpu_to_gpu(__snake_case, 1, __snake_case ) wikiaab_gpu_index_flat.add(__snake_case ) # TODO fix for larger GPU else: _UpperCamelCase , _UpperCamelCase = (None, None) _UpperCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = datasets.load_dataset('''eli5''', name='''LFQA_reddit''' ) _UpperCamelCase = elia['''train_eli5'''] _UpperCamelCase = np.memmap( '''eli5_questions_reps.dat''', dtype='''float32''', mode='''r''', shape=(elia_train.num_rows, 1_28) ) _UpperCamelCase = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(__snake_case ) return (elia_train, eli5_train_q_index) _a , _a , _a = load_indexes() _a , _a , _a , _a = load_models() _a , _a = load_train_data() def lowerCamelCase__ ( __snake_case, __snake_case=10 ) -> List[Any]: """simple docstring""" _UpperCamelCase = embed_questions_for_retrieval([question], __snake_case, __snake_case ) _UpperCamelCase , _UpperCamelCase = eli5_train_q_index.search(__snake_case, __snake_case ) _UpperCamelCase = [elia_train[int(__snake_case )] for i in I[0]] return nn_examples def lowerCamelCase__ ( __snake_case, __snake_case="wiki40b", __snake_case="dense", __snake_case=10 ) -> List[str]: """simple docstring""" if source == "none": _UpperCamelCase , _UpperCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _UpperCamelCase , _UpperCamelCase = query_qa_dense_index( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) else: _UpperCamelCase , _UpperCamelCase = query_es_index( __snake_case, __snake_case, index_name='''english_wiki40b_snippets_100w''', n_results=__snake_case, ) _UpperCamelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _UpperCamelCase = '''question: {} context: {}'''.format(__snake_case, __snake_case ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __snake_case : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __snake_case : None), } ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=64, __snake_case=2_56, __snake_case=False, __snake_case=2, __snake_case=0.95, __snake_case=0.8 ) -> Dict: """simple docstring""" with torch.no_grad(): _UpperCamelCase = qa_sas_generate( __snake_case, __snake_case, __snake_case, num_answers=1, num_beams=__snake_case, min_len=__snake_case, max_len=__snake_case, do_sample=__snake_case, temp=__snake_case, top_p=__snake_case, top_k=__snake_case, max_input_length=10_24, device='''cuda:0''', )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar _a = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" _a = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _a = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) _a = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] _a = st.sidebar.checkbox("""Demo options""") if demo_options: _a = st.sidebar.selectbox( """""", action_list, index=3, ) _a = action_list.index(action_st) _a = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) _a = show_type == """Show full text of passages""" else: _a = 3 _a = True _a = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: _a = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) _a = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) _a = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: _a = """wiki40b""" _a = """dense""" _a = """beam""" _a = 2 _a = 64 _a = 256 _a = None _a = None _a = st.sidebar.checkbox("""Generation options""") if generate_options: _a = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) _a = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) _a = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) _a = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": _a = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _a = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _a = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _a = None # start main text _a = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] _a = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": _a = st.text_input("""Enter your question here:""", """""") else: _a = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": _a , _a = make_support(question, source=wiki_source, method="""dense""", n_results=10) _a , _a = make_support(question, source=wiki_source, method="""sparse""", n_results=10) _a = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _a = support_list[:10] _a = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: _a , _a = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _a , _a = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): _a = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) _a = res[1].strip() if sec_titles == "": _a = """[{}]({})""".format(res[0], wiki_url) else: _a = sec_titles.split(""" & """) _a = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: _a = find_nearest_training(question) _a = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) _a = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) _a = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
19
1
"""simple docstring""" import numpy as np _a = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class _UpperCAmelCase: def __init__( self) -> None: '''simple docstring''' _UpperCamelCase = np.array(__a) def UpperCAmelCase ( self , __a) -> np.ndarray: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = np.where(letter == self.SQUARE) _UpperCamelCase = np.concatenate([indexa + 1, indexa + 1]) return indexes def UpperCAmelCase ( self , __a , __a) -> str: '''simple docstring''' _UpperCamelCase = self.SQUARE[indexa - 1, indexa - 1] return letter def UpperCAmelCase ( self , __a) -> str: '''simple docstring''' _UpperCamelCase = message.lower() _UpperCamelCase = message.replace(''' ''' , '''''') _UpperCamelCase = message.replace('''j''' , '''i''') _UpperCamelCase = np.empty((2, len(__a))) for letter_index in range(len(__a)): _UpperCamelCase = self.letter_to_numbers(message[letter_index]) _UpperCamelCase = numbers[0] _UpperCamelCase = numbers[1] _UpperCamelCase = first_step.reshape(2 * len(__a)) _UpperCamelCase = '''''' for numbers_index in range(len(__a)): _UpperCamelCase = int(second_step[numbers_index * 2]) _UpperCamelCase = int(second_step[(numbers_index * 2) + 1]) _UpperCamelCase = self.numbers_to_letter(__a , __a) _UpperCamelCase = encoded_message + letter return encoded_message def UpperCAmelCase ( self , __a) -> str: '''simple docstring''' _UpperCamelCase = message.lower() message.replace(''' ''' , '''''') _UpperCamelCase = np.empty(2 * len(__a)) for letter_index in range(len(__a)): _UpperCamelCase = self.letter_to_numbers(message[letter_index]) _UpperCamelCase = numbers[0] _UpperCamelCase = numbers[1] _UpperCamelCase = first_step.reshape((2, len(__a))) _UpperCamelCase = '''''' for numbers_index in range(len(__a)): _UpperCamelCase = int(second_step[0, numbers_index]) _UpperCamelCase = int(second_step[1, numbers_index]) _UpperCamelCase = self.numbers_to_letter(__a , __a) _UpperCamelCase = decoded_message + letter return decoded_message
19
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } _a = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> Tuple: """simple docstring""" for attribute in key.split('''.''' ): _UpperCamelCase = getattr(__snake_case, __snake_case ) if weight_type is not None: _UpperCamelCase = getattr(__snake_case, __snake_case ).shape else: _UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase = value elif weight_type == "weight_g": _UpperCamelCase = value elif weight_type == "weight_v": _UpperCamelCase = value elif weight_type == "bias": _UpperCamelCase = value else: _UpperCamelCase = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = fairseq_model.state_dict() _UpperCamelCase = hf_model.feature_extractor _UpperCamelCase = hf_model.adapter for name, value in fairseq_dict.items(): _UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __snake_case, __snake_case, __snake_case, __snake_case, hf_model.config.feat_extract_norm == '''group''', ) _UpperCamelCase = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(__snake_case, __snake_case, __snake_case, __snake_case ) _UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCamelCase = True if "*" in mapped_key: _UpperCamelCase = name.split(__snake_case )[0].split('''.''' )[-2] _UpperCamelCase = mapped_key.replace('''*''', __snake_case ) if "weight_g" in name: _UpperCamelCase = '''weight_g''' elif "weight_v" in name: _UpperCamelCase = '''weight_v''' elif "bias" in name: _UpperCamelCase = '''bias''' elif "weight" in name: _UpperCamelCase = '''weight''' else: _UpperCamelCase = None set_recursively(__snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = full_name.split('''conv_layers.''' )[-1] _UpperCamelCase = name.split('''.''' ) _UpperCamelCase = int(items[0] ) _UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = full_name.split('''adaptor.''' )[-1] _UpperCamelCase = name.split('''.''' ) if items[1].isdigit(): _UpperCamelCase = int(items[1] ) else: _UpperCamelCase = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' _UpperCamelCase = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(__snake_case, __snake_case ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase , _UpperCamelCase = emb.weight.shape _UpperCamelCase = nn.Linear(__snake_case, __snake_case, bias=__snake_case ) _UpperCamelCase = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = WavaVecaConfig.from_pretrained( __snake_case, add_adapter=__snake_case, adapter_stride=__snake_case, adapter_kernel_size=__snake_case, use_auth_token=__snake_case, output_hidden_size=__snake_case, ) _UpperCamelCase = MBartConfig.from_pretrained(__snake_case ) # load model _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, }, ) _UpperCamelCase = model[0].eval() # load feature extractor _UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(__snake_case, use_auth_token=__snake_case ) # set weights for wav2vec2 encoder _UpperCamelCase = WavaVecaModel(__snake_case ) recursively_load_weights_wavaveca(model.encoder, __snake_case ) # load decoder weights _UpperCamelCase = MBartForCausalLM(__snake_case ) _UpperCamelCase , _UpperCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=__snake_case ) logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) _UpperCamelCase = SpeechEncoderDecoderModel(encoder=__snake_case, decoder=__snake_case ) _UpperCamelCase = False _UpperCamelCase = MBartaaTokenizer(__snake_case ) tokenizer.save_pretrained(__snake_case ) _UpperCamelCase = hf_wavavec.config.to_dict() _UpperCamelCase = tokenizer.pad_token_id _UpperCamelCase = tokenizer.bos_token_id _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = '''mbart50''' _UpperCamelCase = '''wav2vec2''' _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = 25_00_04 _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = SpeechEncoderDecoderConfig.from_dict(__snake_case ) hf_wavavec.save_pretrained(__snake_case ) feature_extractor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1024, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=25_0004, type=int, help="""`decoder_start_token_id` of model config""") _a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
19
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'instructblip_vision_model' def __init__( self , __a=14_08 , __a=61_44 , __a=39 , __a=16 , __a=2_24 , __a=14 , __a="gelu" , __a=1e-6 , __a=0.0 , __a=1e-10 , __a=True , **__a , ) -> int: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = hidden_size _UpperCamelCase = intermediate_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = patch_size _UpperCamelCase = image_size _UpperCamelCase = initializer_range _UpperCamelCase = attention_dropout _UpperCamelCase = layer_norm_eps _UpperCamelCase = hidden_act _UpperCamelCase = qkv_bias @classmethod def UpperCAmelCase ( cls , __a , **__a) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__a) _UpperCamelCase , _UpperCamelCase = cls.get_config_dict(__a , **__a) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''') == "instructblip": _UpperCamelCase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(__a , **__a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'instructblip_qformer' def __init__( self , __a=3_05_22 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=0.02 , __a=1e-12 , __a=0 , __a="absolute" , __a=2 , __a=14_08 , **__a , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=__a , **__a) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = cross_attention_frequency _UpperCamelCase = encoder_hidden_size @classmethod def UpperCAmelCase ( cls , __a , **__a) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__a) _UpperCamelCase , _UpperCamelCase = cls.get_config_dict(__a , **__a) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''') == "instructblip": _UpperCamelCase = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(__a , **__a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'instructblip' lowercase__ = True def __init__( self , __a=None , __a=None , __a=None , __a=32 , **__a) -> List[str]: '''simple docstring''' super().__init__(**__a) if vision_config is None: _UpperCamelCase = {} logger.info('''vision_config is None. initializing the InstructBlipVisionConfig with default values.''') if qformer_config is None: _UpperCamelCase = {} logger.info('''qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.''') if text_config is None: _UpperCamelCase = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''') _UpperCamelCase = InstructBlipVisionConfig(**__a) _UpperCamelCase = InstructBlipQFormerConfig(**__a) _UpperCamelCase = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' _UpperCamelCase = CONFIG_MAPPING[text_model_type](**__a) _UpperCamelCase = self.text_config.tie_word_embeddings _UpperCamelCase = self.text_config.is_encoder_decoder _UpperCamelCase = num_query_tokens _UpperCamelCase = self.vision_config.hidden_size _UpperCamelCase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _UpperCamelCase = 1.0 _UpperCamelCase = 0.02 @classmethod def UpperCAmelCase ( cls , __a , __a , __a , **__a , ) -> int: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__a , ) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) _UpperCamelCase = self.vision_config.to_dict() _UpperCamelCase = self.qformer_config.to_dict() _UpperCamelCase = self.text_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
19
"""simple docstring""" import fire from utils import calculate_rouge, save_json def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case=None, **__snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()] _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()][: len(__snake_case )] _UpperCamelCase = calculate_rouge(__snake_case, __snake_case, **__snake_case ) if save_path is not None: save_json(__snake_case, __snake_case, indent=__snake_case ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
19
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _a = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
19
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['image_processor', 'tokenizer'] lowercase__ = 'ViTImageProcessor' lowercase__ = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __a=None , __a=None , **__a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __a , ) _UpperCamelCase = kwargs.pop('''feature_extractor''') _UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(__a , __a) def __call__( self , __a=None , __a=None , __a=None , __a=None , **__a) -> Tuple: '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''') if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''') if text is not None: _UpperCamelCase = self.tokenizer(__a , return_tensors=__a , **__a) if visual_prompt is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if images is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if visual_prompt is not None and images is not None: _UpperCamelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _UpperCamelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__a) , tensor_type=__a) def UpperCAmelCase ( self , *__a , **__a) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*__a , **__a) def UpperCAmelCase ( self , *__a , **__a) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*__a , **__a) @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __a , ) return self.image_processor_class @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __a , ) return self.image_processor
19
1
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> tuple[float, list[float]]: """simple docstring""" _UpperCamelCase = list(range(len(__snake_case ) ) ) _UpperCamelCase = [v / w for v, w in zip(__snake_case, __snake_case )] index.sort(key=lambda __snake_case : ratio[i], reverse=__snake_case ) _UpperCamelCase = 0 _UpperCamelCase = [0] * len(__snake_case ) for i in index: if weight[i] <= capacity: _UpperCamelCase = 1 max_value += value[i] capacity -= weight[i] else: _UpperCamelCase = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
19
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=32 , __a=3 , __a=4 , __a=[10, 20, 30, 40] , __a=[2, 2, 3, 2] , __a=True , __a=True , __a=37 , __a="gelu" , __a=10 , __a=0.02 , __a=["stage2", "stage3", "stage4"] , __a=3 , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = num_channels _UpperCamelCase = num_stages _UpperCamelCase = hidden_sizes _UpperCamelCase = depths _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = out_features _UpperCamelCase = num_labels _UpperCamelCase = scope _UpperCamelCase = num_stages def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Any: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__a , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=__a , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = UperNetForSemanticSegmentation(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__ = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = UperNetModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a) @unittest.skip(reason='''UperNet does not use inputs_embeds''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not support input and output embeddings''') def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''') def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''') def UpperCAmelCase ( self) -> int: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''') def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' def check_hidden_states_output(__a , __a , __a): _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(__a) , expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) _UpperCamelCase = _config_zero_init(configs_no_init.backbone_config) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason='''UperNet does not have tied weights''') def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' pass @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''', repo_type='''dataset''', filename='''ADE_val_00000001.jpg''' ) _UpperCamelCase = Image.open(__snake_case ).convert('''RGB''' ) return image @require_torch @require_vision @slow class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''') _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''').to(__a) _UpperCamelCase = prepare_img() _UpperCamelCase = processor(images=__a , return_tensors='''pt''').to(__a) with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''') _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''').to(__a) _UpperCamelCase = prepare_img() _UpperCamelCase = processor(images=__a , return_tensors='''pt''').to(__a) with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4))
19
1
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _a = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _a = parser.parse_args() if args.model_type == "bert": _a = BertForMaskedLM.from_pretrained(args.model_name) _a = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _a = model.state_dict() _a = {} for w in ["word_embeddings", "position_embeddings"]: _a = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _a = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] _a = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _a = state_dict["""cls.predictions.decoder.weight"""] _a = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _a = state_dict[F"""cls.predictions.transform.dense.{w}"""] _a = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
19
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase( lowerCamelCase ): lowercase__ = (DDPMScheduler,) def UpperCAmelCase ( self , **__a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__a) return config def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=__a , beta_end=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.check_over_configs(thresholding=__a) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0979)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.02)) < 1e-5 def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = len(__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = torch.manual_seed(0) for t in reversed(range(__a)): # 1. predict noise residual _UpperCamelCase = model(__a , __a) # 2. predict previous mean of sample x_t-1 _UpperCamelCase = scheduler.step(__a , __a , __a , generator=__a).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCamelCase = pred_prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 258.9606) < 1e-2 assert abs(result_mean.item() - 0.3372) < 1e-3 def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''') _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = len(__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = torch.manual_seed(0) for t in reversed(range(__a)): # 1. predict noise residual _UpperCamelCase = model(__a , __a) # 2. predict previous mean of sample x_t-1 _UpperCamelCase = scheduler.step(__a , __a , __a , generator=__a).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCamelCase = pred_prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 202.0296) < 1e-2 assert abs(result_mean.item() - 0.2631) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__a) _UpperCamelCase = scheduler.timesteps for i, timestep in enumerate(__a): if i == len(__a) - 1: _UpperCamelCase = -1 else: _UpperCamelCase = timesteps[i + 1] _UpperCamelCase = scheduler.previous_timestep(__a) _UpperCamelCase = prev_t.item() self.assertEqual(__a , __a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 51, 0] with self.assertRaises(__a , msg='''`custom_timesteps` must be in descending order.'''): scheduler.set_timesteps(timesteps=__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 1, 0] _UpperCamelCase = len(__a) with self.assertRaises(__a , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.'''): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=__a)
19
1
"""simple docstring""" import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _UpperCAmelCase: def __init__( self , __a , __a=2 , __a=32 , __a=16 , __a=3 , __a=True , __a=True , __a=32 , __a=4 , __a=[0, 1, 2, 3] , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.02 , __a=3 , __a=[1, 3_84, 24, 24] , __a=True , __a=None , ) -> int: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = backbone_out_indices _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = backbone_featmap_shape _UpperCamelCase = scope _UpperCamelCase = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase = (image_size // patch_size) ** 2 _UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 1_92, 3_84, 7_68], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__a , backbone_featmap_shape=self.backbone_featmap_shape , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = DPTModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = DPTForDepthEstimation(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size)) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = DPTForSemanticSegmentation(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , labels=__a) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowercase__ = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = DPTModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''') def UpperCAmelCase ( self) -> str: '''simple docstring''' pass def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear)) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = True if model_class in get_values(__a): continue _UpperCamelCase = model_class(__a) model.to(__a) model.train() _UpperCamelCase = self._prepare_for_class(__a , __a , return_labels=__a) _UpperCamelCase = model(**__a).loss loss.backward() def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = False _UpperCamelCase = True if model_class in get_values(__a) or not model_class.supports_gradient_checkpointing: continue _UpperCamelCase = model_class(__a) model.to(__a) model.gradient_checkpointing_enable() model.train() _UpperCamelCase = self._prepare_for_class(__a , __a , return_labels=__a) _UpperCamelCase = model(**__a).loss loss.backward() def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) # Skip the check for the backbone _UpperCamelCase = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _UpperCamelCase = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' pass @slow def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _UpperCamelCase = DPTModel.from_pretrained(__a) self.assertIsNotNone(__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = '''add''' with self.assertRaises(__a): _UpperCamelCase = DPTForDepthEstimation(__a) def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''') _UpperCamelCase = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''').to(__a) _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''').to(__a) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = outputs.predicted_depth # verify the predicted depth _UpperCamelCase = torch.Size((1, 3_84, 3_84)) self.assertEqual(predicted_depth.shape , __a) _UpperCamelCase = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]]).to(__a) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , __a , atol=1e-4))
19
"""simple docstring""" from __future__ import annotations from functools import lru_cache from math import ceil _a = 100 _a = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} _UpperCamelCase = set() _UpperCamelCase = 42 _UpperCamelCase = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def lowerCamelCase__ ( __snake_case = 50_00 ) -> int | None: """simple docstring""" for number_to_partition in range(1, __snake_case ): if len(partition(__snake_case ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"""{solution() = }""")
19
1
"""simple docstring""" def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = int(__snake_case ) if decimal in (0, 1): # Exit cases for the recursion return str(__snake_case ) _UpperCamelCase , _UpperCamelCase = divmod(__snake_case, 2 ) return binary_recursive(__snake_case ) + str(__snake_case ) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = str(__snake_case ).strip() if not number: raise ValueError('''No input value was provided''' ) _UpperCamelCase = '''-''' if number.startswith('''-''' ) else '''''' _UpperCamelCase = number.lstrip('''-''' ) if not number.isnumeric(): raise ValueError('''Input value is not an integer''' ) return F'''{negative}0b{binary_recursive(int(__snake_case ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
19
"""simple docstring""" from collections.abc import Callable import numpy as np def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> np.array: """simple docstring""" _UpperCamelCase = int(np.ceil((x_end - xa) / step_size ) ) _UpperCamelCase = np.zeros((n + 1,) ) _UpperCamelCase = ya _UpperCamelCase = xa for k in range(__snake_case ): _UpperCamelCase = y[k] + step_size * ode_func(__snake_case, y[k] ) _UpperCamelCase = y[k] + ( (step_size / 2) * (ode_func(__snake_case, y[k] ) + ode_func(x + step_size, __snake_case )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
19
1
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _a = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class _UpperCAmelCase: lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = 'gelu' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=False , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a=0.1 , __a=0.1 , __a=20 , __a=2 , __a=1 , __a=0 , ) -> int: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) _UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) _UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCamelCase = prepare_pegasus_inputs_dict(__a , __a , __a) return config, inputs_dict def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids''']) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a) _UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''') _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __a , decoder_attention_mask=__a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__a , ) _UpperCamelCase = model.decode(__a , __a) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''') def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids''']) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a) _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__a , decoder_position_ids=__a , ) _UpperCamelCase = model.decode(__a , __a , decoder_attention_mask=__a) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''') def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=None, __snake_case=None, ) -> Union[str, Any]: """simple docstring""" if attention_mask is None: _UpperCamelCase = np.not_equal(__snake_case, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _UpperCamelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = FlaxPegasusModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = self._prepare_for_class(__a , __a) _UpperCamelCase = model_class(__a) @jax.jit def encode_jitted(__a , __a=None , **__a): return model.encode(input_ids=__a , attention_mask=__a) with self.subTest('''JIT Enabled'''): _UpperCamelCase = encode_jitted(**__a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): _UpperCamelCase = encode_jitted(**__a).to_tuple() self.assertEqual(len(__a) , len(__a)) for jitted_output, output in zip(__a , __a): self.assertEqual(jitted_output.shape , output.shape) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = model_class(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask''']) _UpperCamelCase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(__a , __a , __a): return model.decode( decoder_input_ids=__a , decoder_attention_mask=__a , encoder_outputs=__a , ) with self.subTest('''JIT Enabled'''): _UpperCamelCase = decode_jitted(**__a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): _UpperCamelCase = decode_jitted(**__a).to_tuple() self.assertEqual(len(__a) , len(__a)) for jitted_output, output in zip(__a , __a): self.assertEqual(jitted_output.shape , output.shape) @slow def UpperCAmelCase ( self) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=__a) _UpperCamelCase = np.ones((1, 1)) _UpperCamelCase = model(__a) self.assertIsNotNone(__a) @slow def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''') _UpperCamelCase = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''') _UpperCamelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] _UpperCamelCase = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] _UpperCamelCase = tokenizer(__a , return_tensors='''np''' , truncation=__a , max_length=5_12 , padding=__a) _UpperCamelCase = model.generate(**__a , num_beams=2).sequences _UpperCamelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a) assert tgt_text == decoded
19
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _a = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _a = parser.parse_args() if args.model_type == "bert": _a = BertForMaskedLM.from_pretrained(args.model_name) _a = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _a = model.state_dict() _a = {} for w in ["word_embeddings", "position_embeddings"]: _a = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _a = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] _a = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _a = state_dict["""cls.predictions.decoder.weight"""] _a = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _a = state_dict[F"""cls.predictions.transform.dense.{w}"""] _a = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
19
1
"""simple docstring""" import string from math import logaa def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = document.translate( str.maketrans('''''', '''''', string.punctuation ) ).replace('''\n''', '''''' ) _UpperCamelCase = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> tuple[int, int]: """simple docstring""" _UpperCamelCase = corpus.lower().translate( str.maketrans('''''', '''''', string.punctuation ) ) # strip all punctuation and replace it with '' _UpperCamelCase = corpus_without_punctuation.split('''\n''' ) _UpperCamelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(__snake_case )) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case=False ) -> float: """simple docstring""" if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ), 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ), 3 ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> float: """simple docstring""" return round(tf * idf, 3 )
19
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _a = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class _UpperCAmelCase: lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = 'gelu' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=False , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a=0.1 , __a=0.1 , __a=20 , __a=2 , __a=1 , __a=0 , ) -> int: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) _UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) _UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCamelCase = prepare_pegasus_inputs_dict(__a , __a , __a) return config, inputs_dict def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids''']) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a) _UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''') _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __a , decoder_attention_mask=__a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__a , ) _UpperCamelCase = model.decode(__a , __a) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''') def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids''']) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a) _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__a , decoder_position_ids=__a , ) _UpperCamelCase = model.decode(__a , __a , decoder_attention_mask=__a) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''') def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=None, __snake_case=None, ) -> Union[str, Any]: """simple docstring""" if attention_mask is None: _UpperCamelCase = np.not_equal(__snake_case, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _UpperCamelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = FlaxPegasusModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = self._prepare_for_class(__a , __a) _UpperCamelCase = model_class(__a) @jax.jit def encode_jitted(__a , __a=None , **__a): return model.encode(input_ids=__a , attention_mask=__a) with self.subTest('''JIT Enabled'''): _UpperCamelCase = encode_jitted(**__a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): _UpperCamelCase = encode_jitted(**__a).to_tuple() self.assertEqual(len(__a) , len(__a)) for jitted_output, output in zip(__a , __a): self.assertEqual(jitted_output.shape , output.shape) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = model_class(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask''']) _UpperCamelCase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(__a , __a , __a): return model.decode( decoder_input_ids=__a , decoder_attention_mask=__a , encoder_outputs=__a , ) with self.subTest('''JIT Enabled'''): _UpperCamelCase = decode_jitted(**__a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): _UpperCamelCase = decode_jitted(**__a).to_tuple() self.assertEqual(len(__a) , len(__a)) for jitted_output, output in zip(__a , __a): self.assertEqual(jitted_output.shape , output.shape) @slow def UpperCAmelCase ( self) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=__a) _UpperCamelCase = np.ones((1, 1)) _UpperCamelCase = model(__a) self.assertIsNotNone(__a) @slow def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''') _UpperCamelCase = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''') _UpperCamelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] _UpperCamelCase = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] _UpperCamelCase = tokenizer(__a , return_tensors='''np''' , truncation=__a , max_length=5_12 , padding=__a) _UpperCamelCase = model.generate(**__a , num_beams=2).sequences _UpperCamelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a) assert tgt_text == decoded
19
1
