code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import math UpperCAmelCase_ : List[Any] = 10 UpperCAmelCase_ : Tuple = 7 UpperCAmelCase_ : Any = BALLS_PER_COLOUR * NUM_COLOURS def lowerCAmelCase_ ( lowerCamelCase = 20 ): __magic_name__ : Union[str, Any] =math.comb(lowerCamelCase , lowerCamelCase ) __magic_name__ : Tuple =math.comb(NUM_BALLS - BALLS_PER_COLOUR , lowerCamelCase ) __magic_name__ : Any =NUM_COLOURS * (1 - missing_colour / total) return F"{result:.9f}" if __name__ == "__main__": print(solution(20))
21
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _a = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class _UpperCAmelCase: lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = 'gelu' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=False , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a=0.1 , __a=0.1 , __a=20 , __a=2 , __a=1 , __a=0 , ) -> int: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) _UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) _UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCamelCase = prepare_pegasus_inputs_dict(__a , __a , __a) return config, inputs_dict def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids''']) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a) _UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''') _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __a , decoder_attention_mask=__a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__a , ) _UpperCamelCase = model.decode(__a , __a) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''') def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids''']) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a) _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__a , decoder_position_ids=__a , ) _UpperCamelCase = model.decode(__a , __a , decoder_attention_mask=__a) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''') def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=None, __snake_case=None, ) -> Union[str, Any]: """simple docstring""" if attention_mask is None: _UpperCamelCase = np.not_equal(__snake_case, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _UpperCamelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = FlaxPegasusModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = self._prepare_for_class(__a , __a) _UpperCamelCase = model_class(__a) @jax.jit def encode_jitted(__a , __a=None , **__a): return model.encode(input_ids=__a , attention_mask=__a) with self.subTest('''JIT Enabled'''): _UpperCamelCase = encode_jitted(**__a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): _UpperCamelCase = encode_jitted(**__a).to_tuple() self.assertEqual(len(__a) , len(__a)) for jitted_output, output in zip(__a , __a): self.assertEqual(jitted_output.shape , output.shape) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = model_class(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask''']) _UpperCamelCase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(__a , __a , __a): return model.decode( decoder_input_ids=__a , decoder_attention_mask=__a , encoder_outputs=__a , ) with self.subTest('''JIT Enabled'''): _UpperCamelCase = decode_jitted(**__a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): _UpperCamelCase = decode_jitted(**__a).to_tuple() self.assertEqual(len(__a) , len(__a)) for jitted_output, output in zip(__a , __a): self.assertEqual(jitted_output.shape , output.shape) @slow def UpperCAmelCase ( self) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=__a) _UpperCamelCase = np.ones((1, 1)) _UpperCamelCase = model(__a) self.assertIsNotNone(__a) @slow def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''') _UpperCamelCase = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''') _UpperCamelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] _UpperCamelCase = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] _UpperCamelCase = tokenizer(__a , return_tensors='''np''' , truncation=__a , max_length=5_12 , padding=__a) _UpperCamelCase = model.generate(**__a , num_beams=2).sequences _UpperCamelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a) assert tgt_text == decoded
19
0
'''simple docstring''' import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class A : def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : int = 13 , lowerCAmelCase_ : int = 64 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : int = 1_28 , lowerCAmelCase_ : Any=[16, 32, 64, 1_28] , lowerCAmelCase_ : int = 7 , lowerCAmelCase_ : int = 4 , lowerCAmelCase_ : int = 37 , lowerCAmelCase_ : str = "gelu" , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : int = 10 , lowerCAmelCase_ : float = 0.0_2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : int = 1_28 , lowerCAmelCase_ : List[int] = [2, 2, 2, 2] , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , ) -> Optional[Any]: """simple docstring""" _a = parent _a = batch_size _a = image_size _a = patch_size _a = num_channels _a = is_training _a = use_labels _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = type_sequence_label_size _a = initializer_range _a = encoder_stride _a = num_attention_outputs _a = embed_dim _a = embed_dim + 1 _a = resolution _a = depths _a = hidden_sizes _a = dim _a = mlp_expansion_ratio def __lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict ) -> List[str]: """simple docstring""" _a = TFEfficientFormerModel(config=lowerCAmelCase_ ) _a = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ) -> Tuple: """simple docstring""" _a = self.type_sequence_label_size _a = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) _a = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a = 1 _a = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) _a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class A ( _a ,_a ,unittest.TestCase ): lowercase_ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) lowercase_ = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _a = TFEfficientFormerModelTester(self ) _a = ConfigTester( self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''' ) def __lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''' ) def __lowerCAmelCase ( self : Any ) -> int: """simple docstring""" pass def __lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(lowerCAmelCase_ ) _a = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] ): _a = model_class(lowerCAmelCase_ ) _a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _a = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) if hasattr(self.model_tester , '''encoder_seq_length''' ): _a = self.model_tester.encoder_seq_length if hasattr(self.model_tester , '''chunk_length''' ) and self.model_tester.chunk_length > 1: _a = seq_length * self.model_tester.chunk_length else: _a = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: _a = outputs.decoder_hidden_states self.asseretIsInstance(lowerCAmelCase_ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) _a = getattr(self.model_tester , '''seq_length''' , lowerCAmelCase_ ) _a = getattr(self.model_tester , '''decoder_seq_length''' , lowerCAmelCase_ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=False ) -> Dict: """simple docstring""" _a = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''' ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = TFEfficientFormerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True _a = getattr(self.model_tester , '''seq_length''' , lowerCAmelCase_ ) _a = getattr(self.model_tester , '''encoder_seq_length''' , lowerCAmelCase_ ) _a = getattr(self.model_tester , '''key_length''' , lowerCAmelCase_ ) _a = getattr(self.model_tester , '''chunk_length''' , lowerCAmelCase_ ) if chunk_length is not None and hasattr(self.model_tester , '''num_hashes''' ): _a = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: _a = True _a = False _a = True _a = model_class(lowerCAmelCase_ ) _a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = model_class(lowerCAmelCase_ ) _a = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def __lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model _a = model_class(lowerCAmelCase_ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes _a = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowerCAmelCase_ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } _a = model(lowerCAmelCase_ ) self.assertTrue(outputs_dict is not None ) def snake_case_ (): '''simple docstring''' _a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''' ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _a = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''' ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=lowerCAmelCase_ , return_tensors='''tf''' ) # forward pass _a = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _a = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _a = tf.constant([-0.0_5_5_5, 0.4_8_2_5, -0.0_8_5_2] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def __lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" _a = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''' ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=lowerCAmelCase_ , return_tensors='''tf''' ) # forward pass _a = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _a = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _a = tf.constant([-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
22
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , __a=0 , ) -> Any: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope _UpperCamelCase = projection_dim def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) _UpperCamelCase = DPRConfig(projection_dim=self.projection_dim , **config.to_dict()) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = TFDPRContextEncoder(config=__a) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFDPRQuestionEncoder(config=__a) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = TFDPRReader(config=__a) _UpperCamelCase = model(__a , attention_mask=__a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,)) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowercase__ = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDPRModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__a) @slow def UpperCAmelCase ( self) -> str: '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRContextEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRContextEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRQuestionEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRReader.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''') _UpperCamelCase = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]]) # [CLS] hello, is my dog cute? [SEP] _UpperCamelCase = model(__a)[0] # embedding shape = (1, 768) # compare the actual values for a slice. _UpperCamelCase = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ]) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4))
19
0
import string def _snake_case (__lowercase): for key in range(len(string.ascii_uppercase)): UpperCamelCase_ = '' for symbol in message: if symbol in string.ascii_uppercase: UpperCamelCase_ = string.ascii_uppercase.find(__lowercase) UpperCamelCase_ = num - key if num < 0: UpperCamelCase_ = num + len(string.ascii_uppercase) UpperCamelCase_ = translated + string.ascii_uppercase[num] else: UpperCamelCase_ = translated + symbol print(f"""Decryption using Key #{key}: {translated}""") def _snake_case (): UpperCamelCase_ = input('Encrypted message: ') UpperCamelCase_ = message.upper() decrypt(__lowercase) if __name__ == "__main__": import doctest doctest.testmod() main()
23
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x2_0000 and cp <= 0x2_A6DF) # or (cp >= 0x2_A700 and cp <= 0x2_B73F) # or (cp >= 0x2_B740 and cp <= 0x2_B81F) # or (cp >= 0x2_B820 and cp <= 0x2_CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2_F800 and cp <= 0x2_FA1F) # ): # return True return False def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" for char in word: _UpperCamelCase = ord(__snake_case ) if not _is_chinese_char(__snake_case ): return 0 return 1 def lowerCamelCase__ ( __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = set() for token in tokens: _UpperCamelCase = len(__snake_case ) > 1 and is_chinese(__snake_case ) if chinese_word: word_set.add(__snake_case ) _UpperCamelCase = list(__snake_case ) return word_list def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" if not chinese_word_set: return bert_tokens _UpperCamelCase = max([len(__snake_case ) for w in chinese_word_set] ) _UpperCamelCase = bert_tokens _UpperCamelCase , _UpperCamelCase = 0, len(__snake_case ) while start < end: _UpperCamelCase = True if is_chinese(bert_word[start] ): _UpperCamelCase = min(end - start, __snake_case ) for i in range(__snake_case, 1, -1 ): _UpperCamelCase = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _UpperCamelCase = '''##''' + bert_word[j] _UpperCamelCase = start + i _UpperCamelCase = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws _UpperCamelCase = [get_chinese_word(__snake_case ) for r in res] ltp_res.extend(__snake_case ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=__snake_case, truncation=__snake_case, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for input_ids, chinese_word in zip(__snake_case, __snake_case ): _UpperCamelCase = [] for id in input_ids: _UpperCamelCase = bert_tokenizer._convert_id_to_token(__snake_case ) input_tokens.append(__snake_case ) _UpperCamelCase = add_sub_symbol(__snake_case, __snake_case ) _UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__snake_case ): if token[:2] == "##": _UpperCamelCase = token[2:] # save chinese tokens' pos if len(__snake_case ) == 1 and _is_chinese_char(ord(__snake_case ) ): ref_id.append(__snake_case ) ref_ids.append(__snake_case ) assert len(__snake_case ) == len(__snake_case ) return ref_ids def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _UpperCamelCase = f.readlines() _UpperCamelCase = [line.strip() for line in data if len(__snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _UpperCamelCase = LTP(args.ltp ) # faster in GPU device _UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) _UpperCamelCase = prepare_ref(__snake_case, __snake_case, __snake_case ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _UpperCamelCase = [json.dumps(__snake_case ) + '''\n''' for ref in ref_ids] f.writelines(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) _a = parser.parse_args() main(args)
19
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def _UpperCamelCase (_lowerCamelCase : Optional[int] )-> int: '''simple docstring''' __snake_case = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) __snake_case = DetaConfig( backbone_config=_lowerCamelCase , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=_lowerCamelCase , with_box_refine=_lowerCamelCase , two_stage=_lowerCamelCase , ) # set labels __snake_case = '''huggingface/label-files''' if "o365" in model_name: __snake_case = 3_66 __snake_case = '''object365-id2label.json''' else: __snake_case = 91 __snake_case = '''coco-detection-id2label.json''' __snake_case = num_labels __snake_case = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) __snake_case = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __snake_case = idalabel __snake_case = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase (_lowerCamelCase : Optional[Any] )-> Optional[Any]: '''simple docstring''' __snake_case = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def _UpperCamelCase (_lowerCamelCase : List[Any] , _lowerCamelCase : Dict , _lowerCamelCase : Any )-> List[Any]: '''simple docstring''' __snake_case = dct.pop(_lowerCamelCase ) __snake_case = val def _UpperCamelCase (_lowerCamelCase : Optional[int] , _lowerCamelCase : Dict )-> Union[str, Any]: '''simple docstring''' __snake_case = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __snake_case = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) __snake_case = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __snake_case = in_proj_weight[:dim, :] __snake_case = in_proj_bias[: dim] __snake_case = in_proj_weight[ dim : dim * 2, : ] __snake_case = in_proj_bias[ dim : dim * 2 ] __snake_case = in_proj_weight[ -dim :, : ] __snake_case = in_proj_bias[-dim :] # fmt: on def _UpperCamelCase (_lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] )-> Any: '''simple docstring''' __snake_case = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) __snake_case = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __snake_case = in_proj_weight[:hidden_size, :] __snake_case = in_proj_bias[:hidden_size] __snake_case = in_proj_weight[ hidden_size : hidden_size * 2, : ] __snake_case = in_proj_bias[hidden_size : hidden_size * 2] __snake_case = in_proj_weight[-hidden_size:, :] __snake_case = in_proj_bias[-hidden_size:] def _UpperCamelCase ()-> Optional[Any]: '''simple docstring''' __snake_case = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __snake_case = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def _UpperCamelCase (_lowerCamelCase : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any] )-> Optional[Any]: '''simple docstring''' __snake_case = get_deta_config(_lowerCamelCase ) # load original state dict if model_name == "deta-swin-large": __snake_case = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": __snake_case = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) __snake_case = torch.load(_lowerCamelCase , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(_lowerCamelCase , param.shape ) # rename keys __snake_case = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_swin_q_k_v(_lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCamelCase , _lowerCamelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __snake_case = state_dict.pop(_lowerCamelCase ) __snake_case = val if "input_proj" in key: __snake_case = state_dict.pop(_lowerCamelCase ) __snake_case = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __snake_case = state_dict.pop(_lowerCamelCase ) __snake_case = val # finally, create HuggingFace model and load state dict __snake_case = DetaForObjectDetection(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() __snake_case = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(_lowerCamelCase ) # load image processor __snake_case = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image __snake_case = prepare_img() __snake_case = processor(images=_lowerCamelCase , return_tensors='''pt''' ) __snake_case = encoding['''pixel_values'''] __snake_case = model(pixel_values.to(_lowerCamelCase ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __snake_case = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) __snake_case = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": __snake_case = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) __snake_case = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(_lowerCamelCase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(_lowerCamelCase ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
24
"""simple docstring""" import heapq def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" _UpperCamelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__snake_case, [-1 * len(__snake_case ), (key, value)] ) # chosen_vertices = set of chosen vertices _UpperCamelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _UpperCamelCase = heapq.heappop(__snake_case )[1][0] chosen_vertices.add(__snake_case ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _UpperCamelCase = elem[1][1].index(__snake_case ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__snake_case ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _a = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
19
0
def lowerCamelCase__ ( _a): if a < 0: raise ValueError("Input value must be a positive integer") elif isinstance(_a , _a): raise TypeError("Input value must be a 'int' type") return bin(_a).count("1") if __name__ == "__main__": import doctest doctest.testmod()
25
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _UpperCamelCase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj ) assert isinstance(_test_patching.os.path, _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" assert _test_patching.open is open _UpperCamelCase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, '''open''', __snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching, '''pandas.read_csv''', __snake_case ): pass def lowerCamelCase__ ( ) -> Dict: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, '''len''', __snake_case ) is None with patch_submodule(_test_patching, '''len''', __snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_start_and_stop_mock__''' _UpperCamelCase = patch_submodule(_test_patching, '''open''', __snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _UpperCamelCase = '''__test_patch_submodule_successive_join__''' _UpperCamelCase = '''__test_patch_submodule_successive_dirname__''' _UpperCamelCase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> str: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching, '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''', __snake_case ): pass with patch_submodule(_test_patching, '''os.__attribute_that_doesn_exist__''', __snake_case ): pass
19
0
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
26
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = original_name.split('''.''' )[0] _UpperCamelCase = key.split('''.''' ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 2] ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 1] ) _UpperCamelCase = orig_block_num - offset _UpperCamelCase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''', F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = OrderedDict() _UpperCamelCase , _UpperCamelCase = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): _UpperCamelCase = key.replace('''network''', '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 _UpperCamelCase = key[: key.find('''proj''' )] _UpperCamelCase = key.replace(__snake_case, F'''patch_embeddings.{total_embed_found}.''' ) _UpperCamelCase = key.replace('''proj''', '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: _UpperCamelCase = '''poolformer.encoder.''' + key if "mlp.fc1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc1''', '''output.conv1''' ) if "mlp.fc2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc2''', '''output.conv2''' ) if "norm1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm1''', '''before_norm''' ) if "norm2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm2''', '''after_norm''' ) if "layer_scale_1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_1''', '''layer_scale_1''' ) if "layer_scale_2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_2''', '''layer_scale_2''' ) if "head" in key: _UpperCamelCase = key.replace('''head''', '''classifier''' ) _UpperCamelCase = value return new_state_dict def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase = Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return image @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = PoolFormerConfig() # set attributes based on model_name _UpperCamelCase = '''huggingface/label-files''' _UpperCamelCase = model_name[-3:] _UpperCamelCase = 10_00 _UpperCamelCase = '''imagenet-1k-id2label.json''' _UpperCamelCase = (1, 10_00) # set config attributes _UpperCamelCase = json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type='''dataset''' ), '''r''' ) ) _UpperCamelCase = {int(__snake_case ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} if size == "s12": _UpperCamelCase = [2, 2, 6, 2] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s24": _UpperCamelCase = [4, 4, 12, 4] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.9 elif size == "m36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 elif size == "m48": _UpperCamelCase = [8, 8, 24, 8] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) # Prepare image _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__snake_case, return_tensors='''pt''' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict _UpperCamelCase = torch.load(__snake_case, map_location=torch.device('''cpu''' ) ) # rename keys _UpperCamelCase = rename_keys(__snake_case ) # create HuggingFace model and load state dict _UpperCamelCase = PoolFormerForImageClassification(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # Define image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) _UpperCamelCase = image_processor(images=prepare_img(), return_tensors='''pt''' ).pixel_values # forward pass _UpperCamelCase = model(__snake_case ) _UpperCamelCase = outputs.logits # define expected logit slices for different models if size == "s12": _UpperCamelCase = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": _UpperCamelCase = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": _UpperCamelCase = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": _UpperCamelCase = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": _UpperCamelCase = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3], __snake_case, atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _a = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