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class _UpperCAmelCase( lowerCamelCase ): def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = pa.array(TypedSequence([1, 2, 3])) self.assertEqual(arr.type , pa.intaa()) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' with self.assertRaises(__a): _UpperCamelCase = pa.array(TypedSequence([1, 2, 3]) , type=pa.intaa()) def UpperCAmelCase ( self) -> Any: '''simple docstring''' with self.assertRaises(__a): _UpperCamelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value('''bool''') , type=Value('''int64'''))) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = pa.array(TypedSequence([1, 2, 3] , type=Value('''int32'''))) self.assertEqual(arr.type , pa.intaa()) def UpperCAmelCase ( self) -> int: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid)): _UpperCamelCase = pa.array(TypedSequence(['''foo''', '''bar'''] , type=Value('''int64'''))) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value('''int32'''))) self.assertEqual(arr.type , pa.intaa()) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = pa.array(TypedSequence(['''foo''', '''bar'''] , try_type=Value('''int64'''))) self.assertEqual(arr.type , pa.string()) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , '''int64'''))) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , '''int64''')) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid)): _UpperCamelCase = pa.array(TypedSequence(['''foo''', '''bar'''] , type=ArrayaD((1, 3) , '''int64'''))) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , '''int64'''))) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , '''int64''')) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = pa.array(TypedSequence(['''foo''', '''bar'''] , try_type=ArrayaD((1, 3) , '''int64'''))) self.assertEqual(arr.type , pa.string()) @require_pil def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' import PIL.Image _UpperCamelCase = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta).reshape(2 , 5)) with patch( '''datasets.arrow_writer.cast_to_python_objects''' , side_effect=__a) as mock_cast_to_python_objects: _UpperCamelCase = pa.array(TypedSequence([{'''path''': None, '''bytes''': B'''image_bytes'''}, pil_image] , type=Image())) _UpperCamelCase , _UpperCamelCase = mock_cast_to_python_objects.call_args_list[-1] self.assertIn('''optimize_list_casting''' , __a) self.assertFalse(kwargs['''optimize_list_casting''']) def lowerCamelCase__ ( __snake_case, __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = pa.BufferReader(__snake_case ) if isinstance(__snake_case, pa.Buffer ) else pa.memory_map(__snake_case ) _UpperCamelCase = pa.ipc.open_stream(__snake_case ) _UpperCamelCase = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('''writer_batch_size''', [None, 1, 10] ) @pytest.mark.parametrize( '''fields''', [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = pa.BufferOutputStream() _UpperCamelCase = pa.schema(__snake_case ) if fields else None with ArrowWriter(stream=__snake_case, schema=__snake_case, writer_batch_size=__snake_case ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) _UpperCamelCase , _UpperCamelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _UpperCamelCase = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(__snake_case, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowerCamelCase__ ( ) -> List[Any]: """simple docstring""" _UpperCamelCase = pa.BufferOutputStream() _UpperCamelCase = Features({'''labels''': ClassLabel(names=['''neg''', '''pos'''] )} ) with ArrowWriter(stream=__snake_case, features=__snake_case ) as writer: writer.write({'''labels''': 0} ) writer.write({'''labels''': 1} ) _UpperCamelCase , _UpperCamelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata _UpperCamelCase = pa.BufferReader(output.getvalue() ) _UpperCamelCase = pa.ipc.open_stream(__snake_case ) _UpperCamelCase = f.read_all() _UpperCamelCase = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(__snake_case ) @pytest.mark.parametrize('''writer_batch_size''', [None, 1, 10] ) def lowerCamelCase__ ( __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = pa.BufferOutputStream() with ArrowWriter( stream=__snake_case, writer_batch_size=__snake_case, hash_salt='''split_name''', check_duplicates=__snake_case, ) as writer: with pytest.raises(__snake_case ): writer.write({'''col_1''': '''foo''', '''col_2''': 1}, key=[1, 2] ) _UpperCamelCase , _UpperCamelCase = writer.finalize() @pytest.mark.parametrize('''writer_batch_size''', [None, 2, 10] ) def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = pa.BufferOutputStream() with ArrowWriter( stream=__snake_case, writer_batch_size=__snake_case, hash_salt='''split_name''', check_duplicates=__snake_case, ) as writer: with pytest.raises(__snake_case ): writer.write({'''col_1''': '''foo''', '''col_2''': 1}, key=10 ) writer.write({'''col_1''': '''bar''', '''col_2''': 2}, key=10 ) _UpperCamelCase , _UpperCamelCase = writer.finalize() @pytest.mark.parametrize('''writer_batch_size''', [None, 2, 10] ) def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = pa.BufferOutputStream() with ArrowWriter( stream=__snake_case, writer_batch_size=__snake_case, hash_salt='''split_name''', check_duplicates=__snake_case, ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1}, key=1 ) writer.write({'''col_1''': '''bar''', '''col_2''': 2}, key=2 ) _UpperCamelCase , _UpperCamelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''', [None, 1, 10] ) @pytest.mark.parametrize( '''fields''', [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = pa.BufferOutputStream() _UpperCamelCase = pa.schema(__snake_case ) if fields else None with ArrowWriter(stream=__snake_case, schema=__snake_case, writer_batch_size=__snake_case ) as writer: writer.write_batch({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) writer.write_batch({'''col_1''': [], '''col_2''': []} ) _UpperCamelCase , _UpperCamelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _UpperCamelCase = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(__snake_case, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''', [None, 1, 10] ) @pytest.mark.parametrize( '''fields''', [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = pa.BufferOutputStream() _UpperCamelCase = pa.schema(__snake_case ) if fields else None with ArrowWriter(stream=__snake_case, schema=__snake_case, writer_batch_size=__snake_case ) as writer: writer.write_table(pa.Table.from_pydict({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) ) _UpperCamelCase , _UpperCamelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _UpperCamelCase = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(__snake_case, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''', [None, 1, 10] ) @pytest.mark.parametrize( '''fields''', [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> Any: """simple docstring""" _UpperCamelCase = pa.BufferOutputStream() _UpperCamelCase = pa.schema(__snake_case ) if fields else None with ArrowWriter(stream=__snake_case, schema=__snake_case, writer_batch_size=__snake_case ) as writer: writer.write_row(pa.Table.from_pydict({'''col_1''': ['''foo'''], '''col_2''': [1]} ) ) writer.write_row(pa.Table.from_pydict({'''col_1''': ['''bar'''], '''col_2''': [2]} ) ) _UpperCamelCase , _UpperCamelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _UpperCamelCase = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(__snake_case, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowerCamelCase__ ( ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} _UpperCamelCase = os.path.join(__snake_case, '''test.arrow''' ) with ArrowWriter(path=__snake_case, schema=pa.schema(__snake_case ) ) as writer: writer.write_batch({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) _UpperCamelCase , _UpperCamelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(__snake_case, metadata=writer._schema.metadata ) _check_output(__snake_case, 1 ) def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" if pa.types.is_list(__snake_case ): return get_base_dtype(arr_type.value_type ) else: return arr_type def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[Any]: """simple docstring""" if isinstance(lst[0], __snake_case ): change_first_primitive_element_in_list(lst[0], __snake_case ) else: _UpperCamelCase = value @pytest.mark.parametrize('''optimized_int_type, expected_dtype''', [(None, pa.intaa()), (Value('''int32''' ), pa.intaa())] ) @pytest.mark.parametrize('''sequence''', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = pa.array(TypedSequence(__snake_case, optimized_int_type=__snake_case ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( '''col, expected_dtype''', [ ('''attention_mask''', pa.inta()), ('''special_tokens_mask''', pa.inta()), ('''token_type_ids''', pa.inta()), ('''input_ids''', pa.intaa()), ('''other''', pa.intaa()), ], ) @pytest.mark.parametrize('''sequence''', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = pa.array(OptimizedTypedSequence(__snake_case, col=__snake_case ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications _UpperCamelCase = copy.deepcopy(__snake_case ) _UpperCamelCase = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(__snake_case, __snake_case ) _UpperCamelCase = pa.array(OptimizedTypedSequence(__snake_case, col=__snake_case ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('''raise_exception''', [False, True] ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> Any: """simple docstring""" _UpperCamelCase = str(tmp_path / '''dataset-train.arrow''' ) try: with ArrowWriter(path=__snake_case ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = '''mock://dataset-train.arrow''' with ArrowWriter(path=__snake_case, storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs, type(__snake_case ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) _UpperCamelCase , _UpperCamelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(__snake_case ) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = pa.BufferOutputStream() with ParquetWriter(stream=__snake_case ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) _UpperCamelCase , _UpperCamelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _UpperCamelCase = pa.BufferReader(output.getvalue() ) _UpperCamelCase = pq.read_table(__snake_case ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('''embed_local_files''', [False, True] ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" import PIL.Image _UpperCamelCase = str(tmp_path / '''test_image_rgb.jpg''' ) PIL.Image.fromarray(np.zeros((5, 5), dtype=np.uinta ) ).save(__snake_case, format='''png''' ) _UpperCamelCase = pa.BufferOutputStream() with ParquetWriter( stream=__snake_case, features=Features({'''image''': Image()} ), embed_local_files=__snake_case ) as writer: writer.write({'''image''': image_path} ) writer.finalize() _UpperCamelCase = pa.BufferReader(output.getvalue() ) _UpperCamelCase = pq.read_table(__snake_case ) _UpperCamelCase = pa_table.to_pydict() if embed_local_files: assert isinstance(out['''image'''][0]['''path'''], __snake_case ) with open(__snake_case, '''rb''' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = pa.schema([pa.field('''col_1''', pa.string(), nullable=__snake_case )] ) _UpperCamelCase = pa.BufferOutputStream() with ArrowWriter(stream=__snake_case ) as writer: writer._build_writer(inferred_schema=__snake_case ) assert writer._schema == pa.schema([pa.field('''col_1''', pa.string() )] )
19
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , __a=0 , ) -> Any: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope _UpperCamelCase = projection_dim def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) _UpperCamelCase = DPRConfig(projection_dim=self.projection_dim , **config.to_dict()) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = TFDPRContextEncoder(config=__a) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFDPRQuestionEncoder(config=__a) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = TFDPRReader(config=__a) _UpperCamelCase = model(__a , attention_mask=__a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,)) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowercase__ = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDPRModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__a) @slow def UpperCAmelCase ( self) -> str: '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRContextEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRContextEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRQuestionEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRReader.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''') _UpperCamelCase = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]]) # [CLS] hello, is my dog cute? [SEP] _UpperCamelCase = model(__a)[0] # embedding shape = (1, 768) # compare the actual values for a slice. _UpperCamelCase = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ]) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4))
19
1
"""simple docstring""" import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class _UpperCAmelCase( lowerCamelCase ): # to overwrite at feature extractactor specific tests lowercase__ = None lowercase__ = None @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(__a , '''feature_size''')) self.assertTrue(hasattr(__a , '''sampling_rate''')) self.assertTrue(hasattr(__a , '''padding_value''')) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common() _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) _UpperCamelCase = feat_extract.model_input_names[0] _UpperCamelCase = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(__a) == len(__a) for x, y in zip(__a , processed_features[input_name]))) _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__a) _UpperCamelCase = BatchFeature({input_name: speech_inputs} , tensor_type='''np''') _UpperCamelCase = processed_features[input_name] if len(batch_features_input.shape) < 3: _UpperCamelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_torch def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__a) _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) _UpperCamelCase = feat_extract.model_input_names[0] _UpperCamelCase = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''') _UpperCamelCase = processed_features[input_name] if len(batch_features_input.shape) < 3: _UpperCamelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_tf def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__a) _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) _UpperCamelCase = feat_extract.model_input_names[0] _UpperCamelCase = BatchFeature({input_name: speech_inputs} , tensor_type='''tf''') _UpperCamelCase = processed_features[input_name] if len(batch_features_input.shape) < 3: _UpperCamelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) def UpperCAmelCase ( self , __a=False) -> Union[str, Any]: '''simple docstring''' def _inputs_have_equal_length(__a): _UpperCamelCase = len(input[0]) for input_slice in input[1:]: if len(__a) != length: return False return True def _inputs_are_equal(__a , __a): if len(__a) != len(__a): return False for input_slice_a, input_slice_a in zip(__a , __a): if not np.allclose(np.asarray(__a) , np.asarray(__a) , atol=1e-3): return False return True _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=__a) _UpperCamelCase = feat_extract.model_input_names[0] _UpperCamelCase = BatchFeature({input_name: speech_inputs}) _UpperCamelCase = self.feat_extract_tester.seq_length_diff _UpperCamelCase = self.feat_extract_tester.max_seq_length + pad_diff _UpperCamelCase = self.feat_extract_tester.min_seq_length _UpperCamelCase = self.feat_extract_tester.batch_size _UpperCamelCase = self.feat_extract_tester.feature_size # test padding for List[int] + numpy _UpperCamelCase = feat_extract.pad(__a , padding=__a) _UpperCamelCase = input_a[input_name] _UpperCamelCase = feat_extract.pad(__a , padding='''longest''') _UpperCamelCase = input_a[input_name] _UpperCamelCase = feat_extract.pad(__a , padding='''max_length''' , max_length=len(speech_inputs[-1])) _UpperCamelCase = input_a[input_name] _UpperCamelCase = feat_extract.pad(__a , padding='''longest''' , return_tensors='''np''') _UpperCamelCase = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(__a): feat_extract.pad(__a , padding='''max_length''')[input_name] _UpperCamelCase = feat_extract.pad( __a , padding='''max_length''' , max_length=__a , return_tensors='''np''') _UpperCamelCase = input_a[input_name] self.assertFalse(_inputs_have_equal_length(__a)) self.assertTrue(_inputs_have_equal_length(__a)) self.assertTrue(_inputs_have_equal_length(__a)) self.assertTrue(_inputs_are_equal(__a , __a)) self.assertTrue(len(input_a[0]) == pad_min_length) self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0]))) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size) # test padding for `pad_to_multiple_of` for List[int] + numpy _UpperCamelCase = feat_extract.pad(__a , pad_to_multiple_of=10) _UpperCamelCase = input_a[input_name] _UpperCamelCase = feat_extract.pad(__a , padding='''longest''' , pad_to_multiple_of=10) _UpperCamelCase = input_a[input_name] _UpperCamelCase = feat_extract.pad( __a , padding='''max_length''' , pad_to_multiple_of=10 , max_length=__a) _UpperCamelCase = input_a[input_name] _UpperCamelCase = feat_extract.pad( __a , padding='''max_length''' , pad_to_multiple_of=10 , max_length=__a , return_tensors='''np''' , ) _UpperCamelCase = input_a[input_name] self.assertTrue(all(len(__a) % 10 == 0 for x in input_a)) self.assertTrue(_inputs_are_equal(__a , __a)) _UpperCamelCase = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(__a) == expected_mult_pad_length for x in input_a)) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size) # Check padding value is correct _UpperCamelCase = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1e-3) self.assertTrue( abs( np.asarray(input_a[1])[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff)) < 1e-3) self.assertTrue( abs( np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff)) < 1e-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1e-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length)) < 1e-3) def UpperCAmelCase ( self , __a=False) -> List[Any]: '''simple docstring''' def _inputs_have_equal_length(__a): _UpperCamelCase = len(input[0]) for input_slice in input[1:]: if len(__a) != length: return False return True def _inputs_are_equal(__a , __a): if len(__a) != len(__a): return False for input_slice_a, input_slice_a in zip(__a , __a): if not np.allclose(np.asarray(__a) , np.asarray(__a) , atol=1e-3): return False return True _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=__a) _UpperCamelCase = feat_extract.model_input_names[0] _UpperCamelCase = BatchFeature({input_name: speech_inputs}) # truncate to smallest _UpperCamelCase = feat_extract.pad( __a , padding='''max_length''' , max_length=len(speech_inputs[0]) , truncation=__a) _UpperCamelCase = input_a[input_name] _UpperCamelCase = feat_extract.pad(__a , padding='''max_length''' , max_length=len(speech_inputs[0])) _UpperCamelCase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__a)) self.assertFalse(_inputs_have_equal_length(__a)) # truncate to smallest with np _UpperCamelCase = feat_extract.pad( __a , padding='''max_length''' , max_length=len(speech_inputs[0]) , return_tensors='''np''' , truncation=__a , ) _UpperCamelCase = input_a[input_name] _UpperCamelCase = feat_extract.pad( __a , padding='''max_length''' , max_length=len(speech_inputs[0]) , return_tensors='''np''') _UpperCamelCase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__a)) self.assertTrue(input_a.shape[1] == len(speech_inputs[0])) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__a)) # truncate to middle _UpperCamelCase = feat_extract.pad( __a , padding='''max_length''' , max_length=len(speech_inputs[1]) , truncation=__a , return_tensors='''np''' , ) _UpperCamelCase = input_a[input_name] _UpperCamelCase = feat_extract.pad( __a , padding='''max_length''' , max_length=len(speech_inputs[1]) , truncation=__a) _UpperCamelCase = input_a[input_name] _UpperCamelCase = feat_extract.pad( __a , padding='''max_length''' , max_length=len(speech_inputs[1]) , return_tensors='''np''') _UpperCamelCase = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1])) self.assertTrue(_inputs_have_equal_length(__a)) self.assertTrue(_inputs_have_equal_length(__a)) self.assertTrue(_inputs_are_equal(__a , __a)) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__a)) self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1])) # padding has to be max_length when setting `truncation=True` with self.assertRaises(__a): feat_extract.pad(__a , truncation=__a)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__a): feat_extract.pad(__a , padding='''longest''' , truncation=__a)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__a): feat_extract.pad(__a , padding='''longest''' , truncation=__a)[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(__a): feat_extract.pad(__a , padding='''max_length''' , truncation=__a)[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy _UpperCamelCase = 12 _UpperCamelCase = feat_extract.pad( __a , padding='''max_length''' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=__a , truncation=__a , ) _UpperCamelCase = input_a[input_name] _UpperCamelCase = feat_extract.pad( __a , padding='''max_length''' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=__a , ) _UpperCamelCase = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of _UpperCamelCase = len(speech_inputs[0]) if expected_length % pad_to_multiple_of != 0: _UpperCamelCase = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0]) == expected_length) self.assertTrue(_inputs_have_equal_length(__a)) self.assertFalse(_inputs_have_equal_length(__a)) def UpperCAmelCase ( self) -> str: '''simple docstring''' self._check_padding(numpify=__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' self._check_padding(numpify=__a) def UpperCAmelCase ( self) -> str: '''simple docstring''' self._check_truncation(numpify=__a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' self._check_truncation(numpify=__a) @require_torch def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common() _UpperCamelCase = feat_extract.model_input_names[0] _UpperCamelCase = BatchFeature({input_name: speech_inputs}) _UpperCamelCase = feat_extract.pad(__a , padding='''longest''' , return_tensors='''np''')[input_name] _UpperCamelCase = feat_extract.pad(__a , padding='''longest''' , return_tensors='''pt''')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1e-2) @require_tf def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common() _UpperCamelCase = feat_extract.model_input_names[0] _UpperCamelCase = BatchFeature({input_name: speech_inputs}) _UpperCamelCase = feat_extract.pad(__a , padding='''longest''' , return_tensors='''np''')[input_name] _UpperCamelCase = feat_extract.pad(__a , padding='''longest''' , return_tensors='''tf''')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1e-2) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.feat_extract_dict _UpperCamelCase = True _UpperCamelCase = self.feature_extraction_class(**__a) _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common() _UpperCamelCase = [len(__a) for x in speech_inputs] _UpperCamelCase = feat_extract.model_input_names[0] _UpperCamelCase = BatchFeature({input_name: speech_inputs}) _UpperCamelCase = feat_extract.pad(__a , padding='''longest''' , return_tensors='''np''') self.assertIn('''attention_mask''' , __a) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , __a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.feat_extract_dict _UpperCamelCase = True _UpperCamelCase = self.feature_extraction_class(**__a) _UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common() _UpperCamelCase = [len(__a) for x in speech_inputs] _UpperCamelCase = feat_extract.model_input_names[0] _UpperCamelCase = BatchFeature({input_name: speech_inputs}) _UpperCamelCase = min(__a) _UpperCamelCase = feat_extract.pad( __a , padding='''max_length''' , max_length=__a , truncation=__a , return_tensors='''np''') self.assertIn('''attention_mask''' , __a) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
19
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x2_0000 and cp <= 0x2_A6DF) # or (cp >= 0x2_A700 and cp <= 0x2_B73F) # or (cp >= 0x2_B740 and cp <= 0x2_B81F) # or (cp >= 0x2_B820 and cp <= 0x2_CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2_F800 and cp <= 0x2_FA1F) # ): # return True return False def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" for char in word: _UpperCamelCase = ord(__snake_case ) if not _is_chinese_char(__snake_case ): return 0 return 1 def lowerCamelCase__ ( __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = set() for token in tokens: _UpperCamelCase = len(__snake_case ) > 1 and is_chinese(__snake_case ) if chinese_word: word_set.add(__snake_case ) _UpperCamelCase = list(__snake_case ) return word_list def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" if not chinese_word_set: return bert_tokens _UpperCamelCase = max([len(__snake_case ) for w in chinese_word_set] ) _UpperCamelCase = bert_tokens _UpperCamelCase , _UpperCamelCase = 0, len(__snake_case ) while start < end: _UpperCamelCase = True if is_chinese(bert_word[start] ): _UpperCamelCase = min(end - start, __snake_case ) for i in range(__snake_case, 1, -1 ): _UpperCamelCase = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _UpperCamelCase = '''##''' + bert_word[j] _UpperCamelCase = start + i _UpperCamelCase = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws _UpperCamelCase = [get_chinese_word(__snake_case ) for r in res] ltp_res.extend(__snake_case ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=__snake_case, truncation=__snake_case, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for input_ids, chinese_word in zip(__snake_case, __snake_case ): _UpperCamelCase = [] for id in input_ids: _UpperCamelCase = bert_tokenizer._convert_id_to_token(__snake_case ) input_tokens.append(__snake_case ) _UpperCamelCase = add_sub_symbol(__snake_case, __snake_case ) _UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__snake_case ): if token[:2] == "##": _UpperCamelCase = token[2:] # save chinese tokens' pos if len(__snake_case ) == 1 and _is_chinese_char(ord(__snake_case ) ): ref_id.append(__snake_case ) ref_ids.append(__snake_case ) assert len(__snake_case ) == len(__snake_case ) return ref_ids def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _UpperCamelCase = f.readlines() _UpperCamelCase = [line.strip() for line in data if len(__snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _UpperCamelCase = LTP(args.ltp ) # faster in GPU device _UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) _UpperCamelCase = prepare_ref(__snake_case, __snake_case, __snake_case ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _UpperCamelCase = [json.dumps(__snake_case ) + '''\n''' for ref in ref_ids] f.writelines(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) _a = parser.parse_args() main(args)
19
1
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _a = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _a = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} _a = """zero2""" _a = """zero3""" _a = [ZEROa, ZEROa] def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = parameterized.to_safe_name('''_'''.join(str(__snake_case ) for x in param.args ) ) return F'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test _a = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class _UpperCAmelCase( lowerCamelCase ): @parameterized.expand(__a , name_func=__a) def UpperCAmelCase ( self , __a , __a) -> List[str]: '''simple docstring''' self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) @require_torch_multi_gpu @parameterized.expand(__a , name_func=__a) def UpperCAmelCase ( self , __a , __a) -> int: '''simple docstring''' self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) @parameterized.expand(__a , name_func=__a) def UpperCAmelCase ( self , __a , __a) -> List[str]: '''simple docstring''' self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) @require_torch_multi_gpu @parameterized.expand(__a , name_func=__a) def UpperCAmelCase ( self , __a , __a) -> Dict: '''simple docstring''' self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def UpperCAmelCase ( self , __a , __a , __a = 10 , __a = True , __a = True , __a = True , ) -> Dict: '''simple docstring''' _UpperCamelCase = models[model] _UpperCamelCase = self.run_trainer( stage=__a , model_name=__a , eval_steps=__a , num_train_epochs=1 , distributed=__a , fpaa=__a , ) self.do_checks(__a) return output_dir def UpperCAmelCase ( self , __a , __a , __a = 10 , __a = 1 , __a = True , __a = True , ) -> int: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir('''./xxx''' , after=__a) _UpperCamelCase = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(__a)} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['''--fp16''']) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _UpperCamelCase = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _UpperCamelCase = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _UpperCamelCase = self.get_launcher(__a) _UpperCamelCase = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__a , env=self.get_env()) return output_dir def UpperCAmelCase ( self , __a=False) -> Tuple: '''simple docstring''' # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _UpperCamelCase = min(2 , get_gpu_count()) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
19
"""simple docstring""" import heapq def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" _UpperCamelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__snake_case, [-1 * len(__snake_case ), (key, value)] ) # chosen_vertices = set of chosen vertices _UpperCamelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _UpperCamelCase = heapq.heappop(__snake_case )[1][0] chosen_vertices.add(__snake_case ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _UpperCamelCase = elem[1][1].index(__snake_case ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__snake_case ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _a = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
19
1
"""simple docstring""" import math import sys import cva import numpy as np def lowerCamelCase__ ( __snake_case, __snake_case ) -> np.ndarray: """simple docstring""" _UpperCamelCase = math.sqrt(__snake_case ) _UpperCamelCase = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> np.ndarray: """simple docstring""" _UpperCamelCase = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def lowerCamelCase__ ( __snake_case, __snake_case ) -> np.ndarray: """simple docstring""" _UpperCamelCase = np.zeros((kernel_size, kernel_size) ) for i in range(0, __snake_case ): for j in range(0, __snake_case ): _UpperCamelCase = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(__snake_case, __snake_case ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, ) -> np.ndarray: """simple docstring""" _UpperCamelCase = np.zeros(img.shape ) _UpperCamelCase = get_gauss_kernel(__snake_case, __snake_case ) _UpperCamelCase , _UpperCamelCase = img.shape for i in range(kernel_size // 2, size_x - kernel_size // 2 ): for j in range(kernel_size // 2, size_y - kernel_size // 2 ): _UpperCamelCase = get_slice(__snake_case, __snake_case, __snake_case, __snake_case ) _UpperCamelCase = img_s - img_s[kernel_size // 2, kernel_size // 2] _UpperCamelCase = vec_gaussian(__snake_case, __snake_case ) _UpperCamelCase = np.multiply(__snake_case, __snake_case ) _UpperCamelCase = np.multiply(__snake_case, __snake_case ) _UpperCamelCase = np.sum(__snake_case ) / np.sum(__snake_case ) _UpperCamelCase = val return imga def lowerCamelCase__ ( __snake_case ) -> tuple: """simple docstring""" _UpperCamelCase = args[1] if args[1:] else '''../image_data/lena.jpg''' _UpperCamelCase = float(args[2] ) if args[2:] else 1.0 _UpperCamelCase = float(args[3] ) if args[3:] else 1.0 if args[4:]: _UpperCamelCase = int(args[4] ) _UpperCamelCase = kernel_size + abs(kernel_size % 2 - 1 ) else: _UpperCamelCase = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _a , _a , _a , _a = parse_args(sys.argv) _a = cva.imread(filename, 0) cva.imshow("""input image""", img) _a = img / 255 _a = out.astype("""float32""") _a = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _a = out * 255 _a = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
19
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _UpperCamelCase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj ) assert isinstance(_test_patching.os.path, _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" assert _test_patching.open is open _UpperCamelCase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, '''open''', __snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching, '''pandas.read_csv''', __snake_case ): pass def lowerCamelCase__ ( ) -> Dict: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, '''len''', __snake_case ) is None with patch_submodule(_test_patching, '''len''', __snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_start_and_stop_mock__''' _UpperCamelCase = patch_submodule(_test_patching, '''open''', __snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _UpperCamelCase = '''__test_patch_submodule_successive_join__''' _UpperCamelCase = '''__test_patch_submodule_successive_dirname__''' _UpperCamelCase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> str: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching, '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''', __snake_case ): pass with patch_submodule(_test_patching, '''os.__attribute_that_doesn_exist__''', __snake_case ): pass
19
1
"""simple docstring""" def lowerCamelCase__ ( __snake_case = 60_08_51_47_51_43 ) -> int: """simple docstring""" try: _UpperCamelCase = int(__snake_case ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) _UpperCamelCase = 2 _UpperCamelCase = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 _UpperCamelCase = i while n % i == 0: _UpperCamelCase = n // i i += 1 return int(__snake_case ) if __name__ == "__main__": print(F"""{solution() = }""")
19
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = original_name.split('''.''' )[0] _UpperCamelCase = key.split('''.''' ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 2] ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 1] ) _UpperCamelCase = orig_block_num - offset _UpperCamelCase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''', F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = OrderedDict() _UpperCamelCase , _UpperCamelCase = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): _UpperCamelCase = key.replace('''network''', '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 _UpperCamelCase = key[: key.find('''proj''' )] _UpperCamelCase = key.replace(__snake_case, F'''patch_embeddings.{total_embed_found}.''' ) _UpperCamelCase = key.replace('''proj''', '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: _UpperCamelCase = '''poolformer.encoder.''' + key if "mlp.fc1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc1''', '''output.conv1''' ) if "mlp.fc2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc2''', '''output.conv2''' ) if "norm1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm1''', '''before_norm''' ) if "norm2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm2''', '''after_norm''' ) if "layer_scale_1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_1''', '''layer_scale_1''' ) if "layer_scale_2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_2''', '''layer_scale_2''' ) if "head" in key: _UpperCamelCase = key.replace('''head''', '''classifier''' ) _UpperCamelCase = value return new_state_dict def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase = Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return image @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = PoolFormerConfig() # set attributes based on model_name _UpperCamelCase = '''huggingface/label-files''' _UpperCamelCase = model_name[-3:] _UpperCamelCase = 10_00 _UpperCamelCase = '''imagenet-1k-id2label.json''' _UpperCamelCase = (1, 10_00) # set config attributes _UpperCamelCase = json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type='''dataset''' ), '''r''' ) ) _UpperCamelCase = {int(__snake_case ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} if size == "s12": _UpperCamelCase = [2, 2, 6, 2] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s24": _UpperCamelCase = [4, 4, 12, 4] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.9 elif size == "m36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 elif size == "m48": _UpperCamelCase = [8, 8, 24, 8] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) # Prepare image _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__snake_case, return_tensors='''pt''' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict _UpperCamelCase = torch.load(__snake_case, map_location=torch.device('''cpu''' ) ) # rename keys _UpperCamelCase = rename_keys(__snake_case ) # create HuggingFace model and load state dict _UpperCamelCase = PoolFormerForImageClassification(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # Define image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) _UpperCamelCase = image_processor(images=prepare_img(), return_tensors='''pt''' ).pixel_values # forward pass _UpperCamelCase = model(__snake_case ) _UpperCamelCase = outputs.logits # define expected logit slices for different models if size == "s12": _UpperCamelCase = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": _UpperCamelCase = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": _UpperCamelCase = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": _UpperCamelCase = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": _UpperCamelCase = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3], __snake_case, atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _a = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