19
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A : str = { "configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ["MobileViTFeatureExtractor"] __A : List[Any] = ["MobileViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ "MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileViTForImageClassification", "MobileViTForSemanticSegmentation", "MobileViTModel", "MobileViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileViTForImageClassification", "TFMobileViTForSemanticSegmentation", "TFMobileViTModel", "TFMobileViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __A : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
"""simple docstring""" import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class _UpperCAmelCase( lowerCamelCase ): lowercase__ = (DPMSolverSDEScheduler,) lowercase__ = 10 def UpperCAmelCase ( self , **__a) -> int: '''simple docstring''' _UpperCamelCase = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**__a) return config def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02]): self.check_over_configs(beta_start=__a , beta_end=__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a) def UpperCAmelCase ( self) -> str: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''') _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a , use_karras_sigmas=__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2
19
0
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowercase__( __UpperCamelCase: Dict ,__UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ,__UpperCamelCase: int ,__UpperCamelCase: Optional[Any]=True ,__UpperCamelCase: Dict="pt" ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {'add_prefix_space': True} if isinstance(__UpperCamelCase ,__UpperCamelCase ) and not line.startswith(' ' ) else {} SCREAMING_SNAKE_CASE : Any = padding_side return tokenizer( [line] ,max_length=__UpperCamelCase ,padding='max_length' if pad_to_max_length else None ,truncation=__UpperCamelCase ,return_tensors=__UpperCamelCase ,add_special_tokens=__UpperCamelCase ,**__UpperCamelCase ,) def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: str ,__UpperCamelCase: List[str]=None ,): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids.ne(__UpperCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A, A, A, A, A="train", A=None, A=None, A=None, A="", ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Optional[Any] = Path(A ).joinpath(type_path + '.source' ) SCREAMING_SNAKE_CASE : int = Path(A ).joinpath(type_path + '.target' ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_char_lens(self.src_file ) SCREAMING_SNAKE_CASE : Any = max_source_length SCREAMING_SNAKE_CASE : str = max_target_length assert min(self.src_lens ) > 0, F"found empty line in {self.src_file}" SCREAMING_SNAKE_CASE : Any = tokenizer SCREAMING_SNAKE_CASE : Optional[Any] = prefix if n_obs is not None: SCREAMING_SNAKE_CASE : Any = self.src_lens[:n_obs] SCREAMING_SNAKE_CASE : Optional[int] = src_lang SCREAMING_SNAKE_CASE : Union[str, Any] = tgt_lang def __len__( self ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = index + 1 # linecache starts at 1 SCREAMING_SNAKE_CASE : List[str] = self.prefix + linecache.getline(str(self.src_file ), A ).rstrip('\n' ) SCREAMING_SNAKE_CASE : Tuple = linecache.getline(str(self.tgt_file ), A ).rstrip('\n' ) assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer, A ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right SCREAMING_SNAKE_CASE : Optional[Any] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer, A ) else self.tokenizer ) SCREAMING_SNAKE_CASE : str = self.tokenizer.generator if isinstance(self.tokenizer, A ) else self.tokenizer SCREAMING_SNAKE_CASE : int = encode_line(A, A, self.max_source_length, 'right' ) SCREAMING_SNAKE_CASE : List[str] = encode_line(A, A, self.max_target_length, 'right' ) SCREAMING_SNAKE_CASE : Tuple = source_inputs['input_ids'].squeeze() SCREAMING_SNAKE_CASE : Dict = target_inputs['input_ids'].squeeze() SCREAMING_SNAKE_CASE : Optional[Any] = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCamelCase_ ( A ): '''simple docstring''' return [len(A ) for x in Path(A ).open().readlines()] def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.stack([x['input_ids'] for x in batch] ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.stack([x['attention_mask'] for x in batch] ) SCREAMING_SNAKE_CASE : Dict = torch.stack([x['decoder_input_ids'] for x in batch] ) SCREAMING_SNAKE_CASE : int = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer, A ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE : Tuple = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer, A ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE : Dict = trim_batch(A, A ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = trim_batch(A, A, attention_mask=A ) SCREAMING_SNAKE_CASE : List[str] = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCamelCase_ = getLogger(__name__) def lowercase__( __UpperCamelCase: List[List] ): """simple docstring""" return list(itertools.chain.from_iterable(__UpperCamelCase ) ) def lowercase__( __UpperCamelCase: str ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = get_git_info() save_json(__UpperCamelCase ,os.path.join(__UpperCamelCase ,'git_log.json' ) ) def lowercase__( __UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[int] ,__UpperCamelCase: Dict=4 ,**__UpperCamelCase: str ): """simple docstring""" with open(__UpperCamelCase ,'w' ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ,indent=__UpperCamelCase ,**__UpperCamelCase ) def lowercase__( __UpperCamelCase: List[str] ): """simple docstring""" with open(__UpperCamelCase ) as f: return json.load(__UpperCamelCase ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : int = git.Repo(search_parent_directories=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Dict = { 'repo_id': str(__UpperCamelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def lowercase__( __UpperCamelCase: Callable ,__UpperCamelCase: Iterable ): """simple docstring""" return list(map(__UpperCamelCase ,__UpperCamelCase ) ) def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: Dict ): """simple docstring""" with open(__UpperCamelCase ,'wb' ) as f: return pickle.dump(__UpperCamelCase ,__UpperCamelCase ) def lowercase__( __UpperCamelCase: Union[str, Any] ): """simple docstring""" def remove_articles(__UpperCamelCase: str ): return re.sub(r'\b(a|an|the)\b' ,' ' ,__UpperCamelCase ) def white_space_fix(__UpperCamelCase: Tuple ): return " ".join(text.split() ) def remove_punc(__UpperCamelCase: int ): SCREAMING_SNAKE_CASE : str = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__UpperCamelCase: int ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__UpperCamelCase ) ) ) ) def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = normalize_answer(__UpperCamelCase ).split() SCREAMING_SNAKE_CASE : Any = normalize_answer(__UpperCamelCase ).split() SCREAMING_SNAKE_CASE : str = Counter(__UpperCamelCase ) & Counter(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = sum(common.values() ) if num_same == 0: return 0 SCREAMING_SNAKE_CASE : List[str] = 1.0 * num_same / len(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Dict = 1.0 * num_same / len(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = (2 * precision * recall) / (precision + recall) return fa def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: Any ): """simple docstring""" return normalize_answer(__UpperCamelCase ) == normalize_answer(__UpperCamelCase ) def lowercase__( __UpperCamelCase: List[str] ,__UpperCamelCase: List[str] ): """simple docstring""" assert len(__UpperCamelCase ) == len(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for hypo, pred in zip(__UpperCamelCase ,__UpperCamelCase ): em += exact_match_score(__UpperCamelCase ,__UpperCamelCase ) if len(__UpperCamelCase ) > 0: em /= len(__UpperCamelCase ) return {"em": em} def lowercase__( __UpperCamelCase: Union[str, Any] ): """simple docstring""" return model_prefix.startswith('rag' ) def lowercase__( __UpperCamelCase: Dict ,__UpperCamelCase: Dict ,__UpperCamelCase: Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : int = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead SCREAMING_SNAKE_CASE : List[str] = 'dropout_rate' for p in extra_params: if getattr(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ): if not hasattr(__UpperCamelCase ,__UpperCamelCase ) and not hasattr(__UpperCamelCase ,equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(__UpperCamelCase ) ) delattr(__UpperCamelCase ,__UpperCamelCase ) continue SCREAMING_SNAKE_CASE : Optional[Any] = p if hasattr(__UpperCamelCase ,__UpperCamelCase ) else equivalent_param[p] setattr(__UpperCamelCase ,__UpperCamelCase ,getattr(__UpperCamelCase ,__UpperCamelCase ) ) delattr(__UpperCamelCase ,__UpperCamelCase ) return hparams, config
28
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['pixel_values'] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BICUBIC , __a = True , __a = True , __a = 1 / 2_55 , __a = None , __a = True , __a = None , __a = None , **__a , ) -> None: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a , default_to_square=__a , param_name='''crop_size''') _UpperCamelCase = do_resize _UpperCamelCase = do_rescale _UpperCamelCase = do_normalize _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = rescale_factor _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BILINEAR , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "shortest_edge" in size: _UpperCamelCase = get_resize_output_image_size(__a , size=size['''shortest_edge'''] , default_to_square=__a) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''') return resize(__a , size=__a , resample=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''') return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a) -> np.ndarray: '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> BatchFeature: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(__a , param_name='''crop_size''' , default_to_square=__a) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(__a) if not is_batched(__a): _UpperCamelCase = [images] if not valid_images(__a): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(__a) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=__a , size=__a , resample=__a) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=__a , size=__a) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=__a , scale=__a) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=__a , mean=__a , std=__a) for image in images] _UpperCamelCase = [to_channel_dimension_format(__a , __a) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=__a , tensor_type=__a)
19
0
"""simple docstring""" import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer A_ = logging.get_logger(__name__) A_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} A_ = { """vocab_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json""", }, """merges_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt""", }, """tokenizer_file""": { """Salesforce/codegen-350M-mono""": ( """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json""" ), }, } A_ = { """Salesforce/codegen-350M-mono""": 2048, } class __lowerCamelCase ( lowerCAmelCase ): a__: List[str] = VOCAB_FILES_NAMES a__: Any = PRETRAINED_VOCAB_FILES_MAP a__: int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__: Union[str, Any] = ['input_ids', 'attention_mask'] a__: List[str] = CodeGenTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase=False , **UpperCAmelCase , ): super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) if kwargs.pop('''add_bos_token''' , UpperCAmelCase ): lowerCamelCase_ = kwargs.pop('''name_or_path''' , '''''' ) raise ValueError( '''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.''' '''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n''' f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n" f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n" '''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.''' ''' so that the fast tokenizer works correctly.''' ) lowerCamelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCAmelCase ) != add_prefix_space: lowerCamelCase_ = getattr(UpperCAmelCase , pre_tok_state.pop('''type''' ) ) lowerCamelCase_ = add_prefix_space lowerCamelCase_ = pre_tok_class(**UpperCAmelCase ) lowerCamelCase_ = add_prefix_space def UpperCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ = kwargs.get('''is_split_into_words''' , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ = kwargs.get('''is_split_into_words''' , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): lowerCamelCase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ): lowerCamelCase_ = super().decode( token_ids=UpperCAmelCase , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , **UpperCAmelCase , ) if truncate_before_pattern is not None and len(UpperCAmelCase ) > 0: lowerCamelCase_ = self.truncate(UpperCAmelCase , UpperCAmelCase ) return decoded_text def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): def find_re(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = pattern.search(UpperCAmelCase , UpperCAmelCase ) return m.start() if m else -1 lowerCamelCase_ = [re.compile(UpperCAmelCase , re.MULTILINE ) for pattern in truncate_before_pattern] lowerCamelCase_ = list(re.finditer('''^print''' , UpperCAmelCase , re.MULTILINE ) ) if len(UpperCAmelCase ) > 1: lowerCamelCase_ = completion[: prints[1].start()] lowerCamelCase_ = list(re.finditer('''^def''' , UpperCAmelCase , re.MULTILINE ) ) if len(UpperCAmelCase ) > 1: lowerCamelCase_ = completion[: defs[1].start()] lowerCamelCase_ = 0 lowerCamelCase_ = [ pos for pos in [find_re(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) for terminal in terminals] if pos != -1 ] if len(UpperCAmelCase ) > 0: return completion[: min(UpperCAmelCase )] else: return completion
29
"""simple docstring""" # Imports import numpy as np class _UpperCAmelCase: def __init__( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) def UpperCAmelCase ( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' if red is not None: _UpperCamelCase = red if green is not None: _UpperCamelCase = green if blue is not None: _UpperCamelCase = blue if red_edge is not None: _UpperCamelCase = red_edge if nir is not None: _UpperCamelCase = nir return True def UpperCAmelCase ( self , __a="" , __a=None , __a=None , __a=None , __a=None , __a=None) -> List[str]: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) _UpperCamelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''') return False def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self) -> Any: '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self , __a=0.08 , __a=1.22 , __a=0.03) -> Optional[Any]: '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir / self.green) - 1 def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.red - self.blue) / self.red def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir - self.green def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def UpperCAmelCase ( self , __a=0.16) -> Optional[Any]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self , __a=0.5) -> Dict: '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self , __a=None , __a=None) -> Any: '''simple docstring''' return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self) -> Any: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> str: '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) _UpperCamelCase = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Any: '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
19
0
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase=1024 ): '''simple docstring''' UpperCAmelCase_, UpperCAmelCase_ : List[str] = [], [] UpperCAmelCase_ : Optional[Any] = list(zip(_lowercase , _lowercase ) ) UpperCAmelCase_, UpperCAmelCase_ : int = sorted_examples[0] def is_too_big(_lowercase ): return tok(_lowercase , return_tensors='''pt''' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): UpperCAmelCase_ : int = new_src + ''' ''' + src UpperCAmelCase_ : int = new_tgt + ''' ''' + tgt if is_too_big(_lowercase ) or is_too_big(_lowercase ): # cant fit, finalize example finished_src.append(_lowercase ) finished_tgt.append(_lowercase ) UpperCAmelCase_, UpperCAmelCase_ : Optional[int] = src, tgt else: # can fit, keep adding UpperCAmelCase_, UpperCAmelCase_ : str = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(_lowercase ) finished_tgt.append(_lowercase ) return finished_src, finished_tgt def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Tuple = Path(_lowercase ) save_path.mkdir(exist_ok=_lowercase ) for split in ["train"]: UpperCAmelCase_, UpperCAmelCase_ : Any = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' UpperCAmelCase_ : List[str] = [x.rstrip() for x in Path(_lowercase ).open().readlines()] UpperCAmelCase_ : List[str] = [x.rstrip() for x in Path(_lowercase ).open().readlines()] UpperCAmelCase_, UpperCAmelCase_ : Optional[int] = pack_examples(_lowercase , _lowercase , _lowercase , _lowercase ) print(f'''packed {split} split from {len(_lowercase )} examples -> {len(_lowercase )}.''' ) Path(save_path / f'''{split}.source''' ).open('''w''' ).write('''\n'''.join(_lowercase ) ) Path(save_path / f'''{split}.target''' ).open('''w''' ).write('''\n'''.join(_lowercase ) ) for split in ["val", "test"]: UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' shutil.copyfile(_lowercase , save_path / f'''{split}.source''' ) shutil.copyfile(_lowercase , save_path / f'''{split}.target''' ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : int = argparse.ArgumentParser() parser.add_argument('''--tok_name''' , type=_lowercase , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''--max_seq_len''' , type=_lowercase , default=128 ) parser.add_argument('''--data_dir''' , type=_lowercase ) parser.add_argument('''--save_path''' , type=_lowercase ) UpperCAmelCase_ : Dict = parser.parse_args() UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(_lowercase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
30
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=64 , __a=2 , __a=3 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a=[1, 16, 4, 4] , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _UpperCamelCase = (self.image_size // 32) ** 2 _UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__a , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.type_sequence_label_size _UpperCamelCase = ViTHybridForImageClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowercase__ = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''') def UpperCAmelCase ( self) -> Dict: '''simple docstring''' pass def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear)) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _UpperCamelCase = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = ViTHybridModel.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase( unittest.TestCase ): @cached_property def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( __a) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''').to(__a) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__a) # verify the logits _UpperCamelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor([-1.9090, -0.4993, -0.2389]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4)) @slow @require_accelerate def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''') _UpperCamelCase = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''') _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''') _UpperCamelCase = model(**__a) _UpperCamelCase = outputs.logits # model predicts one of the 1000 ImageNet classes _UpperCamelCase = logits.argmax(-1).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''')
19
0
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class lowerCamelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any]=14 , _lowerCAmelCase : int=7 , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=True , _lowerCAmelCase : List[Any]=99 , _lowerCAmelCase : Dict=32 , _lowerCAmelCase : Optional[int]=5 , _lowerCAmelCase : int=4 , _lowerCAmelCase : Union[str, Any]=37 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : Tuple=512 , _lowerCAmelCase : Dict=16 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : List[Any]=3 , _lowerCAmelCase : Union[str, Any]=4 , _lowerCAmelCase : List[str]=None , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_input_mask SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = use_mc_token_ids SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = num_choices SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = self.vocab_size - 1 def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_mc_token_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ = self.get_config() SCREAMING_SNAKE_CASE_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase_ ( self : Optional[int] ): return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , *_lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = CTRLModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , head_mask=_lowerCAmelCase ) model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , *_lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = CTRLLMHeadModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , *_lowerCAmelCase : List[str] ): SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = CTRLForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowercase_ = (CTRLLMHeadModel,) if is_torch_available() else () lowercase_ = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) lowercase_ = True lowercase_ = False lowercase_ = False def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = CTRLModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCAmelCase , n_embd=37 ) def lowerCAmelCase_ ( self : int ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_lowerCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCAmelCase_ ( self : int ): pass @slow def lowerCAmelCase_ ( self : str ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = CTRLModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowerCAmelCase_ ( self : int ): pass @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[11_859, 0, 1_611, 8]] , dtype=torch.long , device=_lowerCAmelCase ) # Legal the president is SCREAMING_SNAKE_CASE_ = [ 11_859, 0, 1_611, 8, 5, 150, 26_449, 2, 19, 348, 469, 3, 2_595, 48, 20_740, 246_533, 246_533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a SCREAMING_SNAKE_CASE_ = model.generate(_lowerCAmelCase , do_sample=_lowerCAmelCase ) self.assertListEqual(output_ids[0].tolist() , _lowerCAmelCase )
31
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['vqvae'] def __init__( self , __a , __a , __a , __a , ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules(unet=__a , scheduler=__a , mel=__a , vqvae=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' return 50 if isinstance(self.scheduler , __a) else 10_00 @torch.no_grad() def __call__( self , __a = 1 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = 0 , __a = None , __a = None , __a=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' _UpperCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(__a) _UpperCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: _UpperCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _UpperCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__a , device=self.device , ) _UpperCamelCase = noise _UpperCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__a , __a) _UpperCamelCase = self.mel.audio_slice_to_image(__a) _UpperCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''').reshape( (input_image.height, input_image.width)) _UpperCamelCase = (input_image / 2_55) * 2 - 1 _UpperCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: _UpperCamelCase = self.vqvae.encode(torch.unsqueeze(__a , 0)).latent_dist.sample( generator=__a)[0] _UpperCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _UpperCamelCase = self.scheduler.add_noise(__a , __a , self.scheduler.timesteps[start_step - 1]) _UpperCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _UpperCamelCase = int(mask_start_secs * pixels_per_second) _UpperCamelCase = int(mask_end_secs * pixels_per_second) _UpperCamelCase = self.scheduler.add_noise(__a , __a , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , __a): _UpperCamelCase = self.unet(__a , __a , __a)['''sample'''] else: _UpperCamelCase = self.unet(__a , __a)['''sample'''] if isinstance(self.scheduler , __a): _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , eta=__a , generator=__a , )['''prev_sample'''] else: _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , generator=__a , )['''prev_sample'''] if mask is not None: if mask_start > 0: _UpperCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _UpperCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _UpperCamelCase = 1 / self.vqvae.config.scaling_factor * images _UpperCamelCase = self.vqvae.decode(__a)['''sample'''] _UpperCamelCase = (images / 2 + 0.5).clamp(0 , 1) _UpperCamelCase = images.cpu().permute(0 , 2 , 3 , 1).numpy() _UpperCamelCase = (images * 2_55).round().astype('''uint8''') _UpperCamelCase = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__a , mode='''RGB''').convert('''L''') for _ in images)) _UpperCamelCase = [self.mel.image_to_audio(__a) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__a)[:, np.newaxis, :]) , **ImagePipelineOutput(__a)) @torch.no_grad() def UpperCAmelCase ( self , __a , __a = 50) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , __a) self.scheduler.set_timesteps(__a) _UpperCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''').reshape((1, image.height, image.width)) for image in images]) _UpperCamelCase = (sample / 2_55) * 2 - 1 _UpperCamelCase = torch.Tensor(__a).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): _UpperCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _UpperCamelCase = self.scheduler.alphas_cumprod[t] _UpperCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _UpperCamelCase = 1 - alpha_prod_t _UpperCamelCase = self.unet(__a , __a)['''sample'''] _UpperCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _UpperCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _UpperCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase ( __a , __a , __a) -> torch.Tensor: '''simple docstring''' _UpperCamelCase = acos(torch.dot(torch.flatten(__a) , torch.flatten(__a)) / torch.norm(__a) / torch.norm(__a)) return sin((1 - alpha) * theta) * xa / sin(__a) + sin(alpha * theta) * xa / sin(__a)
19
0
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): _UpperCAmelCase = get_activation('''swish''' ) self.assertIsInstance(_UpperCamelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCamelCase( self ): _UpperCAmelCase = get_activation('''silu''' ) self.assertIsInstance(_UpperCamelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCamelCase( self ): _UpperCAmelCase = get_activation('''mish''' ) self.assertIsInstance(_UpperCamelCase , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCamelCase( self ): _UpperCAmelCase = get_activation('''gelu''' ) self.assertIsInstance(_UpperCamelCase , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
32
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'detr' lowercase__ = ['past_key_values'] lowercase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __a=True , __a=None , __a=3 , __a=1_00 , __a=6 , __a=20_48 , __a=8 , __a=6 , __a=20_48 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=2_56 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=1 , __a=1 , __a=5 , __a=2 , __a=0.1 , **__a , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__a , __a): _UpperCamelCase = backbone_config.get('''model_type''') _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(__a) # set timm attributes to None _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None, None, None _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = encoder_layers _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase ( cls , __a , **__a) -> int: '''simple docstring''' return cls(backbone_config=__a , **__a) def UpperCAmelCase ( self) -> Dict[str, any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output class _UpperCAmelCase( lowerCamelCase ): lowercase__ = version.parse('1.11' ) @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def UpperCAmelCase ( self) -> float: '''simple docstring''' return 1e-5 @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return 12
19
0
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( 'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ' ,snake_case_ ,) class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Tuple = RobertaConfig __lowercase : List[str] = 'roberta' def __init__( self:List[str] , _a:Union[str, Any] ): super().__init__(_a ) snake_case__ = RobertaEmbeddings(_a ) self.init_weights() @add_start_docstrings( 'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ' ,snake_case_ ,) class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = RobertaConfig __lowercase : int = 'roberta' def __init__( self:str , _a:Optional[Any] ): super().__init__(_a ) snake_case__ = config.num_labels snake_case__ = config.num_hidden_layers snake_case__ = DeeRobertaModel(_a ) snake_case__ = nn.Dropout(config.hidden_dropout_prob ) snake_case__ = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(_a ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:Any=None , _a:Any=None , _a:str=None , _a:Optional[Any]=None , _a:Union[str, Any]=None , _a:Optional[Any]=None , _a:Dict=None , _a:str=-1 , _a:Optional[int]=False , ): snake_case__ = self.num_layers try: snake_case__ = self.roberta( _a , attention_mask=_a , token_type_ids=_a , position_ids=_a , head_mask=_a , inputs_embeds=_a , ) snake_case__ = outputs[1] snake_case__ = self.dropout(_a ) snake_case__ = self.classifier(_a ) snake_case__ = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: snake_case__ = e.message snake_case__ = e.exit_layer snake_case__ = outputs[0] if not self.training: snake_case__ = entropy(_a ) snake_case__ = [] snake_case__ = [] if labels is not None: if self.num_labels == 1: # We are doing regression snake_case__ = MSELoss() snake_case__ = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: snake_case__ = CrossEntropyLoss() snake_case__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits snake_case__ = [] for highway_exit in outputs[-1]: snake_case__ = highway_exit[0] if not self.training: highway_logits_all.append(_a ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression snake_case__ = MSELoss() snake_case__ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: snake_case__ = CrossEntropyLoss() snake_case__ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_a ) if train_highway: snake_case__ = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: snake_case__ = (loss,) + outputs if not self.training: snake_case__ = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: snake_case__ = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
33
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'wavlm' def __init__( self , __a=32 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.1 , __a=0.02 , __a=1e-5 , __a="group" , __a="gelu" , __a=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __a=(5, 2, 2, 2, 2, 2, 2) , __a=(10, 3, 3, 3, 3, 2, 2) , __a=False , __a=1_28 , __a=16 , __a=3_20 , __a=8_00 , __a=False , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=3_20 , __a=2 , __a=0.1 , __a=1_00 , __a=2_56 , __a=2_56 , __a=0.1 , __a="mean" , __a=False , __a=False , __a=2_56 , __a=(5_12, 5_12, 5_12, 5_12, 15_00) , __a=(5, 3, 3, 1, 1) , __a=(1, 2, 3, 1, 1) , __a=5_12 , __a=80 , __a=0 , __a=1 , __a=2 , __a=False , __a=3 , __a=2 , __a=3 , __a=None , **__a , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a) _UpperCamelCase = hidden_size _UpperCamelCase = feat_extract_norm _UpperCamelCase = feat_extract_activation _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = conv_bias _UpperCamelCase = num_buckets _UpperCamelCase = max_bucket_distance _UpperCamelCase = num_conv_pos_embeddings _UpperCamelCase = num_conv_pos_embedding_groups _UpperCamelCase = len(self.conv_dim) _UpperCamelCase = num_hidden_layers _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = feat_proj_dropout _UpperCamelCase = final_dropout _UpperCamelCase = layerdrop _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = num_ctc_classes _UpperCamelCase = vocab_size _UpperCamelCase = do_stable_layer_norm _UpperCamelCase = use_weighted_layer_sum _UpperCamelCase = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCamelCase = apply_spec_augment _UpperCamelCase = mask_time_prob _UpperCamelCase = mask_time_length _UpperCamelCase = mask_time_min_masks _UpperCamelCase = mask_feature_prob _UpperCamelCase = mask_feature_length # parameters for pretraining with codevector quantized representations _UpperCamelCase = num_codevectors_per_group _UpperCamelCase = num_codevector_groups _UpperCamelCase = contrastive_logits_temperature _UpperCamelCase = num_negatives _UpperCamelCase = codevector_dim _UpperCamelCase = proj_codevector_dim _UpperCamelCase = diversity_loss_weight # ctc loss _UpperCamelCase = ctc_loss_reduction _UpperCamelCase = ctc_zero_infinity # adapter _UpperCamelCase = add_adapter _UpperCamelCase = adapter_kernel_size _UpperCamelCase = adapter_stride _UpperCamelCase = num_adapter_layers _UpperCamelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = xvector_output_dim @property def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
19
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def UpperCAmelCase__ ( self) -> List[Any]: torch.manual_seed(0) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_) torch.manual_seed(0) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) UpperCamelCase = CLIPTextModel(lowerCamelCase_) UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Dict: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_)).convert('''RGB''').resize((6_4, 6_4)) UpperCamelCase = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((6_4, 6_4)) if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionInpaintPipeline(**lowerCamelCase_) UpperCamelCase = sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_) UpperCamelCase = sd_pipe(**lowerCamelCase_).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 9e-3 def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def UpperCAmelCase__ ( self) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = PNDMScheduler.from_pretrained(lowerCamelCase_ , subfolder='''scheduler''') UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , scheduler=lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
34
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _a = """bart""" _a = True @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> Dict: """simple docstring""" if LOAD_DENSE_INDEX: _UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _UpperCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _UpperCamelCase = qar_model.eval() else: _UpperCamelCase , _UpperCamelCase = (None, None) if MODEL_TYPE == "bart": _UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _UpperCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _UpperCamelCase = sas_model.eval() else: _UpperCamelCase , _UpperCamelCase = make_qa_sas_model( model_name='''t5-small''', from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''', device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: _UpperCamelCase = faiss.StandardGpuResources() _UpperCamelCase = datasets.load_dataset(path='''wiki_snippets''', name='''wiki40b_en_100_0''' )['''train'''] _UpperCamelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''', dtype='''float32''', mode='''r''', shape=(wikiaab_passages.num_rows, 1_28), ) _UpperCamelCase = faiss.IndexFlatIP(1_28 ) _UpperCamelCase = faiss.index_cpu_to_gpu(__snake_case, 1, __snake_case ) wikiaab_gpu_index_flat.add(__snake_case ) # TODO fix for larger GPU else: _UpperCamelCase , _UpperCamelCase = (None, None) _UpperCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = datasets.load_dataset('''eli5''', name='''LFQA_reddit''' ) _UpperCamelCase = elia['''train_eli5'''] _UpperCamelCase = np.memmap( '''eli5_questions_reps.dat''', dtype='''float32''', mode='''r''', shape=(elia_train.num_rows, 1_28) ) _UpperCamelCase = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(__snake_case ) return (elia_train, eli5_train_q_index) _a , _a , _a = load_indexes() _a , _a , _a , _a = load_models() _a , _a = load_train_data() def lowerCamelCase__ ( __snake_case, __snake_case=10 ) -> List[Any]: """simple docstring""" _UpperCamelCase = embed_questions_for_retrieval([question], __snake_case, __snake_case ) _UpperCamelCase , _UpperCamelCase = eli5_train_q_index.search(__snake_case, __snake_case ) _UpperCamelCase = [elia_train[int(__snake_case )] for i in I[0]] return nn_examples def lowerCamelCase__ ( __snake_case, __snake_case="wiki40b", __snake_case="dense", __snake_case=10 ) -> List[str]: """simple docstring""" if source == "none": _UpperCamelCase , _UpperCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _UpperCamelCase , _UpperCamelCase = query_qa_dense_index( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) else: _UpperCamelCase , _UpperCamelCase = query_es_index( __snake_case, __snake_case, index_name='''english_wiki40b_snippets_100w''', n_results=__snake_case, ) _UpperCamelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _UpperCamelCase = '''question: {} context: {}'''.format(__snake_case, __snake_case ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __snake_case : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __snake_case : None), } ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=64, __snake_case=2_56, __snake_case=False, __snake_case=2, __snake_case=0.95, __snake_case=0.8 ) -> Dict: """simple docstring""" with torch.no_grad(): _UpperCamelCase = qa_sas_generate( __snake_case, __snake_case, __snake_case, num_answers=1, num_beams=__snake_case, min_len=__snake_case, max_len=__snake_case, do_sample=__snake_case, temp=__snake_case, top_p=__snake_case, top_k=__snake_case, max_input_length=10_24, device='''cuda:0''', )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar _a = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" _a = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _a = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) _a = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] _a = st.sidebar.checkbox("""Demo options""") if demo_options: _a = st.sidebar.selectbox( """""", action_list, index=3, ) _a = action_list.index(action_st) _a = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) _a = show_type == """Show full text of passages""" else: _a = 3 _a = True _a = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: _a = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) _a = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) _a = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: _a = """wiki40b""" _a = """dense""" _a = """beam""" _a = 2 _a = 64 _a = 256 _a = None _a = None _a = st.sidebar.checkbox("""Generation options""") if generate_options: _a = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) _a = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) _a = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) _a = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": _a = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _a = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _a = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _a = None # start main text _a = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] _a = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": _a = st.text_input("""Enter your question here:""", """""") else: _a = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": _a , _a = make_support(question, source=wiki_source, method="""dense""", n_results=10) _a , _a = make_support(question, source=wiki_source, method="""sparse""", n_results=10) _a = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _a = support_list[:10] _a = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: _a , _a = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _a , _a = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): _a = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) _a = res[1].strip() if sec_titles == "": _a = """[{}]({})""".format(res[0], wiki_url) else: _a = sec_titles.split(""" & """) _a = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: _a = find_nearest_training(question) _a = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) _a = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) _a = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
19
0
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowercase ( unittest.TestCase ): lowerCamelCase : Any = MODEL_FOR_CAUSAL_LM_MAPPING lowerCamelCase : Optional[Any] = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output SCREAMING_SNAKE_CASE__ : List[str] = text_generator('''This is a test''' , do_sample=_lowercase ) self.assertEqual( _lowercase , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) SCREAMING_SNAKE_CASE__ : List[Any] = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _lowercase , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) SCREAMING_SNAKE_CASE__ : List[str] = text_generator('''This is a test''' , do_sample=_lowercase , num_return_sequences=2 , return_tensors=_lowercase ) self.assertEqual( _lowercase , [ {'''generated_token_ids''': ANY(_lowercase )}, {'''generated_token_ids''': ANY(_lowercase )}, ] , ) SCREAMING_SNAKE_CASE__ : Optional[int] = text_generator.model.config.eos_token_id SCREAMING_SNAKE_CASE__ : List[str] = '''<pad>''' SCREAMING_SNAKE_CASE__ : Tuple = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_lowercase , num_return_sequences=2 , batch_size=2 , return_tensors=_lowercase , ) self.assertEqual( _lowercase , [ [ {'''generated_token_ids''': ANY(_lowercase )}, {'''generated_token_ids''': ANY(_lowercase )}, ], [ {'''generated_token_ids''': ANY(_lowercase )}, {'''generated_token_ids''': ANY(_lowercase )}, ], ] , ) @require_tf def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output SCREAMING_SNAKE_CASE__ : Optional[int] = text_generator('''This is a test''' , do_sample=_lowercase ) self.assertEqual( _lowercase , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) SCREAMING_SNAKE_CASE__ : List[str] = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_lowercase ) self.assertEqual( _lowercase , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def lowercase__ ( self : Dict , _lowercase : int , _lowercase : Tuple , _lowercase : int ): SCREAMING_SNAKE_CASE__ : Tuple = TextGenerationPipeline(model=_lowercase , tokenizer=_lowercase ) return text_generator, ["This is a test", "Another test"] def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''Hello I believe in''' SCREAMING_SNAKE_CASE__ : int = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = text_generator(_lowercase ) self.assertEqual( _lowercase , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) SCREAMING_SNAKE_CASE__ : str = text_generator(_lowercase , stop_sequence=''' fe''' ) self.assertEqual(_lowercase , [{'''generated_text''': '''Hello I believe in fe'''}] ) def lowercase__ ( self : Union[str, Any] , _lowercase : Optional[int] , _lowercase : Any ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = text_generator.model SCREAMING_SNAKE_CASE__ : Tuple = text_generator.tokenizer SCREAMING_SNAKE_CASE__ : Any = text_generator('''This is a test''' ) self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = text_generator('''This is a test''' , return_full_text=_lowercase ) self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) SCREAMING_SNAKE_CASE__ : Tuple = pipeline(task='''text-generation''' , model=_lowercase , tokenizer=_lowercase , return_full_text=_lowercase ) SCREAMING_SNAKE_CASE__ : int = text_generator('''This is a test''' ) self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = text_generator('''This is a test''' , return_full_text=_lowercase ) self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) SCREAMING_SNAKE_CASE__ : Tuple = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_lowercase ) self.assertEqual( _lowercase , [ [{'''generated_text''': ANY(_lowercase )}, {'''generated_text''': ANY(_lowercase )}], [{'''generated_text''': ANY(_lowercase )}, {'''generated_text''': ANY(_lowercase )}], ] , ) if text_generator.tokenizer.pad_token is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_lowercase ) self.assertEqual( _lowercase , [ [{'''generated_text''': ANY(_lowercase )}, {'''generated_text''': ANY(_lowercase )}], [{'''generated_text''': ANY(_lowercase )}, {'''generated_text''': ANY(_lowercase )}], ] , ) with self.assertRaises(_lowercase ): SCREAMING_SNAKE_CASE__ : List[Any] = text_generator('''test''' , return_full_text=_lowercase , return_text=_lowercase ) with self.assertRaises(_lowercase ): SCREAMING_SNAKE_CASE__ : Optional[int] = text_generator('''test''' , return_full_text=_lowercase , return_tensors=_lowercase ) with self.assertRaises(_lowercase ): SCREAMING_SNAKE_CASE__ : List[str] = text_generator('''test''' , return_text=_lowercase , return_tensors=_lowercase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] = text_generator('''''' ) self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): SCREAMING_SNAKE_CASE__ : int = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. SCREAMING_SNAKE_CASE__ : Optional[int] = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_00_00 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 5_00 , max_new_tokens=20 ) SCREAMING_SNAKE_CASE__ : Any = text_generator('''This is a test''' * 5_00 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_lowercase ): text_generator( '''This is a test''' * 5_00 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def lowercase__ ( self : str ): import torch # Classic `model_kwargs` SCREAMING_SNAKE_CASE__ : List[str] = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) SCREAMING_SNAKE_CASE__ : int = pipe('''This is a test''' ) self.assertEqual( _lowercase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) SCREAMING_SNAKE_CASE__ : int = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe('''This is a test''' ) self.assertEqual( _lowercase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 SCREAMING_SNAKE_CASE__ : List[str] = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) SCREAMING_SNAKE_CASE__ : List[Any] = pipe('''This is a test''' ) self.assertEqual( _lowercase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def lowercase__ ( self : Optional[int] ): import torch SCREAMING_SNAKE_CASE__ : Tuple = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def lowercase__ ( self : Any ): import torch SCREAMING_SNAKE_CASE__ : List[Any] = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_lowercase , top_p=0.5 ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : Optional[Any] = '''Hello world''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger('''transformers.generation.tf_utils''' ) else: SCREAMING_SNAKE_CASE__ : Any = logging.get_logger('''transformers.generation.utils''' ) SCREAMING_SNAKE_CASE__ : Tuple = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_lowercase ) as cl: SCREAMING_SNAKE_CASE__ : Dict = text_generator(_lowercase , max_length=10 , max_new_tokens=1 ) self.assertIn(_lowercase , cl.out ) # The user only sets one -> no warning with CaptureLogger(_lowercase ) as cl: SCREAMING_SNAKE_CASE__ : Union[str, Any] = text_generator(_lowercase , max_new_tokens=1 ) self.assertNotIn(_lowercase , cl.out ) with CaptureLogger(_lowercase ) as cl: SCREAMING_SNAKE_CASE__ : Tuple = text_generator(_lowercase , max_length=10 ) self.assertNotIn(_lowercase , cl.out )
35
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } _a = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> Tuple: """simple docstring""" for attribute in key.split('''.''' ): _UpperCamelCase = getattr(__snake_case, __snake_case ) if weight_type is not None: _UpperCamelCase = getattr(__snake_case, __snake_case ).shape else: _UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase = value elif weight_type == "weight_g": _UpperCamelCase = value elif weight_type == "weight_v": _UpperCamelCase = value elif weight_type == "bias": _UpperCamelCase = value else: _UpperCamelCase = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = fairseq_model.state_dict() _UpperCamelCase = hf_model.feature_extractor _UpperCamelCase = hf_model.adapter for name, value in fairseq_dict.items(): _UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __snake_case, __snake_case, __snake_case, __snake_case, hf_model.config.feat_extract_norm == '''group''', ) _UpperCamelCase = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(__snake_case, __snake_case, __snake_case, __snake_case ) _UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCamelCase = True if "*" in mapped_key: _UpperCamelCase = name.split(__snake_case )[0].split('''.''' )[-2] _UpperCamelCase = mapped_key.replace('''*''', __snake_case ) if "weight_g" in name: _UpperCamelCase = '''weight_g''' elif "weight_v" in name: _UpperCamelCase = '''weight_v''' elif "bias" in name: _UpperCamelCase = '''bias''' elif "weight" in name: _UpperCamelCase = '''weight''' else: _UpperCamelCase = None set_recursively(__snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = full_name.split('''conv_layers.''' )[-1] _UpperCamelCase = name.split('''.''' ) _UpperCamelCase = int(items[0] ) _UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = full_name.split('''adaptor.''' )[-1] _UpperCamelCase = name.split('''.''' ) if items[1].isdigit(): _UpperCamelCase = int(items[1] ) else: _UpperCamelCase = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' _UpperCamelCase = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(__snake_case, __snake_case ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase , _UpperCamelCase = emb.weight.shape _UpperCamelCase = nn.Linear(__snake_case, __snake_case, bias=__snake_case ) _UpperCamelCase = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = WavaVecaConfig.from_pretrained( __snake_case, add_adapter=__snake_case, adapter_stride=__snake_case, adapter_kernel_size=__snake_case, use_auth_token=__snake_case, output_hidden_size=__snake_case, ) _UpperCamelCase = MBartConfig.from_pretrained(__snake_case ) # load model _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, }, ) _UpperCamelCase = model[0].eval() # load feature extractor _UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(__snake_case, use_auth_token=__snake_case ) # set weights for wav2vec2 encoder _UpperCamelCase = WavaVecaModel(__snake_case ) recursively_load_weights_wavaveca(model.encoder, __snake_case ) # load decoder weights _UpperCamelCase = MBartForCausalLM(__snake_case ) _UpperCamelCase , _UpperCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=__snake_case ) logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) _UpperCamelCase = SpeechEncoderDecoderModel(encoder=__snake_case, decoder=__snake_case ) _UpperCamelCase = False _UpperCamelCase = MBartaaTokenizer(__snake_case ) tokenizer.save_pretrained(__snake_case ) _UpperCamelCase = hf_wavavec.config.to_dict() _UpperCamelCase = tokenizer.pad_token_id _UpperCamelCase = tokenizer.bos_token_id _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = '''mbart50''' _UpperCamelCase = '''wav2vec2''' _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = 25_00_04 _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = SpeechEncoderDecoderConfig.from_dict(__snake_case ) hf_wavavec.save_pretrained(__snake_case ) feature_extractor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1024, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=25_0004, type=int, help="""`decoder_start_token_id` of model config""") _a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