19
1
"""simple docstring""" import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _a = logging.getLogger(__name__) def lowerCamelCase__ ( ) -> str: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser( description='''Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.''' ) parser.add_argument( '''--dataset_name''', type=__snake_case, default='''wikitext''', help='''Name of the training. Explore datasets at: hf.co/datasets.''', ) parser.add_argument( '''--dataset_config''', type=__snake_case, default='''wikitext-103-raw-v1''', help='''Configuration name of the dataset.''' ) parser.add_argument( '''--tokenizer_name_or_path''', type=__snake_case, default='''sayakpaul/unigram-tokenizer-wikitext''', help='''Tokenizer identifier. Can be a local filepath or a Hub identifier.''', ) parser.add_argument( '''--shard_size''', type=__snake_case, default=10_00, help='''Number of entries to go in a single shard.''', ) parser.add_argument('''--split''', type=__snake_case, default='''train''', choices=['''train''', '''test''', '''validation'''] ) parser.add_argument( '''--limit''', default=__snake_case, type=__snake_case, help='''Limit the number of shards (used for debugging).''', ) parser.add_argument( '''--max_length''', type=__snake_case, default=5_12, help='''Maximum sequence length. For training on TPUs, it helps to have a maximum''' ''' sequence length that is a multiple of 8.''', ) parser.add_argument( '''--output_dir''', default='''tf-tpu''', type=__snake_case, help='''Output directory where the TFRecord shards will be saved. If the''' ''' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord''' ''' shards will be directly saved to a Google Cloud Storage bucket.''', ) _UpperCamelCase = parser.parse_args() return args def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" def fn(__snake_case ): return tokenizer(examples['''text'''] ) return fn def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = [] for i in range(len(tokenized_data['''input_ids'''] ) ): _UpperCamelCase = { '''input_ids''': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['''input_ids'''][i] ) ), '''attention_mask''': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['''attention_mask'''][i] ) ), } _UpperCamelCase = tf.train.Features(feature=__snake_case ) _UpperCamelCase = tf.train.Example(features=__snake_case ) _UpperCamelCase = example.SerializeToString() records.append(__snake_case ) return records def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = datasets.load_dataset(args.dataset_name, args.dataset_config, split=args.split ) if args.limit is not None: _UpperCamelCase = min(len(__snake_case ), args.limit ) _UpperCamelCase = dataset.select(range(__snake_case ) ) print(F'''Limiting the dataset to {args.limit} entries.''' ) _UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) _UpperCamelCase = os.path.join(args.output_dir, args.split ) if not os.path.exists(__snake_case ): os.makedirs(__snake_case ) else: _UpperCamelCase = os.path.join(args.output_dir, args.split ) # Tokenize the whole dataset at once. _UpperCamelCase = tokenize_function(__snake_case ) _UpperCamelCase = dataset.map(__snake_case, batched=__snake_case, num_proc=4, remove_columns=['''text'''] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(__snake_case ): # Concatenate all texts. _UpperCamelCase = {k: sum(examples[k], [] ) for k in examples.keys()} _UpperCamelCase = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 _UpperCamelCase = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. _UpperCamelCase = { k: [t[i : i + args.max_length] for i in range(0, __snake_case, args.max_length )] for k, t in concatenated_examples.items() } return result _UpperCamelCase = dataset_tokenized.map(__snake_case, batched=__snake_case, batch_size=10_00, num_proc=4 ) _UpperCamelCase = 0 _UpperCamelCase = 0 for shard in range(0, len(__snake_case ), args.shard_size ): _UpperCamelCase = grouped_dataset[shard : shard + args.shard_size] _UpperCamelCase = len(dataset_snapshot['''input_ids'''] ) _UpperCamelCase = os.path.join(__snake_case, F'''dataset-{shard_count}-{records_containing}.tfrecord''' ) _UpperCamelCase = get_serialized_examples(__snake_case ) with tf.io.TFRecordWriter(__snake_case ) as out_file: for i in range(len(__snake_case ) ): _UpperCamelCase = serialized_examples[i] out_file.write(__snake_case ) print('''Wrote file {} containing {} records'''.format(__snake_case, __snake_case ) ) shard_count += 1 total_records += records_containing with open(F'''split-{args.split}-records-count.txt''', '''w''' ) as f: print(F'''Total {args.split} records: {total_records}''', file=__snake_case ) if __name__ == "__main__": _a = parse_args() main(args)
19
"""simple docstring""" import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class _UpperCAmelCase( lowerCamelCase ): lowercase__ = (DPMSolverSDEScheduler,) lowercase__ = 10 def UpperCAmelCase ( self , **__a) -> int: '''simple docstring''' _UpperCamelCase = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**__a) return config def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02]): self.check_over_configs(beta_start=__a , beta_end=__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a) def UpperCAmelCase ( self) -> str: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''') _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a , use_karras_sigmas=__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2
19
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = """▁""" _a = {"""vocab_file""": """sentencepiece.bpe.model"""} _a = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), } } _a = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off _a = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class _UpperCAmelCase( lowerCamelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = ['input_ids', 'attention_mask'] lowercase__ = [] lowercase__ = [] def __init__( self , __a , __a="<s>" , __a="</s>" , __a="</s>" , __a="<s>" , __a="<unk>" , __a="<pad>" , __a="<mask>" , __a=None , __a=None , __a=None , __a = None , __a=None , **__a , ) -> Optional[Any]: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase = AddedToken(__a , lstrip=__a , rstrip=__a) if isinstance(__a , __a) else mask_token _UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , tokenizer_file=__a , src_lang=__a , tgt_lang=__a , additional_special_tokens=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__a)) _UpperCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase = 1 _UpperCamelCase = len(self.sp_model) _UpperCamelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__a) } _UpperCamelCase = {v: k for k, v in self.lang_code_to_id.items()} _UpperCamelCase = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) _UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _UpperCamelCase = list(self.lang_code_to_id.keys()) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens]) _UpperCamelCase = src_lang if src_lang is not None else '''en_XX''' _UpperCamelCase = self.lang_code_to_id[self._src_lang] _UpperCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.__dict__.copy() _UpperCamelCase = None _UpperCamelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self , __a) -> int: '''simple docstring''' _UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): _UpperCamelCase = {} _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) @property def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCAmelCase ( self) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def UpperCAmelCase ( self , __a) -> None: '''simple docstring''' _UpperCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def UpperCAmelCase ( self , __a , __a = None , __a = False) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a) _UpperCamelCase = [1] * len(self.prefix_tokens) _UpperCamelCase = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(__a)) + suffix_ones return prefix_ones + ([0] * len(__a)) + ([0] * len(__a)) + suffix_ones def UpperCAmelCase ( self , __a , __a = None) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase ( self , __a , __a = None) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def UpperCAmelCase ( self , __a , __a , __a , __a , **__a) -> List[Any]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''') _UpperCamelCase = src_lang _UpperCamelCase = self(__a , add_special_tokens=__a , return_tensors=__a , **__a) _UpperCamelCase = self.convert_tokens_to_ids(__a) _UpperCamelCase = tgt_lang_id return inputs def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = {self.convert_ids_to_tokens(__a): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def UpperCAmelCase ( self , __a) -> List[str]: '''simple docstring''' return self.sp_model.encode(__a , out_type=__a) def UpperCAmelCase ( self , __a) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase = self.sp_model.PieceToId(__a) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self , __a) -> Union[str, Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def UpperCAmelCase ( self , __a) -> int: '''simple docstring''' _UpperCamelCase = ''''''.join(__a).replace(__a , ''' ''').strip() return out_string def UpperCAmelCase ( self , __a , __a = None) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__a): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCamelCase = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(__a) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __a) elif not os.path.isfile(self.vocab_file): with open(__a , '''wb''') as fi: _UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(__a) return (out_vocab_file,) def UpperCAmelCase ( self , __a , __a = "en_XX" , __a = None , __a = "ro_RO" , **__a , ) -> BatchEncoding: '''simple docstring''' _UpperCamelCase = src_lang _UpperCamelCase = tgt_lang return super().prepare_seqaseq_batch(__a , __a , **__a) def UpperCAmelCase ( self) -> str: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang) def UpperCAmelCase ( self) -> str: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang) def UpperCAmelCase ( self , __a) -> None: '''simple docstring''' _UpperCamelCase = self.lang_code_to_id[src_lang] _UpperCamelCase = [] _UpperCamelCase = [self.eos_token_id, self.cur_lang_code] def UpperCAmelCase ( self , __a) -> None: '''simple docstring''' _UpperCamelCase = self.lang_code_to_id[lang] _UpperCamelCase = [] _UpperCamelCase = [self.eos_token_id, self.cur_lang_code]
19
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['pixel_values'] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BICUBIC , __a = True , __a = True , __a = 1 / 2_55 , __a = None , __a = True , __a = None , __a = None , **__a , ) -> None: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a , default_to_square=__a , param_name='''crop_size''') _UpperCamelCase = do_resize _UpperCamelCase = do_rescale _UpperCamelCase = do_normalize _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = rescale_factor _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BILINEAR , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "shortest_edge" in size: _UpperCamelCase = get_resize_output_image_size(__a , size=size['''shortest_edge'''] , default_to_square=__a) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''') return resize(__a , size=__a , resample=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''') return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a) -> np.ndarray: '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> BatchFeature: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(__a , param_name='''crop_size''' , default_to_square=__a) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(__a) if not is_batched(__a): _UpperCamelCase = [images] if not valid_images(__a): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(__a) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=__a , size=__a , resample=__a) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=__a , size=__a) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=__a , scale=__a) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=__a , mean=__a , std=__a) for image in images] _UpperCamelCase = [to_channel_dimension_format(__a , __a) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=__a , tensor_type=__a)
19
1
"""simple docstring""" import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _a = """\ """ _a = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _a = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase( datasets.Metric ): def UpperCAmelCase ( self) -> Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string'''), }) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def UpperCAmelCase ( self , __a , __a , __a = 16 , __a = True , __a=None) -> Dict: '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _UpperCamelCase = '''cuda''' else: _UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' _UpperCamelCase = AutoModelForCausalLM.from_pretrained(__a) _UpperCamelCase = model.to(__a) _UpperCamelCase = AutoTokenizer.from_pretrained(__a) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _UpperCamelCase = list(tokenizer.special_tokens_map_extended.values()) # check that the model already has at least one special token defined assert ( len(__a) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]}) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _UpperCamelCase = model.config.max_length - 1 else: _UpperCamelCase = model.config.max_length _UpperCamelCase = tokenizer( __a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , return_tensors='''pt''' , return_attention_mask=__a , ).to(__a) _UpperCamelCase = encodings['''input_ids'''] _UpperCamelCase = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1) , 1)), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1) , 2)), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _UpperCamelCase = [] _UpperCamelCase = CrossEntropyLoss(reduction='''none''') for start_index in logging.tqdm(range(0 , len(__a) , __a)): _UpperCamelCase = min(start_index + batch_size , len(__a)) _UpperCamelCase = encoded_texts[start_index:end_index] _UpperCamelCase = attn_masks[start_index:end_index] if add_start_token: _UpperCamelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0)).to(__a) _UpperCamelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1) _UpperCamelCase = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa).to(__a), attn_mask] , dim=1) _UpperCamelCase = encoded_batch with torch.no_grad(): _UpperCamelCase = model(__a , attention_mask=__a).logits _UpperCamelCase = out_logits[..., :-1, :].contiguous() _UpperCamelCase = labels[..., 1:].contiguous() _UpperCamelCase = attn_mask[..., 1:].contiguous() _UpperCamelCase = torch.expa( (loss_fct(shift_logits.transpose(1 , 2) , __a) * shift_attention_mask_batch).sum(1) / shift_attention_mask_batch.sum(1)) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__a)}
19
"""simple docstring""" # Imports import numpy as np class _UpperCAmelCase: def __init__( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) def UpperCAmelCase ( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' if red is not None: _UpperCamelCase = red if green is not None: _UpperCamelCase = green if blue is not None: _UpperCamelCase = blue if red_edge is not None: _UpperCamelCase = red_edge if nir is not None: _UpperCamelCase = nir return True def UpperCAmelCase ( self , __a="" , __a=None , __a=None , __a=None , __a=None , __a=None) -> List[str]: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) _UpperCamelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''') return False def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self) -> Any: '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self , __a=0.08 , __a=1.22 , __a=0.03) -> Optional[Any]: '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir / self.green) - 1 def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.red - self.blue) / self.red def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir - self.green def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def UpperCAmelCase ( self , __a=0.16) -> Optional[Any]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self , __a=0.5) -> Dict: '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self , __a=None , __a=None) -> Any: '''simple docstring''' return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self) -> Any: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> str: '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) _UpperCamelCase = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Any: '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
19
1
"""simple docstring""" def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = '''''' for i in table: res += inp[i - 1] return res def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" return data[1:] + data[0] def lowerCamelCase__ ( __snake_case, __snake_case ) -> Tuple: """simple docstring""" _UpperCamelCase = '''''' for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = int('''0b''' + data[0] + data[-1], 2 ) _UpperCamelCase = int('''0b''' + data[1:3], 2 ) return bin(s[row][col] )[2:] def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = message[:4] _UpperCamelCase = message[4:] _UpperCamelCase = apply_table(__snake_case, __snake_case ) _UpperCamelCase = xor(__snake_case, __snake_case ) _UpperCamelCase = apply_sbox(__snake_case, temp[:4] ) # noqa: E741 _UpperCamelCase = apply_sbox(__snake_case, temp[4:] ) _UpperCamelCase = '''0''' * (2 - len(__snake_case )) + l # noqa: E741 _UpperCamelCase = '''0''' * (2 - len(__snake_case )) + r _UpperCamelCase = apply_table(l + r, __snake_case ) _UpperCamelCase = xor(__snake_case, __snake_case ) return temp + right if __name__ == "__main__": _a = input("""Enter 10 bit key: """) _a = input("""Enter 8 bit message: """) _a = [6, 3, 7, 4, 8, 5, 10, 9] _a = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] _a = [2, 4, 3, 1] _a = [2, 6, 3, 1, 4, 8, 5, 7] _a = [4, 1, 3, 5, 7, 2, 8, 6] _a = [4, 1, 2, 3, 2, 3, 4, 1] _a = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _a = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _a = apply_table(key, paa_table) _a = temp[:5] _a = temp[5:] _a = left_shift(left) _a = left_shift(right) _a = apply_table(left + right, pa_table) _a = left_shift(left) _a = left_shift(right) _a = left_shift(left) _a = left_shift(right) _a = apply_table(left + right, pa_table) # encryption _a = apply_table(message, IP) _a = function(expansion, sa, sa, keya, temp) _a = temp[4:] + temp[:4] _a = function(expansion, sa, sa, keya, temp) _a = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption _a = apply_table(CT, IP) _a = function(expansion, sa, sa, keya, temp) _a = temp[4:] + temp[:4] _a = function(expansion, sa, sa, keya, temp) _a = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
19
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=64 , __a=2 , __a=3 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a=[1, 16, 4, 4] , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _UpperCamelCase = (self.image_size // 32) ** 2 _UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__a , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.type_sequence_label_size _UpperCamelCase = ViTHybridForImageClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowercase__ = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''') def UpperCAmelCase ( self) -> Dict: '''simple docstring''' pass def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear)) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _UpperCamelCase = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = ViTHybridModel.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase( unittest.TestCase ): @cached_property def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( __a) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''').to(__a) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__a) # verify the logits _UpperCamelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor([-1.9090, -0.4993, -0.2389]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4)) @slow @require_accelerate def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''') _UpperCamelCase = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''') _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''') _UpperCamelCase = model(**__a) _UpperCamelCase = outputs.logits # model predicts one of the 1000 ImageNet classes _UpperCamelCase = logits.argmax(-1).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''')
19
1
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _a = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case=None ) -> List[str]: """simple docstring""" if rng is None: _UpperCamelCase = random.Random() _UpperCamelCase = 1 for dim in shape: total_dims *= dim _UpperCamelCase = [] for _ in range(__snake_case ): values.append(rng.randint(0, vocab_size - 1 ) ) _UpperCamelCase = np.array(__snake_case, dtype=jnp.intaa ).reshape(__snake_case ) return output def lowerCamelCase__ ( __snake_case, __snake_case=None ) -> Tuple: """simple docstring""" _UpperCamelCase = ids_tensor(__snake_case, vocab_size=2, rng=__snake_case ) # make sure that at least one token is attended to for each batch _UpperCamelCase = 1 return attn_mask @require_flax class _UpperCAmelCase: lowercase__ = None lowercase__ = () def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _UpperCamelCase = 2 _UpperCamelCase = inputs['''input_ids'''].shape[-1] // 2 _UpperCamelCase = inputs['''input_ids'''][:max_batch_size, :sequence_length] _UpperCamelCase = jnp.ones_like(__a) _UpperCamelCase = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _UpperCamelCase = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _UpperCamelCase = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() _UpperCamelCase = False _UpperCamelCase = max_length _UpperCamelCase = 0 for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning _UpperCamelCase = getattr(__a , __a) _UpperCamelCase = pt_model_class(__a).eval() _UpperCamelCase = load_flax_weights_in_pytorch_model(__a , flax_model.params) _UpperCamelCase = flax_model.generate(__a).sequences _UpperCamelCase = pt_model.generate(torch.tensor(__a , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _UpperCamelCase = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() _UpperCamelCase = False _UpperCamelCase = max_length for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() _UpperCamelCase = True _UpperCamelCase = max_length for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() _UpperCamelCase = False _UpperCamelCase = max_length _UpperCamelCase = 2 for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() _UpperCamelCase = False _UpperCamelCase = max_length _UpperCamelCase = 2 _UpperCamelCase = 2 for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() _UpperCamelCase = True _UpperCamelCase = max_length _UpperCamelCase = 0.8 _UpperCamelCase = 10 _UpperCamelCase = 0.3 _UpperCamelCase = 1 _UpperCamelCase = 8 _UpperCamelCase = 9 for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() _UpperCamelCase = max_length _UpperCamelCase = 1 _UpperCamelCase = 8 _UpperCamelCase = 9 for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() _UpperCamelCase = max_length _UpperCamelCase = 2 _UpperCamelCase = 1 _UpperCamelCase = 8 _UpperCamelCase = 9 for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() # pad attention mask on the left _UpperCamelCase = attention_mask.at[(0, 0)].set(0) _UpperCamelCase = False _UpperCamelCase = max_length for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a , attention_mask=__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a , attention_mask=__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() # pad attention mask on the left _UpperCamelCase = attention_mask.at[(0, 0)].set(0) _UpperCamelCase = True _UpperCamelCase = max_length for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a , attention_mask=__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a , attention_mask=__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() # pad attention mask on the left _UpperCamelCase = attention_mask.at[(0, 0)].set(0) _UpperCamelCase = 2 _UpperCamelCase = max_length for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a , attention_mask=__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a , attention_mask=__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-bert''') _UpperCamelCase = FlaxAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''') _UpperCamelCase = '''Hello world''' _UpperCamelCase = tokenizer(__a , return_tensors='''np''').input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__a , '''do_samples'''): model.generate(__a , do_samples=__a) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__a , '''foo'''): _UpperCamelCase = {'''foo''': '''bar'''} model.generate(__a , **__a)
19
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['vqvae'] def __init__( self , __a , __a , __a , __a , ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules(unet=__a , scheduler=__a , mel=__a , vqvae=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' return 50 if isinstance(self.scheduler , __a) else 10_00 @torch.no_grad() def __call__( self , __a = 1 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = 0 , __a = None , __a = None , __a=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' _UpperCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(__a) _UpperCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: _UpperCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _UpperCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__a , device=self.device , ) _UpperCamelCase = noise _UpperCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__a , __a) _UpperCamelCase = self.mel.audio_slice_to_image(__a) _UpperCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''').reshape( (input_image.height, input_image.width)) _UpperCamelCase = (input_image / 2_55) * 2 - 1 _UpperCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: _UpperCamelCase = self.vqvae.encode(torch.unsqueeze(__a , 0)).latent_dist.sample( generator=__a)[0] _UpperCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _UpperCamelCase = self.scheduler.add_noise(__a , __a , self.scheduler.timesteps[start_step - 1]) _UpperCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _UpperCamelCase = int(mask_start_secs * pixels_per_second) _UpperCamelCase = int(mask_end_secs * pixels_per_second) _UpperCamelCase = self.scheduler.add_noise(__a , __a , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , __a): _UpperCamelCase = self.unet(__a , __a , __a)['''sample'''] else: _UpperCamelCase = self.unet(__a , __a)['''sample'''] if isinstance(self.scheduler , __a): _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , eta=__a , generator=__a , )['''prev_sample'''] else: _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , generator=__a , )['''prev_sample'''] if mask is not None: if mask_start > 0: _UpperCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _UpperCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _UpperCamelCase = 1 / self.vqvae.config.scaling_factor * images _UpperCamelCase = self.vqvae.decode(__a)['''sample'''] _UpperCamelCase = (images / 2 + 0.5).clamp(0 , 1) _UpperCamelCase = images.cpu().permute(0 , 2 , 3 , 1).numpy() _UpperCamelCase = (images * 2_55).round().astype('''uint8''') _UpperCamelCase = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__a , mode='''RGB''').convert('''L''') for _ in images)) _UpperCamelCase = [self.mel.image_to_audio(__a) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__a)[:, np.newaxis, :]) , **ImagePipelineOutput(__a)) @torch.no_grad() def UpperCAmelCase ( self , __a , __a = 50) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , __a) self.scheduler.set_timesteps(__a) _UpperCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''').reshape((1, image.height, image.width)) for image in images]) _UpperCamelCase = (sample / 2_55) * 2 - 1 _UpperCamelCase = torch.Tensor(__a).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): _UpperCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _UpperCamelCase = self.scheduler.alphas_cumprod[t] _UpperCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _UpperCamelCase = 1 - alpha_prod_t _UpperCamelCase = self.unet(__a , __a)['''sample'''] _UpperCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _UpperCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _UpperCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase ( __a , __a , __a) -> torch.Tensor: '''simple docstring''' _UpperCamelCase = acos(torch.dot(torch.flatten(__a) , torch.flatten(__a)) / torch.norm(__a) / torch.norm(__a)) return sin((1 - alpha) * theta) * xa / sin(__a) + sin(alpha * theta) * xa / sin(__a)
19
1
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'detr' lowercase__ = ['past_key_values'] lowercase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __a=True , __a=None , __a=3 , __a=1_00 , __a=6 , __a=20_48 , __a=8 , __a=6 , __a=20_48 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=2_56 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=1 , __a=1 , __a=5 , __a=2 , __a=0.1 , **__a , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__a , __a): _UpperCamelCase = backbone_config.get('''model_type''') _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(__a) # set timm attributes to None _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None, None, None _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = encoder_layers _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase ( cls , __a , **__a) -> int: '''simple docstring''' return cls(backbone_config=__a , **__a) def UpperCAmelCase ( self) -> Dict[str, any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output class _UpperCAmelCase( lowerCamelCase ): lowercase__ = version.parse('1.11' ) @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def UpperCAmelCase ( self) -> float: '''simple docstring''' return 1e-5 @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return 12
19
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'detr' lowercase__ = ['past_key_values'] lowercase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __a=True , __a=None , __a=3 , __a=1_00 , __a=6 , __a=20_48 , __a=8 , __a=6 , __a=20_48 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=2_56 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=1 , __a=1 , __a=5 , __a=2 , __a=0.1 , **__a , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__a , __a): _UpperCamelCase = backbone_config.get('''model_type''') _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(__a) # set timm attributes to None _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None, None, None _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = encoder_layers _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase ( cls , __a , **__a) -> int: '''simple docstring''' return cls(backbone_config=__a , **__a) def UpperCAmelCase ( self) -> Dict[str, any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output class _UpperCAmelCase( lowerCamelCase ): lowercase__ = version.parse('1.11' ) @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def UpperCAmelCase ( self) -> float: '''simple docstring''' return 1e-5 @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return 12
19
1
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _UpperCamelCase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj ) assert isinstance(_test_patching.os.path, _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" assert _test_patching.open is open _UpperCamelCase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, '''open''', __snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching, '''pandas.read_csv''', __snake_case ): pass def lowerCamelCase__ ( ) -> Dict: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, '''len''', __snake_case ) is None with patch_submodule(_test_patching, '''len''', __snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_start_and_stop_mock__''' _UpperCamelCase = patch_submodule(_test_patching, '''open''', __snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _UpperCamelCase = '''__test_patch_submodule_successive_join__''' _UpperCamelCase = '''__test_patch_submodule_successive_dirname__''' _UpperCamelCase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> str: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching, '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''', __snake_case ): pass with patch_submodule(_test_patching, '''os.__attribute_that_doesn_exist__''', __snake_case ): pass
19
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'wavlm' def __init__( self , __a=32 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.1 , __a=0.02 , __a=1e-5 , __a="group" , __a="gelu" , __a=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __a=(5, 2, 2, 2, 2, 2, 2) , __a=(10, 3, 3, 3, 3, 2, 2) , __a=False , __a=1_28 , __a=16 , __a=3_20 , __a=8_00 , __a=False , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=3_20 , __a=2 , __a=0.1 , __a=1_00 , __a=2_56 , __a=2_56 , __a=0.1 , __a="mean" , __a=False , __a=False , __a=2_56 , __a=(5_12, 5_12, 5_12, 5_12, 15_00) , __a=(5, 3, 3, 1, 1) , __a=(1, 2, 3, 1, 1) , __a=5_12 , __a=80 , __a=0 , __a=1 , __a=2 , __a=False , __a=3 , __a=2 , __a=3 , __a=None , **__a , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a) _UpperCamelCase = hidden_size _UpperCamelCase = feat_extract_norm _UpperCamelCase = feat_extract_activation _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = conv_bias _UpperCamelCase = num_buckets _UpperCamelCase = max_bucket_distance _UpperCamelCase = num_conv_pos_embeddings _UpperCamelCase = num_conv_pos_embedding_groups _UpperCamelCase = len(self.conv_dim) _UpperCamelCase = num_hidden_layers _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = feat_proj_dropout _UpperCamelCase = final_dropout _UpperCamelCase = layerdrop _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = num_ctc_classes _UpperCamelCase = vocab_size _UpperCamelCase = do_stable_layer_norm _UpperCamelCase = use_weighted_layer_sum _UpperCamelCase = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCamelCase = apply_spec_augment _UpperCamelCase = mask_time_prob _UpperCamelCase = mask_time_length _UpperCamelCase = mask_time_min_masks _UpperCamelCase = mask_feature_prob _UpperCamelCase = mask_feature_length # parameters for pretraining with codevector quantized representations _UpperCamelCase = num_codevectors_per_group _UpperCamelCase = num_codevector_groups _UpperCamelCase = contrastive_logits_temperature _UpperCamelCase = num_negatives _UpperCamelCase = codevector_dim _UpperCamelCase = proj_codevector_dim _UpperCamelCase = diversity_loss_weight # ctc loss _UpperCamelCase = ctc_loss_reduction _UpperCamelCase = ctc_zero_infinity # adapter _UpperCamelCase = add_adapter _UpperCamelCase = adapter_kernel_size _UpperCamelCase = adapter_stride _UpperCamelCase = num_adapter_layers _UpperCamelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = xvector_output_dim @property def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
19
1
"""simple docstring""" def lowerCamelCase__ ( __snake_case ) -> list[int]: """simple docstring""" _UpperCamelCase = len(__snake_case ) for i in range(__snake_case ): for j in range(i + 1, __snake_case ): if numbers[j] < numbers[i]: _UpperCamelCase , _UpperCamelCase = numbers[j], numbers[i] return numbers if __name__ == "__main__": _a = input("""Enter numbers separated by a comma:\n""").strip() _a = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
19