19
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase : Dict = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[Any] = ['''DeiTFeatureExtractor'''] __lowercase : Tuple = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : str = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __lowercase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
36
"""simple docstring""" import fire from utils import calculate_rouge, save_json def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case=None, **__snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()] _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()][: len(__snake_case )] _UpperCamelCase = calculate_rouge(__snake_case, __snake_case, **__snake_case ) if save_path is not None: save_json(__snake_case, __snake_case, indent=__snake_case ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
19
0
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class A__ : """simple docstring""" def __init__( self : str , lowerCamelCase__ : int=None , **lowerCamelCase__ : Tuple ): logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) a__ : Optional[int] = model a__ : str = kwargs.get("model_save_dir" , lowerCamelCase__ ) a__ : List[str] = kwargs.get("latest_model_name" , lowerCamelCase__ ) def __call__( self : Tuple , **lowerCamelCase__ : Tuple ): a__ : Union[str, Any] = {k: np.array(lowerCamelCase__ ) for k, v in kwargs.items()} return self.model.run(lowerCamelCase__ , lowerCamelCase__ ) @staticmethod def _UpperCamelCase( lowerCamelCase__ : Union[str, Path] , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Optional[Any]=None ): if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) a__ : List[Any] = "CPUExecutionProvider" return ort.InferenceSession(lowerCamelCase__ , providers=[provider] , sess_options=lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : Union[str, Path] , lowerCamelCase__ : Optional[str] = None , **lowerCamelCase__ : Tuple ): a__ : Union[str, Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME a__ : Union[str, Any] = self.model_save_dir.joinpath(self.latest_model_name ) a__ : Optional[int] = Path(lowerCamelCase__ ).joinpath(lowerCamelCase__ ) try: shutil.copyfile(lowerCamelCase__ , lowerCamelCase__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) a__ : Optional[int] = self.model_save_dir.joinpath(lowerCamelCase__ ) if src_path.exists(): a__ : Union[str, Any] = Path(lowerCamelCase__ ).joinpath(lowerCamelCase__ ) try: shutil.copyfile(lowerCamelCase__ , lowerCamelCase__ ) except shutil.SameFileError: pass def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : Union[str, os.PathLike] , **lowerCamelCase__ : Optional[Any] , ): if os.path.isfile(lowerCamelCase__ ): logger.error(f'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) # saving model weights/files self._save_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) @classmethod def _UpperCamelCase( cls : List[Any] , lowerCamelCase__ : Union[str, Path] , lowerCamelCase__ : Optional[Union[bool, str, None]] = None , lowerCamelCase__ : Optional[Union[str, None]] = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional["ort.SessionOptions"] = None , **lowerCamelCase__ : Union[str, Any] , ): a__ : int = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(lowerCamelCase__ ): a__ : Optional[Any] = OnnxRuntimeModel.load_model( os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , provider=lowerCamelCase__ , sess_options=lowerCamelCase__ ) a__ : List[Any] = Path(lowerCamelCase__ ) # load model from hub else: # download model a__ : Any = hf_hub_download( repo_id=lowerCamelCase__ , filename=lowerCamelCase__ , use_auth_token=lowerCamelCase__ , revision=lowerCamelCase__ , cache_dir=lowerCamelCase__ , force_download=lowerCamelCase__ , ) a__ : Optional[int] = Path(lowerCamelCase__ ).parent a__ : Union[str, Any] = Path(lowerCamelCase__ ).name a__ : Union[str, Any] = OnnxRuntimeModel.load_model(lowerCamelCase__ , provider=lowerCamelCase__ , sess_options=lowerCamelCase__ ) return cls(model=lowerCamelCase__ , **lowerCamelCase__ ) @classmethod def _UpperCamelCase( cls : Dict , lowerCamelCase__ : Union[str, Path] , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[str] = None , **lowerCamelCase__ : List[str] , ): a__ : List[str] = None if len(str(lowerCamelCase__ ).split("@" ) ) == 2: a__, a__ : Optional[Any] = model_id.split("@" ) return cls._from_pretrained( model_id=lowerCamelCase__ , revision=lowerCamelCase__ , cache_dir=lowerCamelCase__ , force_download=lowerCamelCase__ , use_auth_token=lowerCamelCase__ , **lowerCamelCase__ , )
37
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['image_processor', 'tokenizer'] lowercase__ = 'ViTImageProcessor' lowercase__ = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __a=None , __a=None , **__a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __a , ) _UpperCamelCase = kwargs.pop('''feature_extractor''') _UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(__a , __a) def __call__( self , __a=None , __a=None , __a=None , __a=None , **__a) -> Tuple: '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''') if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''') if text is not None: _UpperCamelCase = self.tokenizer(__a , return_tensors=__a , **__a) if visual_prompt is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if images is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if visual_prompt is not None and images is not None: _UpperCamelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _UpperCamelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__a) , tensor_type=__a) def UpperCAmelCase ( self , *__a , **__a) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*__a , **__a) def UpperCAmelCase ( self , *__a , **__a) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*__a , **__a) @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __a , ) return self.image_processor_class @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __a , ) return self.image_processor
19
0
'''simple docstring''' def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> Tuple: '''simple docstring''' if not head: return True # split the list to two parts snake_case__ , snake_case__ : Dict = head.next, head while fast and fast.next: snake_case__ : Any = fast.next.next snake_case__ : int = slow.next snake_case__ : Dict = slow.next snake_case__ : List[str] = None # Don't forget here! But forget still works! # reverse the second part snake_case__ : Tuple = None while second: snake_case__ : Tuple = second.next snake_case__ : Any = node snake_case__ : str = second snake_case__ : Optional[Any] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False snake_case__ : List[Any] = node.next snake_case__ : int = head.next return True def UpperCamelCase__ ( __magic_name__ : Any ) -> Optional[Any]: '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) snake_case__ : List[Any] = head while fast and fast.next: snake_case__ , snake_case__ : Any = fast.next.next, slow.next # 2. Push the second half into the stack snake_case__ : Tuple = [slow.val] while slow.next: snake_case__ : Optional[Any] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False snake_case__ : str = cur.next return True def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Tuple: '''simple docstring''' if not head or not head.next: return True snake_case__ : int = {} snake_case__ : Union[str, Any] = 0 while head: if head.val in d: d[head.val].append(__magic_name__ ) else: snake_case__ : Tuple = [pos] snake_case__ : Optional[Any] = head.next pos += 1 snake_case__ : int = pos - 1 snake_case__ : str = 0 for v in d.values(): if len(__magic_name__ ) % 2 != 0: middle += 1 else: snake_case__ : List[str] = 0 for i in range(0 , len(__magic_name__ ) ): if v[i] + v[len(__magic_name__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
38
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=32 , __a=3 , __a=4 , __a=[10, 20, 30, 40] , __a=[2, 2, 3, 2] , __a=True , __a=True , __a=37 , __a="gelu" , __a=10 , __a=0.02 , __a=["stage2", "stage3", "stage4"] , __a=3 , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = num_channels _UpperCamelCase = num_stages _UpperCamelCase = hidden_sizes _UpperCamelCase = depths _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = out_features _UpperCamelCase = num_labels _UpperCamelCase = scope _UpperCamelCase = num_stages def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Any: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__a , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=__a , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = UperNetForSemanticSegmentation(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__ = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = UperNetModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a) @unittest.skip(reason='''UperNet does not use inputs_embeds''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not support input and output embeddings''') def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''') def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''') def UpperCAmelCase ( self) -> int: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''') def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' def check_hidden_states_output(__a , __a , __a): _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(__a) , expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) _UpperCamelCase = _config_zero_init(configs_no_init.backbone_config) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason='''UperNet does not have tied weights''') def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' pass @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''', repo_type='''dataset''', filename='''ADE_val_00000001.jpg''' ) _UpperCamelCase = Image.open(__snake_case ).convert('''RGB''' ) return image @require_torch @require_vision @slow class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''') _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''').to(__a) _UpperCamelCase = prepare_img() _UpperCamelCase = processor(images=__a , return_tensors='''pt''').to(__a) with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''') _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''').to(__a) _UpperCamelCase = prepare_img() _UpperCamelCase = processor(images=__a , return_tensors='''pt''').to(__a) with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4))
19
0
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class snake_case_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : int , ) ->Tuple: snake_case_ = parent snake_case_ = 1_3 snake_case_ = 7 snake_case_ = True snake_case_ = True snake_case_ = False snake_case_ = True snake_case_ = 9_9 snake_case_ = 3_2 snake_case_ = 2 snake_case_ = 4 snake_case_ = 3_7 snake_case_ = '''gelu''' snake_case_ = 0.1 snake_case_ = 0.1 snake_case_ = 5_1_2 snake_case_ = 1_6 snake_case_ = 2 snake_case_ = 0.02 snake_case_ = 3 snake_case_ = 4 snake_case_ = None def snake_case__( self : Optional[Any] ) ->Any: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__( self : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Any ) ->List[str]: snake_case_ = TFDistilBertModel(config=_UpperCamelCase ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} snake_case_ = model(_UpperCamelCase ) snake_case_ = [input_ids, input_mask] snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str ) ->str: snake_case_ = TFDistilBertForMaskedLM(config=_UpperCamelCase ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple ) ->Optional[int]: snake_case_ = TFDistilBertForQuestionAnswering(config=_UpperCamelCase ) snake_case_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__( self : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple ) ->str: snake_case_ = self.num_labels snake_case_ = TFDistilBertForSequenceClassification(_UpperCamelCase ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int] ) ->Optional[Any]: snake_case_ = self.num_choices snake_case_ = TFDistilBertForMultipleChoice(_UpperCamelCase ) snake_case_ = tf.tile(tf.expand_dims(_UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case_ = tf.tile(tf.expand_dims(_UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case_ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__( self : Tuple , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any ) ->Optional[Any]: snake_case_ = self.num_labels snake_case_ = TFDistilBertForTokenClassification(_UpperCamelCase ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__( self : Union[str, Any] ) ->int: snake_case_ = self.prepare_config_and_inputs() ((snake_case_), (snake_case_), (snake_case_), (snake_case_), (snake_case_), (snake_case_)) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class snake_case_ ( __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) SCREAMING_SNAKE_CASE : List[Any] = ( { "feature-extraction": TFDistilBertModel, "fill-mask": TFDistilBertForMaskedLM, "question-answering": TFDistilBertForQuestionAnswering, "text-classification": TFDistilBertForSequenceClassification, "token-classification": TFDistilBertForTokenClassification, "zero-shot": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : Optional[Any] = False def snake_case__( self : Optional[int] ) ->Dict: snake_case_ = TFDistilBertModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , dim=3_7 ) def snake_case__( self : str ) ->Union[str, Any]: self.config_tester.run_common_tests() def snake_case__( self : Tuple ) ->Union[str, Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_UpperCamelCase ) def snake_case__( self : str ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_UpperCamelCase ) def snake_case__( self : Optional[Any] ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->str: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->Optional[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->List[str]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_UpperCamelCase ) @slow def snake_case__( self : List[str] ) ->Union[str, Any]: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): snake_case_ = TFDistilBertModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_tf class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__( self : Dict ) ->Optional[int]: snake_case_ = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) snake_case_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case_ = model(_UpperCamelCase )[0] snake_case_ = [1, 6, 7_6_8] self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = tf.constant( [ [ [0.19261885, -0.13732955, 0.4119799], [0.22150156, -0.07422661, 0.39037204], [0.22756018, -0.0896414, 0.3701467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 )
39
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase( lowerCamelCase ): lowercase__ = (DDPMScheduler,) def UpperCAmelCase ( self , **__a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__a) return config def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=__a , beta_end=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.check_over_configs(thresholding=__a) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0979)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.02)) < 1e-5 def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = len(__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = torch.manual_seed(0) for t in reversed(range(__a)): # 1. predict noise residual _UpperCamelCase = model(__a , __a) # 2. predict previous mean of sample x_t-1 _UpperCamelCase = scheduler.step(__a , __a , __a , generator=__a).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCamelCase = pred_prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 258.9606) < 1e-2 assert abs(result_mean.item() - 0.3372) < 1e-3 def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''') _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = len(__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = torch.manual_seed(0) for t in reversed(range(__a)): # 1. predict noise residual _UpperCamelCase = model(__a , __a) # 2. predict previous mean of sample x_t-1 _UpperCamelCase = scheduler.step(__a , __a , __a , generator=__a).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCamelCase = pred_prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 202.0296) < 1e-2 assert abs(result_mean.item() - 0.2631) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__a) _UpperCamelCase = scheduler.timesteps for i, timestep in enumerate(__a): if i == len(__a) - 1: _UpperCamelCase = -1 else: _UpperCamelCase = timesteps[i + 1] _UpperCamelCase = scheduler.previous_timestep(__a) _UpperCamelCase = prev_t.item() self.assertEqual(__a , __a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 51, 0] with self.assertRaises(__a , msg='''`custom_timesteps` must be in descending order.'''): scheduler.set_timesteps(timesteps=__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 1, 0] _UpperCamelCase = len(__a) with self.assertRaises(__a , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.'''): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=__a)
19
0
def UpperCamelCase ( snake_case__ : List[str] ) -> Optional[int]: UpperCamelCase : int = [0] * len(snake_case__ ) UpperCamelCase : Optional[Any] = [] UpperCamelCase : Optional[Any] = [] UpperCamelCase : Optional[Any] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: UpperCamelCase : Tuple = queue.pop(0 ) cnt += 1 topo.append(snake_case__ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(snake_case__ ) if cnt != len(snake_case__ ): print('Cycle exists' ) else: print(snake_case__ ) # Adjacency List of Graph __UpperCAmelCase = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
40
"""simple docstring""" from __future__ import annotations from functools import lru_cache from math import ceil _a = 100 _a = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} _UpperCamelCase = set() _UpperCamelCase = 42 _UpperCamelCase = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def lowerCamelCase__ ( __snake_case = 50_00 ) -> int | None: """simple docstring""" for number_to_partition in range(1, __snake_case ): if len(partition(__snake_case ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"""{solution() = }""")
19
0
'''simple docstring''' import numpy as np import qiskit def _A ( A__ = 8 , A__ = None ): """simple docstring""" __lowercase = np.random.default_rng(seed=A__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. __lowercase = 6 * key_len # Measurement basis for Alice's qubits. __lowercase = rng.integers(2 , size=A__ ) # The set of states Alice will prepare. __lowercase = rng.integers(2 , size=A__ ) # Measurement basis for Bob's qubits. __lowercase = rng.integers(2 , size=A__ ) # Quantum Circuit to simulate BB84 __lowercase = qiskit.QuantumCircuit(A__ , name='''BB84''' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(A__ ): if alice_state[index] == 1: bbaa_circ.x(A__ ) if alice_basis[index] == 1: bbaa_circ.h(A__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(A__ ): if bob_basis[index] == 1: bbaa_circ.h(A__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. __lowercase = qiskit.Aer.get_backend('''aer_simulator''' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. __lowercase = qiskit.execute(A__ , A__ , shots=1 , seed_simulator=A__ ) # Returns the result of measurement. __lowercase = job.result().get_counts(A__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. __lowercase = ''''''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( A__ , A__ , A__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. __lowercase = gen_key[:key_len] if len(A__ ) >= key_len else gen_key.ljust(A__ , '''0''' ) return key if __name__ == "__main__": print(f'The generated key is : {bbaa(8, seed=0)}') from doctest import testmod testmod()
41
"""simple docstring""" from collections.abc import Callable import numpy as np def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> np.array: """simple docstring""" _UpperCamelCase = int(np.ceil((x_end - xa) / step_size ) ) _UpperCamelCase = np.zeros((n + 1,) ) _UpperCamelCase = ya _UpperCamelCase = xa for k in range(__snake_case ): _UpperCamelCase = y[k] + step_size * ode_func(__snake_case, y[k] ) _UpperCamelCase = y[k] + ( (step_size / 2) * (ode_func(__snake_case, y[k] ) + ode_func(x + step_size, __snake_case )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
19
0
'''simple docstring''' A_ = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
42
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _a = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _a = parser.parse_args() if args.model_type == "bert": _a = BertForMaskedLM.from_pretrained(args.model_name) _a = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _a = model.state_dict() _a = {} for w in ["word_embeddings", "position_embeddings"]: _a = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _a = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] _a = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _a = state_dict["""cls.predictions.decoder.weight"""] _a = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _a = state_dict[F"""cls.predictions.transform.dense.{w}"""] _a = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
19
0
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = position lowercase__ = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowercase__ = [] for position in positions: lowercase__ , lowercase__ = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(SCREAMING_SNAKE_CASE ) return permissible_positions def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if is_complete(SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): lowercase__ , lowercase__ = position if board[y][x] == 0: lowercase__ = curr + 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , curr + 1 ): return True lowercase__ = 0 return False def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): lowercase__ = 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board lowercase__ = 0 lowercase__ = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _a = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class _UpperCAmelCase: lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = 'gelu' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=False , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a=0.1 , __a=0.1 , __a=20 , __a=2 , __a=1 , __a=0 , ) -> int: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) _UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) _UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCamelCase = prepare_pegasus_inputs_dict(__a , __a , __a) return config, inputs_dict def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids''']) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a) _UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''') _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __a , decoder_attention_mask=__a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__a , ) _UpperCamelCase = model.decode(__a , __a) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''') def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids''']) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a) _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__a , decoder_position_ids=__a , ) _UpperCamelCase = model.decode(__a , __a , decoder_attention_mask=__a) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''') def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=None, __snake_case=None, ) -> Union[str, Any]: """simple docstring""" if attention_mask is None: _UpperCamelCase = np.not_equal(__snake_case, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _UpperCamelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = FlaxPegasusModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = self._prepare_for_class(__a , __a) _UpperCamelCase = model_class(__a) @jax.jit def encode_jitted(__a , __a=None , **__a): return model.encode(input_ids=__a , attention_mask=__a) with self.subTest('''JIT Enabled'''): _UpperCamelCase = encode_jitted(**__a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): _UpperCamelCase = encode_jitted(**__a).to_tuple() self.assertEqual(len(__a) , len(__a)) for jitted_output, output in zip(__a , __a): self.assertEqual(jitted_output.shape , output.shape) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = model_class(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask''']) _UpperCamelCase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(__a , __a , __a): return model.decode( decoder_input_ids=__a , decoder_attention_mask=__a , encoder_outputs=__a , ) with self.subTest('''JIT Enabled'''): _UpperCamelCase = decode_jitted(**__a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): _UpperCamelCase = decode_jitted(**__a).to_tuple() self.assertEqual(len(__a) , len(__a)) for jitted_output, output in zip(__a , __a): self.assertEqual(jitted_output.shape , output.shape) @slow def UpperCAmelCase ( self) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=__a) _UpperCamelCase = np.ones((1, 1)) _UpperCamelCase = model(__a) self.assertIsNotNone(__a) @slow def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''') _UpperCamelCase = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''') _UpperCamelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] _UpperCamelCase = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] _UpperCamelCase = tokenizer(__a , return_tensors='''np''' , truncation=__a , max_length=5_12 , padding=__a) _UpperCamelCase = model.generate(**__a , num_beams=2).sequences _UpperCamelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a) assert tgt_text == decoded
19
0
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[int] = 1 for i in range(1 , num + 1 ): fact *= i return fact def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Any = 0 while number > 0: _lowerCamelCase : Optional[Any] = number % 10 sum_of_digits += last_digit _lowerCamelCase : Dict = number // 10 # Removing the last_digit from the given number return sum_of_digits def A_ ( _lowerCAmelCase : int = 100 ): """simple docstring""" _lowerCamelCase : List[str] = factorial(_lowerCAmelCase ) _lowerCamelCase : List[Any] = split_and_add(_lowerCAmelCase ) return result if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
44
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , __a=0 , ) -> Any: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope _UpperCamelCase = projection_dim def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) _UpperCamelCase = DPRConfig(projection_dim=self.projection_dim , **config.to_dict()) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = TFDPRContextEncoder(config=__a) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFDPRQuestionEncoder(config=__a) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = TFDPRReader(config=__a) _UpperCamelCase = model(__a , attention_mask=__a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,)) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowercase__ = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDPRModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__a) @slow def UpperCAmelCase ( self) -> str: '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRContextEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRContextEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRQuestionEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRReader.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''') _UpperCamelCase = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]]) # [CLS] hello, is my dog cute? [SEP] _UpperCamelCase = model(__a)[0] # embedding shape = (1, 768) # compare the actual values for a slice. _UpperCamelCase = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ]) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4))
19
0
from __future__ import annotations from math import gcd def A ( lowercase__ : int , lowercase__ : int = 2 , lowercase__ : int = 1 , lowercase__ : int = 3 , ) -> int | None: # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> int: return (pow(lowercase__ , 2 ) + step) % modulus for _ in range(lowercase__ ): # These track the position within the cycle detection logic. UpperCamelCase__ :Dict = seed UpperCamelCase__ :List[Any] = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. UpperCamelCase__ :Optional[int] = rand_fn(lowercase__ , lowercase__ , lowercase__ ) UpperCamelCase__ :List[str] = rand_fn(lowercase__ , lowercase__ , lowercase__ ) UpperCamelCase__ :str = rand_fn(lowercase__ , lowercase__ , lowercase__ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. UpperCamelCase__ :str = gcd(hare - tortoise , lowercase__ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. UpperCamelCase__ :Union[str, Any] = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse UpperCamelCase = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) UpperCamelCase = parser.parse_args() UpperCamelCase = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f'''{args.num} is probably prime''') else: UpperCamelCase = args.num // divisor print(f'''{args.num} = {divisor} * {quotient}''')
45
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x2_0000 and cp <= 0x2_A6DF) # or (cp >= 0x2_A700 and cp <= 0x2_B73F) # or (cp >= 0x2_B740 and cp <= 0x2_B81F) # or (cp >= 0x2_B820 and cp <= 0x2_CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2_F800 and cp <= 0x2_FA1F) # ): # return True return False def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" for char in word: _UpperCamelCase = ord(__snake_case ) if not _is_chinese_char(__snake_case ): return 0 return 1 def lowerCamelCase__ ( __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = set() for token in tokens: _UpperCamelCase = len(__snake_case ) > 1 and is_chinese(__snake_case ) if chinese_word: word_set.add(__snake_case ) _UpperCamelCase = list(__snake_case ) return word_list def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" if not chinese_word_set: return bert_tokens _UpperCamelCase = max([len(__snake_case ) for w in chinese_word_set] ) _UpperCamelCase = bert_tokens _UpperCamelCase , _UpperCamelCase = 0, len(__snake_case ) while start < end: _UpperCamelCase = True if is_chinese(bert_word[start] ): _UpperCamelCase = min(end - start, __snake_case ) for i in range(__snake_case, 1, -1 ): _UpperCamelCase = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _UpperCamelCase = '''##''' + bert_word[j] _UpperCamelCase = start + i _UpperCamelCase = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws _UpperCamelCase = [get_chinese_word(__snake_case ) for r in res] ltp_res.extend(__snake_case ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=__snake_case, truncation=__snake_case, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for input_ids, chinese_word in zip(__snake_case, __snake_case ): _UpperCamelCase = [] for id in input_ids: _UpperCamelCase = bert_tokenizer._convert_id_to_token(__snake_case ) input_tokens.append(__snake_case ) _UpperCamelCase = add_sub_symbol(__snake_case, __snake_case ) _UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__snake_case ): if token[:2] == "##": _UpperCamelCase = token[2:] # save chinese tokens' pos if len(__snake_case ) == 1 and _is_chinese_char(ord(__snake_case ) ): ref_id.append(__snake_case ) ref_ids.append(__snake_case ) assert len(__snake_case ) == len(__snake_case ) return ref_ids def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _UpperCamelCase = f.readlines() _UpperCamelCase = [line.strip() for line in data if len(__snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _UpperCamelCase = LTP(args.ltp ) # faster in GPU device _UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) _UpperCamelCase = prepare_ref(__snake_case, __snake_case, __snake_case ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _UpperCamelCase = [json.dumps(__snake_case ) + '''\n''' for ref in ref_ids] f.writelines(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) _a = parser.parse_args() main(args)
19
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json''', } class A_ ( _a ): lowerCAmelCase__ = 'gpt_neox_japanese' def __init__( self: str ,__lowerCAmelCase: List[str]=32_000 ,__lowerCAmelCase: Tuple=2_560 ,__lowerCAmelCase: Tuple=32 ,__lowerCAmelCase: Tuple=32 ,__lowerCAmelCase: Optional[int]=4 ,__lowerCAmelCase: int="gelu" ,__lowerCAmelCase: Optional[Any]=1.00 ,__lowerCAmelCase: int=10_000 ,__lowerCAmelCase: List[str]=2_048 ,__lowerCAmelCase: Union[str, Any]=0.02 ,__lowerCAmelCase: Tuple=1e-5 ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[str]=31_996 ,__lowerCAmelCase: Union[str, Any]=31_999 ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: int=0.0 ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__(bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = vocab_size _lowerCamelCase : Any = max_position_embeddings _lowerCamelCase : Tuple = hidden_size _lowerCamelCase : List[Any] = num_hidden_layers _lowerCamelCase : int = num_attention_heads _lowerCamelCase : Tuple = intermediate_multiple_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : str = rotary_pct _lowerCamelCase : Any = rotary_emb_base _lowerCamelCase : str = initializer_range _lowerCamelCase : Optional[int] = layer_norm_eps _lowerCamelCase : Optional[Any] = use_cache _lowerCamelCase : List[str] = attention_dropout _lowerCamelCase : int = hidden_dropout
46
"""simple docstring""" import heapq def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" _UpperCamelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__snake_case, [-1 * len(__snake_case ), (key, value)] ) # chosen_vertices = set of chosen vertices _UpperCamelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _UpperCamelCase = heapq.heappop(__snake_case )[1][0] chosen_vertices.add(__snake_case ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _UpperCamelCase = elem[1][1].index(__snake_case ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__snake_case ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _a = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
19
0
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : str ): __a : List[Any] = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 1_0_2_4, 'hidden_size': 7_6_8, 'max_length': 5_1_2, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 1_0_2_4, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1e-5, 'token_type_vocab_size': 2, } __a : Optional[int] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __a : List[str] = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=lowerCamelCase_ , output_all_encodings=lowerCamelCase_ , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , lowerCamelCase_ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __a : int = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab __a : Optional[Any] = os.path.join(get_home_dir() , 'models' ) __a : Optional[Any] = _load_vocab(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , cls=lowerCamelCase_ ) __a : Any = nlp.model.BERTModel( lowerCamelCase_ , len(lowerCamelCase_ ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=lowerCamelCase_ , use_token_type_embed=lowerCamelCase_ , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=lowerCamelCase_ , use_decoder=lowerCamelCase_ , ) original_bort.load_parameters(lowerCamelCase_ , cast_dtype=lowerCamelCase_ , ignore_extra=lowerCamelCase_ ) __a : Dict = original_bort._collect_params_with_prefix() # Build our config 🤗 __a : Optional[Any] = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(lowerCamelCase_ ), } __a : str = BertConfig.from_dict(lowerCamelCase_ ) __a : Optional[int] = BertForMaskedLM(lowerCamelCase_ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCamelCase_ : Optional[Any] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[str] ): __a : Optional[int] = hf_param.shape __a : int = to_torch(params[gluon_param] ) __a : int = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param __a : str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) __a : str = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) __a : Tuple = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) __a : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __a : Union[str, Any] = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __a : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention __a : BertSelfAttention = layer.attention.self __a : Optional[int] = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) __a : str = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) __a : List[str] = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) __a : str = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) __a : Dict = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) __a : str = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output __a : BertSelfOutput = layer.attention.output __a : Tuple = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) __a : Dict = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) __a : Optional[Any] = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) __a : Optional[Any] = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate __a : BertIntermediate = layer.intermediate __a : List[str] = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) __a : Optional[Any] = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output __a : BertOutput = layer.output __a : str = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) __a : List[Any] = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) __a : str = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) __a : List[str] = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __a : Union[str, Any] = RobertaTokenizer.from_pretrained('roberta-base' ) __a : Union[str, Any] = tokenizer.encode_plus(lowerCamelCase_ )['input_ids'] # Get gluon output __a : Optional[int] = mx.nd.array([input_ids] ) __a : Tuple = original_bort(inputs=lowerCamelCase_ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCamelCase_ ) __a : Optional[Any] = BertModel.from_pretrained(lowerCamelCase_ ) hf_bort_model.eval() __a : Union[str, Any] = tokenizer.encode_plus(lowerCamelCase_ , return_tensors='pt' ) __a : int = hf_bort_model(**lowerCamelCase_ )[0] __a : Dict = output_gluon[0].asnumpy() __a : str = output_hf[0].detach().numpy() __a : List[Any] = np.max(np.abs(hf_layer - gluon_layer ) ).item() __a : str = np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
47
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _UpperCamelCase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj ) assert isinstance(_test_patching.os.path, _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" assert _test_patching.open is open _UpperCamelCase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, '''open''', __snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching, '''pandas.read_csv''', __snake_case ): pass def lowerCamelCase__ ( ) -> Dict: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, '''len''', __snake_case ) is None with patch_submodule(_test_patching, '''len''', __snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_start_and_stop_mock__''' _UpperCamelCase = patch_submodule(_test_patching, '''open''', __snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _UpperCamelCase = '''__test_patch_submodule_successive_join__''' _UpperCamelCase = '''__test_patch_submodule_successive_dirname__''' _UpperCamelCase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> str: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching, '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''', __snake_case ): pass with patch_submodule(_test_patching, '''os.__attribute_that_doesn_exist__''', __snake_case ): pass
19
0
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black UpperCAmelCase__ : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. UpperCAmelCase__ : List[str] = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class A ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , "models/bert/" ) ) lowerCAmelCase__ = self.transformer_dir shutil.copy( os.path.join(__magic_name__ , "src/transformers/models/bert/modeling_bert.py" ) , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py" ) , ) def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ = "src/transformers" shutil.rmtree(self.transformer_dir ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Tuple=None ): """simple docstring""" lowerCAmelCase__ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCAmelCase__ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCAmelCase__ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCAmelCase__ = black.format_str(__magic_name__ , mode=__magic_name__ ) lowerCAmelCase__ = os.path.join(self.transformer_dir , "new_code.py" ) with open(__magic_name__ , "w" , newline="\n" ) as f: f.write(__magic_name__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__magic_name__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__magic_name__ ) with open(__magic_name__ , "r" ) as f: self.assertTrue(f.read() , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead" ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , __magic_name__ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , __magic_name__ ) , ) # Copy consistency with a really long name lowerCAmelCase__ = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , f"""{long_class_name}LMPredictionHead""" , re.sub("Bert" , __magic_name__ , __magic_name__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , __magic_name__ , overwrite_result=re.sub("Bert" , "TestModel" , __magic_name__ ) , ) def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ = check_copies.LOCALIZED_READMES["README_zh-hans.md"] lowerCAmelCase__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) lowerCAmelCase__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) lowerCAmelCase__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) lowerCAmelCase__ ,lowerCAmelCase__ = check_copies.convert_to_localized_md( __magic_name__ , __magic_name__ , localized_readme["format_model_list"] ) self.assertFalse(__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ ,lowerCAmelCase__ = check_copies.convert_to_localized_md( __magic_name__ , __magic_name__ , localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__magic_name__ ) lowerCAmelCase__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) lowerCAmelCase__ = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) lowerCAmelCase__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) lowerCAmelCase__ ,lowerCAmelCase__ = check_copies.convert_to_localized_md( __magic_name__ , __magic_name__ , localized_readme["format_model_list"] ) # Check if the model link is synchronized. self.assertEqual(__magic_name__ , __magic_name__ )
48
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = original_name.split('''.''' )[0] _UpperCamelCase = key.split('''.''' ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 2] ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 1] ) _UpperCamelCase = orig_block_num - offset _UpperCamelCase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''', F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = OrderedDict() _UpperCamelCase , _UpperCamelCase = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): _UpperCamelCase = key.replace('''network''', '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 _UpperCamelCase = key[: key.find('''proj''' )] _UpperCamelCase = key.replace(__snake_case, F'''patch_embeddings.{total_embed_found}.''' ) _UpperCamelCase = key.replace('''proj''', '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: _UpperCamelCase = '''poolformer.encoder.''' + key if "mlp.fc1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc1''', '''output.conv1''' ) if "mlp.fc2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc2''', '''output.conv2''' ) if "norm1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm1''', '''before_norm''' ) if "norm2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm2''', '''after_norm''' ) if "layer_scale_1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_1''', '''layer_scale_1''' ) if "layer_scale_2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_2''', '''layer_scale_2''' ) if "head" in key: _UpperCamelCase = key.replace('''head''', '''classifier''' ) _UpperCamelCase = value return new_state_dict def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase = Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return image @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = PoolFormerConfig() # set attributes based on model_name _UpperCamelCase = '''huggingface/label-files''' _UpperCamelCase = model_name[-3:] _UpperCamelCase = 10_00 _UpperCamelCase = '''imagenet-1k-id2label.json''' _UpperCamelCase = (1, 10_00) # set config attributes _UpperCamelCase = json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type='''dataset''' ), '''r''' ) ) _UpperCamelCase = {int(__snake_case ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} if size == "s12": _UpperCamelCase = [2, 2, 6, 2] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s24": _UpperCamelCase = [4, 4, 12, 4] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.9 elif size == "m36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 elif size == "m48": _UpperCamelCase = [8, 8, 24, 8] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) # Prepare image _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__snake_case, return_tensors='''pt''' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict _UpperCamelCase = torch.load(__snake_case, map_location=torch.device('''cpu''' ) ) # rename keys _UpperCamelCase = rename_keys(__snake_case ) # create HuggingFace model and load state dict _UpperCamelCase = PoolFormerForImageClassification(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # Define image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) _UpperCamelCase = image_processor(images=prepare_img(), return_tensors='''pt''' ).pixel_values # forward pass _UpperCamelCase = model(__snake_case ) _UpperCamelCase = outputs.logits # define expected logit slices for different models if size == "s12": _UpperCamelCase = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": _UpperCamelCase = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": _UpperCamelCase = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": _UpperCamelCase = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": _UpperCamelCase = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3], __snake_case, atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _a = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
19
0
"""simple docstring""" def lowercase__ ( snake_case_ :Dict ): # noqa: E741 __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = 0 __UpperCAmelCase = [0] * n __UpperCAmelCase = [False] * n __UpperCAmelCase = [False] * n def dfs(snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :Any , snake_case_ :int ): if parent == root: out_edge_count += 1 __UpperCAmelCase = True __UpperCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: __UpperCAmelCase = dfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __UpperCAmelCase = True # AP found via cycle if at == low[to]: __UpperCAmelCase = True else: __UpperCAmelCase = min(low[at] , snake_case_ ) return out_edge_count for i in range(snake_case_ ): if not visited[i]: __UpperCAmelCase = 0 __UpperCAmelCase = dfs(snake_case_ , snake_case_ , -1 , snake_case_ ) __UpperCAmelCase = out_edge_count > 1 for x in range(len(snake_case_ ) ): if is_art[x] is True: print(snake_case_ ) # Adjacency list of graph _lowercase : Optional[Any] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
49
"""simple docstring""" import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class _UpperCAmelCase( lowerCamelCase ): lowercase__ = (DPMSolverSDEScheduler,) lowercase__ = 10 def UpperCAmelCase ( self , **__a) -> int: '''simple docstring''' _UpperCamelCase = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**__a) return config def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02]): self.check_over_configs(beta_start=__a , beta_end=__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a) def UpperCAmelCase ( self) -> str: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''') _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a , use_karras_sigmas=__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2
19