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _a = """bart""" _a = True @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> Dict: """simple docstring""" if LOAD_DENSE_INDEX: _UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _UpperCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _UpperCamelCase = qar_model.eval() else: _UpperCamelCase , _UpperCamelCase = (None, None) if MODEL_TYPE == "bart": _UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _UpperCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _UpperCamelCase = sas_model.eval() else: _UpperCamelCase , _UpperCamelCase = make_qa_sas_model( model_name='''t5-small''', from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''', device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: _UpperCamelCase = faiss.StandardGpuResources() _UpperCamelCase = datasets.load_dataset(path='''wiki_snippets''', name='''wiki40b_en_100_0''' )['''train'''] _UpperCamelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''', dtype='''float32''', mode='''r''', shape=(wikiaab_passages.num_rows, 1_28), ) _UpperCamelCase = faiss.IndexFlatIP(1_28 ) _UpperCamelCase = faiss.index_cpu_to_gpu(__snake_case, 1, __snake_case ) wikiaab_gpu_index_flat.add(__snake_case ) # TODO fix for larger GPU else: _UpperCamelCase , _UpperCamelCase = (None, None) _UpperCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = datasets.load_dataset('''eli5''', name='''LFQA_reddit''' ) _UpperCamelCase = elia['''train_eli5'''] _UpperCamelCase = np.memmap( '''eli5_questions_reps.dat''', dtype='''float32''', mode='''r''', shape=(elia_train.num_rows, 1_28) ) _UpperCamelCase = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(__snake_case ) return (elia_train, eli5_train_q_index) _a , _a , _a = load_indexes() _a , _a , _a , _a = load_models() _a , _a = load_train_data() def lowerCamelCase__ ( __snake_case, __snake_case=10 ) -> List[Any]: """simple docstring""" _UpperCamelCase = embed_questions_for_retrieval([question], __snake_case, __snake_case ) _UpperCamelCase , _UpperCamelCase = eli5_train_q_index.search(__snake_case, __snake_case ) _UpperCamelCase = [elia_train[int(__snake_case )] for i in I[0]] return nn_examples def lowerCamelCase__ ( __snake_case, __snake_case="wiki40b", __snake_case="dense", __snake_case=10 ) -> List[str]: """simple docstring""" if source == "none": _UpperCamelCase , _UpperCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _UpperCamelCase , _UpperCamelCase = query_qa_dense_index( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) else: _UpperCamelCase , _UpperCamelCase = query_es_index( __snake_case, __snake_case, index_name='''english_wiki40b_snippets_100w''', n_results=__snake_case, ) _UpperCamelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _UpperCamelCase = '''question: {} context: {}'''.format(__snake_case, __snake_case ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __snake_case : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __snake_case : None), } ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=64, __snake_case=2_56, __snake_case=False, __snake_case=2, __snake_case=0.95, __snake_case=0.8 ) -> Dict: """simple docstring""" with torch.no_grad(): _UpperCamelCase = qa_sas_generate( __snake_case, __snake_case, __snake_case, num_answers=1, num_beams=__snake_case, min_len=__snake_case, max_len=__snake_case, do_sample=__snake_case, temp=__snake_case, top_p=__snake_case, top_k=__snake_case, max_input_length=10_24, device='''cuda:0''', )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar _a = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" _a = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _a = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) _a = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] _a = st.sidebar.checkbox("""Demo options""") if demo_options: _a = st.sidebar.selectbox( """""", action_list, index=3, ) _a = action_list.index(action_st) _a = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) _a = show_type == """Show full text of passages""" else: _a = 3 _a = True _a = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: _a = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) _a = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) _a = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: _a = """wiki40b""" _a = """dense""" _a = """beam""" _a = 2 _a = 64 _a = 256 _a = None _a = None _a = st.sidebar.checkbox("""Generation options""") if generate_options: _a = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) _a = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) _a = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) _a = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": _a = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _a = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _a = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _a = None # start main text _a = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] _a = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": _a = st.text_input("""Enter your question here:""", """""") else: _a = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": _a , _a = make_support(question, source=wiki_source, method="""dense""", n_results=10) _a , _a = make_support(question, source=wiki_source, method="""sparse""", n_results=10) _a = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _a = support_list[:10] _a = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: _a , _a = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _a , _a = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): _a = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) _a = res[1].strip() if sec_titles == "": _a = """[{}]({})""".format(res[0], wiki_url) else: _a = sec_titles.split(""" & """) _a = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: _a = find_nearest_training(question) _a = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) _a = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) _a = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
19
1
"""simple docstring""" class _UpperCAmelCase: def __init__( self , __a , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = name _UpperCamelCase = val def __str__( self) -> Optional[int]: '''simple docstring''' return F'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self , __a) -> Union[str, Any]: '''simple docstring''' return self.val < other.val class _UpperCAmelCase: def __init__( self , __a) -> str: '''simple docstring''' _UpperCamelCase = {} _UpperCamelCase = {} _UpperCamelCase = self.build_heap(__a) def __getitem__( self , __a) -> Union[str, Any]: '''simple docstring''' return self.get_value(__a) def UpperCAmelCase ( self , __a) -> Union[str, Any]: '''simple docstring''' return (idx - 1) // 2 def UpperCAmelCase ( self , __a) -> Any: '''simple docstring''' return idx * 2 + 1 def UpperCAmelCase ( self , __a) -> int: '''simple docstring''' return idx * 2 + 2 def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' return self.heap_dict[key] def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = len(__a) - 1 _UpperCamelCase = self.get_parent_idx(__a) for idx, i in enumerate(__a): _UpperCamelCase = idx _UpperCamelCase = i.val for i in range(__a , -1 , -1): self.sift_down(__a , __a) return array def UpperCAmelCase ( self , __a , __a) -> int: '''simple docstring''' while True: _UpperCamelCase = self.get_left_child_idx(__a) # noqa: E741 _UpperCamelCase = self.get_right_child_idx(__a) _UpperCamelCase = idx if l < len(__a) and array[l] < array[idx]: _UpperCamelCase = l if r < len(__a) and array[r] < array[smallest]: _UpperCamelCase = r if smallest != idx: _UpperCamelCase , _UpperCamelCase = array[smallest], array[idx] ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) _UpperCamelCase = smallest else: break def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = self.get_parent_idx(__a) while p >= 0 and self.heap[p] > self.heap[idx]: _UpperCamelCase , _UpperCamelCase = self.heap[idx], self.heap[p] _UpperCamelCase , _UpperCamelCase = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) _UpperCamelCase = p _UpperCamelCase = self.get_parent_idx(__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return self.heap[0] def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.heap[-1], self.heap[0] _UpperCamelCase , _UpperCamelCase = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) _UpperCamelCase = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap) return x def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' self.heap.append(__a) _UpperCamelCase = len(self.heap) - 1 _UpperCamelCase = node.val self.sift_up(len(self.heap) - 1) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return len(self.heap) == 0 def UpperCAmelCase ( self , __a , __a) -> List[Any]: '''simple docstring''' assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" _UpperCamelCase = new_value _UpperCamelCase = new_value self.sift_up(self.idx_of_element[node]) _a = Node("""R""", -1) _a = Node("""B""", 6) _a = Node("""A""", 3) _a = Node("""X""", 1) _a = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array _a = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
19
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } _a = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> Tuple: """simple docstring""" for attribute in key.split('''.''' ): _UpperCamelCase = getattr(__snake_case, __snake_case ) if weight_type is not None: _UpperCamelCase = getattr(__snake_case, __snake_case ).shape else: _UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase = value elif weight_type == "weight_g": _UpperCamelCase = value elif weight_type == "weight_v": _UpperCamelCase = value elif weight_type == "bias": _UpperCamelCase = value else: _UpperCamelCase = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = fairseq_model.state_dict() _UpperCamelCase = hf_model.feature_extractor _UpperCamelCase = hf_model.adapter for name, value in fairseq_dict.items(): _UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __snake_case, __snake_case, __snake_case, __snake_case, hf_model.config.feat_extract_norm == '''group''', ) _UpperCamelCase = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(__snake_case, __snake_case, __snake_case, __snake_case ) _UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCamelCase = True if "*" in mapped_key: _UpperCamelCase = name.split(__snake_case )[0].split('''.''' )[-2] _UpperCamelCase = mapped_key.replace('''*''', __snake_case ) if "weight_g" in name: _UpperCamelCase = '''weight_g''' elif "weight_v" in name: _UpperCamelCase = '''weight_v''' elif "bias" in name: _UpperCamelCase = '''bias''' elif "weight" in name: _UpperCamelCase = '''weight''' else: _UpperCamelCase = None set_recursively(__snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = full_name.split('''conv_layers.''' )[-1] _UpperCamelCase = name.split('''.''' ) _UpperCamelCase = int(items[0] ) _UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = full_name.split('''adaptor.''' )[-1] _UpperCamelCase = name.split('''.''' ) if items[1].isdigit(): _UpperCamelCase = int(items[1] ) else: _UpperCamelCase = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' _UpperCamelCase = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(__snake_case, __snake_case ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase , _UpperCamelCase = emb.weight.shape _UpperCamelCase = nn.Linear(__snake_case, __snake_case, bias=__snake_case ) _UpperCamelCase = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = WavaVecaConfig.from_pretrained( __snake_case, add_adapter=__snake_case, adapter_stride=__snake_case, adapter_kernel_size=__snake_case, use_auth_token=__snake_case, output_hidden_size=__snake_case, ) _UpperCamelCase = MBartConfig.from_pretrained(__snake_case ) # load model _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, }, ) _UpperCamelCase = model[0].eval() # load feature extractor _UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(__snake_case, use_auth_token=__snake_case ) # set weights for wav2vec2 encoder _UpperCamelCase = WavaVecaModel(__snake_case ) recursively_load_weights_wavaveca(model.encoder, __snake_case ) # load decoder weights _UpperCamelCase = MBartForCausalLM(__snake_case ) _UpperCamelCase , _UpperCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=__snake_case ) logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) _UpperCamelCase = SpeechEncoderDecoderModel(encoder=__snake_case, decoder=__snake_case ) _UpperCamelCase = False _UpperCamelCase = MBartaaTokenizer(__snake_case ) tokenizer.save_pretrained(__snake_case ) _UpperCamelCase = hf_wavavec.config.to_dict() _UpperCamelCase = tokenizer.pad_token_id _UpperCamelCase = tokenizer.bos_token_id _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = '''mbart50''' _UpperCamelCase = '''wav2vec2''' _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = 25_00_04 _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = SpeechEncoderDecoderConfig.from_dict(__snake_case ) hf_wavavec.save_pretrained(__snake_case ) feature_extractor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1024, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=25_0004, type=int, help="""`decoder_start_token_id` of model config""") _a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
19
1
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = original_name.split('''.''' )[0] _UpperCamelCase = key.split('''.''' ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 2] ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 1] ) _UpperCamelCase = orig_block_num - offset _UpperCamelCase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''', F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = OrderedDict() _UpperCamelCase , _UpperCamelCase = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): _UpperCamelCase = key.replace('''network''', '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 _UpperCamelCase = key[: key.find('''proj''' )] _UpperCamelCase = key.replace(__snake_case, F'''patch_embeddings.{total_embed_found}.''' ) _UpperCamelCase = key.replace('''proj''', '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: _UpperCamelCase = '''poolformer.encoder.''' + key if "mlp.fc1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc1''', '''output.conv1''' ) if "mlp.fc2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc2''', '''output.conv2''' ) if "norm1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm1''', '''before_norm''' ) if "norm2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm2''', '''after_norm''' ) if "layer_scale_1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_1''', '''layer_scale_1''' ) if "layer_scale_2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_2''', '''layer_scale_2''' ) if "head" in key: _UpperCamelCase = key.replace('''head''', '''classifier''' ) _UpperCamelCase = value return new_state_dict def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase = Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return image @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = PoolFormerConfig() # set attributes based on model_name _UpperCamelCase = '''huggingface/label-files''' _UpperCamelCase = model_name[-3:] _UpperCamelCase = 10_00 _UpperCamelCase = '''imagenet-1k-id2label.json''' _UpperCamelCase = (1, 10_00) # set config attributes _UpperCamelCase = json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type='''dataset''' ), '''r''' ) ) _UpperCamelCase = {int(__snake_case ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} if size == "s12": _UpperCamelCase = [2, 2, 6, 2] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s24": _UpperCamelCase = [4, 4, 12, 4] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.9 elif size == "m36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 elif size == "m48": _UpperCamelCase = [8, 8, 24, 8] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) # Prepare image _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__snake_case, return_tensors='''pt''' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict _UpperCamelCase = torch.load(__snake_case, map_location=torch.device('''cpu''' ) ) # rename keys _UpperCamelCase = rename_keys(__snake_case ) # create HuggingFace model and load state dict _UpperCamelCase = PoolFormerForImageClassification(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # Define image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) _UpperCamelCase = image_processor(images=prepare_img(), return_tensors='''pt''' ).pixel_values # forward pass _UpperCamelCase = model(__snake_case ) _UpperCamelCase = outputs.logits # define expected logit slices for different models if size == "s12": _UpperCamelCase = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": _UpperCamelCase = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": _UpperCamelCase = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": _UpperCamelCase = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": _UpperCamelCase = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3], __snake_case, atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _a = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
19
"""simple docstring""" import fire from utils import calculate_rouge, save_json def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case=None, **__snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()] _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()][: len(__snake_case )] _UpperCamelCase = calculate_rouge(__snake_case, __snake_case, **__snake_case ) if save_path is not None: save_json(__snake_case, __snake_case, indent=__snake_case ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
19
1
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _a = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _a = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _a = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def lowerCamelCase__ ( __snake_case, __snake_case ) -> tuple[str, float]: """simple docstring""" _UpperCamelCase = len([g for position, g in enumerate(__snake_case ) if g == main_target[position]] ) return (item, float(__snake_case )) def lowerCamelCase__ ( __snake_case, __snake_case ) -> tuple[str, str]: """simple docstring""" _UpperCamelCase = random.randint(0, len(__snake_case ) - 1 ) _UpperCamelCase = parent_a[:random_slice] + parent_a[random_slice:] _UpperCamelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowerCamelCase__ ( __snake_case, __snake_case ) -> str: """simple docstring""" _UpperCamelCase = list(__snake_case ) if random.uniform(0, 1 ) < MUTATION_PROBABILITY: _UpperCamelCase = random.choice(__snake_case ) return "".join(__snake_case ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, ) -> list[str]: """simple docstring""" _UpperCamelCase = [] # Generate more children proportionally to the fitness score. _UpperCamelCase = int(parent_a[1] * 1_00 ) + 1 _UpperCamelCase = 10 if child_n >= 10 else child_n for _ in range(__snake_case ): _UpperCamelCase = population_score[random.randint(0, __snake_case )][0] _UpperCamelCase , _UpperCamelCase = crossover(parent_a[0], __snake_case ) # Append new string to the population list. pop.append(mutate(__snake_case, __snake_case ) ) pop.append(mutate(__snake_case, __snake_case ) ) return pop def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case = True ) -> tuple[int, int, str]: """simple docstring""" if N_POPULATION < N_SELECTED: _UpperCamelCase = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(__snake_case ) # Verify that the target contains no genes besides the ones inside genes variable. _UpperCamelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _UpperCamelCase = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(__snake_case ) # Generate random starting population. _UpperCamelCase = [] for _ in range(__snake_case ): population.append(''''''.join([random.choice(__snake_case ) for i in range(len(__snake_case ) )] ) ) # Just some logs to know what the algorithms is doing. _UpperCamelCase , _UpperCamelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__snake_case ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _UpperCamelCase = [evaluate(__snake_case, __snake_case ) for item in population] # Check if there is a matching evolution. _UpperCamelCase = sorted(__snake_case, key=lambda __snake_case : x[1], reverse=__snake_case ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _UpperCamelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__snake_case ) # Normalize population score to be between 0 and 1. _UpperCamelCase = [ (item, score / len(__snake_case )) for item, score in population_score ] # This is selection for i in range(__snake_case ): population.extend(select(population_score[int(__snake_case )], __snake_case, __snake_case ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__snake_case ) > N_POPULATION: break if __name__ == "__main__": _a = ( """This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!""" ) _a = list( """ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm""" """nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\""" ) _a , _a , _a = basic(target_str, genes_list) print( F"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
19
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['image_processor', 'tokenizer'] lowercase__ = 'ViTImageProcessor' lowercase__ = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __a=None , __a=None , **__a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __a , ) _UpperCamelCase = kwargs.pop('''feature_extractor''') _UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(__a , __a) def __call__( self , __a=None , __a=None , __a=None , __a=None , **__a) -> Tuple: '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''') if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''') if text is not None: _UpperCamelCase = self.tokenizer(__a , return_tensors=__a , **__a) if visual_prompt is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if images is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if visual_prompt is not None and images is not None: _UpperCamelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _UpperCamelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__a) , tensor_type=__a) def UpperCAmelCase ( self , *__a , **__a) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*__a , **__a) def UpperCAmelCase ( self , *__a , **__a) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*__a , **__a) @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __a , ) return self.image_processor_class @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __a , ) return self.image_processor
19
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _UpperCAmelCase( unittest.TestCase ): def __init__( self , __a , __a=7 , __a=3 , __a=18 , __a=30 , __a=4_00 , __a=True , __a=None , __a=True , __a=None , __a=True , __a=[0.5, 0.5, 0.5] , __a=[0.5, 0.5, 0.5] , ) -> int: '''simple docstring''' _UpperCamelCase = size if size is not None else {'''shortest_edge''': 18} _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = image_size _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_normalize _UpperCamelCase = image_mean _UpperCamelCase = image_std def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = LevitImageProcessor if is_vision_available() else None def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = LevitImageProcessingTester(self) @property def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__a , '''image_mean''')) self.assertTrue(hasattr(__a , '''image_std''')) self.assertTrue(hasattr(__a , '''do_normalize''')) self.assertTrue(hasattr(__a , '''do_resize''')) self.assertTrue(hasattr(__a , '''do_center_crop''')) self.assertTrue(hasattr(__a , '''size''')) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''shortest_edge''': 18}) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18}) _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {'''shortest_edge''': 42}) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84}) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' # Initialize image_processing _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a) for image in image_inputs: self.assertIsInstance(__a , Image.Image) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(__a , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' # Initialize image_processing _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a) for image in image_inputs: self.assertIsInstance(__a , np.ndarray) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(__a , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase ( self) -> Any: '''simple docstring''' # Initialize image_processing _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(__a , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
19
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=32 , __a=3 , __a=4 , __a=[10, 20, 30, 40] , __a=[2, 2, 3, 2] , __a=True , __a=True , __a=37 , __a="gelu" , __a=10 , __a=0.02 , __a=["stage2", "stage3", "stage4"] , __a=3 , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = num_channels _UpperCamelCase = num_stages _UpperCamelCase = hidden_sizes _UpperCamelCase = depths _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = out_features _UpperCamelCase = num_labels _UpperCamelCase = scope _UpperCamelCase = num_stages def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Any: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__a , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=__a , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = UperNetForSemanticSegmentation(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__ = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = UperNetModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a) @unittest.skip(reason='''UperNet does not use inputs_embeds''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not support input and output embeddings''') def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''') def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''') def UpperCAmelCase ( self) -> int: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''') def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' def check_hidden_states_output(__a , __a , __a): _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(__a) , expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) _UpperCamelCase = _config_zero_init(configs_no_init.backbone_config) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason='''UperNet does not have tied weights''') def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' pass @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''', repo_type='''dataset''', filename='''ADE_val_00000001.jpg''' ) _UpperCamelCase = Image.open(__snake_case ).convert('''RGB''' ) return image @require_torch @require_vision @slow class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''') _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''').to(__a) _UpperCamelCase = prepare_img() _UpperCamelCase = processor(images=__a , return_tensors='''pt''').to(__a) with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''') _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''').to(__a) _UpperCamelCase = prepare_img() _UpperCamelCase = processor(images=__a , return_tensors='''pt''').to(__a) with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4))
19
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['pixel_values'] def __init__( self , __a = True , __a = 32 , __a=PILImageResampling.BILINEAR , __a = True , **__a , ) -> None: '''simple docstring''' _UpperCamelCase = do_resize _UpperCamelCase = do_rescale _UpperCamelCase = size_divisor _UpperCamelCase = resample super().__init__(**__a) def UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a) -> np.ndarray: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = get_image_size(__a) # Rounds the height and width down to the closest multiple of size_divisor _UpperCamelCase = height // size_divisor * size_divisor _UpperCamelCase = width // size_divisor * size_divisor _UpperCamelCase = resize(__a , (new_h, new_w) , resample=__a , data_format=__a , **__a) return image def UpperCAmelCase ( self , __a , __a , __a = None , **__a) -> np.ndarray: '''simple docstring''' return rescale(image=__a , scale=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a = None , __a = None , __a=None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> BatchFeature: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = size_divisor if size_divisor is not None else self.size_divisor _UpperCamelCase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''') _UpperCamelCase = make_list_of_images(__a) if not valid_images(__a): raise ValueError('''Invalid image(s)''') # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(__a) for img in images] if do_resize: _UpperCamelCase = [self.resize(__a , size_divisor=__a , resample=__a) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(__a , scale=1 / 2_55) for image in images] _UpperCamelCase = [to_channel_dimension_format(__a , __a) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=__a , tensor_type=__a)
19
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase( lowerCamelCase ): lowercase__ = (DDPMScheduler,) def UpperCAmelCase ( self , **__a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__a) return config def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=__a , beta_end=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.check_over_configs(thresholding=__a) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0979)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.02)) < 1e-5 def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = len(__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = torch.manual_seed(0) for t in reversed(range(__a)): # 1. predict noise residual _UpperCamelCase = model(__a , __a) # 2. predict previous mean of sample x_t-1 _UpperCamelCase = scheduler.step(__a , __a , __a , generator=__a).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCamelCase = pred_prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 258.9606) < 1e-2 assert abs(result_mean.item() - 0.3372) < 1e-3 def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''') _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = len(__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = torch.manual_seed(0) for t in reversed(range(__a)): # 1. predict noise residual _UpperCamelCase = model(__a , __a) # 2. predict previous mean of sample x_t-1 _UpperCamelCase = scheduler.step(__a , __a , __a , generator=__a).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCamelCase = pred_prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 202.0296) < 1e-2 assert abs(result_mean.item() - 0.2631) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__a) _UpperCamelCase = scheduler.timesteps for i, timestep in enumerate(__a): if i == len(__a) - 1: _UpperCamelCase = -1 else: _UpperCamelCase = timesteps[i + 1] _UpperCamelCase = scheduler.previous_timestep(__a) _UpperCamelCase = prev_t.item() self.assertEqual(__a , __a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 51, 0] with self.assertRaises(__a , msg='''`custom_timesteps` must be in descending order.'''): scheduler.set_timesteps(timesteps=__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 1, 0] _UpperCamelCase = len(__a) with self.assertRaises(__a , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.'''): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=__a)
19
1
"""simple docstring""" import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> Optional[Any]: """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: _UpperCamelCase = TOKENIZER_CLASSES else: _UpperCamelCase = {tokenizer_name: getattr(__snake_case, tokenizer_name + '''Fast''' )} logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: _UpperCamelCase = TOKENIZER_CLASSES[tokenizer_name] _UpperCamelCase = True if checkpoint_name is None: _UpperCamelCase = list(tokenizer_class.max_model_input_sizes.keys() ) else: _UpperCamelCase = [checkpoint_name] logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer _UpperCamelCase = tokenizer_class.from_pretrained(__snake_case, force_download=__snake_case ) # Save fast tokenizer logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: _UpperCamelCase , _UpperCamelCase = checkpoint.split('''/''' ) _UpperCamelCase = os.path.join(__snake_case, __snake_case ) elif add_prefix: _UpperCamelCase = checkpoint _UpperCamelCase = dump_path else: _UpperCamelCase = None _UpperCamelCase = dump_path logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _UpperCamelCase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _UpperCamelCase = file_path.split(__snake_case )[-1][0] if next_char == "/": _UpperCamelCase = os.path.join(__snake_case, __snake_case ) _UpperCamelCase = None logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) _UpperCamelCase = tokenizer.save_pretrained( __snake_case, legacy_format=__snake_case, filename_prefix=__snake_case ) logger.info(F'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith('''tokenizer.json''' ): os.remove(__snake_case ) logger.info(F'''=> removing {file_name}''' ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) _a = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
19
"""simple docstring""" from __future__ import annotations from functools import lru_cache from math import ceil _a = 100 _a = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} _UpperCamelCase = set() _UpperCamelCase = 42 _UpperCamelCase = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def lowerCamelCase__ ( __snake_case = 50_00 ) -> int | None: """simple docstring""" for number_to_partition in range(1, __snake_case ): if len(partition(__snake_case ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"""{solution() = }""")
19
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType _a = logging.get_logger(__name__) _a = { """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'deberta-v2' def __init__( self , __a=12_81_00 , __a=15_36 , __a=24 , __a=24 , __a=61_44 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=0 , __a=0.02 , __a=1e-7 , __a=False , __a=-1 , __a=0 , __a=True , __a=None , __a=0 , __a="gelu" , **__a , ) -> Optional[int]: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = relative_attention _UpperCamelCase = max_relative_positions _UpperCamelCase = pad_token_id _UpperCamelCase = position_biased_input # Backwards compatibility if type(__a) == str: _UpperCamelCase = [x.strip() for x in pos_att_type.lower().split('''|''')] _UpperCamelCase = pos_att_type _UpperCamelCase = vocab_size _UpperCamelCase = layer_norm_eps _UpperCamelCase = kwargs.get('''pooler_hidden_size''' , __a) _UpperCamelCase = pooler_dropout _UpperCamelCase = pooler_hidden_act class _UpperCAmelCase( lowerCamelCase ): @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCamelCase = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)]) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)]) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return 12 def UpperCAmelCase ( self , __a , __a = -1 , __a = -1 , __a = -1 , __a = False , __a = None , __a = 3 , __a = 40 , __a = 40 , __a = None , ) -> Mapping[str, Any]: '''simple docstring''' _UpperCamelCase = super().generate_dummy_inputs(preprocessor=__a , framework=__a) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
19
"""simple docstring""" from collections.abc import Callable import numpy as np def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> np.array: """simple docstring""" _UpperCamelCase = int(np.ceil((x_end - xa) / step_size ) ) _UpperCamelCase = np.zeros((n + 1,) ) _UpperCamelCase = ya _UpperCamelCase = xa for k in range(__snake_case ): _UpperCamelCase = y[k] + step_size * ode_func(__snake_case, y[k] ) _UpperCamelCase = y[k] + ( (step_size / 2) * (ode_func(__snake_case, y[k] ) + ode_func(x + step_size, __snake_case )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
19
1
"""simple docstring""" import math def lowerCamelCase__ ( __snake_case ) -> bool: """simple docstring""" assert isinstance(__snake_case, __snake_case ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _UpperCamelCase = range(3, int(math.sqrt(__snake_case ) + 1 ), 2 ) return not any(not number % i for i in odd_numbers ) def lowerCamelCase__ ( __snake_case, __snake_case=1, **__snake_case ) -> int: """simple docstring""" _UpperCamelCase = factor * value _UpperCamelCase = value while not is_prime(__snake_case ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1, **__snake_case ) return value
19
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _a = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _a = parser.parse_args() if args.model_type == "bert": _a = BertForMaskedLM.from_pretrained(args.model_name) _a = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _a = model.state_dict() _a = {} for w in ["word_embeddings", "position_embeddings"]: _a = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _a = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] _a = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _a = state_dict["""cls.predictions.decoder.weight"""] _a = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _a = state_dict[F"""cls.predictions.transform.dense.{w}"""] _a = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
19
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
19