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase : List[Any] = logging.get_logger(__name__) UpperCamelCase : str = '▁' UpperCamelCase : Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} UpperCamelCase : Optional[Any] = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } UpperCamelCase : str = {'vinai/bartpho-syllable': 10_24} class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = ['input_ids', 'attention_mask'] def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="<unk>" ,_lowerCAmelCase="<pad>" ,_lowerCAmelCase="<mask>" ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else mask_token lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase ,eos_token=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_lowerCAmelCase ,) lowerCamelCase__ = vocab_file lowerCamelCase__ = monolingual_vocab_file lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowerCamelCase__ = {} lowerCamelCase__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(_lowerCAmelCase ) not in self.fairseq_tokens_to_ids: lowerCamelCase__ = cnt cnt += 1 with open(_lowerCAmelCase ,"""r""" ,encoding="""utf-8""" ) as f: for line in f.readlines(): lowerCamelCase__ = line.strip().split()[0] lowerCamelCase__ = len(self.fairseq_tokens_to_ids ) if str(_lowerCAmelCase ) not in self.fairseq_tokens_to_ids: lowerCamelCase__ = len(self.fairseq_tokens_to_ids ) lowerCamelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): lowerCamelCase__ = self.__dict__.copy() lowerCamelCase__ = None lowerCamelCase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self ,_lowerCAmelCase ): lowerCamelCase__ = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowerCamelCase__ = {} lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] lowerCamelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase ,token_ids_a=_lowerCAmelCase ,already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self ): return len(self.fairseq_ids_to_tokens ) def UpperCamelCase_ ( self ): lowerCamelCase__ = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self ,_lowerCAmelCase ): return self.sp_model.encode(_lowerCAmelCase ,out_type=_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def UpperCamelCase_ ( self ,_lowerCAmelCase ): return self.fairseq_ids_to_tokens[index] def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase ,""" """ ).strip() return out_string def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ = os.path.join( _lowerCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCamelCase__ = os.path.join( _lowerCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] ,) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase ,"""wb""" ) as fi: lowerCamelCase__ = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( _lowerCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file ,_lowerCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(_lowerCAmelCase ,"""w""" ,encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'''{str(_lowerCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
50
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['pixel_values'] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BICUBIC , __a = True , __a = True , __a = 1 / 2_55 , __a = None , __a = True , __a = None , __a = None , **__a , ) -> None: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a , default_to_square=__a , param_name='''crop_size''') _UpperCamelCase = do_resize _UpperCamelCase = do_rescale _UpperCamelCase = do_normalize _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = rescale_factor _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BILINEAR , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "shortest_edge" in size: _UpperCamelCase = get_resize_output_image_size(__a , size=size['''shortest_edge'''] , default_to_square=__a) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''') return resize(__a , size=__a , resample=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''') return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a) -> np.ndarray: '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> BatchFeature: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(__a , param_name='''crop_size''' , default_to_square=__a) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(__a) if not is_batched(__a): _UpperCamelCase = [images] if not valid_images(__a): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(__a) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=__a , size=__a , resample=__a) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=__a , size=__a) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=__a , scale=__a) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=__a , mean=__a , std=__a) for image in images] _UpperCamelCase = [to_channel_dimension_format(__a , __a) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=__a , tensor_type=__a)
19
0
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Optional[Any] , a__ : List[str] , a__ : Tuple=13 , a__ : Optional[int]=10 , a__ : Any=3 , a__ : Tuple=2 , a__ : Tuple=2 , a__ : Optional[int]=2 , a__ : Optional[int]=True , a__ : Dict=True , a__ : int=32 , a__ : List[str]=5 , a__ : Union[str, Any]=4 , a__ : Optional[int]=37 , a__ : Tuple="gelu" , a__ : Optional[int]=0.1 , a__ : Dict=0.1 , a__ : Tuple=10 , a__ : Dict=0.02 , a__ : Dict=0.9 , a__ : int=None , ): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = patch_size UpperCAmelCase = tubelet_size UpperCAmelCase = num_frames UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = mask_ratio UpperCAmelCase = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame UpperCAmelCase = (image_size // patch_size) ** 2 UpperCAmelCase = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos UpperCAmelCase = int(mask_ratio * self.seq_length ) def __snake_case ( self : str ): UpperCAmelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def __snake_case ( self : Any ): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , ) def __snake_case ( self : str , a__ : List[str] , a__ : str , a__ : Dict ): UpperCAmelCase = VideoMAEModel(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self : List[Any] , a__ : Union[str, Any] , a__ : Optional[int] , a__ : int ): UpperCAmelCase = VideoMAEForPreTraining(a__ ) model.to(a__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch UpperCAmelCase = torch.ones((self.num_masks,) ) UpperCAmelCase = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) UpperCAmelCase = mask.expand(self.batch_size , -1 ).bool() UpperCAmelCase = model(a__ , a__ ) # model only returns predictions for masked patches UpperCAmelCase = mask.sum().item() UpperCAmelCase = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def __snake_case ( self : List[str] ): UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) _lowerCamelCase =( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False def __snake_case ( self : Tuple ): UpperCAmelCase = VideoMAEModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def __snake_case ( self : Union[str, Any] , a__ : Union[str, Any] , a__ : Any , a__ : int=False ): UpperCAmelCase = copy.deepcopy(a__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch UpperCAmelCase = torch.ones((self.model_tester.num_masks,) ) UpperCAmelCase = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) UpperCAmelCase = mask.expand(self.model_tester.batch_size , -1 ).bool() UpperCAmelCase = bool_masked_pos.to(a__ ) if return_labels: if model_class in [ *get_values(a__ ), ]: UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) return inputs_dict def __snake_case ( self : Dict ): self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def __snake_case ( self : Optional[Any] ): pass def __snake_case ( self : List[str] ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def __snake_case ( self : Any ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(a__ ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def __snake_case ( self : Dict ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __snake_case ( self : Optional[Any] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a__ ) @slow def __snake_case ( self : int ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = VideoMAEModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def __snake_case ( self : Dict ): if not self.has_attentions: pass else: UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = True for model_class in self.all_model_classes: UpperCAmelCase = self.model_tester.seq_length - self.model_tester.num_masks UpperCAmelCase = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(a__ , a__ ) ) UpperCAmelCase = outputs.attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(a__ , a__ ) ) UpperCAmelCase = outputs.attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) UpperCAmelCase = len(a__ ) # Check attention is always last and order is fine UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(a__ , a__ ) ) self.assertEqual(out_len + 1 , len(a__ ) ) UpperCAmelCase = outputs.attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __snake_case ( self : int ): def check_hidden_states_output(a__ : int , a__ : str , a__ : Dict ): UpperCAmelCase = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(a__ , a__ ) ) UpperCAmelCase = outputs.hidden_states UpperCAmelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(a__ ) , a__ ) UpperCAmelCase = self.model_tester.seq_length - self.model_tester.num_masks UpperCAmelCase = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(a__ , a__ , a__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __snake_case ( self : Dict ): pass def __snake_case ( ) -> List[str]: """simple docstring""" UpperCAmelCase = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) UpperCAmelCase = np.load(SCREAMING_SNAKE_CASE_ ) return list(SCREAMING_SNAKE_CASE_ ) @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self : Optional[int] ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __snake_case ( self : int ): UpperCAmelCase = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( a__ ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_video() UpperCAmelCase = image_processor(a__ , return_tensors='''pt''' ).to(a__ ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**a__ ) # verify the logits UpperCAmelCase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , a__ ) UpperCAmelCase = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1e-4 ) ) @slow def __snake_case ( self : Dict ): UpperCAmelCase = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(a__ ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_video() UpperCAmelCase = image_processor(a__ , return_tensors='''pt''' ).to(a__ ) # add boolean mask, indicating which patches to mask UpperCAmelCase = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) UpperCAmelCase = torch.load(a__ ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**a__ ) # verify the logits UpperCAmelCase = torch.Size([1, 1408, 1536] ) UpperCAmelCase = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=a__ ) self.assertEqual(outputs.logits.shape , a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a__ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) UpperCAmelCase = torch.tensor([0.5_142] , device=a__ ) self.assertTrue(torch.allclose(outputs.loss , a__ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) UpperCAmelCase = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=a__ ).to( a__ ) with torch.no_grad(): UpperCAmelCase = model(**a__ ) UpperCAmelCase = torch.tensor(torch.tensor([0.6_469] ) , device=a__ ) self.assertTrue(torch.allclose(outputs.loss , a__ , atol=1e-4 ) )
51
"""simple docstring""" # Imports import numpy as np class _UpperCAmelCase: def __init__( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) def UpperCAmelCase ( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' if red is not None: _UpperCamelCase = red if green is not None: _UpperCamelCase = green if blue is not None: _UpperCamelCase = blue if red_edge is not None: _UpperCamelCase = red_edge if nir is not None: _UpperCamelCase = nir return True def UpperCAmelCase ( self , __a="" , __a=None , __a=None , __a=None , __a=None , __a=None) -> List[str]: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) _UpperCamelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''') return False def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self) -> Any: '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self , __a=0.08 , __a=1.22 , __a=0.03) -> Optional[Any]: '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir / self.green) - 1 def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.red - self.blue) / self.red def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir - self.green def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def UpperCAmelCase ( self , __a=0.16) -> Optional[Any]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self , __a=0.5) -> Dict: '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self , __a=None , __a=None) -> Any: '''simple docstring''' return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self) -> Any: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> str: '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) _UpperCamelCase = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Any: '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
19
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A = logging.getLogger(__name__) def __A ( a_ :Dict , a_ :Any) -> str: return (preds == labels).mean() @dataclass class __lowercase : '''simple docstring''' __lowerCAmelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class __lowercase : '''simple docstring''' __lowerCAmelCase = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} ) __lowerCAmelCase = field(metadata={'''help''': '''Should contain the data files for the task.'''} ) __lowerCAmelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def __A ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __a : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) __a , __a , __a : Any = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''') # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , a_) # Set seed set_seed(training_args.seed) try: __a : Optional[Any] = processors[data_args.task_name]() __a : Dict = processor.get_labels() __a : str = len(a_) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name)) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=a_ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __a : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __a : Optional[int] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path) , config=a_ , cache_dir=model_args.cache_dir , ) # Get datasets __a : Optional[int] = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=a_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __a : Any = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=a_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(a_ :EvalPrediction) -> Dict: __a : int = np.argmax(p.predictions , axis=1) return {"acc": simple_accuracy(a_ , p.label_ids)} # Data collator __a : List[Any] = DataCollatorWithPadding(a_ , pad_to_multiple_of=8) if training_args.fpaa else None # Initialize our Trainer __a : List[Any] = Trainer( model=a_ , args=a_ , train_dataset=a_ , eval_dataset=a_ , compute_metrics=a_ , data_collator=a_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation __a : Optional[Any] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''') __a : Any = trainer.evaluate() __a : Optional[int] = os.path.join(training_args.output_dir , '''eval_results.txt''') if trainer.is_world_master(): with open(a_ , '''w''') as writer: logger.info('''***** Eval results *****''') for key, value in result.items(): logger.info(''' %s = %s''' , a_ , a_) writer.write('''%s = %s\n''' % (key, value)) results.update(a_) return results def __A ( a_ :int) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
52
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=64 , __a=2 , __a=3 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a=[1, 16, 4, 4] , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _UpperCamelCase = (self.image_size // 32) ** 2 _UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__a , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.type_sequence_label_size _UpperCamelCase = ViTHybridForImageClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowercase__ = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''') def UpperCAmelCase ( self) -> Dict: '''simple docstring''' pass def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear)) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _UpperCamelCase = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = ViTHybridModel.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase( unittest.TestCase ): @cached_property def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( __a) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''').to(__a) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__a) # verify the logits _UpperCamelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor([-1.9090, -0.4993, -0.2389]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4)) @slow @require_accelerate def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''') _UpperCamelCase = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''') _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''') _UpperCamelCase = model(**__a) _UpperCamelCase = outputs.logits # model predicts one of the 1000 ImageNet classes _UpperCamelCase = logits.argmax(-1).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''')
19
0
def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : float ): return price * (1 + tax_rate) if __name__ == "__main__": print(F"""{price_plus_tax(100, 0.25) = }""") print(F"""{price_plus_tax(1_25.50, 0.05) = }""")
53
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['vqvae'] def __init__( self , __a , __a , __a , __a , ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules(unet=__a , scheduler=__a , mel=__a , vqvae=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' return 50 if isinstance(self.scheduler , __a) else 10_00 @torch.no_grad() def __call__( self , __a = 1 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = 0 , __a = None , __a = None , __a=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' _UpperCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(__a) _UpperCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: _UpperCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _UpperCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__a , device=self.device , ) _UpperCamelCase = noise _UpperCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__a , __a) _UpperCamelCase = self.mel.audio_slice_to_image(__a) _UpperCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''').reshape( (input_image.height, input_image.width)) _UpperCamelCase = (input_image / 2_55) * 2 - 1 _UpperCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: _UpperCamelCase = self.vqvae.encode(torch.unsqueeze(__a , 0)).latent_dist.sample( generator=__a)[0] _UpperCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _UpperCamelCase = self.scheduler.add_noise(__a , __a , self.scheduler.timesteps[start_step - 1]) _UpperCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _UpperCamelCase = int(mask_start_secs * pixels_per_second) _UpperCamelCase = int(mask_end_secs * pixels_per_second) _UpperCamelCase = self.scheduler.add_noise(__a , __a , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , __a): _UpperCamelCase = self.unet(__a , __a , __a)['''sample'''] else: _UpperCamelCase = self.unet(__a , __a)['''sample'''] if isinstance(self.scheduler , __a): _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , eta=__a , generator=__a , )['''prev_sample'''] else: _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , generator=__a , )['''prev_sample'''] if mask is not None: if mask_start > 0: _UpperCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _UpperCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _UpperCamelCase = 1 / self.vqvae.config.scaling_factor * images _UpperCamelCase = self.vqvae.decode(__a)['''sample'''] _UpperCamelCase = (images / 2 + 0.5).clamp(0 , 1) _UpperCamelCase = images.cpu().permute(0 , 2 , 3 , 1).numpy() _UpperCamelCase = (images * 2_55).round().astype('''uint8''') _UpperCamelCase = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__a , mode='''RGB''').convert('''L''') for _ in images)) _UpperCamelCase = [self.mel.image_to_audio(__a) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__a)[:, np.newaxis, :]) , **ImagePipelineOutput(__a)) @torch.no_grad() def UpperCAmelCase ( self , __a , __a = 50) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , __a) self.scheduler.set_timesteps(__a) _UpperCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''').reshape((1, image.height, image.width)) for image in images]) _UpperCamelCase = (sample / 2_55) * 2 - 1 _UpperCamelCase = torch.Tensor(__a).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): _UpperCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _UpperCamelCase = self.scheduler.alphas_cumprod[t] _UpperCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _UpperCamelCase = 1 - alpha_prod_t _UpperCamelCase = self.unet(__a , __a)['''sample'''] _UpperCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _UpperCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _UpperCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase ( __a , __a , __a) -> torch.Tensor: '''simple docstring''' _UpperCamelCase = acos(torch.dot(torch.flatten(__a) , torch.flatten(__a)) / torch.norm(__a) / torch.norm(__a)) return sin((1 - alpha) * theta) * xa / sin(__a) + sin(alpha * theta) * xa / sin(__a)
19
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase : Union[str, Any] =logging.get_logger(__name__) __lowercase : List[Any] =torch.device("""cpu""") def a__ ( ): '''simple docstring''' UpperCAmelCase_ ="http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ =Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im def a__ ( lowercase__ ): '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3E0_0, 2.1_1_0_7E0_0, -2.0_8_1_1E0_0, 8.8_6_8_5E-0_1, 2.4_3_6_0E-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6E-0_1, 2.3_4_7_8E-0_1, -1.6_9_6_3E0_0, -1.7_3_8_1E0_0, -8.6_3_3_7E-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8E-0_1, -4.7_4_2_9E-0_1, -1.0_8_9_7E0_0, -1.0_2_4_8E0_0, 3.5_5_2_3E-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0E-0_1, 2.4_2_1_1E-0_1, -6.0_1_8_5E-0_1, -8.2_7_8_9E-0_1, -6.0_4_4_6E-0_2] ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =dct.pop(lowercase__ ) UpperCAmelCase_ =val def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =[] for k in state_dict.keys(): UpperCAmelCase_ =k if ".pwconv" in k: UpperCAmelCase_ =k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: UpperCAmelCase_ =k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: UpperCAmelCase_ =k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: UpperCAmelCase_ =k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: UpperCAmelCase_ =k_new.split("." ) if ls[2].isdigit(): UpperCAmelCase_ ="swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: UpperCAmelCase_ =k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase_ =1_0_0_0 UpperCAmelCase_ ="huggingface/label-files" UpperCAmelCase_ ="imagenet-1k-id2label.json" UpperCAmelCase_ =json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ ={int(lowercase__ ): v for k, v in idalabel.items()} UpperCAmelCase_ =idalabel UpperCAmelCase_ ={v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCAmelCase_ =[3, 3, 6, 4] UpperCAmelCase_ =[4_8, 5_6, 1_1_2, 2_2_0] elif swiftformer_name == "swiftformer_s": UpperCAmelCase_ =[3, 3, 9, 6] UpperCAmelCase_ =[4_8, 6_4, 1_6_8, 2_2_4] elif swiftformer_name == "swiftformer_l1": UpperCAmelCase_ =[4, 3, 1_0, 5] UpperCAmelCase_ =[4_8, 9_6, 1_9_2, 3_8_4] elif swiftformer_name == "swiftformer_l3": UpperCAmelCase_ =[4, 4, 1_2, 6] UpperCAmelCase_ =[6_4, 1_2_8, 3_2_0, 5_1_2] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): UpperCAmelCase_ =torch.hub.load_state_dict_from_url(lowercase__ , map_location="cpu" , check_hash=lowercase__ ) else: UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" ) UpperCAmelCase_ =checkpoint UpperCAmelCase_ =create_rename_keys(lowercase__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model UpperCAmelCase_ =SwiftFormerForImageClassification(lowercase__ ).eval() hf_model.load_state_dict(lowercase__ ) # prepare test inputs UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =ViTImageProcessor.from_pretrained("preprocessor_config" ) UpperCAmelCase_ =processor(images=lowercase__ , return_tensors="pt" ) # compare outputs from both models UpperCAmelCase_ =get_expected_output(lowercase__ ) UpperCAmelCase_ =hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1_0_0_0] ) assert torch.allclose(hf_logits[0, 0:5] , lowercase__ , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(F'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowercase : int =argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") __lowercase : List[Any] =parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