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _a = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class _UpperCAmelCase: lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = 'gelu' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=False , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a=0.1 , __a=0.1 , __a=20 , __a=2 , __a=1 , __a=0 , ) -> int: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) _UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) _UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCamelCase = prepare_pegasus_inputs_dict(__a , __a , __a) return config, inputs_dict def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids''']) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a) _UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''') _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __a , decoder_attention_mask=__a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__a , ) _UpperCamelCase = model.decode(__a , __a) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''') def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids''']) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a) _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__a , decoder_position_ids=__a , ) _UpperCamelCase = model.decode(__a , __a , decoder_attention_mask=__a) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''') def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=None, __snake_case=None, ) -> Union[str, Any]: """simple docstring""" if attention_mask is None: _UpperCamelCase = np.not_equal(__snake_case, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _UpperCamelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = FlaxPegasusModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = self._prepare_for_class(__a , __a) _UpperCamelCase = model_class(__a) @jax.jit def encode_jitted(__a , __a=None , **__a): return model.encode(input_ids=__a , attention_mask=__a) with self.subTest('''JIT Enabled'''): _UpperCamelCase = encode_jitted(**__a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): _UpperCamelCase = encode_jitted(**__a).to_tuple() self.assertEqual(len(__a) , len(__a)) for jitted_output, output in zip(__a , __a): self.assertEqual(jitted_output.shape , output.shape) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = model_class(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask''']) _UpperCamelCase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(__a , __a , __a): return model.decode( decoder_input_ids=__a , decoder_attention_mask=__a , encoder_outputs=__a , ) with self.subTest('''JIT Enabled'''): _UpperCamelCase = decode_jitted(**__a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): _UpperCamelCase = decode_jitted(**__a).to_tuple() self.assertEqual(len(__a) , len(__a)) for jitted_output, output in zip(__a , __a): self.assertEqual(jitted_output.shape , output.shape) @slow def UpperCAmelCase ( self) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=__a) _UpperCamelCase = np.ones((1, 1)) _UpperCamelCase = model(__a) self.assertIsNotNone(__a) @slow def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''') _UpperCamelCase = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''') _UpperCamelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] _UpperCamelCase = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] _UpperCamelCase = tokenizer(__a , return_tensors='''np''' , truncation=__a , max_length=5_12 , padding=__a) _UpperCamelCase = model.generate(**__a , num_beams=2).sequences _UpperCamelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a) assert tgt_text == decoded
19
1
"""simple docstring""" from collections.abc import Callable import numpy as np def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> np.array: """simple docstring""" _UpperCamelCase = int(np.ceil((x_end - xa) / step_size ) ) _UpperCamelCase = np.zeros((n + 1,) ) _UpperCamelCase = ya _UpperCamelCase = xa for k in range(__snake_case ): _UpperCamelCase = y[k] + step_size * ode_func(__snake_case, y[k] ) _UpperCamelCase = y[k] + ( (step_size / 2) * (ode_func(__snake_case, y[k] ) + ode_func(x + step_size, __snake_case )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
19
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , __a=0 , ) -> Any: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope _UpperCamelCase = projection_dim def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) _UpperCamelCase = DPRConfig(projection_dim=self.projection_dim , **config.to_dict()) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = TFDPRContextEncoder(config=__a) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFDPRQuestionEncoder(config=__a) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = TFDPRReader(config=__a) _UpperCamelCase = model(__a , attention_mask=__a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,)) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowercase__ = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDPRModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__a) @slow def UpperCAmelCase ( self) -> str: '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRContextEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRContextEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRQuestionEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRReader.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''') _UpperCamelCase = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]]) # [CLS] hello, is my dog cute? [SEP] _UpperCamelCase = model(__a)[0] # embedding shape = (1, 768) # compare the actual values for a slice. _UpperCamelCase = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ]) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4))
19
1
"""simple docstring""" import math def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = 0 _UpperCamelCase = 0 while num > 0: _UpperCamelCase = num % 8 _UpperCamelCase = octal + (remainder * math.floor(math.pow(10, __snake_case ) )) counter += 1 _UpperCamelCase = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F'''0o{int(__snake_case )}''' def lowerCamelCase__ ( ) -> None: """simple docstring""" print('''\n2 in octal is:''' ) print(decimal_to_octal(2 ) ) # = 2 print('''\n8 in octal is:''' ) print(decimal_to_octal(8 ) ) # = 10 print('''\n65 in octal is:''' ) print(decimal_to_octal(65 ) ) # = 101 print('''\n216 in octal is:''' ) print(decimal_to_octal(2_16 ) ) # = 330 print('''\n512 in octal is:''' ) print(decimal_to_octal(5_12 ) ) # = 1000 print('''\n''' ) if __name__ == "__main__": main()
19
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x2_0000 and cp <= 0x2_A6DF) # or (cp >= 0x2_A700 and cp <= 0x2_B73F) # or (cp >= 0x2_B740 and cp <= 0x2_B81F) # or (cp >= 0x2_B820 and cp <= 0x2_CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2_F800 and cp <= 0x2_FA1F) # ): # return True return False def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" for char in word: _UpperCamelCase = ord(__snake_case ) if not _is_chinese_char(__snake_case ): return 0 return 1 def lowerCamelCase__ ( __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = set() for token in tokens: _UpperCamelCase = len(__snake_case ) > 1 and is_chinese(__snake_case ) if chinese_word: word_set.add(__snake_case ) _UpperCamelCase = list(__snake_case ) return word_list def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" if not chinese_word_set: return bert_tokens _UpperCamelCase = max([len(__snake_case ) for w in chinese_word_set] ) _UpperCamelCase = bert_tokens _UpperCamelCase , _UpperCamelCase = 0, len(__snake_case ) while start < end: _UpperCamelCase = True if is_chinese(bert_word[start] ): _UpperCamelCase = min(end - start, __snake_case ) for i in range(__snake_case, 1, -1 ): _UpperCamelCase = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _UpperCamelCase = '''##''' + bert_word[j] _UpperCamelCase = start + i _UpperCamelCase = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws _UpperCamelCase = [get_chinese_word(__snake_case ) for r in res] ltp_res.extend(__snake_case ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=__snake_case, truncation=__snake_case, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for input_ids, chinese_word in zip(__snake_case, __snake_case ): _UpperCamelCase = [] for id in input_ids: _UpperCamelCase = bert_tokenizer._convert_id_to_token(__snake_case ) input_tokens.append(__snake_case ) _UpperCamelCase = add_sub_symbol(__snake_case, __snake_case ) _UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__snake_case ): if token[:2] == "##": _UpperCamelCase = token[2:] # save chinese tokens' pos if len(__snake_case ) == 1 and _is_chinese_char(ord(__snake_case ) ): ref_id.append(__snake_case ) ref_ids.append(__snake_case ) assert len(__snake_case ) == len(__snake_case ) return ref_ids def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _UpperCamelCase = f.readlines() _UpperCamelCase = [line.strip() for line in data if len(__snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _UpperCamelCase = LTP(args.ltp ) # faster in GPU device _UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) _UpperCamelCase = prepare_ref(__snake_case, __snake_case, __snake_case ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _UpperCamelCase = [json.dumps(__snake_case ) + '''\n''' for ref in ref_ids] f.writelines(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) _a = parser.parse_args() main(args)
19
1
"""simple docstring""" _a = {} def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _UpperCamelCase = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _UpperCamelCase = _calculate(days - 1, __snake_case, late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _UpperCamelCase = _calculate(days - 1, absent + 1, 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _UpperCamelCase = _calculate(days - 1, __snake_case, 0 ) _UpperCamelCase = state_late + state_absent + state_ontime _UpperCamelCase = prizestrings return prizestrings def lowerCamelCase__ ( __snake_case = 30 ) -> int: """simple docstring""" return _calculate(__snake_case, absent=0, late=0 ) if __name__ == "__main__": print(solution())
19
"""simple docstring""" import heapq def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" _UpperCamelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__snake_case, [-1 * len(__snake_case ), (key, value)] ) # chosen_vertices = set of chosen vertices _UpperCamelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _UpperCamelCase = heapq.heappop(__snake_case )[1][0] chosen_vertices.add(__snake_case ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _UpperCamelCase = elem[1][1].index(__snake_case ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__snake_case ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _a = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
19
1
"""simple docstring""" import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def lowerCamelCase__ ( __snake_case, __snake_case, **__snake_case ) -> Tuple: """simple docstring""" _UpperCamelCase = AutoConfig.from_pretrained(__snake_case, **__snake_case ) _UpperCamelCase = AutoModelForSeqaSeqLM.from_config(__snake_case ) model.save_pretrained(__snake_case ) AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
19
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _UpperCamelCase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj ) assert isinstance(_test_patching.os.path, _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" assert _test_patching.open is open _UpperCamelCase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, '''open''', __snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching, '''pandas.read_csv''', __snake_case ): pass def lowerCamelCase__ ( ) -> Dict: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, '''len''', __snake_case ) is None with patch_submodule(_test_patching, '''len''', __snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_start_and_stop_mock__''' _UpperCamelCase = patch_submodule(_test_patching, '''open''', __snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _UpperCamelCase = '''__test_patch_submodule_successive_join__''' _UpperCamelCase = '''__test_patch_submodule_successive_dirname__''' _UpperCamelCase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> str: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching, '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''', __snake_case ): pass with patch_submodule(_test_patching, '''os.__attribute_that_doesn_exist__''', __snake_case ): pass
19
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['pixel_values'] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BICUBIC , __a = True , __a = True , __a = 1 / 2_55 , __a = None , __a = True , __a = None , __a = None , **__a , ) -> None: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a , default_to_square=__a , param_name='''crop_size''') _UpperCamelCase = do_resize _UpperCamelCase = do_rescale _UpperCamelCase = do_normalize _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = rescale_factor _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BILINEAR , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "shortest_edge" in size: _UpperCamelCase = get_resize_output_image_size(__a , size=size['''shortest_edge'''] , default_to_square=__a) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''') return resize(__a , size=__a , resample=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''') return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a) -> np.ndarray: '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> BatchFeature: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(__a , param_name='''crop_size''' , default_to_square=__a) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(__a) if not is_batched(__a): _UpperCamelCase = [images] if not valid_images(__a): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(__a) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=__a , size=__a , resample=__a) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=__a , size=__a) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=__a , scale=__a) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=__a , mean=__a , std=__a) for image in images] _UpperCamelCase = [to_channel_dimension_format(__a , __a) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=__a , tensor_type=__a)
19
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = original_name.split('''.''' )[0] _UpperCamelCase = key.split('''.''' ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 2] ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 1] ) _UpperCamelCase = orig_block_num - offset _UpperCamelCase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''', F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = OrderedDict() _UpperCamelCase , _UpperCamelCase = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): _UpperCamelCase = key.replace('''network''', '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 _UpperCamelCase = key[: key.find('''proj''' )] _UpperCamelCase = key.replace(__snake_case, F'''patch_embeddings.{total_embed_found}.''' ) _UpperCamelCase = key.replace('''proj''', '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: _UpperCamelCase = '''poolformer.encoder.''' + key if "mlp.fc1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc1''', '''output.conv1''' ) if "mlp.fc2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc2''', '''output.conv2''' ) if "norm1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm1''', '''before_norm''' ) if "norm2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm2''', '''after_norm''' ) if "layer_scale_1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_1''', '''layer_scale_1''' ) if "layer_scale_2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_2''', '''layer_scale_2''' ) if "head" in key: _UpperCamelCase = key.replace('''head''', '''classifier''' ) _UpperCamelCase = value return new_state_dict def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase = Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return image @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = PoolFormerConfig() # set attributes based on model_name _UpperCamelCase = '''huggingface/label-files''' _UpperCamelCase = model_name[-3:] _UpperCamelCase = 10_00 _UpperCamelCase = '''imagenet-1k-id2label.json''' _UpperCamelCase = (1, 10_00) # set config attributes _UpperCamelCase = json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type='''dataset''' ), '''r''' ) ) _UpperCamelCase = {int(__snake_case ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} if size == "s12": _UpperCamelCase = [2, 2, 6, 2] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s24": _UpperCamelCase = [4, 4, 12, 4] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.9 elif size == "m36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 elif size == "m48": _UpperCamelCase = [8, 8, 24, 8] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) # Prepare image _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__snake_case, return_tensors='''pt''' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict _UpperCamelCase = torch.load(__snake_case, map_location=torch.device('''cpu''' ) ) # rename keys _UpperCamelCase = rename_keys(__snake_case ) # create HuggingFace model and load state dict _UpperCamelCase = PoolFormerForImageClassification(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # Define image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) _UpperCamelCase = image_processor(images=prepare_img(), return_tensors='''pt''' ).pixel_values # forward pass _UpperCamelCase = model(__snake_case ) _UpperCamelCase = outputs.logits # define expected logit slices for different models if size == "s12": _UpperCamelCase = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": _UpperCamelCase = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": _UpperCamelCase = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": _UpperCamelCase = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": _UpperCamelCase = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3], __snake_case, atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _a = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
19
1
"""simple docstring""" import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__snake_case, __snake_case ) def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase , _UpperCamelCase = emb.weight.shape _UpperCamelCase = nn.Linear(__snake_case, __snake_case, bias=__snake_case ) _UpperCamelCase = emb.weight.data return lin_layer def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = torch.load(__snake_case, map_location='''cpu''' ) _UpperCamelCase = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] _UpperCamelCase = mam_aaa['''model'''] remove_ignore_keys_(__snake_case ) _UpperCamelCase = state_dict['''encoder.embed_tokens.weight'''].shape[0] _UpperCamelCase = MaMaaaConfig( vocab_size=__snake_case, max_position_embeddings=10_24, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, encoder_layerdrop=args.encoder_layerdrop, decoder_layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='''relu''', ) _UpperCamelCase = state_dict['''decoder.embed_tokens.weight'''] _UpperCamelCase = MaMaaaForConditionalGeneration(__snake_case ) model.model.load_state_dict(__snake_case, strict=__snake_case ) _UpperCamelCase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _a = parser.parse_args() _a = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
19
"""simple docstring""" import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class _UpperCAmelCase( lowerCamelCase ): lowercase__ = (DPMSolverSDEScheduler,) lowercase__ = 10 def UpperCAmelCase ( self , **__a) -> int: '''simple docstring''' _UpperCamelCase = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**__a) return config def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02]): self.check_over_configs(beta_start=__a , beta_end=__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a) def UpperCAmelCase ( self) -> str: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''') _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a , use_karras_sigmas=__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2
19
1
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } _a = { """b0""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = EfficientNetConfig() _UpperCamelCase = CONFIG_MAP[model_name]['''hidden_dim'''] _UpperCamelCase = CONFIG_MAP[model_name]['''width_coef'''] _UpperCamelCase = CONFIG_MAP[model_name]['''depth_coef'''] _UpperCamelCase = CONFIG_MAP[model_name]['''image_size'''] _UpperCamelCase = CONFIG_MAP[model_name]['''dropout_rate'''] _UpperCamelCase = CONFIG_MAP[model_name]['''dw_padding'''] _UpperCamelCase = '''huggingface/label-files''' _UpperCamelCase = '''imagenet-1k-id2label.json''' _UpperCamelCase = 10_00 _UpperCamelCase = json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type='''dataset''' ), '''r''' ) ) _UpperCamelCase = {int(__snake_case ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( ) -> str: """simple docstring""" _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase = Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return im def lowerCamelCase__ ( __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = CONFIG_MAP[model_name]['''image_size'''] _UpperCamelCase = EfficientNetImageProcessor( size={'''height''': size, '''width''': size}, image_mean=[0.485, 0.456, 0.406], image_std=[0.47853944, 0.4732864, 0.47434163], do_center_crop=__snake_case, ) return preprocessor def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] _UpperCamelCase = sorted(set(__snake_case ) ) _UpperCamelCase = len(__snake_case ) _UpperCamelCase = {b: str(__snake_case ) for b, i in zip(__snake_case, range(__snake_case ) )} _UpperCamelCase = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: _UpperCamelCase = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) _UpperCamelCase = {} for item in rename_keys: if item[0] in original_param_names: _UpperCamelCase = '''efficientnet.''' + item[1] _UpperCamelCase = '''classifier.weight''' _UpperCamelCase = '''classifier.bias''' return key_mapping def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> str: """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue _UpperCamelCase = key_mapping[key] if "_conv" in key and "kernel" in key: _UpperCamelCase = torch.from_numpy(__snake_case ).permute(3, 2, 0, 1 ) elif "depthwise_kernel" in key: _UpperCamelCase = torch.from_numpy(__snake_case ).permute(2, 3, 0, 1 ) elif "kernel" in key: _UpperCamelCase = torch.from_numpy(np.transpose(__snake_case ) ) else: _UpperCamelCase = torch.from_numpy(__snake_case ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__snake_case ) @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = model_classes[model_name]( include_top=__snake_case, weights='''imagenet''', input_tensor=__snake_case, input_shape=__snake_case, pooling=__snake_case, classes=10_00, classifier_activation='''softmax''', ) _UpperCamelCase = original_model.trainable_variables _UpperCamelCase = original_model.non_trainable_variables _UpperCamelCase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _UpperCamelCase = param.numpy() _UpperCamelCase = list(tf_params.keys() ) # Load HuggingFace model _UpperCamelCase = get_efficientnet_config(__snake_case ) _UpperCamelCase = EfficientNetForImageClassification(__snake_case ).eval() _UpperCamelCase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) _UpperCamelCase = rename_keys(__snake_case ) replace_params(__snake_case, __snake_case, __snake_case ) # Initialize preprocessor and preprocess input image _UpperCamelCase = convert_image_processor(__snake_case ) _UpperCamelCase = preprocessor(images=prepare_img(), return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): _UpperCamelCase = hf_model(**__snake_case ) _UpperCamelCase = outputs.logits.detach().numpy() # Original model inference _UpperCamelCase = False _UpperCamelCase = CONFIG_MAP[model_name]['''image_size'''] _UpperCamelCase = prepare_img().resize((image_size, image_size), resample=PIL.Image.NEAREST ) _UpperCamelCase = image.img_to_array(__snake_case ) _UpperCamelCase = np.expand_dims(__snake_case, axis=0 ) _UpperCamelCase = original_model.predict(__snake_case ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__snake_case, __snake_case, atol=1e-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(__snake_case ): os.mkdir(__snake_case ) # Save converted model and image processor hf_model.save_pretrained(__snake_case ) preprocessor.save_pretrained(__snake_case ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) _UpperCamelCase = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(__snake_case ) hf_model.push_to_hub(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") _a = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
19
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['pixel_values'] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BICUBIC , __a = True , __a = True , __a = 1 / 2_55 , __a = None , __a = True , __a = None , __a = None , **__a , ) -> None: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a , default_to_square=__a , param_name='''crop_size''') _UpperCamelCase = do_resize _UpperCamelCase = do_rescale _UpperCamelCase = do_normalize _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = rescale_factor _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BILINEAR , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "shortest_edge" in size: _UpperCamelCase = get_resize_output_image_size(__a , size=size['''shortest_edge'''] , default_to_square=__a) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''') return resize(__a , size=__a , resample=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''') return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a) -> np.ndarray: '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> BatchFeature: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(__a , param_name='''crop_size''' , default_to_square=__a) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(__a) if not is_batched(__a): _UpperCamelCase = [images] if not valid_images(__a): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(__a) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=__a , size=__a , resample=__a) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=__a , size=__a) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=__a , scale=__a) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=__a , mean=__a , std=__a) for image in images] _UpperCamelCase = [to_channel_dimension_format(__a , __a) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=__a , tensor_type=__a)
19
1
"""simple docstring""" import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'encodec' def __init__( self , __a=[1.5, 3.0, 6.0, 12.0, 24.0] , __a=2_40_00 , __a=1 , __a=False , __a=None , __a=None , __a=1_28 , __a=32 , __a=1 , __a=[8, 5, 4, 2] , __a="weight_norm" , __a=7 , __a=7 , __a=3 , __a=2 , __a=True , __a="reflect" , __a=2 , __a=2 , __a=1.0 , __a=10_24 , __a=None , __a=True , **__a , ) -> int: '''simple docstring''' _UpperCamelCase = target_bandwidths _UpperCamelCase = sampling_rate _UpperCamelCase = audio_channels _UpperCamelCase = normalize _UpperCamelCase = chunk_length_s _UpperCamelCase = overlap _UpperCamelCase = hidden_size _UpperCamelCase = num_filters _UpperCamelCase = num_residual_layers _UpperCamelCase = upsampling_ratios _UpperCamelCase = norm_type _UpperCamelCase = kernel_size _UpperCamelCase = last_kernel_size _UpperCamelCase = residual_kernel_size _UpperCamelCase = dilation_growth_rate _UpperCamelCase = use_causal_conv _UpperCamelCase = pad_mode _UpperCamelCase = compress _UpperCamelCase = num_lstm_layers _UpperCamelCase = trim_right_ratio _UpperCamelCase = codebook_size _UpperCamelCase = codebook_dim if codebook_dim is not None else hidden_size _UpperCamelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''') super().__init__(**__a) @property def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate) @property def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length)) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = np.prod(self.upsampling_ratios) return math.ceil(self.sampling_rate / hop_length) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10))
19
"""simple docstring""" # Imports import numpy as np class _UpperCAmelCase: def __init__( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) def UpperCAmelCase ( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' if red is not None: _UpperCamelCase = red if green is not None: _UpperCamelCase = green if blue is not None: _UpperCamelCase = blue if red_edge is not None: _UpperCamelCase = red_edge if nir is not None: _UpperCamelCase = nir return True def UpperCAmelCase ( self , __a="" , __a=None , __a=None , __a=None , __a=None , __a=None) -> List[str]: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) _UpperCamelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''') return False def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self) -> Any: '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self , __a=0.08 , __a=1.22 , __a=0.03) -> Optional[Any]: '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir / self.green) - 1 def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.red - self.blue) / self.red def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir - self.green def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def UpperCAmelCase ( self , __a=0.16) -> Optional[Any]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self , __a=0.5) -> Dict: '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self , __a=None , __a=None) -> Any: '''simple docstring''' return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self) -> Any: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> str: '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) _UpperCamelCase = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Any: '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
19
1
"""simple docstring""" import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness _a = """\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } """ _a = """\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). """ _a = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric(\"code_eval\") >>> test_cases = [\"assert add(2,3)==5\"] >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {'pass@1': 0.5, 'pass@2': 1.0} """ _a = """ ################################################################################ !!!WARNING!!! ################################################################################ The \"code_eval\" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this with: >>> import os >>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\" ################################################################################\ """ _a = """The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase( datasets.Metric ): def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''')), '''references''': datasets.Value('''string'''), }) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , ) def UpperCAmelCase ( self , __a , __a , __a=[1, 10, 1_00] , __a=4 , __a=3.0) -> int: '''simple docstring''' if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0) != "1": raise ValueError(_WARNING) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''') with ThreadPoolExecutor(max_workers=__a) as executor: _UpperCamelCase = [] _UpperCamelCase = Counter() _UpperCamelCase = 0 _UpperCamelCase = defaultdict(__a) for task_id, (candidates, test_case) in enumerate(zip(__a , __a)): for candidate in candidates: _UpperCamelCase = candidate + '''\n''' + test_case _UpperCamelCase = (test_program, timeout, task_id, completion_id[task_id]) _UpperCamelCase = executor.submit(__a , *__a) futures.append(__a) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(__a): _UpperCamelCase = future.result() results[result["task_id"]].append((result['''completion_id'''], result)) _UpperCamelCase , _UpperCamelCase = [], [] for result in results.values(): result.sort() _UpperCamelCase = [r[1]['''passed'''] for r in result] total.append(len(__a)) correct.append(sum(__a)) _UpperCamelCase = np.array(__a) _UpperCamelCase = np.array(__a) _UpperCamelCase = k _UpperCamelCase = {F'''pass@{k}''': estimate_pass_at_k(__a , __a , __a).mean() for k in ks if (total >= k).all()} return pass_at_k, results def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" def estimator(__snake_case, __snake_case, __snake_case ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1 ) ) if isinstance(__snake_case, __snake_case ): _UpperCamelCase = itertools.repeat(__snake_case, len(__snake_case ) ) else: assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = iter(__snake_case ) return np.array([estimator(int(__snake_case ), int(__snake_case ), __snake_case ) for n, c in zip(__snake_case, __snake_case )] )
19
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=64 , __a=2 , __a=3 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a=[1, 16, 4, 4] , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _UpperCamelCase = (self.image_size // 32) ** 2 _UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__a , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.type_sequence_label_size _UpperCamelCase = ViTHybridForImageClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowercase__ = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''') def UpperCAmelCase ( self) -> Dict: '''simple docstring''' pass def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear)) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _UpperCamelCase = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = ViTHybridModel.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase( unittest.TestCase ): @cached_property def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( __a) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''').to(__a) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__a) # verify the logits _UpperCamelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor([-1.9090, -0.4993, -0.2389]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4)) @slow @require_accelerate def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''') _UpperCamelCase = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''') _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''') _UpperCamelCase = model(**__a) _UpperCamelCase = outputs.logits # model predicts one of the 1000 ImageNet classes _UpperCamelCase = logits.argmax(-1).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''')
19
1
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowerCamelCase__ ( ) -> Any: """simple docstring""" _UpperCamelCase = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''', type=__snake_case, default=1, help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''', type=__snake_case, help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ), ) # rest from the training program parser.add_argument('''training_script_args''', nargs=__snake_case ) return parser.parse_args() def lowerCamelCase__ ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase = parse_args() # Import training_script as a module. _UpperCamelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCamelCase = script_fpath.stem _UpperCamelCase = importlib.import_module(__snake_case ) # Patch sys.argv _UpperCamelCase = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
19
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['vqvae'] def __init__( self , __a , __a , __a , __a , ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules(unet=__a , scheduler=__a , mel=__a , vqvae=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' return 50 if isinstance(self.scheduler , __a) else 10_00 @torch.no_grad() def __call__( self , __a = 1 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = 0 , __a = None , __a = None , __a=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' _UpperCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(__a) _UpperCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: _UpperCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _UpperCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__a , device=self.device , ) _UpperCamelCase = noise _UpperCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__a , __a) _UpperCamelCase = self.mel.audio_slice_to_image(__a) _UpperCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''').reshape( (input_image.height, input_image.width)) _UpperCamelCase = (input_image / 2_55) * 2 - 1 _UpperCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: _UpperCamelCase = self.vqvae.encode(torch.unsqueeze(__a , 0)).latent_dist.sample( generator=__a)[0] _UpperCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _UpperCamelCase = self.scheduler.add_noise(__a , __a , self.scheduler.timesteps[start_step - 1]) _UpperCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _UpperCamelCase = int(mask_start_secs * pixels_per_second) _UpperCamelCase = int(mask_end_secs * pixels_per_second) _UpperCamelCase = self.scheduler.add_noise(__a , __a , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , __a): _UpperCamelCase = self.unet(__a , __a , __a)['''sample'''] else: _UpperCamelCase = self.unet(__a , __a)['''sample'''] if isinstance(self.scheduler , __a): _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , eta=__a , generator=__a , )['''prev_sample'''] else: _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , generator=__a , )['''prev_sample'''] if mask is not None: if mask_start > 0: _UpperCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _UpperCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _UpperCamelCase = 1 / self.vqvae.config.scaling_factor * images _UpperCamelCase = self.vqvae.decode(__a)['''sample'''] _UpperCamelCase = (images / 2 + 0.5).clamp(0 , 1) _UpperCamelCase = images.cpu().permute(0 , 2 , 3 , 1).numpy() _UpperCamelCase = (images * 2_55).round().astype('''uint8''') _UpperCamelCase = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__a , mode='''RGB''').convert('''L''') for _ in images)) _UpperCamelCase = [self.mel.image_to_audio(__a) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__a)[:, np.newaxis, :]) , **ImagePipelineOutput(__a)) @torch.no_grad() def UpperCAmelCase ( self , __a , __a = 50) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , __a) self.scheduler.set_timesteps(__a) _UpperCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''').reshape((1, image.height, image.width)) for image in images]) _UpperCamelCase = (sample / 2_55) * 2 - 1 _UpperCamelCase = torch.Tensor(__a).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): _UpperCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _UpperCamelCase = self.scheduler.alphas_cumprod[t] _UpperCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _UpperCamelCase = 1 - alpha_prod_t _UpperCamelCase = self.unet(__a , __a)['''sample'''] _UpperCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _UpperCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _UpperCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase ( __a , __a , __a) -> torch.Tensor: '''simple docstring''' _UpperCamelCase = acos(torch.dot(torch.flatten(__a) , torch.flatten(__a)) / torch.norm(__a) / torch.norm(__a)) return sin((1 - alpha) * theta) * xa / sin(__a) + sin(alpha * theta) * xa / sin(__a)
19
1
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _a = logging.get_logger(__name__) _a = {"""vocab_file""": """vocab.txt""", """emoji_file""": """emoji.json"""} _a = { """vocab_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt""", }, """emoji_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json""", }, } _a = { """abeja/gpt-neox-japanese-2.7b""": 2048, } def lowerCamelCase__ ( __snake_case, __snake_case ) -> Union[str, Any]: """simple docstring""" with open(__snake_case, '''r''', encoding='''utf-8''' ) as f: _UpperCamelCase = json.loads(f.read() ) _UpperCamelCase = collections.OrderedDict() _UpperCamelCase = collections.OrderedDict() _UpperCamelCase = collections.OrderedDict() with open(__snake_case, '''r''', encoding='''utf-8''' ) as f: _UpperCamelCase = f.readlines() _UpperCamelCase = [[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(__snake_case ): _UpperCamelCase = b _UpperCamelCase = idx for wd in b: _UpperCamelCase = idx return vocab, raw_vocab, ids_to_tokens, emoji class _UpperCAmelCase( lowerCamelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ['input_ids', 'attention_mask'] def __init__( self , __a , __a , __a="<|endoftext|>" , __a="<|endoftext|>" , __a="<|startoftext|>" , __a="<|endoftext|>" , __a=False , **__a , ) -> Optional[Any]: '''simple docstring''' super().__init__( unk_token=__a , pad_token=__a , bos_token=__a , eos_token=__a , do_clean_text=__a , **__a , ) if not os.path.isfile(__a): raise ValueError( F'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained''' ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''') if not os.path.isfile(__a): raise ValueError( F'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google''' ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''') _UpperCamelCase = do_clean_text _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = load_vocab_and_emoji(__a , __a) _UpperCamelCase = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji) @property def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder) def UpperCAmelCase ( self , __a) -> Optional[Any]: '''simple docstring''' return self.subword_tokenizer.tokenize(__a , clean=self.do_clean_text) def UpperCAmelCase ( self , __a) -> Optional[Any]: '''simple docstring''' return self.vocab.get(__a , self.vocab.get(self.unk_token)) def UpperCAmelCase ( self , __a) -> str: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(__a) def UpperCAmelCase ( self , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = ''''''.join(__a).strip() return out_string def UpperCAmelCase ( self , __a) -> List[int]: '''simple docstring''' _UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__a , add_special_tokens=__a) + [self.eos_token_id]) if len(__a) > self.model_max_length: _UpperCamelCase = input_ids[-self.model_max_length :] return input_ids def UpperCAmelCase ( self , __a , __a = None) -> Tuple[str]: '''simple docstring''' _UpperCamelCase = 0 if os.path.isdir(__a): _UpperCamelCase = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) _UpperCamelCase = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file''']) else: _UpperCamelCase = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCamelCase = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(__a , '''w''' , encoding='''utf-8''') as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ''' Please check that the vocabulary is not corrupted!''') _UpperCamelCase = token_index writer.write(''','''.join(__a) + '''\n''') index += 1 with open(__a , '''w''' , encoding='''utf-8''') as writer: json.dump(self.emoji , __a) return vocab_file, emoji_file class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a , __a , __a) -> int: '''simple docstring''' _UpperCamelCase = vocab # same as swe _UpperCamelCase = ids_to_tokens # same as bpe _UpperCamelCase = emoji _UpperCamelCase = np.max([len(__a) for w in self.vocab.keys()]) _UpperCamelCase = re.compile(R'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''') _UpperCamelCase = re.compile(R'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''') _UpperCamelCase = re.compile(R'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''') _UpperCamelCase = re.compile( R'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''') _UpperCamelCase = re.compile( R'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''') _UpperCamelCase = re.compile( R'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''') _UpperCamelCase = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' _UpperCamelCase = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' _UpperCamelCase = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks}) def __len__( self) -> Optional[Any]: '''simple docstring''' return len(self.ids_to_tokens) def UpperCAmelCase ( self , __a) -> Dict: '''simple docstring''' _UpperCamelCase = self.content_repattera.sub('''<URL>''' , __a) _UpperCamelCase = self.content_repattera.sub('''<EMAIL>''' , __a) _UpperCamelCase = self.content_repattera.sub('''<TEL>''' , __a) _UpperCamelCase = self.content_repattera.sub('''<DATE>''' , __a) _UpperCamelCase = self.content_repattera.sub('''<DATE>''' , __a) _UpperCamelCase = self.content_repattera.sub('''<PRICE>''' , __a) _UpperCamelCase = content.translate(self.content_transa) while "<BLOCK><BLOCK>" in content: _UpperCamelCase = content.replace('''<BLOCK><BLOCK>''' , '''<BLOCK>''') return content def UpperCAmelCase ( self , __a , __a=False) -> Any: '''simple docstring''' _UpperCamelCase = text.replace(''' ''' , '''<SP>''') _UpperCamelCase = text.replace(''' ''' , '''<SP>''') _UpperCamelCase = text.replace('''\r\n''' , '''<BR>''') _UpperCamelCase = text.replace('''\n''' , '''<BR>''') _UpperCamelCase = text.replace('''\r''' , '''<BR>''') _UpperCamelCase = text.replace('''\t''' , '''<TAB>''') _UpperCamelCase = text.replace('''—''' , '''ー''') _UpperCamelCase = text.replace('''−''' , '''ー''') for k, v in self.emoji["emoji"].items(): if k in text: _UpperCamelCase = text.replace(__a , __a) if clean: _UpperCamelCase = self.clean_text(__a) def check_simbol(__a): _UpperCamelCase = x.encode() if len(__a) == 1 and len(__a) == 2: _UpperCamelCase = (int(e[0]) << 8) + int(e[1]) if ( (c >= 0XC2A1 and c <= 0XC2BF) or (c >= 0XC780 and c <= 0XC783) or (c >= 0XCAB9 and c <= 0XCBBF) or (c >= 0XCC80 and c <= 0XCDA2) ): return True return False def checkuae(__a): _UpperCamelCase = x.encode() if len(__a) == 1 and len(__a) == 3: _UpperCamelCase = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2]) if c >= 0XE28080 and c <= 0XE2B07F: return True return False _UpperCamelCase = 0 _UpperCamelCase = [] while pos < len(__a): _UpperCamelCase = min(len(__a) , pos + self.maxlen + 1) if text[pos] == '''<''' else pos + 3 _UpperCamelCase = [] # (token_id, token, pos) for e in range(__a , __a , -1): _UpperCamelCase = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__a) > 2: _UpperCamelCase = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e)) if len(__a) > 0: # the smallest token_id is adopted _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = sorted(__a , key=lambda __a: x[0])[0] result.append(__a) _UpperCamelCase = e else: _UpperCamelCase = pos + 1 _UpperCamelCase = text[pos:end] if check_simbol(__a): result.append('''<KIGOU>''') elif checkuae(__a): result.append('''<U2000U2BFF>''') else: for i in wd.encode('''utf-8'''): result.append('''<|byte%d|>''' % i) _UpperCamelCase = end return result def UpperCAmelCase ( self , __a , __a="\n") -> int: '''simple docstring''' _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2])) else: if len(__a) > 0: words.append(bytearray(__a).decode('''utf-8''' , errors='''replace''')) _UpperCamelCase = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word]) elif word == "<SP>": words.append(''' ''') elif word == "<BR>": words.append(__a) elif word == "<TAB>": words.append('''\t''') elif word == "<BLOCK>": words.append('''▀''') elif word == "<KIGOU>": words.append('''ǀ''') elif word == "<U2000U2BFF>": words.append('''‖''') else: words.append(__a) if len(__a) > 0: words.append(bytearray(__a).decode('''utf-8''' , errors='''replace''')) _UpperCamelCase = ''''''.join(__a) return text
19
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'detr' lowercase__ = ['past_key_values'] lowercase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __a=True , __a=None , __a=3 , __a=1_00 , __a=6 , __a=20_48 , __a=8 , __a=6 , __a=20_48 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=2_56 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=1 , __a=1 , __a=5 , __a=2 , __a=0.1 , **__a , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__a , __a): _UpperCamelCase = backbone_config.get('''model_type''') _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(__a) # set timm attributes to None _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None, None, None _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = encoder_layers _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase ( cls , __a , **__a) -> int: '''simple docstring''' return cls(backbone_config=__a , **__a) def UpperCAmelCase ( self) -> Dict[str, any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output class _UpperCAmelCase( lowerCamelCase ): lowercase__ = version.parse('1.11' ) @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def UpperCAmelCase ( self) -> float: '''simple docstring''' return 1e-5 @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return 12
19
1
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['audio_values', 'audio_mask'] def __init__( self , __a=20_48 , __a=1 , __a=[16, 16] , __a=1_28 , __a=4_41_00 , __a=86 , __a=20_48 , __a=0.0 , **__a , ) -> Optional[int]: '''simple docstring''' super().__init__( feature_size=__a , sampling_rate=__a , padding_value=__a , **__a , ) _UpperCamelCase = spectrogram_length _UpperCamelCase = num_channels _UpperCamelCase = patch_size _UpperCamelCase = feature_size // self.patch_size[1] _UpperCamelCase = n_fft _UpperCamelCase = sampling_rate // hop_length_to_sampling_rate _UpperCamelCase = sampling_rate _UpperCamelCase = padding_value _UpperCamelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__a , min_frequency=0.0 , max_frequency=2_2050.0 , sampling_rate=__a , norm='''slaney''' , mel_scale='''slaney''' , ).T def UpperCAmelCase ( self , __a) -> np.ndarray: '''simple docstring''' _UpperCamelCase = spectrogram( __a , window_function(self.n_fft , '''hann''') , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , ) _UpperCamelCase = log_spec[:, :-1] _UpperCamelCase = log_spec - 20.0 _UpperCamelCase = np.clip(log_spec / 40.0 , -2.0 , 0.0) + 1.0 return log_spec def __call__( self , __a , __a = None , __a = True , __a = None , __a = False , __a = False , **__a , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( '''This feature extractor is set to support sampling rate''' F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''') else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''') _UpperCamelCase = isinstance(__a , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''') _UpperCamelCase = is_batched_numpy or ( isinstance(__a , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: _UpperCamelCase = [np.asarray([speech] , dtype=np.floataa).T for speech in raw_speech] elif not is_batched and not isinstance(__a , np.ndarray): _UpperCamelCase = np.asarray(__a , dtype=np.floataa) elif isinstance(__a , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): _UpperCamelCase = raw_speech.astype(np.floataa) # always return batch if not is_batched: _UpperCamelCase = [np.asarray([raw_speech]).T] # Convert audio signals to log mel spectrograms, truncate by time axis _UpperCamelCase = [ self._np_extract_fbank_features(waveform.squeeze()).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __a): _UpperCamelCase = [np.asarray(__a , dtype=np.floataa) for feature in audio_features] # Create audio attention mask _UpperCamelCase = max( [ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len for feature in audio_features]) # The maximum number of audio patches in a batch if return_attention_mask: _UpperCamelCase = [ (ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [0] for feature in audio_features ] _UpperCamelCase = np.array(__a).astype(np.floataa) # convert into correct format for padding _UpperCamelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch _UpperCamelCase = np.ones([len(__a), 1, max_time_len, self.feature_size]).astype(np.floataa) _UpperCamelCase = padded_audio_features * self.padding_value for i in range(len(__a)): _UpperCamelCase = audio_features[i] _UpperCamelCase = feature # return as BatchFeature if return_attention_mask: _UpperCamelCase = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: _UpperCamelCase = {'''audio_values''': padded_audio_features} _UpperCamelCase = BatchFeature(data=__a , tensor_type=__a) return encoded_inputs
19
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'wavlm' def __init__( self , __a=32 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.1 , __a=0.02 , __a=1e-5 , __a="group" , __a="gelu" , __a=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __a=(5, 2, 2, 2, 2, 2, 2) , __a=(10, 3, 3, 3, 3, 2, 2) , __a=False , __a=1_28 , __a=16 , __a=3_20 , __a=8_00 , __a=False , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=3_20 , __a=2 , __a=0.1 , __a=1_00 , __a=2_56 , __a=2_56 , __a=0.1 , __a="mean" , __a=False , __a=False , __a=2_56 , __a=(5_12, 5_12, 5_12, 5_12, 15_00) , __a=(5, 3, 3, 1, 1) , __a=(1, 2, 3, 1, 1) , __a=5_12 , __a=80 , __a=0 , __a=1 , __a=2 , __a=False , __a=3 , __a=2 , __a=3 , __a=None , **__a , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a) _UpperCamelCase = hidden_size _UpperCamelCase = feat_extract_norm _UpperCamelCase = feat_extract_activation _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = conv_bias _UpperCamelCase = num_buckets _UpperCamelCase = max_bucket_distance _UpperCamelCase = num_conv_pos_embeddings _UpperCamelCase = num_conv_pos_embedding_groups _UpperCamelCase = len(self.conv_dim) _UpperCamelCase = num_hidden_layers _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = feat_proj_dropout _UpperCamelCase = final_dropout _UpperCamelCase = layerdrop _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = num_ctc_classes _UpperCamelCase = vocab_size _UpperCamelCase = do_stable_layer_norm _UpperCamelCase = use_weighted_layer_sum _UpperCamelCase = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCamelCase = apply_spec_augment _UpperCamelCase = mask_time_prob _UpperCamelCase = mask_time_length _UpperCamelCase = mask_time_min_masks _UpperCamelCase = mask_feature_prob _UpperCamelCase = mask_feature_length # parameters for pretraining with codevector quantized representations _UpperCamelCase = num_codevectors_per_group _UpperCamelCase = num_codevector_groups _UpperCamelCase = contrastive_logits_temperature _UpperCamelCase = num_negatives _UpperCamelCase = codevector_dim _UpperCamelCase = proj_codevector_dim _UpperCamelCase = diversity_loss_weight # ctc loss _UpperCamelCase = ctc_loss_reduction _UpperCamelCase = ctc_zero_infinity # adapter _UpperCamelCase = add_adapter _UpperCamelCase = adapter_kernel_size _UpperCamelCase = adapter_stride _UpperCamelCase = num_adapter_layers _UpperCamelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = xvector_output_dim @property def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
19
1
"""simple docstring""" import random class _UpperCAmelCase: @staticmethod def UpperCAmelCase ( __a) -> tuple[list[int], list[int]]: '''simple docstring''' _UpperCamelCase = [ord(__a) for i in text] _UpperCamelCase = [] _UpperCamelCase = [] for i in plain: _UpperCamelCase = random.randint(1 , 3_00) _UpperCamelCase = (i + k) * k cipher.append(__a) key.append(__a) return cipher, key @staticmethod def UpperCAmelCase ( __a , __a) -> str: '''simple docstring''' _UpperCamelCase = [] for i in range(len(__a)): _UpperCamelCase = int((cipher[i] - (key[i]) ** 2) / key[i]) plain.append(chr(__a)) return "".join(__a) if __name__ == "__main__": _a , _a = Onepad().encrypt("""Hello""") print(c, k) print(Onepad().decrypt(c, k))
19
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _a = """bart""" _a = True @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> Dict: """simple docstring""" if LOAD_DENSE_INDEX: _UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _UpperCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _UpperCamelCase = qar_model.eval() else: _UpperCamelCase , _UpperCamelCase = (None, None) if MODEL_TYPE == "bart": _UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _UpperCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _UpperCamelCase = sas_model.eval() else: _UpperCamelCase , _UpperCamelCase = make_qa_sas_model( model_name='''t5-small''', from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''', device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: _UpperCamelCase = faiss.StandardGpuResources() _UpperCamelCase = datasets.load_dataset(path='''wiki_snippets''', name='''wiki40b_en_100_0''' )['''train'''] _UpperCamelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''', dtype='''float32''', mode='''r''', shape=(wikiaab_passages.num_rows, 1_28), ) _UpperCamelCase = faiss.IndexFlatIP(1_28 ) _UpperCamelCase = faiss.index_cpu_to_gpu(__snake_case, 1, __snake_case ) wikiaab_gpu_index_flat.add(__snake_case ) # TODO fix for larger GPU else: _UpperCamelCase , _UpperCamelCase = (None, None) _UpperCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = datasets.load_dataset('''eli5''', name='''LFQA_reddit''' ) _UpperCamelCase = elia['''train_eli5'''] _UpperCamelCase = np.memmap( '''eli5_questions_reps.dat''', dtype='''float32''', mode='''r''', shape=(elia_train.num_rows, 1_28) ) _UpperCamelCase = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(__snake_case ) return (elia_train, eli5_train_q_index) _a , _a , _a = load_indexes() _a , _a , _a , _a = load_models() _a , _a = load_train_data() def lowerCamelCase__ ( __snake_case, __snake_case=10 ) -> List[Any]: """simple docstring""" _UpperCamelCase = embed_questions_for_retrieval([question], __snake_case, __snake_case ) _UpperCamelCase , _UpperCamelCase = eli5_train_q_index.search(__snake_case, __snake_case ) _UpperCamelCase = [elia_train[int(__snake_case )] for i in I[0]] return nn_examples def lowerCamelCase__ ( __snake_case, __snake_case="wiki40b", __snake_case="dense", __snake_case=10 ) -> List[str]: """simple docstring""" if source == "none": _UpperCamelCase , _UpperCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _UpperCamelCase , _UpperCamelCase = query_qa_dense_index( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) else: _UpperCamelCase , _UpperCamelCase = query_es_index( __snake_case, __snake_case, index_name='''english_wiki40b_snippets_100w''', n_results=__snake_case, ) _UpperCamelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _UpperCamelCase = '''question: {} context: {}'''.format(__snake_case, __snake_case ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __snake_case : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __snake_case : None), } ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=64, __snake_case=2_56, __snake_case=False, __snake_case=2, __snake_case=0.95, __snake_case=0.8 ) -> Dict: """simple docstring""" with torch.no_grad(): _UpperCamelCase = qa_sas_generate( __snake_case, __snake_case, __snake_case, num_answers=1, num_beams=__snake_case, min_len=__snake_case, max_len=__snake_case, do_sample=__snake_case, temp=__snake_case, top_p=__snake_case, top_k=__snake_case, max_input_length=10_24, device='''cuda:0''', )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar _a = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" _a = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _a = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) _a = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] _a = st.sidebar.checkbox("""Demo options""") if demo_options: _a = st.sidebar.selectbox( """""", action_list, index=3, ) _a = action_list.index(action_st) _a = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) _a = show_type == """Show full text of passages""" else: _a = 3 _a = True _a = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: _a = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) _a = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) _a = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: _a = """wiki40b""" _a = """dense""" _a = """beam""" _a = 2 _a = 64 _a = 256 _a = None _a = None _a = st.sidebar.checkbox("""Generation options""") if generate_options: _a = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) _a = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) _a = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) _a = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": _a = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _a = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _a = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _a = None # start main text _a = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] _a = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": _a = st.text_input("""Enter your question here:""", """""") else: _a = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": _a , _a = make_support(question, source=wiki_source, method="""dense""", n_results=10) _a , _a = make_support(question, source=wiki_source, method="""sparse""", n_results=10) _a = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _a = support_list[:10] _a = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: _a , _a = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _a , _a = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): _a = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) _a = res[1].strip() if sec_titles == "": _a = """[{}]({})""".format(res[0], wiki_url) else: _a = sec_titles.split(""" & """) _a = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: _a = find_nearest_training(question) _a = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) _a = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) _a = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
19
1
"""simple docstring""" import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate _a = trt.Logger(trt.Logger.WARNING) _a = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) _a = logging.getLogger(__name__) _a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--onnx_model_path""", default=None, type=str, required=True, help="""Path to ONNX model: """, ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""The output directory where the model checkpoints and predictions will be written.""", ) # Other parameters parser.add_argument( """--tokenizer_name""", default="""""", type=str, required=True, help="""Pretrained tokenizer name or path if not the same as model_name""", ) parser.add_argument( """--version_2_with_negative""", action="""store_true""", help="""If true, the SQuAD examples contain some that do not have an answer.""", ) parser.add_argument( """--null_score_diff_threshold""", type=float, default=0.0, help="""If null_score - best_non_null is greater than the threshold predict null.""", ) parser.add_argument( """--max_seq_length""", default=384, type=int, help=( """The maximum total input sequence length after WordPiece tokenization. Sequences """ """longer than this will be truncated, and sequences shorter than this will be padded.""" ), ) parser.add_argument( """--doc_stride""", default=128, type=int, help="""When splitting up a long document into chunks, how much stride to take between chunks.""", ) parser.add_argument("""--per_device_eval_batch_size""", default=8, type=int, help="""Batch size per GPU/CPU for evaluation.""") parser.add_argument( """--n_best_size""", default=20, type=int, help="""The total number of n-best predictions to generate in the nbest_predictions.json output file.""", ) parser.add_argument( """--max_answer_length""", default=30, type=int, help=( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ), ) parser.add_argument("""--seed""", type=int, default=42, help="""random seed for initialization""") parser.add_argument( """--dataset_name""", type=str, default=None, required=True, help="""The name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--dataset_config_name""", type=str, default=None, help="""The configuration name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--preprocessing_num_workers""", type=int, default=4, help="""A csv or a json file containing the training data.""" ) parser.add_argument("""--overwrite_cache""", action="""store_true""", help="""Overwrite the cached training and evaluation sets""") parser.add_argument( """--fp16""", action="""store_true""", help="""Whether to use 16-bit (mixed) precision instead of 32-bit""", ) parser.add_argument( """--int8""", action="""store_true""", help="""Whether to use INT8""", ) _a = parser.parse_args() if args.tokenizer_name: _a = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) logger.info("""Training/evaluation parameters %s""", args) _a = args.per_device_eval_batch_size _a = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties _a = True _a = """temp_engine/bert-fp32.engine""" if args.fpaa: _a = """temp_engine/bert-fp16.engine""" if args.inta: _a = """temp_engine/bert-int8.engine""" # import ONNX file if not os.path.exists("""temp_engine"""): os.makedirs("""temp_engine""") _a = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, """rb""") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network _a = [network.get_input(i) for i in range(network.num_inputs)] _a = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: _a = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) _a = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) _a = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, """wb""") as f: f.write(engine.serialize()) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> Tuple: """simple docstring""" _UpperCamelCase = np.asarray(inputs['''input_ids'''], dtype=np.intaa ) _UpperCamelCase = np.asarray(inputs['''attention_mask'''], dtype=np.intaa ) _UpperCamelCase = np.asarray(inputs['''token_type_ids'''], dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), __snake_case ) cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), __snake_case ) cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), __snake_case ) # start time _UpperCamelCase = time.time() # Run inference context.execute_async( bindings=[int(__snake_case ) for d_inp in d_inputs] + [int(__snake_case ), int(__snake_case )], stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(__snake_case, __snake_case, __snake_case ) cuda.memcpy_dtoh_async(__snake_case, __snake_case, __snake_case ) # Synchronize the stream and take time stream.synchronize() # end time _UpperCamelCase = time.time() _UpperCamelCase = end_time - start_time _UpperCamelCase = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. _a = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. _a = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("""Evaluation requires a dataset name""") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. _a = raw_datasets["""validation"""].column_names _a = """question""" if """question""" in column_names else column_names[0] _a = """context""" if """context""" in column_names else column_names[1] _a = """answers""" if """answers""" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). _a = tokenizer.padding_side == """right""" if args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _a = min(args.max_seq_length, tokenizer.model_max_length) def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. _UpperCamelCase = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation='''only_second''' if pad_on_right else '''only_first''', max_length=__snake_case, stride=args.doc_stride, return_overflowing_tokens=__snake_case, return_offsets_mapping=__snake_case, padding='''max_length''', ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. _UpperCamelCase = tokenized_examples.pop('''overflow_to_sample_mapping''' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. _UpperCamelCase = [] for i in range(len(tokenized_examples['''input_ids'''] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). _UpperCamelCase = tokenized_examples.sequence_ids(__snake_case ) _UpperCamelCase = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. _UpperCamelCase = sample_mapping[i] tokenized_examples["example_id"].append(examples['''id'''][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. _UpperCamelCase = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['''offset_mapping'''][i] ) ] return tokenized_examples _a = raw_datasets["""validation"""] # Validation Feature Creation _a = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="""Running tokenizer on validation dataset""", ) _a = default_data_collator _a = eval_dataset.remove_columns(["""example_id""", """offset_mapping"""]) _a = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case="eval" ) -> str: """simple docstring""" _UpperCamelCase = postprocess_qa_predictions( examples=__snake_case, features=__snake_case, predictions=__snake_case, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=__snake_case, ) # Format the result to the format the metric expects. if args.version_2_with_negative: _UpperCamelCase = [ {'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items() ] else: _UpperCamelCase = [{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()] _UpperCamelCase = [{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=__snake_case, label_ids=__snake_case ) _a = load_metric("""squad_v2""" if args.version_2_with_negative else """squad""") # Evaluation! logger.info("""Loading ONNX model %s for evaluation""", args.onnx_model_path) with open(engine_name, """rb""") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def lowerCamelCase__ ( __snake_case ) -> List[str]: """simple docstring""" return trt.volume(engine.get_binding_shape(__snake_case ) ) * engine.get_binding_dtype(__snake_case ).itemsize # Allocate device memory for inputs and outputs. _a = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer _a = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) _a = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) _a = cuda.mem_alloc(h_outputa.nbytes) _a = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. _a = cuda.Stream() # Evaluation logger.info("""***** Running Evaluation *****""") logger.info(F""" Num examples = {len(eval_dataset)}""") logger.info(F""" Batch size = {args.per_device_eval_batch_size}""") _a = 0.0 _a = 0 _a = timeit.default_timer() _a = None for step, batch in enumerate(eval_dataloader): _a , _a = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 _a , _a = outputs _a = torch.tensor(start_logits) _a = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered _a = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) _a = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) _a = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) _a = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: _a = nested_truncate(all_preds, len(eval_dataset)) _a = timeit.default_timer() - start_time logger.info(""" Evaluation done in total %f secs (%f sec per example)""", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("""Average Inference Time = {:.3f} ms""".format(total_time * 1000 / niter)) logger.info("""Total Inference Time = {:.3f} ms""".format(total_time * 1000)) logger.info("""Total Number of Inference = %d""", niter) _a = post_processing_function(eval_examples, eval_dataset, all_preds) _a = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F"""Evaluation metrics: {eval_metric}""")
19
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } _a = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> Tuple: """simple docstring""" for attribute in key.split('''.''' ): _UpperCamelCase = getattr(__snake_case, __snake_case ) if weight_type is not None: _UpperCamelCase = getattr(__snake_case, __snake_case ).shape else: _UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase = value elif weight_type == "weight_g": _UpperCamelCase = value elif weight_type == "weight_v": _UpperCamelCase = value elif weight_type == "bias": _UpperCamelCase = value else: _UpperCamelCase = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = fairseq_model.state_dict() _UpperCamelCase = hf_model.feature_extractor _UpperCamelCase = hf_model.adapter for name, value in fairseq_dict.items(): _UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __snake_case, __snake_case, __snake_case, __snake_case, hf_model.config.feat_extract_norm == '''group''', ) _UpperCamelCase = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(__snake_case, __snake_case, __snake_case, __snake_case ) _UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCamelCase = True if "*" in mapped_key: _UpperCamelCase = name.split(__snake_case )[0].split('''.''' )[-2] _UpperCamelCase = mapped_key.replace('''*''', __snake_case ) if "weight_g" in name: _UpperCamelCase = '''weight_g''' elif "weight_v" in name: _UpperCamelCase = '''weight_v''' elif "bias" in name: _UpperCamelCase = '''bias''' elif "weight" in name: _UpperCamelCase = '''weight''' else: _UpperCamelCase = None set_recursively(__snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = full_name.split('''conv_layers.''' )[-1] _UpperCamelCase = name.split('''.''' ) _UpperCamelCase = int(items[0] ) _UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = full_name.split('''adaptor.''' )[-1] _UpperCamelCase = name.split('''.''' ) if items[1].isdigit(): _UpperCamelCase = int(items[1] ) else: _UpperCamelCase = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' _UpperCamelCase = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(__snake_case, __snake_case ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase , _UpperCamelCase = emb.weight.shape _UpperCamelCase = nn.Linear(__snake_case, __snake_case, bias=__snake_case ) _UpperCamelCase = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = WavaVecaConfig.from_pretrained( __snake_case, add_adapter=__snake_case, adapter_stride=__snake_case, adapter_kernel_size=__snake_case, use_auth_token=__snake_case, output_hidden_size=__snake_case, ) _UpperCamelCase = MBartConfig.from_pretrained(__snake_case ) # load model _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, }, ) _UpperCamelCase = model[0].eval() # load feature extractor _UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(__snake_case, use_auth_token=__snake_case ) # set weights for wav2vec2 encoder _UpperCamelCase = WavaVecaModel(__snake_case ) recursively_load_weights_wavaveca(model.encoder, __snake_case ) # load decoder weights _UpperCamelCase = MBartForCausalLM(__snake_case ) _UpperCamelCase , _UpperCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=__snake_case ) logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) _UpperCamelCase = SpeechEncoderDecoderModel(encoder=__snake_case, decoder=__snake_case ) _UpperCamelCase = False _UpperCamelCase = MBartaaTokenizer(__snake_case ) tokenizer.save_pretrained(__snake_case ) _UpperCamelCase = hf_wavavec.config.to_dict() _UpperCamelCase = tokenizer.pad_token_id _UpperCamelCase = tokenizer.bos_token_id _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = '''mbart50''' _UpperCamelCase = '''wav2vec2''' _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = 25_00_04 _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = SpeechEncoderDecoderConfig.from_dict(__snake_case ) hf_wavavec.save_pretrained(__snake_case ) feature_extractor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1024, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=25_0004, type=int, help="""`decoder_start_token_id` of model config""") _a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