54
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'detr' lowercase__ = ['past_key_values'] lowercase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __a=True , __a=None , __a=3 , __a=1_00 , __a=6 , __a=20_48 , __a=8 , __a=6 , __a=20_48 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=2_56 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=1 , __a=1 , __a=5 , __a=2 , __a=0.1 , **__a , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__a , __a): _UpperCamelCase = backbone_config.get('''model_type''') _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(__a) # set timm attributes to None _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None, None, None _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = encoder_layers _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase ( cls , __a , **__a) -> int: '''simple docstring''' return cls(backbone_config=__a , **__a) def UpperCAmelCase ( self) -> Dict[str, any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output class _UpperCAmelCase( lowerCamelCase ): lowercase__ = version.parse('1.11' ) @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def UpperCAmelCase ( self) -> float: '''simple docstring''' return 1e-5 @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return 12
19
0
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = CLIPConfig snake_case_ = ["CLIPEncoderLayer"] def __init__( self : Tuple ,A : CLIPConfig ): super().__init__(A ) __A = CLIPVisionModelWithProjection(config.vision_config ) __A = nn.Linear(config.vision_config.projection_dim ,1 ) __A = nn.Linear(config.vision_config.projection_dim ,1 ) @torch.no_grad() def UpperCamelCase_ ( self : Tuple ,A : List[str] ,A : Any ,A : Optional[Any]=0.5 ,A : List[Any]=0.5 ): __A = self.vision_model(A )[0] __A = self.p_head(A ) __A = nsfw_detected.flatten() __A = nsfw_detected > p_threshold __A = nsfw_detected.tolist() if any(A ): logger.warning( "Potential NSFW content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, nsfw_detected_ in enumerate(A ): if nsfw_detected_: __A = np.zeros(images[idx].shape ) __A = self.w_head(A ) __A = watermark_detected.flatten() __A = watermark_detected > w_threshold __A = watermark_detected.tolist() if any(A ): logger.warning( "Potential watermarked content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, watermark_detected_ in enumerate(A ): if watermark_detected_: __A = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
55
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'wavlm' def __init__( self , __a=32 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.1 , __a=0.02 , __a=1e-5 , __a="group" , __a="gelu" , __a=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __a=(5, 2, 2, 2, 2, 2, 2) , __a=(10, 3, 3, 3, 3, 2, 2) , __a=False , __a=1_28 , __a=16 , __a=3_20 , __a=8_00 , __a=False , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=3_20 , __a=2 , __a=0.1 , __a=1_00 , __a=2_56 , __a=2_56 , __a=0.1 , __a="mean" , __a=False , __a=False , __a=2_56 , __a=(5_12, 5_12, 5_12, 5_12, 15_00) , __a=(5, 3, 3, 1, 1) , __a=(1, 2, 3, 1, 1) , __a=5_12 , __a=80 , __a=0 , __a=1 , __a=2 , __a=False , __a=3 , __a=2 , __a=3 , __a=None , **__a , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a) _UpperCamelCase = hidden_size _UpperCamelCase = feat_extract_norm _UpperCamelCase = feat_extract_activation _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = conv_bias _UpperCamelCase = num_buckets _UpperCamelCase = max_bucket_distance _UpperCamelCase = num_conv_pos_embeddings _UpperCamelCase = num_conv_pos_embedding_groups _UpperCamelCase = len(self.conv_dim) _UpperCamelCase = num_hidden_layers _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = feat_proj_dropout _UpperCamelCase = final_dropout _UpperCamelCase = layerdrop _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = num_ctc_classes _UpperCamelCase = vocab_size _UpperCamelCase = do_stable_layer_norm _UpperCamelCase = use_weighted_layer_sum _UpperCamelCase = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCamelCase = apply_spec_augment _UpperCamelCase = mask_time_prob _UpperCamelCase = mask_time_length _UpperCamelCase = mask_time_min_masks _UpperCamelCase = mask_feature_prob _UpperCamelCase = mask_feature_length # parameters for pretraining with codevector quantized representations _UpperCamelCase = num_codevectors_per_group _UpperCamelCase = num_codevector_groups _UpperCamelCase = contrastive_logits_temperature _UpperCamelCase = num_negatives _UpperCamelCase = codevector_dim _UpperCamelCase = proj_codevector_dim _UpperCamelCase = diversity_loss_weight # ctc loss _UpperCamelCase = ctc_loss_reduction _UpperCamelCase = ctc_zero_infinity # adapter _UpperCamelCase = add_adapter _UpperCamelCase = adapter_kernel_size _UpperCamelCase = adapter_stride _UpperCamelCase = num_adapter_layers _UpperCamelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = xvector_output_dim @property def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
19
0
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters _a : Optional[int] = False _a : Dict = False def _a (lowercase__ : Namespace ) -> int: """simple docstring""" return TrainCommand(lowercase__ ) class _lowercase ( __lowercase ): @staticmethod def a ( SCREAMING_SNAKE_CASE_ : ArgumentParser ) -> Any: __snake_case = parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=SCREAMING_SNAKE_CASE_ , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=SCREAMING_SNAKE_CASE_ , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=SCREAMING_SNAKE_CASE_ , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=SCREAMING_SNAKE_CASE_ , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=SCREAMING_SNAKE_CASE_ , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=SCREAMING_SNAKE_CASE_ , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=SCREAMING_SNAKE_CASE_ , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=SCREAMING_SNAKE_CASE_ , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE_ , default=3e-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=SCREAMING_SNAKE_CASE_ , default=1e-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) def __init__( self : str , SCREAMING_SNAKE_CASE_ : Namespace ) -> Optional[int]: __snake_case = logging.get_logger('transformers-cli/training' ) __snake_case = 'tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=SCREAMING_SNAKE_CASE_ ) __snake_case = args.output __snake_case = args.column_label __snake_case = args.column_text __snake_case = args.column_id self.logger.info(f'Loading {args.task} pipeline for {args.model}' ) if args.task == "text_classification": __snake_case = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'Loading dataset from {args.train_data}' ) __snake_case = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case = None if args.validation_data: self.logger.info(f'Loading validation dataset from {args.validation_data}' ) __snake_case = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case = args.validation_split __snake_case = args.train_batch_size __snake_case = args.valid_batch_size __snake_case = args.learning_rate __snake_case = args.adam_epsilon def a ( self : Optional[int] ) -> int: if self.framework == "tf": return self.run_tf() return self.run_torch() def a ( self : Tuple ) -> List[str]: raise NotImplementedError def a ( self : Dict ) -> Optional[int]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
56
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _a = """bart""" _a = True @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> Dict: """simple docstring""" if LOAD_DENSE_INDEX: _UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _UpperCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _UpperCamelCase = qar_model.eval() else: _UpperCamelCase , _UpperCamelCase = (None, None) if MODEL_TYPE == "bart": _UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _UpperCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _UpperCamelCase = sas_model.eval() else: _UpperCamelCase , _UpperCamelCase = make_qa_sas_model( model_name='''t5-small''', from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''', device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: _UpperCamelCase = faiss.StandardGpuResources() _UpperCamelCase = datasets.load_dataset(path='''wiki_snippets''', name='''wiki40b_en_100_0''' )['''train'''] _UpperCamelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''', dtype='''float32''', mode='''r''', shape=(wikiaab_passages.num_rows, 1_28), ) _UpperCamelCase = faiss.IndexFlatIP(1_28 ) _UpperCamelCase = faiss.index_cpu_to_gpu(__snake_case, 1, __snake_case ) wikiaab_gpu_index_flat.add(__snake_case ) # TODO fix for larger GPU else: _UpperCamelCase , _UpperCamelCase = (None, None) _UpperCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = datasets.load_dataset('''eli5''', name='''LFQA_reddit''' ) _UpperCamelCase = elia['''train_eli5'''] _UpperCamelCase = np.memmap( '''eli5_questions_reps.dat''', dtype='''float32''', mode='''r''', shape=(elia_train.num_rows, 1_28) ) _UpperCamelCase = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(__snake_case ) return (elia_train, eli5_train_q_index) _a , _a , _a = load_indexes() _a , _a , _a , _a = load_models() _a , _a = load_train_data() def lowerCamelCase__ ( __snake_case, __snake_case=10 ) -> List[Any]: """simple docstring""" _UpperCamelCase = embed_questions_for_retrieval([question], __snake_case, __snake_case ) _UpperCamelCase , _UpperCamelCase = eli5_train_q_index.search(__snake_case, __snake_case ) _UpperCamelCase = [elia_train[int(__snake_case )] for i in I[0]] return nn_examples def lowerCamelCase__ ( __snake_case, __snake_case="wiki40b", __snake_case="dense", __snake_case=10 ) -> List[str]: """simple docstring""" if source == "none": _UpperCamelCase , _UpperCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _UpperCamelCase , _UpperCamelCase = query_qa_dense_index( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) else: _UpperCamelCase , _UpperCamelCase = query_es_index( __snake_case, __snake_case, index_name='''english_wiki40b_snippets_100w''', n_results=__snake_case, ) _UpperCamelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _UpperCamelCase = '''question: {} context: {}'''.format(__snake_case, __snake_case ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __snake_case : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __snake_case : None), } ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=64, __snake_case=2_56, __snake_case=False, __snake_case=2, __snake_case=0.95, __snake_case=0.8 ) -> Dict: """simple docstring""" with torch.no_grad(): _UpperCamelCase = qa_sas_generate( __snake_case, __snake_case, __snake_case, num_answers=1, num_beams=__snake_case, min_len=__snake_case, max_len=__snake_case, do_sample=__snake_case, temp=__snake_case, top_p=__snake_case, top_k=__snake_case, max_input_length=10_24, device='''cuda:0''', )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar _a = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" _a = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _a = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) _a = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] _a = st.sidebar.checkbox("""Demo options""") if demo_options: _a = st.sidebar.selectbox( """""", action_list, index=3, ) _a = action_list.index(action_st) _a = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) _a = show_type == """Show full text of passages""" else: _a = 3 _a = True _a = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: _a = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) _a = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) _a = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: _a = """wiki40b""" _a = """dense""" _a = """beam""" _a = 2 _a = 64 _a = 256 _a = None _a = None _a = st.sidebar.checkbox("""Generation options""") if generate_options: _a = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) _a = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) _a = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) _a = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": _a = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _a = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _a = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _a = None # start main text _a = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] _a = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": _a = st.text_input("""Enter your question here:""", """""") else: _a = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": _a , _a = make_support(question, source=wiki_source, method="""dense""", n_results=10) _a , _a = make_support(question, source=wiki_source, method="""sparse""", n_results=10) _a = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _a = support_list[:10] _a = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: _a , _a = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _a , _a = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): _a = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) _a = res[1].strip() if sec_titles == "": _a = """[{}]({})""".format(res[0], wiki_url) else: _a = sec_titles.split(""" & """) _a = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: _a = find_nearest_training(question) _a = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) _a = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) _a = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
19
0
from __future__ import annotations def snake_case (UpperCAmelCase__ ) -> float: if not nums: raise ValueError('List is empty' ) return sum(UpperCAmelCase__ ) / len(UpperCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
57
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } _a = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> Tuple: """simple docstring""" for attribute in key.split('''.''' ): _UpperCamelCase = getattr(__snake_case, __snake_case ) if weight_type is not None: _UpperCamelCase = getattr(__snake_case, __snake_case ).shape else: _UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase = value elif weight_type == "weight_g": _UpperCamelCase = value elif weight_type == "weight_v": _UpperCamelCase = value elif weight_type == "bias": _UpperCamelCase = value else: _UpperCamelCase = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = fairseq_model.state_dict() _UpperCamelCase = hf_model.feature_extractor _UpperCamelCase = hf_model.adapter for name, value in fairseq_dict.items(): _UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __snake_case, __snake_case, __snake_case, __snake_case, hf_model.config.feat_extract_norm == '''group''', ) _UpperCamelCase = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(__snake_case, __snake_case, __snake_case, __snake_case ) _UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCamelCase = True if "*" in mapped_key: _UpperCamelCase = name.split(__snake_case )[0].split('''.''' )[-2] _UpperCamelCase = mapped_key.replace('''*''', __snake_case ) if "weight_g" in name: _UpperCamelCase = '''weight_g''' elif "weight_v" in name: _UpperCamelCase = '''weight_v''' elif "bias" in name: _UpperCamelCase = '''bias''' elif "weight" in name: _UpperCamelCase = '''weight''' else: _UpperCamelCase = None set_recursively(__snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = full_name.split('''conv_layers.''' )[-1] _UpperCamelCase = name.split('''.''' ) _UpperCamelCase = int(items[0] ) _UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = full_name.split('''adaptor.''' )[-1] _UpperCamelCase = name.split('''.''' ) if items[1].isdigit(): _UpperCamelCase = int(items[1] ) else: _UpperCamelCase = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' _UpperCamelCase = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(__snake_case, __snake_case ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase , _UpperCamelCase = emb.weight.shape _UpperCamelCase = nn.Linear(__snake_case, __snake_case, bias=__snake_case ) _UpperCamelCase = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = WavaVecaConfig.from_pretrained( __snake_case, add_adapter=__snake_case, adapter_stride=__snake_case, adapter_kernel_size=__snake_case, use_auth_token=__snake_case, output_hidden_size=__snake_case, ) _UpperCamelCase = MBartConfig.from_pretrained(__snake_case ) # load model _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, }, ) _UpperCamelCase = model[0].eval() # load feature extractor _UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(__snake_case, use_auth_token=__snake_case ) # set weights for wav2vec2 encoder _UpperCamelCase = WavaVecaModel(__snake_case ) recursively_load_weights_wavaveca(model.encoder, __snake_case ) # load decoder weights _UpperCamelCase = MBartForCausalLM(__snake_case ) _UpperCamelCase , _UpperCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=__snake_case ) logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) _UpperCamelCase = SpeechEncoderDecoderModel(encoder=__snake_case, decoder=__snake_case ) _UpperCamelCase = False _UpperCamelCase = MBartaaTokenizer(__snake_case ) tokenizer.save_pretrained(__snake_case ) _UpperCamelCase = hf_wavavec.config.to_dict() _UpperCamelCase = tokenizer.pad_token_id _UpperCamelCase = tokenizer.bos_token_id _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = '''mbart50''' _UpperCamelCase = '''wav2vec2''' _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = 25_00_04 _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = SpeechEncoderDecoderConfig.from_dict(__snake_case ) hf_wavavec.save_pretrained(__snake_case ) feature_extractor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1024, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=25_0004, type=int, help="""`decoder_start_token_id` of model config""") _a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
19
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : int = {'''vocab_file''': '''vocab.txt'''} __lowerCAmelCase : Union[str, Any] = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } __lowerCAmelCase : Optional[Any] = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } __lowerCAmelCase : Any = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ConvBertTokenizer def __init__( self , _lowercase=None , _lowercase=None , _lowercase=True , _lowercase="[UNK]" , _lowercase="[SEP]" , _lowercase="[PAD]" , _lowercase="[CLS]" , _lowercase="[MASK]" , _lowercase=True , _lowercase=None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) snake_case_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _lowercase ) != do_lower_case or normalizer_state.get("""strip_accents""" , _lowercase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _lowercase ) != tokenize_chinese_chars ): snake_case_ : Optional[int] = getattr(_lowercase , normalizer_state.pop("""type""" ) ) snake_case_ : Dict = do_lower_case snake_case_ : str = strip_accents snake_case_ : Optional[Any] = tokenize_chinese_chars snake_case_ : int = normalizer_class(**_lowercase ) snake_case_ : Optional[int] = do_lower_case def UpperCAmelCase__ ( self , _lowercase , _lowercase=None ) -> int: '''simple docstring''' snake_case_ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: '''simple docstring''' snake_case_ : int = [self.sep_token_id] snake_case_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: '''simple docstring''' snake_case_ : Optional[int] = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
58
"""simple docstring""" import fire from utils import calculate_rouge, save_json def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case=None, **__snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()] _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()][: len(__snake_case )] _UpperCamelCase = calculate_rouge(__snake_case, __snake_case, **__snake_case ) if save_path is not None: save_json(__snake_case, __snake_case, indent=__snake_case ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
19
0
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = BlenderbotSmallConfig lowercase_ = {} lowercase_ = "gelu" def __init__(self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple=13 , UpperCAmelCase_ : str=7 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Optional[int]=99 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[str]=20 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Dict=1 , UpperCAmelCase_ : Tuple=0 , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] =parent lowerCamelCase__: Optional[int] =batch_size lowerCamelCase__: Tuple =seq_length lowerCamelCase__: Tuple =is_training lowerCamelCase__: Union[str, Any] =use_labels lowerCamelCase__: Optional[Any] =vocab_size lowerCamelCase__: Optional[int] =hidden_size lowerCamelCase__: int =num_hidden_layers lowerCamelCase__: Union[str, Any] =num_attention_heads lowerCamelCase__: Tuple =intermediate_size lowerCamelCase__: Optional[Any] =hidden_dropout_prob lowerCamelCase__: int =attention_probs_dropout_prob lowerCamelCase__: List[Any] =max_position_embeddings lowerCamelCase__: Tuple =eos_token_id lowerCamelCase__: Tuple =pad_token_id lowerCamelCase__: Optional[int] =bos_token_id def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' lowerCamelCase__: Any =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) lowerCamelCase__: List[Any] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) lowerCamelCase__: List[Any] =tf.concat([input_ids, eos_tensor] , axis=1) lowerCamelCase__: str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowerCamelCase__: List[Any] =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCamelCase__: Optional[Any] =prepare_blenderbot_small_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =TFBlenderbotSmallModel(config=UpperCAmelCase_).get_decoder() lowerCamelCase__: str =inputs_dict["input_ids"] lowerCamelCase__: Optional[int] =input_ids[:1, :] lowerCamelCase__: List[str] =inputs_dict["attention_mask"][:1, :] lowerCamelCase__: List[str] =inputs_dict["head_mask"] lowerCamelCase__: Tuple =1 # first forward pass lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , use_cache=UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: int =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__: Dict =ids_tensor((self.batch_size, 3) , config.vocab_size) lowerCamelCase__: Optional[int] =tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and lowerCamelCase__: List[str] =tf.concat([input_ids, next_tokens] , axis=-1) lowerCamelCase__: str =tf.concat([attention_mask, next_attn_mask] , axis=-1) lowerCamelCase__: List[str] =model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_)[0] lowerCamelCase__: Optional[Any] =model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice lowerCamelCase__: List[Any] =int(ids_tensor((1,) , output_from_past.shape[-1])) lowerCamelCase__: Dict =output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase__: Dict =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-3) def lowerCAmelCase_ ( __a , __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> List[str]: """simple docstring""" if attention_mask is None: lowerCamelCase__: List[str] =tf.cast(tf.math.not_equal(__a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCamelCase__: Any =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCamelCase__: str =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__: List[Any] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__: List[str] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) lowercase_ = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () lowercase_ = ( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) lowercase_ = True lowercase_ = False lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =TFBlenderbotSmallModelTester(self) lowerCamelCase__: Optional[int] =ConfigTester(self , config_class=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Any: '''simple docstring''' lowerCamelCase__: str =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase_) @require_tokenizers @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = [ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i'm going to throw up.\nand why is that?" ] lowercase_ = "facebook/blenderbot_small-90M" @cached_property def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Tuple: '''simple docstring''' return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M") @cached_property def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name) return model @slow def SCREAMING_SNAKE_CASE_ (self : Dict) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =self.tokenizer(self.src_text , return_tensors="tf") lowerCamelCase__: Optional[int] =self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=UpperCAmelCase_ , ) lowerCamelCase__: Any =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCAmelCase_)[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
59