19
1
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = 10 _UpperCamelCase = datasets.Features( { '''tokens''': datasets.Sequence(datasets.Value('''string''' ) ), '''labels''': datasets.Sequence(datasets.ClassLabel(names=['''negative''', '''positive'''] ) ), '''answers''': datasets.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), '''id''': datasets.Value('''int64''' ), } ) _UpperCamelCase = datasets.Dataset.from_dict( { '''tokens''': [['''foo'''] * 5] * n, '''labels''': [[1] * 5] * n, '''answers''': [{'''answer_start''': [97], '''text''': ['''1976''']}] * 10, '''id''': list(range(__snake_case ) ), }, features=__snake_case, ) return dataset @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''file.arrow''' ) dataset.map(cache_file_name=__snake_case ) return filename # FILE_CONTENT + files _a = """\ Text data. Second line of data.""" @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.txt''' _UpperCamelCase = FILE_CONTENT with open(__snake_case, '''w''' ) as f: f.write(__snake_case ) return filename @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" import bza _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.bz2''' _UpperCamelCase = bytes(__snake_case, '''utf-8''' ) with bza.open(__snake_case, '''wb''' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" import gzip _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''file.txt.gz''' ) _UpperCamelCase = bytes(__snake_case, '''utf-8''' ) with gzip.open(__snake_case, '''wb''' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case ) -> Dict: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.lz4''' _UpperCamelCase = bytes(__snake_case, '''utf-8''' ) with lza.frame.open(__snake_case, '''wb''' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> Tuple: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.7z''' with pyazr.SevenZipFile(__snake_case, '''w''' ) as archive: archive.write(__snake_case, arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" import tarfile _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.tar''' with tarfile.TarFile(__snake_case, '''w''' ) as f: f.add(__snake_case, arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" import lzma _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.xz''' _UpperCamelCase = bytes(__snake_case, '''utf-8''' ) with lzma.open(__snake_case, '''wb''' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" import zipfile _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zip''' with zipfile.ZipFile(__snake_case, '''w''' ) as f: f.write(__snake_case, arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case ) -> List[Any]: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zst''' _UpperCamelCase = bytes(__snake_case, '''utf-8''' ) with zstd.open(__snake_case, '''wb''' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.xml''' _UpperCamelCase = textwrap.dedent( '''\ <?xml version="1.0" encoding="UTF-8" ?> <tmx version="1.4"> <header segtype="sentence" srclang="ca" /> <body> <tu> <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv> <tuv xml:lang="en"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv> <tuv xml:lang="en"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv> <tuv xml:lang="en"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv> <tuv xml:lang="en"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv> <tuv xml:lang="en"><seg>Content 5</seg></tuv> </tu> </body> </tmx>''' ) with open(__snake_case, '''w''' ) as f: f.write(__snake_case ) return filename _a = [ {"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0}, ] _a = [ {"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0}, {"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0}, ] _a = { """col_1""": ["""0""", """1""", """2""", """3"""], """col_2""": [0, 1, 2, 3], """col_3""": [0.0, 1.0, 2.0, 3.0], } _a = [ {"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0}, {"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1}, ] _a = [ {"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0}, ] @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = datasets.Dataset.from_dict(__snake_case ) _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.arrow''' ) dataset.map(cache_file_name=__snake_case ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.sqlite''' ) with contextlib.closing(sqlitea.connect(__snake_case ) ) as con: _UpperCamelCase = con.cursor() cur.execute('''CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)''' ) for item in DATA: cur.execute('''INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)''', tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.csv''' ) with open(__snake_case, '''w''', newline='''''' ) as f: _UpperCamelCase = csv.DictWriter(__snake_case, fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(__snake_case ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case ) -> int: """simple docstring""" _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.csv''' ) with open(__snake_case, '''w''', newline='''''' ) as f: _UpperCamelCase = csv.DictWriter(__snake_case, fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(__snake_case ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" import bza _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.bz2''' with open(__snake_case, '''rb''' ) as f: _UpperCamelCase = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__snake_case, '''wb''' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(__snake_case, '''w''' ) as f: f.write(__snake_case, arcname=os.path.basename(__snake_case ) ) f.write(__snake_case, arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(__snake_case, '''w''' ) as f: f.write(__snake_case, arcname=os.path.basename(csv_path.replace('''.csv''', '''.CSV''' ) ) ) f.write(__snake_case, arcname=os.path.basename(csva_path.replace('''.csv''', '''.CSV''' ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> str: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.csv.zip''' with zipfile.ZipFile(__snake_case, '''w''' ) as f: f.write(__snake_case, arcname=os.path.join('''main_dir''', os.path.basename(__snake_case ) ) ) f.write(__snake_case, arcname=os.path.join('''main_dir''', os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.parquet''' ) _UpperCamelCase = pa.schema( { '''col_1''': pa.string(), '''col_2''': pa.intaa(), '''col_3''': pa.floataa(), } ) with open(__snake_case, '''wb''' ) as f: _UpperCamelCase = pq.ParquetWriter(__snake_case, schema=__snake_case ) _UpperCamelCase = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__snake_case ) )] for k in DATA[0]}, schema=__snake_case ) writer.write_table(__snake_case ) writer.close() return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) _UpperCamelCase = {'''data''': DATA} with open(__snake_case, '''w''' ) as f: json.dump(__snake_case, __snake_case ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) _UpperCamelCase = {'''data''': DATA_DICT_OF_LISTS} with open(__snake_case, '''w''' ) as f: json.dump(__snake_case, __snake_case ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl''' ) with open(__snake_case, '''w''' ) as f: for item in DATA: f.write(json.dumps(__snake_case ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.jsonl''' ) with open(__snake_case, '''w''' ) as f: for item in DATA: f.write(json.dumps(__snake_case ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_312.jsonl''' ) with open(__snake_case, '''w''' ) as f: for item in DATA_312: f.write(json.dumps(__snake_case ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset-str.jsonl''' ) with open(__snake_case, '''w''' ) as f: for item in DATA_STR: f.write(json.dumps(__snake_case ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> str: """simple docstring""" import gzip _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt.gz''' ) with open(__snake_case, '''rb''' ) as orig_file: with gzip.open(__snake_case, '''wb''' ) as zipped_file: zipped_file.writelines(__snake_case ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" import gzip _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.gz''' ) with open(__snake_case, '''rb''' ) as orig_file: with gzip.open(__snake_case, '''wb''' ) as zipped_file: zipped_file.writelines(__snake_case ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.zip''' with zipfile.ZipFile(__snake_case, '''w''' ) as f: f.write(__snake_case, arcname=os.path.basename(__snake_case ) ) f.write(__snake_case, arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.zip''' with zipfile.ZipFile(__snake_case, '''w''' ) as f: f.write(__snake_case, arcname=os.path.join('''nested''', os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.jsonl.zip''' with zipfile.ZipFile(__snake_case, '''w''' ) as f: f.write(__snake_case, arcname=os.path.join('''main_dir''', os.path.basename(__snake_case ) ) ) f.write(__snake_case, arcname=os.path.join('''main_dir''', os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> str: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.tar''' with tarfile.TarFile(__snake_case, '''w''' ) as f: f.add(__snake_case, arcname=os.path.basename(__snake_case ) ) f.add(__snake_case, arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.tar''' with tarfile.TarFile(__snake_case, '''w''' ) as f: f.add(__snake_case, arcname=os.path.join('''nested''', os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = ['''0''', '''1''', '''2''', '''3'''] _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt''' ) with open(__snake_case, '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = ['''0''', '''1''', '''2''', '''3'''] _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.txt''' ) with open(__snake_case, '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = ['''0''', '''1''', '''2''', '''3'''] _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.abc''' with open(__snake_case, '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.text.zip''' with zipfile.ZipFile(__snake_case, '''w''' ) as f: f.write(__snake_case, arcname=os.path.basename(__snake_case ) ) f.write(__snake_case, arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.text.zip''' with zipfile.ZipFile(__snake_case, '''w''' ) as f: f.write(__snake_case, arcname=os.path.join('''main_dir''', os.path.basename(__snake_case ) ) ) f.write(__snake_case, arcname=os.path.join('''main_dir''', os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.ext.zip''' with zipfile.ZipFile(__snake_case, '''w''' ) as f: f.write(__snake_case, arcname=os.path.basename('''unsupported.ext''' ) ) f.write(__snake_case, arcname=os.path.basename('''unsupported_2.ext''' ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case ) -> Any: """simple docstring""" _UpperCamelCase = '''\n'''.join(['''First''', '''Second\u2029with Unicode new line''', '''Third'''] ) _UpperCamelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_with_unicode_new_lines.txt''' ) with open(__snake_case, '''w''', encoding='''utf-8''' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( ) -> List[Any]: """simple docstring""" return os.path.join('''tests''', '''features''', '''data''', '''test_image_rgb.jpg''' ) @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( ) -> int: """simple docstring""" return os.path.join('''tests''', '''features''', '''data''', '''test_audio_44100.wav''' ) @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> Any: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.img.zip''' with zipfile.ZipFile(__snake_case, '''w''' ) as f: f.write(__snake_case, arcname=os.path.basename(__snake_case ) ) f.write(__snake_case, arcname=os.path.basename(__snake_case ).replace('''.jpg''', '''2.jpg''' ) ) return path @pytest.fixture(scope='''session''' ) def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = tmp_path_factory.mktemp('''data_dir''' ) (data_dir / "subdir").mkdir() with open(data_dir / '''subdir''' / '''train.txt''', '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''subdir''' / '''test.txt''', '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden file with open(data_dir / '''subdir''' / '''.test.txt''', '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '''.subdir''' / '''train.txt''', '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''.subdir''' / '''test.txt''', '''w''' ) as f: f.write('''bar\n''' * 10 ) return data_dir
19
"""simple docstring""" import fire from utils import calculate_rouge, save_json def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case=None, **__snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()] _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()][: len(__snake_case )] _UpperCamelCase = calculate_rouge(__snake_case, __snake_case, **__snake_case ) if save_path is not None: save_json(__snake_case, __snake_case, indent=__snake_case ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
19
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowercase__ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowercase__ = False lowercase__ = False def UpperCAmelCase ( self , __a , __a , __a=False) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = super()._prepare_for_class(__a , __a , return_labels=__a) if return_labels: if model_class in get_values(__a): _UpperCamelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa) return inputs_dict class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> List[str]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope _UpperCamelCase = embedding_size def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Any: '''simple docstring''' _UpperCamelCase = TFMobileBertModel(config=__a) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCamelCase = model(__a) _UpperCamelCase = [input_ids, input_mask] _UpperCamelCase = model(__a) _UpperCamelCase = model(__a) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Any: '''simple docstring''' _UpperCamelCase = TFMobileBertForMaskedLM(config=__a) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCamelCase = model(__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = TFMobileBertForNextSentencePrediction(config=__a) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCamelCase = model(__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = TFMobileBertForPreTraining(config=__a) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCamelCase = model(__a) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = TFMobileBertForSequenceClassification(config=__a) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCamelCase = model(__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = self.num_choices _UpperCamelCase = TFMobileBertForMultipleChoice(config=__a) _UpperCamelCase = tf.tile(tf.expand_dims(__a , 1) , (1, self.num_choices, 1)) _UpperCamelCase = tf.tile(tf.expand_dims(__a , 1) , (1, self.num_choices, 1)) _UpperCamelCase = tf.tile(tf.expand_dims(__a , 1) , (1, self.num_choices, 1)) _UpperCamelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _UpperCamelCase = model(__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = TFMobileBertForTokenClassification(config=__a) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCamelCase = model(__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Any: '''simple docstring''' _UpperCamelCase = TFMobileBertForQuestionAnswering(config=__a) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCamelCase = model(__a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFMobileBertModelTest.TFMobileBertModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a) @slow def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCamelCase = TFMobileBertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''') _UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]]) _UpperCamelCase = model(__a)[0] _UpperCamelCase = [1, 6, 3_05_22] self.assertEqual(output.shape , __a) _UpperCamelCase = tf.constant( [ [ [-4.591_9547, -9.24_8295, -9.64_5256], [-6.730_6175, -6.44_0284, -6.605_2837], [-7.274_3506, -6.784_7915, -6.02_4673], ] ]) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4)
19
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['image_processor', 'tokenizer'] lowercase__ = 'ViTImageProcessor' lowercase__ = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __a=None , __a=None , **__a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __a , ) _UpperCamelCase = kwargs.pop('''feature_extractor''') _UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(__a , __a) def __call__( self , __a=None , __a=None , __a=None , __a=None , **__a) -> Tuple: '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''') if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''') if text is not None: _UpperCamelCase = self.tokenizer(__a , return_tensors=__a , **__a) if visual_prompt is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if images is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if visual_prompt is not None and images is not None: _UpperCamelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _UpperCamelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__a) , tensor_type=__a) def UpperCAmelCase ( self , *__a , **__a) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*__a , **__a) def UpperCAmelCase ( self , *__a , **__a) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*__a , **__a) @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __a , ) return self.image_processor_class @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __a , ) return self.image_processor
19
1
"""simple docstring""" def lowerCamelCase__ ( __snake_case, __snake_case ) -> str: """simple docstring""" if not isinstance(__snake_case, __snake_case ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(__snake_case, __snake_case ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) _UpperCamelCase = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__snake_case ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
19
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=32 , __a=3 , __a=4 , __a=[10, 20, 30, 40] , __a=[2, 2, 3, 2] , __a=True , __a=True , __a=37 , __a="gelu" , __a=10 , __a=0.02 , __a=["stage2", "stage3", "stage4"] , __a=3 , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = num_channels _UpperCamelCase = num_stages _UpperCamelCase = hidden_sizes _UpperCamelCase = depths _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = out_features _UpperCamelCase = num_labels _UpperCamelCase = scope _UpperCamelCase = num_stages def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Any: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__a , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=__a , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = UperNetForSemanticSegmentation(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__ = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = UperNetModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a) @unittest.skip(reason='''UperNet does not use inputs_embeds''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not support input and output embeddings''') def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''') def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''') def UpperCAmelCase ( self) -> int: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''') def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' def check_hidden_states_output(__a , __a , __a): _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(__a) , expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) _UpperCamelCase = _config_zero_init(configs_no_init.backbone_config) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason='''UperNet does not have tied weights''') def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' pass @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''', repo_type='''dataset''', filename='''ADE_val_00000001.jpg''' ) _UpperCamelCase = Image.open(__snake_case ).convert('''RGB''' ) return image @require_torch @require_vision @slow class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''') _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''').to(__a) _UpperCamelCase = prepare_img() _UpperCamelCase = processor(images=__a , return_tensors='''pt''').to(__a) with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''') _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''').to(__a) _UpperCamelCase = prepare_img() _UpperCamelCase = processor(images=__a , return_tensors='''pt''').to(__a) with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4))
19
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
19
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase( lowerCamelCase ): lowercase__ = (DDPMScheduler,) def UpperCAmelCase ( self , **__a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__a) return config def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=__a , beta_end=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.check_over_configs(thresholding=__a) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0979)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.02)) < 1e-5 def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = len(__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = torch.manual_seed(0) for t in reversed(range(__a)): # 1. predict noise residual _UpperCamelCase = model(__a , __a) # 2. predict previous mean of sample x_t-1 _UpperCamelCase = scheduler.step(__a , __a , __a , generator=__a).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCamelCase = pred_prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 258.9606) < 1e-2 assert abs(result_mean.item() - 0.3372) < 1e-3 def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''') _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = len(__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = torch.manual_seed(0) for t in reversed(range(__a)): # 1. predict noise residual _UpperCamelCase = model(__a , __a) # 2. predict previous mean of sample x_t-1 _UpperCamelCase = scheduler.step(__a , __a , __a , generator=__a).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCamelCase = pred_prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 202.0296) < 1e-2 assert abs(result_mean.item() - 0.2631) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__a) _UpperCamelCase = scheduler.timesteps for i, timestep in enumerate(__a): if i == len(__a) - 1: _UpperCamelCase = -1 else: _UpperCamelCase = timesteps[i + 1] _UpperCamelCase = scheduler.previous_timestep(__a) _UpperCamelCase = prev_t.item() self.assertEqual(__a , __a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 51, 0] with self.assertRaises(__a , msg='''`custom_timesteps` must be in descending order.'''): scheduler.set_timesteps(timesteps=__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 1, 0] _UpperCamelCase = len(__a) with self.assertRaises(__a , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.'''): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=__a)
19
1
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _UpperCAmelCase: def __init__( self , __a , __a=99 , __a=13 , __a=7 , __a=9 , __a=True , __a=True , __a=False , __a=32 , __a=5 , __a=4 , __a=37 , __a=8 , __a=0.1 , __a=0.002 , __a=1 , __a=0 , __a=0 , __a=None , __a=None , ) -> List[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = encoder_seq_length _UpperCamelCase = decoder_seq_length # For common tests _UpperCamelCase = self.decoder_seq_length _UpperCamelCase = is_training _UpperCamelCase = use_attention_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = d_ff _UpperCamelCase = relative_attention_num_buckets _UpperCamelCase = dropout_rate _UpperCamelCase = initializer_factor _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = decoder_start_token_id _UpperCamelCase = None _UpperCamelCase = decoder_layers def UpperCAmelCase ( self) -> Any: '''simple docstring''' return TaConfig.from_pretrained('''google/umt5-base''') def UpperCAmelCase ( self , __a , __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> List[Any]: '''simple docstring''' if attention_mask is None: _UpperCamelCase = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: _UpperCamelCase = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: _UpperCamelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__a) if decoder_head_mask is None: _UpperCamelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__a) if cross_attn_head_mask is None: _UpperCamelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__a) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size) _UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _UpperCamelCase = input_ids.clamp(self.pad_token_id + 1) _UpperCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1) _UpperCamelCase = self.get_config() _UpperCamelCase = config.num_attention_heads _UpperCamelCase = self.prepare_inputs_dict(__a , __a , __a) return config, input_dict def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def UpperCAmelCase ( self) -> int: '''simple docstring''' return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , ) -> List[Any]: '''simple docstring''' _UpperCamelCase = UMTaModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model( input_ids=__a , decoder_input_ids=__a , attention_mask=__a , decoder_attention_mask=__a , ) _UpperCamelCase = model(input_ids=__a , decoder_input_ids=__a) _UpperCamelCase = result.last_hidden_state _UpperCamelCase = result.past_key_values _UpperCamelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size)) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size)) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__a) , config.num_layers) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0]) , 4) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = UMTaModel(config=__a).get_decoder().to(__a).eval() # first forward pass _UpperCamelCase = model(__a , use_cache=__a) _UpperCamelCase = model(__a) _UpperCamelCase = model(__a , use_cache=__a) self.parent.assertTrue(len(__a) == len(__a)) self.parent.assertTrue(len(__a) == len(__a) + 1) _UpperCamelCase , _UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size) # append to next input_ids and _UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1) _UpperCamelCase = model(__a)['''last_hidden_state'''] _UpperCamelCase = model(__a , past_key_values=__a)['''last_hidden_state'''] # select random slice _UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1]).item() _UpperCamelCase = output_from_no_past[:, -1, random_slice_idx].detach() _UpperCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1e-3)) def UpperCAmelCase ( self , __a , __a , ) -> Tuple: '''simple docstring''' _UpperCamelCase = UMTaModel(config=__a).to(__a).half().eval() _UpperCamelCase = model(**__a)['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__a).any().item()) @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) lowercase__ = (UMTaForConditionalGeneration,) if is_torch_available() else () lowercase__ = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = True lowercase__ = True # The small UMT5 model needs higher percentages for CPU/MP tests lowercase__ = [0.8, 0.9] def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = UMTaModelTester(self) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''') def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() _UpperCamelCase = UMTaModel(config_and_inputs[0]).to(__a) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __a , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'''{tmpdirname}/t5_test.onnx''' , export_params=__a , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''') def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__a) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] _UpperCamelCase = self.model_tester.prepare_config_and_inputs() _UpperCamelCase = config_and_inputs[0] _UpperCamelCase = UMTaForConditionalGeneration(__a).eval() model.to(__a) _UpperCamelCase = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__a), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__a), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__a), } for attn_name, (name, mask) in zip(__a , head_masking.items()): _UpperCamelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _UpperCamelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=__a) _UpperCamelCase = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__a , return_dict_in_generate=__a , **__a , ) # We check the state of decoder_attentions and cross_attentions just from the last step _UpperCamelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights]) , 0.0) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''') def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' pass @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase( unittest.TestCase ): @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''') def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__a).to(__a) _UpperCamelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__a , legacy=__a) _UpperCamelCase = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] _UpperCamelCase = tokenizer(__a , return_tensors='''pt''' , padding=__a).input_ids # fmt: off _UpperCamelCase = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ]) # fmt: on torch.testing.assert_allclose(__a , __a) _UpperCamelCase = model.generate(input_ids.to(__a)) _UpperCamelCase = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] _UpperCamelCase = tokenizer.batch_decode(__a) self.assertEqual(__a , __a)
19
"""simple docstring""" from __future__ import annotations from functools import lru_cache from math import ceil _a = 100 _a = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} _UpperCamelCase = set() _UpperCamelCase = 42 _UpperCamelCase = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def lowerCamelCase__ ( __snake_case = 50_00 ) -> int | None: """simple docstring""" for number_to_partition in range(1, __snake_case ): if len(partition(__snake_case ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"""{solution() = }""")
19
1
"""simple docstring""" def lowerCamelCase__ ( __snake_case = 1_00_00_00 ) -> int: """simple docstring""" _UpperCamelCase = [i - 1 for i in range(limit + 1 )] for i in range(2, limit + 1 ): if phi[i] == i - 1: for j in range(2 * i, limit + 1, __snake_case ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
19
"""simple docstring""" from collections.abc import Callable import numpy as np def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> np.array: """simple docstring""" _UpperCamelCase = int(np.ceil((x_end - xa) / step_size ) ) _UpperCamelCase = np.zeros((n + 1,) ) _UpperCamelCase = ya _UpperCamelCase = xa for k in range(__snake_case ): _UpperCamelCase = y[k] + step_size * ode_func(__snake_case, y[k] ) _UpperCamelCase = y[k] + ( (step_size / 2) * (ode_func(__snake_case, y[k] ) + ode_func(x + step_size, __snake_case )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
19
1
"""simple docstring""" import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCamelCase__ ( __snake_case, __snake_case=None ) -> Any: """simple docstring""" _UpperCamelCase = None if token is not None: _UpperCamelCase = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''} _UpperCamelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _UpperCamelCase = requests.get(__snake_case, headers=__snake_case ).json() _UpperCamelCase = {} try: job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) _UpperCamelCase = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(__snake_case ): _UpperCamelCase = requests.get(url + F'''&page={i + 2}''', headers=__snake_case ).json() job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return job_links except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCamelCase__ ( __snake_case, __snake_case=None ) -> Any: """simple docstring""" _UpperCamelCase = None if token is not None: _UpperCamelCase = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''} _UpperCamelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _UpperCamelCase = requests.get(__snake_case, headers=__snake_case ).json() _UpperCamelCase = {} try: artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) _UpperCamelCase = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(__snake_case ): _UpperCamelCase = requests.get(url + F'''&page={i + 2}''', headers=__snake_case ).json() artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) return artifacts except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = None if token is not None: _UpperCamelCase = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''} _UpperCamelCase = requests.get(__snake_case, headers=__snake_case, allow_redirects=__snake_case ) _UpperCamelCase = result.headers['''Location'''] _UpperCamelCase = requests.get(__snake_case, allow_redirects=__snake_case ) _UpperCamelCase = os.path.join(__snake_case, F'''{artifact_name}.zip''' ) with open(__snake_case, '''wb''' ) as fp: fp.write(response.content ) def lowerCamelCase__ ( __snake_case, __snake_case=None ) -> Tuple: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = None with zipfile.ZipFile(__snake_case ) as z: for filename in z.namelist(): if not os.path.isdir(__snake_case ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__snake_case ) as f: for line in f: _UpperCamelCase = line.decode('''UTF-8''' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _UpperCamelCase = line[: line.index(''': ''' )] _UpperCamelCase = line[line.index(''': ''' ) + len(''': ''' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('''FAILED ''' ): # `test` is the test method that failed _UpperCamelCase = line[len('''FAILED ''' ) :] failed_tests.append(__snake_case ) elif filename == "job_name.txt": _UpperCamelCase = line if len(__snake_case ) != len(__snake_case ): raise ValueError( F'''`errors` and `failed_tests` should have the same number of elements. Got {len(__snake_case )} for `errors` ''' F'''and {len(__snake_case )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' ''' problem.''' ) _UpperCamelCase = None if job_name and job_links: _UpperCamelCase = job_links.get(__snake_case, __snake_case ) # A list with elements of the form (line of error, error, failed test) _UpperCamelCase = [x + [y] + [job_link] for x, y in zip(__snake_case, __snake_case )] return result def lowerCamelCase__ ( __snake_case, __snake_case=None ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = [os.path.join(__snake_case, __snake_case ) for p in os.listdir(__snake_case ) if p.endswith('''.zip''' )] for p in paths: errors.extend(get_errors_from_single_artifact(__snake_case, job_links=__snake_case ) ) return errors def lowerCamelCase__ ( __snake_case, __snake_case=None ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = Counter() counter.update([x[1] for x in logs] ) _UpperCamelCase = counter.most_common() _UpperCamelCase = {} for error, count in counts: if error_filter is None or error not in error_filter: _UpperCamelCase = {'''count''': count, '''failed_tests''': [(x[2], x[0]) for x in logs if x[1] == error]} _UpperCamelCase = dict(sorted(r.items(), key=lambda __snake_case : item[1]["count"], reverse=__snake_case ) ) return r def lowerCamelCase__ ( __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = test.split('''::''' )[0] if test.startswith('''tests/models/''' ): _UpperCamelCase = test.split('''/''' )[2] else: _UpperCamelCase = None return test def lowerCamelCase__ ( __snake_case, __snake_case=None ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = [(x[0], x[1], get_model(x[2] )) for x in logs] _UpperCamelCase = [x for x in logs if x[2] is not None] _UpperCamelCase = {x[2] for x in logs} _UpperCamelCase = {} for test in tests: _UpperCamelCase = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _UpperCamelCase = counter.most_common() _UpperCamelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _UpperCamelCase = sum(error_counts.values() ) if n_errors > 0: _UpperCamelCase = {'''count''': n_errors, '''errors''': error_counts} _UpperCamelCase = dict(sorted(r.items(), key=lambda __snake_case : item[1]["count"], reverse=__snake_case ) ) return r def lowerCamelCase__ ( __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = '''| no. | error | status |''' _UpperCamelCase = '''|-:|:-|:-|''' _UpperCamelCase = [header, sep] for error in reduced_by_error: _UpperCamelCase = reduced_by_error[error]['''count'''] _UpperCamelCase = F'''| {count} | {error[:1_00]} | |''' lines.append(__snake_case ) return "\n".join(__snake_case ) def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = '''| model | no. of errors | major error | count |''' _UpperCamelCase = '''|-:|-:|-:|-:|''' _UpperCamelCase = [header, sep] for model in reduced_by_model: _UpperCamelCase = reduced_by_model[model]['''count'''] _UpperCamelCase , _UpperCamelCase = list(reduced_by_model[model]['''errors'''].items() )[0] _UpperCamelCase = F'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(__snake_case ) return "\n".join(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") _a = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _a = get_job_links(args.workflow_run_id, token=args.token) _a = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _a = k.find(""" / """) _a = k[index + len(""" / """) :] _a = v with open(os.path.join(args.output_dir, """job_links.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _a = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _a = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _a = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _a = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, """errors.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _a = reduce_by_error(errors) _a = reduce_by_model(errors) _a = make_github_table(reduced_by_error) _a = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, """reduced_by_error.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa) with open(os.path.join(args.output_dir, """reduced_by_model.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa)
19
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _a = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _a = parser.parse_args() if args.model_type == "bert": _a = BertForMaskedLM.from_pretrained(args.model_name) _a = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _a = model.state_dict() _a = {} for w in ["word_embeddings", "position_embeddings"]: _a = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _a = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] _a = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _a = state_dict["""cls.predictions.decoder.weight"""] _a = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _a = state_dict[F"""cls.predictions.transform.dense.{w}"""] _a = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
19
1
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _a = abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowerCamelCase__ ( __snake_case ) -> List[str]: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(__snake_case ) def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main _UpperCamelCase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__snake_case, id=__snake_case )
19
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _a = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class _UpperCAmelCase: lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = 'gelu' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=False , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a=0.1 , __a=0.1 , __a=20 , __a=2 , __a=1 , __a=0 , ) -> int: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) _UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) _UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCamelCase = prepare_pegasus_inputs_dict(__a , __a , __a) return config, inputs_dict def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids''']) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a) _UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''') _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __a , decoder_attention_mask=__a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__a , ) _UpperCamelCase = model.decode(__a , __a) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''') def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids''']) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a) _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__a , decoder_position_ids=__a , ) _UpperCamelCase = model.decode(__a , __a , decoder_attention_mask=__a) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''') def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=None, __snake_case=None, ) -> Union[str, Any]: """simple docstring""" if attention_mask is None: _UpperCamelCase = np.not_equal(__snake_case, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _UpperCamelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = FlaxPegasusModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = self._prepare_for_class(__a , __a) _UpperCamelCase = model_class(__a) @jax.jit def encode_jitted(__a , __a=None , **__a): return model.encode(input_ids=__a , attention_mask=__a) with self.subTest('''JIT Enabled'''): _UpperCamelCase = encode_jitted(**__a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): _UpperCamelCase = encode_jitted(**__a).to_tuple() self.assertEqual(len(__a) , len(__a)) for jitted_output, output in zip(__a , __a): self.assertEqual(jitted_output.shape , output.shape) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = model_class(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask''']) _UpperCamelCase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(__a , __a , __a): return model.decode( decoder_input_ids=__a , decoder_attention_mask=__a , encoder_outputs=__a , ) with self.subTest('''JIT Enabled'''): _UpperCamelCase = decode_jitted(**__a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): _UpperCamelCase = decode_jitted(**__a).to_tuple() self.assertEqual(len(__a) , len(__a)) for jitted_output, output in zip(__a , __a): self.assertEqual(jitted_output.shape , output.shape) @slow def UpperCAmelCase ( self) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=__a) _UpperCamelCase = np.ones((1, 1)) _UpperCamelCase = model(__a) self.assertIsNotNone(__a) @slow def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''') _UpperCamelCase = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''') _UpperCamelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] _UpperCamelCase = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] _UpperCamelCase = tokenizer(__a , return_tensors='''np''' , truncation=__a , max_length=5_12 , padding=__a) _UpperCamelCase = model.generate(**__a , num_beams=2).sequences _UpperCamelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a) assert tgt_text == decoded
19
1
"""simple docstring""" from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> np.ndarray: """simple docstring""" _UpperCamelCase = cva.getAffineTransform(__snake_case, __snake_case ) return cva.warpAffine(__snake_case, __snake_case, (rows, cols) ) if __name__ == "__main__": # read original image _a = cva.imread( str(Path(__file__).resolve().parent.parent / """image_data""" / """lena.jpg""") ) # turn image in gray scale value _a = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape _a , _a = gray_img.shape # set different points to rotate image _a = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) _a = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) _a = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) _a = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list _a = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations _a = plt.figure(1) _a = ["""Original""", """Rotation 1""", """Rotation 2""", """Rotation 3"""] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, """gray""") plt.title(titles[i]) plt.axis("""off""") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
19
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , __a=0 , ) -> Any: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope _UpperCamelCase = projection_dim def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) _UpperCamelCase = DPRConfig(projection_dim=self.projection_dim , **config.to_dict()) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = TFDPRContextEncoder(config=__a) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFDPRQuestionEncoder(config=__a) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = TFDPRReader(config=__a) _UpperCamelCase = model(__a , attention_mask=__a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,)) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowercase__ = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDPRModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__a) @slow def UpperCAmelCase ( self) -> str: '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRContextEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRContextEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRQuestionEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRReader.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''') _UpperCamelCase = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]]) # [CLS] hello, is my dog cute? [SEP] _UpperCamelCase = model(__a)[0] # embedding shape = (1, 768) # compare the actual values for a slice. _UpperCamelCase = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ]) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4))
19
1
"""simple docstring""" _a = [0, 2, 4, 6, 8] _a = [1, 3, 5, 7, 9] def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 _UpperCamelCase = 0 for digit in range(10 ): _UpperCamelCase = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, __snake_case, __snake_case ) return result _UpperCamelCase = 0 for digita in range(10 ): _UpperCamelCase = digita if (remainder + digita) % 2 == 0: _UpperCamelCase = ODD_DIGITS else: _UpperCamelCase = EVEN_DIGITS for digita in other_parity_digits: _UpperCamelCase = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, __snake_case, __snake_case, ) return result def lowerCamelCase__ ( __snake_case = 9 ) -> int: """simple docstring""" _UpperCamelCase = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(__snake_case, 0, [0] * length, __snake_case ) return result if __name__ == "__main__": print(F"""{solution() = }""")
19
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x2_0000 and cp <= 0x2_A6DF) # or (cp >= 0x2_A700 and cp <= 0x2_B73F) # or (cp >= 0x2_B740 and cp <= 0x2_B81F) # or (cp >= 0x2_B820 and cp <= 0x2_CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2_F800 and cp <= 0x2_FA1F) # ): # return True return False def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" for char in word: _UpperCamelCase = ord(__snake_case ) if not _is_chinese_char(__snake_case ): return 0 return 1 def lowerCamelCase__ ( __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = set() for token in tokens: _UpperCamelCase = len(__snake_case ) > 1 and is_chinese(__snake_case ) if chinese_word: word_set.add(__snake_case ) _UpperCamelCase = list(__snake_case ) return word_list def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" if not chinese_word_set: return bert_tokens _UpperCamelCase = max([len(__snake_case ) for w in chinese_word_set] ) _UpperCamelCase = bert_tokens _UpperCamelCase , _UpperCamelCase = 0, len(__snake_case ) while start < end: _UpperCamelCase = True if is_chinese(bert_word[start] ): _UpperCamelCase = min(end - start, __snake_case ) for i in range(__snake_case, 1, -1 ): _UpperCamelCase = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _UpperCamelCase = '''##''' + bert_word[j] _UpperCamelCase = start + i _UpperCamelCase = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws _UpperCamelCase = [get_chinese_word(__snake_case ) for r in res] ltp_res.extend(__snake_case ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=__snake_case, truncation=__snake_case, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for input_ids, chinese_word in zip(__snake_case, __snake_case ): _UpperCamelCase = [] for id in input_ids: _UpperCamelCase = bert_tokenizer._convert_id_to_token(__snake_case ) input_tokens.append(__snake_case ) _UpperCamelCase = add_sub_symbol(__snake_case, __snake_case ) _UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__snake_case ): if token[:2] == "##": _UpperCamelCase = token[2:] # save chinese tokens' pos if len(__snake_case ) == 1 and _is_chinese_char(ord(__snake_case ) ): ref_id.append(__snake_case ) ref_ids.append(__snake_case ) assert len(__snake_case ) == len(__snake_case ) return ref_ids def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _UpperCamelCase = f.readlines() _UpperCamelCase = [line.strip() for line in data if len(__snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _UpperCamelCase = LTP(args.ltp ) # faster in GPU device _UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) _UpperCamelCase = prepare_ref(__snake_case, __snake_case, __snake_case ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _UpperCamelCase = [json.dumps(__snake_case ) + '''\n''' for ref in ref_ids] f.writelines(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) _a = parser.parse_args() main(args)
19
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'facebook/bart-large-mnli' lowercase__ = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) lowercase__ = 'text_classifier' lowercase__ = AutoTokenizer lowercase__ = AutoModelForSequenceClassification lowercase__ = ['text', ['text']] lowercase__ = ['text'] def UpperCAmelCase ( self) -> int: '''simple docstring''' super().setup() _UpperCamelCase = self.model.config _UpperCamelCase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail'''): _UpperCamelCase = int(__a) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''') def UpperCAmelCase ( self , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = labels return self.pre_processor( [text] * len(__a) , [F'''This example is {label}''' for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def UpperCAmelCase ( self , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = outputs.logits _UpperCamelCase = torch.argmax(logits[:, 2]).item() return self._labels[label_id]
19
"""simple docstring""" import heapq def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" _UpperCamelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__snake_case, [-1 * len(__snake_case ), (key, value)] ) # chosen_vertices = set of chosen vertices _UpperCamelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _UpperCamelCase = heapq.heappop(__snake_case )[1][0] chosen_vertices.add(__snake_case ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _UpperCamelCase = elem[1][1].index(__snake_case ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__snake_case ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _a = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
19
1
"""simple docstring""" def lowerCamelCase__ ( __snake_case, __snake_case ) -> Any: """simple docstring""" _enforce_args(__snake_case, __snake_case ) if n == 0: return 0 _UpperCamelCase = float('''-inf''' ) for i in range(1, n + 1 ): _UpperCamelCase = max( __snake_case, prices[i - 1] + naive_cut_rod_recursive(n - i, __snake_case ) ) return max_revue def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" _enforce_args(__snake_case, __snake_case ) _UpperCamelCase = [float('''-inf''' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(__snake_case, __snake_case, __snake_case ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> str: """simple docstring""" if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _UpperCamelCase = float('''-inf''' ) for i in range(1, n + 1 ): _UpperCamelCase = max( __snake_case, prices[i - 1] + _top_down_cut_rod_recursive(n - i, __snake_case, __snake_case ), ) _UpperCamelCase = max_revenue return max_rev[n] def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" _enforce_args(__snake_case, __snake_case ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _UpperCamelCase = [float('''-inf''' ) for _ in range(n + 1 )] _UpperCamelCase = 0 for i in range(1, n + 1 ): _UpperCamelCase = max_rev[i] for j in range(1, i + 1 ): _UpperCamelCase = max(__snake_case, prices[j - 1] + max_rev[i - j] ) _UpperCamelCase = max_revenue_i return max_rev[n] def lowerCamelCase__ ( __snake_case, __snake_case ) -> Dict: """simple docstring""" if n < 0: _UpperCamelCase = F'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(__snake_case ) if n > len(__snake_case ): _UpperCamelCase = ( '''Each integral piece of rod must have a corresponding price. ''' F'''Got n = {n} but length of prices = {len(__snake_case )}''' ) raise ValueError(__snake_case ) def lowerCamelCase__ ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [6, 10, 12, 15, 20, 23] _UpperCamelCase = len(__snake_case ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _UpperCamelCase = 36 _UpperCamelCase = top_down_cut_rod(__snake_case, __snake_case ) _UpperCamelCase = bottom_up_cut_rod(__snake_case, __snake_case ) _UpperCamelCase = naive_cut_rod_recursive(__snake_case, __snake_case ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
19
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _UpperCamelCase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj ) assert isinstance(_test_patching.os.path, _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" assert _test_patching.open is open _UpperCamelCase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, '''open''', __snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching, '''pandas.read_csv''', __snake_case ): pass def lowerCamelCase__ ( ) -> Dict: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, '''len''', __snake_case ) is None with patch_submodule(_test_patching, '''len''', __snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_start_and_stop_mock__''' _UpperCamelCase = patch_submodule(_test_patching, '''open''', __snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _UpperCamelCase = '''__test_patch_submodule_successive_join__''' _UpperCamelCase = '''__test_patch_submodule_successive_dirname__''' _UpperCamelCase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> str: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching, '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''', __snake_case ): pass with patch_submodule(_test_patching, '''os.__attribute_that_doesn_exist__''', __snake_case ): pass
19
1
"""simple docstring""" import fire from utils import calculate_rouge, save_json def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case=None, **__snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()] _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()][: len(__snake_case )] _UpperCamelCase = calculate_rouge(__snake_case, __snake_case, **__snake_case ) if save_path is not None: save_json(__snake_case, __snake_case, indent=__snake_case ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
19
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = original_name.split('''.''' )[0] _UpperCamelCase = key.split('''.''' ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 2] ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 1] ) _UpperCamelCase = orig_block_num - offset _UpperCamelCase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''', F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = OrderedDict() _UpperCamelCase , _UpperCamelCase = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): _UpperCamelCase = key.replace('''network''', '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 _UpperCamelCase = key[: key.find('''proj''' )] _UpperCamelCase = key.replace(__snake_case, F'''patch_embeddings.{total_embed_found}.''' ) _UpperCamelCase = key.replace('''proj''', '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: _UpperCamelCase = '''poolformer.encoder.''' + key if "mlp.fc1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc1''', '''output.conv1''' ) if "mlp.fc2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc2''', '''output.conv2''' ) if "norm1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm1''', '''before_norm''' ) if "norm2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm2''', '''after_norm''' ) if "layer_scale_1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_1''', '''layer_scale_1''' ) if "layer_scale_2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_2''', '''layer_scale_2''' ) if "head" in key: _UpperCamelCase = key.replace('''head''', '''classifier''' ) _UpperCamelCase = value return new_state_dict def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase = Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return image @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = PoolFormerConfig() # set attributes based on model_name _UpperCamelCase = '''huggingface/label-files''' _UpperCamelCase = model_name[-3:] _UpperCamelCase = 10_00 _UpperCamelCase = '''imagenet-1k-id2label.json''' _UpperCamelCase = (1, 10_00) # set config attributes _UpperCamelCase = json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type='''dataset''' ), '''r''' ) ) _UpperCamelCase = {int(__snake_case ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} if size == "s12": _UpperCamelCase = [2, 2, 6, 2] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s24": _UpperCamelCase = [4, 4, 12, 4] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.9 elif size == "m36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 elif size == "m48": _UpperCamelCase = [8, 8, 24, 8] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) # Prepare image _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__snake_case, return_tensors='''pt''' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict _UpperCamelCase = torch.load(__snake_case, map_location=torch.device('''cpu''' ) ) # rename keys _UpperCamelCase = rename_keys(__snake_case ) # create HuggingFace model and load state dict _UpperCamelCase = PoolFormerForImageClassification(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # Define image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) _UpperCamelCase = image_processor(images=prepare_img(), return_tensors='''pt''' ).pixel_values # forward pass _UpperCamelCase = model(__snake_case ) _UpperCamelCase = outputs.logits # define expected logit slices for different models if size == "s12": _UpperCamelCase = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": _UpperCamelCase = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": _UpperCamelCase = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": _UpperCamelCase = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": _UpperCamelCase = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3], __snake_case, atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _a = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
19
1
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=64 , __a=2 , __a=3 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a=[1, 16, 4, 4] , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _UpperCamelCase = (self.image_size // 32) ** 2 _UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__a , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.type_sequence_label_size _UpperCamelCase = ViTHybridForImageClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowercase__ = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''') def UpperCAmelCase ( self) -> Dict: '''simple docstring''' pass def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear)) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _UpperCamelCase = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = ViTHybridModel.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase( unittest.TestCase ): @cached_property def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( __a) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''').to(__a) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__a) # verify the logits _UpperCamelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor([-1.9090, -0.4993, -0.2389]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4)) @slow @require_accelerate def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''') _UpperCamelCase = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''') _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''') _UpperCamelCase = model(**__a) _UpperCamelCase = outputs.logits # model predicts one of the 1000 ImageNet classes _UpperCamelCase = logits.argmax(-1).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''')
19
"""simple docstring""" import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class _UpperCAmelCase( lowerCamelCase ): lowercase__ = (DPMSolverSDEScheduler,) lowercase__ = 10 def UpperCAmelCase ( self , **__a) -> int: '''simple docstring''' _UpperCamelCase = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**__a) return config def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02]): self.check_over_configs(beta_start=__a , beta_end=__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a) def UpperCAmelCase ( self) -> str: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''') _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a , use_karras_sigmas=__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2
19
1
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json""" ), } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'xlm-prophetnet' lowercase__ = ['past_key_values'] lowercase__ = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self , __a = 0.1 , __a = "gelu" , __a = 3_05_22 , __a = 10_24 , __a = 40_96 , __a = 12 , __a = 16 , __a = 40_96 , __a = 12 , __a = 16 , __a = 0.1 , __a = 0.1 , __a = 5_12 , __a = 0.02 , __a = True , __a = True , __a = 0 , __a = 2 , __a = 32 , __a = 1_28 , __a = False , __a = 0.0 , __a = True , __a = 0 , __a = 1 , __a = 2 , **__a , ) -> List[Any]: '''simple docstring''' _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = num_encoder_layers _UpperCamelCase = num_encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = num_decoder_layers _UpperCamelCase = num_decoder_attention_heads _UpperCamelCase = max_position_embeddings _UpperCamelCase = init_std # Normal(0, this parameter) _UpperCamelCase = activation_function # parameters for xlmprophetnet _UpperCamelCase = ngram _UpperCamelCase = num_buckets _UpperCamelCase = relative_max_distance _UpperCamelCase = disable_ngram_loss _UpperCamelCase = eps # 3 Types of Dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = dropout _UpperCamelCase = use_cache super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , add_cross_attention=__a , decoder_start_token_id=__a , **__a , ) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def UpperCAmelCase ( self , __a) -> str: '''simple docstring''' raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''')
19
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['pixel_values'] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BICUBIC , __a = True , __a = True , __a = 1 / 2_55 , __a = None , __a = True , __a = None , __a = None , **__a , ) -> None: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a , default_to_square=__a , param_name='''crop_size''') _UpperCamelCase = do_resize _UpperCamelCase = do_rescale _UpperCamelCase = do_normalize _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = rescale_factor _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BILINEAR , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "shortest_edge" in size: _UpperCamelCase = get_resize_output_image_size(__a , size=size['''shortest_edge'''] , default_to_square=__a) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''') return resize(__a , size=__a , resample=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''') return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a) -> np.ndarray: '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> BatchFeature: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(__a , param_name='''crop_size''' , default_to_square=__a) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(__a) if not is_batched(__a): _UpperCamelCase = [images] if not valid_images(__a): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(__a) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=__a , size=__a , resample=__a) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=__a , size=__a) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=__a , scale=__a) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=__a , mean=__a , std=__a) for image in images] _UpperCamelCase = [to_channel_dimension_format(__a , __a) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=__a , tensor_type=__a)
19
1
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer _a = ["""gpt2"""] _a = """gpt2""" if is_tf_available(): class _UpperCAmelCase( tf.Module ): def __init__( self , __a) -> Optional[Any]: '''simple docstring''' super().__init__() _UpperCamelCase = tokenizer _UpperCamelCase = AutoConfig.from_pretrained(__a) _UpperCamelCase = TFGPTaLMHeadModel.from_config(__a) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text'''),)) def UpperCAmelCase ( self , __a) -> List[str]: '''simple docstring''' _UpperCamelCase = self.tokenizer(__a) _UpperCamelCase = tokenized['''input_ids'''].to_tensor() _UpperCamelCase = tf.cast(input_ids_dense > 0 , tf.intaa) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _UpperCamelCase = self.model(input_ids=__a , attention_mask=__a)['''logits'''] return outputs @require_tf @require_keras_nlp class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' super().setUp() _UpperCamelCase = [GPTaTokenizer.from_pretrained(__a) for checkpoint in (TOKENIZER_CHECKPOINTS)] _UpperCamelCase = [TFGPTaTokenizer.from_pretrained(__a) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers) == len(self.tf_tokenizers) _UpperCamelCase = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] _UpperCamelCase = list(zip(self.test_sentences , self.test_sentences[::-1])) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in self.test_sentences: _UpperCamelCase = tokenizer([test_inputs] , return_tensors='''tf''') _UpperCamelCase = tf_tokenizer([test_inputs]) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _UpperCamelCase = python_outputs[key].numpy() _UpperCamelCase = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape)) self.assertTrue(tf.reduce_all(tf.cast(__a , tf.intaa) == tf_outputs_values)) @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase = tf.function(__a) for test_inputs in self.test_sentences: _UpperCamelCase = tf.constant(__a) _UpperCamelCase = compiled_tokenizer(__a) _UpperCamelCase = tf_tokenizer(__a) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase = ModelToSave(tokenizer=__a) _UpperCamelCase = tf.convert_to_tensor([self.test_sentences[0]]) _UpperCamelCase = model.serving(__a) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _UpperCamelCase = Path(__a) / '''saved.model''' tf.saved_model.save(__a , __a , signatures={'''serving_default''': model.serving}) _UpperCamelCase = tf.saved_model.load(__a) _UpperCamelCase = loaded_model.signatures['''serving_default'''](__a)['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output)) @slow def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _UpperCamelCase = tf.convert_to_tensor([self.test_sentences[0]]) _UpperCamelCase = tf_tokenizer(__a) # Build model with some sample inputs _UpperCamelCase = tf_tokenizer.get_config() _UpperCamelCase = TFGPTaTokenizer.from_config(__a) _UpperCamelCase = model_from_config(__a) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key])) @slow def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _UpperCamelCase = 12_31_23 for max_length in [3, 5, 10_24]: _UpperCamelCase = tf.convert_to_tensor([self.test_sentences[0]]) _UpperCamelCase = tf_tokenizer(__a , max_length=__a) _UpperCamelCase = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
19
"""simple docstring""" # Imports import numpy as np class _UpperCAmelCase: def __init__( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) def UpperCAmelCase ( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' if red is not None: _UpperCamelCase = red if green is not None: _UpperCamelCase = green if blue is not None: _UpperCamelCase = blue if red_edge is not None: _UpperCamelCase = red_edge if nir is not None: _UpperCamelCase = nir return True def UpperCAmelCase ( self , __a="" , __a=None , __a=None , __a=None , __a=None , __a=None) -> List[str]: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) _UpperCamelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''') return False def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self) -> Any: '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self , __a=0.08 , __a=1.22 , __a=0.03) -> Optional[Any]: '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir / self.green) - 1 def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.red - self.blue) / self.red def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir - self.green def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def UpperCAmelCase ( self , __a=0.16) -> Optional[Any]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self , __a=0.5) -> Dict: '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self , __a=None , __a=None) -> Any: '''simple docstring''' return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self) -> Any: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> str: '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) _UpperCamelCase = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Any: '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
19
1
"""simple docstring""" from random import randint, random def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case = False, __snake_case = False, __snake_case = 5, ) -> list: """simple docstring""" _UpperCamelCase = [[-1] * number_of_cells] # Create a highway without any car _UpperCamelCase = 0 _UpperCamelCase = max(__snake_case, 0 ) while i < number_of_cells: _UpperCamelCase = ( randint(0, __snake_case ) if random_speed else initial_speed ) # Place the cars i += ( randint(1, max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = 0 _UpperCamelCase = highway_now[car_index + 1 :] for cell in range(len(__snake_case ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(__snake_case, -1 ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> list: """simple docstring""" _UpperCamelCase = len(__snake_case ) # Beforce calculations, the highway is empty _UpperCamelCase = [-1] * number_of_cells for car_index in range(__snake_case ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _UpperCamelCase = min(highway_now[car_index] + 1, __snake_case ) # Number of empty cell before the next car _UpperCamelCase = get_distance(__snake_case, __snake_case ) - 1 # We can't have the car causing an accident _UpperCamelCase = min(next_highway[car_index], __snake_case ) if random() < probability: # Randomly, a driver will slow down _UpperCamelCase = max(next_highway[car_index] - 1, 0 ) return next_highway def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> list: """simple docstring""" _UpperCamelCase = len(highway[0] ) for i in range(__snake_case ): _UpperCamelCase = update(highway[i], __snake_case, __snake_case ) _UpperCamelCase = [-1] * number_of_cells for car_index in range(__snake_case ): _UpperCamelCase = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _UpperCamelCase = (car_index + speed) % number_of_cells # Commit the change of position _UpperCamelCase = speed highway.append(__snake_case ) return highway if __name__ == "__main__": import doctest doctest.testmod()
19
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=64 , __a=2 , __a=3 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a=[1, 16, 4, 4] , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _UpperCamelCase = (self.image_size // 32) ** 2 _UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__a , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.type_sequence_label_size _UpperCamelCase = ViTHybridForImageClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowercase__ = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''') def UpperCAmelCase ( self) -> Dict: '''simple docstring''' pass def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear)) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _UpperCamelCase = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = ViTHybridModel.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase( unittest.TestCase ): @cached_property def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( __a) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''').to(__a) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__a) # verify the logits _UpperCamelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor([-1.9090, -0.4993, -0.2389]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4)) @slow @require_accelerate def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''') _UpperCamelCase = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''') _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''') _UpperCamelCase = model(**__a) _UpperCamelCase = outputs.logits # model predicts one of the 1000 ImageNet classes _UpperCamelCase = logits.argmax(-1).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''')
19
1