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['image_processor', 'tokenizer'] lowercase__ = 'ViTImageProcessor' lowercase__ = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __a=None , __a=None , **__a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __a , ) _UpperCamelCase = kwargs.pop('''feature_extractor''') _UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(__a , __a) def __call__( self , __a=None , __a=None , __a=None , __a=None , **__a) -> Tuple: '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''') if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''') if text is not None: _UpperCamelCase = self.tokenizer(__a , return_tensors=__a , **__a) if visual_prompt is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if images is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if visual_prompt is not None and images is not None: _UpperCamelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _UpperCamelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__a) , tensor_type=__a) def UpperCAmelCase ( self , *__a , **__a) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*__a , **__a) def UpperCAmelCase ( self , *__a , **__a) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*__a , **__a) @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __a , ) return self.image_processor_class @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __a , ) return self.image_processor
19
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''tiiuae/falcon-40b''': '''https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json''', '''tiiuae/falcon-7b''': '''https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json''', } class __lowerCAmelCase ( _a ): lowerCamelCase_ : List[Any] = '''falcon''' lowerCamelCase_ : Any = ['''past_key_values'''] def __init__(self , __magic_name__=6_5024 , __magic_name__=4544 , __magic_name__=32 , __magic_name__=71 , __magic_name__=1e-5 , __magic_name__=0.02 , __magic_name__=True , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=None , __magic_name__=False , __magic_name__=False , __magic_name__=True , __magic_name__=True , __magic_name__=False , __magic_name__=11 , __magic_name__=11 , **__magic_name__ , ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[Any] = vocab_size # Backward compatibility with n_embed kwarg snake_case_ : Dict = kwargs.pop('''n_embed''' , __magic_name__ ) snake_case_ : Optional[int] = hidden_size if n_embed is None else n_embed snake_case_ : List[str] = num_hidden_layers snake_case_ : List[str] = num_attention_heads snake_case_ : Optional[Any] = layer_norm_epsilon snake_case_ : List[str] = initializer_range snake_case_ : List[str] = use_cache snake_case_ : Optional[int] = hidden_dropout snake_case_ : List[Any] = attention_dropout snake_case_ : Any = bos_token_id snake_case_ : Dict = eos_token_id snake_case_ : Optional[Any] = num_attention_heads if num_kv_heads is None else num_kv_heads snake_case_ : Optional[Any] = alibi snake_case_ : Optional[int] = new_decoder_architecture snake_case_ : str = multi_query # Ignored when new_decoder_architecture is True snake_case_ : List[str] = parallel_attn snake_case_ : List[str] = bias super().__init__(bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) @property def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' return not self.alibi
60
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=32 , __a=3 , __a=4 , __a=[10, 20, 30, 40] , __a=[2, 2, 3, 2] , __a=True , __a=True , __a=37 , __a="gelu" , __a=10 , __a=0.02 , __a=["stage2", "stage3", "stage4"] , __a=3 , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = num_channels _UpperCamelCase = num_stages _UpperCamelCase = hidden_sizes _UpperCamelCase = depths _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = out_features _UpperCamelCase = num_labels _UpperCamelCase = scope _UpperCamelCase = num_stages def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Any: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__a , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=__a , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = UperNetForSemanticSegmentation(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__ = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = UperNetModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a) @unittest.skip(reason='''UperNet does not use inputs_embeds''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not support input and output embeddings''') def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''') def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''') def UpperCAmelCase ( self) -> int: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''') def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' def check_hidden_states_output(__a , __a , __a): _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(__a) , expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) _UpperCamelCase = _config_zero_init(configs_no_init.backbone_config) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason='''UperNet does not have tied weights''') def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' pass @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''', repo_type='''dataset''', filename='''ADE_val_00000001.jpg''' ) _UpperCamelCase = Image.open(__snake_case ).convert('''RGB''' ) return image @require_torch @require_vision @slow class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''') _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''').to(__a) _UpperCamelCase = prepare_img() _UpperCamelCase = processor(images=__a , return_tensors='''pt''').to(__a) with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''') _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''').to(__a) _UpperCamelCase = prepare_img() _UpperCamelCase = processor(images=__a , return_tensors='''pt''').to(__a) with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4))
19
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _A ( ): """simple docstring""" lowerCAmelCase__ = ArgumentParser( description=( "PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=lowerCAmelCase_ , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=lowerCAmelCase_ , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=lowerCAmelCase_ ) return parser.parse_args() def _A ( ): """simple docstring""" lowerCAmelCase__ = parse_args() # Import training_script as a module. lowerCAmelCase__ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCAmelCase__ = script_fpath.stem lowerCAmelCase__ = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv lowerCAmelCase__ = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
61
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase( lowerCamelCase ): lowercase__ = (DDPMScheduler,) def UpperCAmelCase ( self , **__a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__a) return config def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=__a , beta_end=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.check_over_configs(thresholding=__a) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0979)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.02)) < 1e-5 def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = len(__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = torch.manual_seed(0) for t in reversed(range(__a)): # 1. predict noise residual _UpperCamelCase = model(__a , __a) # 2. predict previous mean of sample x_t-1 _UpperCamelCase = scheduler.step(__a , __a , __a , generator=__a).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCamelCase = pred_prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 258.9606) < 1e-2 assert abs(result_mean.item() - 0.3372) < 1e-3 def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''') _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = len(__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = torch.manual_seed(0) for t in reversed(range(__a)): # 1. predict noise residual _UpperCamelCase = model(__a , __a) # 2. predict previous mean of sample x_t-1 _UpperCamelCase = scheduler.step(__a , __a , __a , generator=__a).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCamelCase = pred_prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 202.0296) < 1e-2 assert abs(result_mean.item() - 0.2631) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__a) _UpperCamelCase = scheduler.timesteps for i, timestep in enumerate(__a): if i == len(__a) - 1: _UpperCamelCase = -1 else: _UpperCamelCase = timesteps[i + 1] _UpperCamelCase = scheduler.previous_timestep(__a) _UpperCamelCase = prev_t.item() self.assertEqual(__a , __a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 51, 0] with self.assertRaises(__a , msg='''`custom_timesteps` must be in descending order.'''): scheduler.set_timesteps(timesteps=__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 1, 0] _UpperCamelCase = len(__a) with self.assertRaises(__a , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.'''): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=__a)
19
0
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml snake_case = NewType("""DataClass""", Any) snake_case = NewType("""DataClassType""", Any) def lowerCamelCase__ ( lowercase ): """simple docstring""" if isinstance(lowercase , lowercase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = {str(lowercase ): choice for choice in choices} return lambda lowercase : str_to_choice.get(lowercase , lowercase ) def lowerCamelCase__ ( *, lowercase = None , lowercase = None , lowercase = dataclasses.MISSING , lowercase = dataclasses.MISSING , lowercase = None , **lowercase , ): """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls SCREAMING_SNAKE_CASE : Optional[Any] = {} if aliases is not None: SCREAMING_SNAKE_CASE : Optional[Any] = aliases if help is not None: SCREAMING_SNAKE_CASE : Tuple = help return dataclasses.field(metadata=lowercase , default=lowercase , default_factory=lowercase , **lowercase ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Iterable[DataClassType] def __init__( self : Optional[int] , UpperCAmelCase_ : Union[DataClassType, Iterable[DataClassType]] , **UpperCAmelCase_ : Optional[int] ): # To make the default appear when using --help if "formatter_class" not in kwargs: SCREAMING_SNAKE_CASE : Optional[int] = ArgumentDefaultsHelpFormatter super().__init__(**UpperCAmelCase_ ) if dataclasses.is_dataclass(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : List[Any] = [dataclass_types] SCREAMING_SNAKE_CASE : Optional[int] = list(UpperCAmelCase_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(UpperCAmelCase_ ) @staticmethod def _A ( UpperCAmelCase_ : ArgumentParser , UpperCAmelCase_ : dataclasses.Field ): SCREAMING_SNAKE_CASE : Any = f'''--{field.name}''' SCREAMING_SNAKE_CASE : Tuple = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , UpperCAmelCase_ ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) SCREAMING_SNAKE_CASE : List[str] = kwargs.pop("aliases" , [] ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : str = [aliases] SCREAMING_SNAKE_CASE : Dict = getattr(field.type , "__origin__" , field.type ) if origin_type is Union or (hasattr(UpperCAmelCase_ , "UnionType" ) and isinstance(UpperCAmelCase_ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(UpperCAmelCase_ ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." f''' Problem encountered in field \'{field.name}\'.''' ) if type(UpperCAmelCase_ ) not in field.type.__args__: # filter `str` in Union SCREAMING_SNAKE_CASE : List[str] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] SCREAMING_SNAKE_CASE : Tuple = getattr(field.type , "__origin__" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) SCREAMING_SNAKE_CASE : Dict = ( field.type.__args__[0] if isinstance(UpperCAmelCase_ , field.type.__args__[1] ) else field.type.__args__[1] ) SCREAMING_SNAKE_CASE : Optional[Any] = getattr(field.type , "__origin__" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) SCREAMING_SNAKE_CASE : Dict = {} if origin_type is Literal or (isinstance(field.type , UpperCAmelCase_ ) and issubclass(field.type , UpperCAmelCase_ )): if origin_type is Literal: SCREAMING_SNAKE_CASE : Any = field.type.__args__ else: SCREAMING_SNAKE_CASE : Union[str, Any] = [x.value for x in field.type] SCREAMING_SNAKE_CASE : Tuple = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: SCREAMING_SNAKE_CASE : Any = field.default else: SCREAMING_SNAKE_CASE : str = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument SCREAMING_SNAKE_CASE : List[str] = copy(UpperCAmelCase_ ) # Hack because type=bool in argparse does not behave as we want. SCREAMING_SNAKE_CASE : Any = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. SCREAMING_SNAKE_CASE : str = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way SCREAMING_SNAKE_CASE : Optional[int] = default # This tells argparse we accept 0 or 1 value after --field_name SCREAMING_SNAKE_CASE : Tuple = "?" # This is the value that will get picked if we do --field_name (without value) SCREAMING_SNAKE_CASE : List[Any] = True elif isclass(UpperCAmelCase_ ) and issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : List[str] = field.type.__args__[0] SCREAMING_SNAKE_CASE : List[str] = "+" if field.default_factory is not dataclasses.MISSING: SCREAMING_SNAKE_CASE : Any = field.default_factory() elif field.default is dataclasses.MISSING: SCREAMING_SNAKE_CASE : Optional[int] = True else: SCREAMING_SNAKE_CASE : Optional[Any] = field.type if field.default is not dataclasses.MISSING: SCREAMING_SNAKE_CASE : str = field.default elif field.default_factory is not dataclasses.MISSING: SCREAMING_SNAKE_CASE : Union[str, Any] = field.default_factory() else: SCREAMING_SNAKE_CASE : Tuple = True parser.add_argument(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): SCREAMING_SNAKE_CASE : Tuple = False parser.add_argument(f'''--no_{field.name}''' , action="store_false" , dest=field.name , **UpperCAmelCase_ ) def _A ( self : int , UpperCAmelCase_ : DataClassType ): if hasattr(UpperCAmelCase_ , "_argument_group_name" ): SCREAMING_SNAKE_CASE : Tuple = self.add_argument_group(dtype._argument_group_name ) else: SCREAMING_SNAKE_CASE : Dict = self try: SCREAMING_SNAKE_CASE : Dict[str, type] = get_type_hints(UpperCAmelCase_ ) except NameError: raise RuntimeError( f'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = ".".join(map(UpperCAmelCase_ , sys.version_info[:3] ) ) raise RuntimeError( f'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(UpperCAmelCase_ ): if not field.init: continue SCREAMING_SNAKE_CASE : Tuple = type_hints[field.name] self._parse_dataclass_field(UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : List[Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : str=None , ): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): SCREAMING_SNAKE_CASE : Tuple = [] if args_filename: args_files.append(Path(UpperCAmelCase_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values SCREAMING_SNAKE_CASE : Dict = ArgumentParser() args_file_parser.add_argument(UpperCAmelCase_ , type=UpperCAmelCase_ , action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = args_file_parser.parse_known_args(args=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = vars(UpperCAmelCase_ ).get(args_file_flag.lstrip("-" ) , UpperCAmelCase_ ) if cmd_args_file_paths: args_files.extend([Path(UpperCAmelCase_ ) for p in cmd_args_file_paths] ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last SCREAMING_SNAKE_CASE : Any = file_args + args if args is not None else file_args + sys.argv[1:] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.parse_known_args(args=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = [] for dtype in self.dataclass_types: SCREAMING_SNAKE_CASE : Tuple = {f.name for f in dataclasses.fields(UpperCAmelCase_ ) if f.init} SCREAMING_SNAKE_CASE : Dict = {k: v for k, v in vars(UpperCAmelCase_ ).items() if k in keys} for k in keys: delattr(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = dtype(**UpperCAmelCase_ ) outputs.append(UpperCAmelCase_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(UpperCAmelCase_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def _A ( self : Optional[Any] , UpperCAmelCase_ : Dict[str, Any] , UpperCAmelCase_ : bool = False ): SCREAMING_SNAKE_CASE : Tuple = set(args.keys() ) SCREAMING_SNAKE_CASE : Tuple = [] for dtype in self.dataclass_types: SCREAMING_SNAKE_CASE : Optional[Any] = {f.name for f in dataclasses.fields(UpperCAmelCase_ ) if f.init} SCREAMING_SNAKE_CASE : Dict = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) SCREAMING_SNAKE_CASE : Tuple = dtype(**UpperCAmelCase_ ) outputs.append(UpperCAmelCase_ ) if not allow_extra_keys and unused_keys: raise ValueError(f'''Some keys are not used by the HfArgumentParser: {sorted(UpperCAmelCase_ )}''' ) return tuple(UpperCAmelCase_ ) def _A ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ): with open(Path(UpperCAmelCase_ ) , encoding="utf-8" ) as open_json_file: SCREAMING_SNAKE_CASE : Dict = json.loads(open_json_file.read() ) SCREAMING_SNAKE_CASE : Dict = self.parse_dict(UpperCAmelCase_ , allow_extra_keys=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def _A ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ): SCREAMING_SNAKE_CASE : Any = self.parse_dict(yaml.safe_load(Path(UpperCAmelCase_ ).read_text() ) , allow_extra_keys=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ )
62
"""simple docstring""" from __future__ import annotations from functools import lru_cache from math import ceil _a = 100 _a = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} _UpperCamelCase = set() _UpperCamelCase = 42 _UpperCamelCase = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def lowerCamelCase__ ( __snake_case = 50_00 ) -> int | None: """simple docstring""" for number_to_partition in range(1, __snake_case ): if len(partition(__snake_case ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"""{solution() = }""")
19
0
from __future__ import annotations def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : int ): if partitions <= 0: raise ValueError("""partitions must be a positive number!""" ) if partitions > number_of_bytes: raise ValueError("""partitions can not > number_of_bytes!""" ) __UpperCAmelCase : int = number_of_bytes // partitions __UpperCAmelCase : str = [] for i in range(__lowerCamelCase ): __UpperCAmelCase : Optional[Any] = i * bytes_per_partition + 1 __UpperCAmelCase : Any = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f"""{start_bytes}-{end_bytes}""" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
63
"""simple docstring""" from collections.abc import Callable import numpy as np def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> np.array: """simple docstring""" _UpperCamelCase = int(np.ceil((x_end - xa) / step_size ) ) _UpperCamelCase = np.zeros((n + 1,) ) _UpperCamelCase = ya _UpperCamelCase = xa for k in range(__snake_case ): _UpperCamelCase = y[k] + step_size * ode_func(__snake_case, y[k] ) _UpperCamelCase = y[k] + ( (step_size / 2) * (ode_func(__snake_case, y[k] ) + ode_func(x + step_size, __snake_case )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
19
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowercase_ : Tuple = 'pt' elif is_tf_available(): lowercase_ : int = 'tf' else: lowercase_ : Optional[int] = 'jax' class _lowerCamelCase ( UpperCamelCase_ , unittest.TestCase ): __a = PerceiverTokenizer __a = False def UpperCamelCase_ ( self ) -> Optional[Any]: super().setUp() SCREAMING_SNAKE_CASE__: str= PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase_ ( self ) -> int: return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def UpperCamelCase_ ( self , **lowerCAmelCase ) -> PerceiverTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=20 , lowerCAmelCase=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. SCREAMING_SNAKE_CASE__: Dict= [] for i in range(len(lowerCAmelCase ) ): try: SCREAMING_SNAKE_CASE__: str= tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE__: Optional[Any]= list(filter(lambda lowerCAmelCase : re.match(r'''^[ a-zA-Z]+$''' , t[1] ) , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__: Optional[int]= list(filter(lambda lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCAmelCase ) , lowerCAmelCase ) ) if max_length is not None and len(lowerCAmelCase ) > max_length: SCREAMING_SNAKE_CASE__: List[Any]= toks[:max_length] if min_length is not None and len(lowerCAmelCase ) < min_length and len(lowerCAmelCase ) > 0: while len(lowerCAmelCase ) < min_length: SCREAMING_SNAKE_CASE__: str= toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE__: Any= [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE__: List[Any]= tokenizer.decode(lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase ) if " " not in output_txt and len(lowerCAmelCase ) > 1: SCREAMING_SNAKE_CASE__: Union[str, Any]= ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCAmelCase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCAmelCase ) ) if with_prefix_space: SCREAMING_SNAKE_CASE__: Optional[Any]= ''' ''' + output_txt SCREAMING_SNAKE_CASE__: str= tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) return output_txt, output_ids def UpperCamelCase_ ( self ) -> List[str]: SCREAMING_SNAKE_CASE__: Union[str, Any]= self.perceiver_tokenizer SCREAMING_SNAKE_CASE__: int= '''Unicode €.''' SCREAMING_SNAKE_CASE__: Dict= tokenizer(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['''input_ids'''] , lowerCAmelCase ) # decoding SCREAMING_SNAKE_CASE__: int= tokenizer.decode(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , '''[CLS]Unicode €.[SEP]''' ) SCREAMING_SNAKE_CASE__: Union[str, Any]= tokenizer('''e è é ê ë''' ) SCREAMING_SNAKE_CASE__: str= [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['''input_ids'''] , lowerCAmelCase ) # decoding SCREAMING_SNAKE_CASE__: str= tokenizer.decode(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def UpperCamelCase_ ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: Dict= self.perceiver_tokenizer SCREAMING_SNAKE_CASE__: Optional[int]= ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off SCREAMING_SNAKE_CASE__: str= [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on SCREAMING_SNAKE_CASE__: Any= tokenizer(lowerCAmelCase , padding=lowerCAmelCase , return_tensors=lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE__: List[str]= list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE__: Union[str, Any]= list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def UpperCamelCase_ ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: Dict= self.perceiver_tokenizer SCREAMING_SNAKE_CASE__: str= ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] SCREAMING_SNAKE_CASE__: Any= tokenizer(lowerCAmelCase , padding=lowerCAmelCase , return_tensors=lowerCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , lowerCAmelCase ) self.assertIn('''attention_mask''' , lowerCAmelCase ) self.assertNotIn('''decoder_input_ids''' , lowerCAmelCase ) self.assertNotIn('''decoder_attention_mask''' , lowerCAmelCase ) def UpperCamelCase_ ( self ) -> List[str]: SCREAMING_SNAKE_CASE__: Any= self.perceiver_tokenizer SCREAMING_SNAKE_CASE__: Dict= [ '''Summary of the text.''', '''Another summary.''', ] SCREAMING_SNAKE_CASE__: List[str]= tokenizer( text_target=lowerCAmelCase , max_length=32 , padding='''max_length''' , truncation=lowerCAmelCase , return_tensors=lowerCAmelCase ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def UpperCamelCase_ ( self ) -> Tuple: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE__: Tuple= self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE__: Any= self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE__: Dict= tempfile.mkdtemp() SCREAMING_SNAKE_CASE__: int= ''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE__: str= tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) tokenizer.save_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Union[str, Any]= tokenizer.__class__.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Any= after_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) shutil.rmtree(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[int]= self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE__: List[str]= tempfile.mkdtemp() SCREAMING_SNAKE_CASE__: List[Any]= ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) SCREAMING_SNAKE_CASE__: str= tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) SCREAMING_SNAKE_CASE__: List[Any]= tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) tokenizer.save_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[Any]= tokenizer.__class__.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[int]= after_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE__: Dict= tokenizer.__class__.from_pretrained(lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCAmelCase ) def UpperCamelCase_ ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE__: Optional[int]= [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase ) with open(os.path.join(lowerCAmelCase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE__: Optional[int]= json.load(lowerCAmelCase ) with open(os.path.join(lowerCAmelCase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE__: List[Any]= json.load(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: str= [f'<extra_id_{i}>' for i in range(125 )] SCREAMING_SNAKE_CASE__: Dict= added_tokens_extra_ids + [ '''an_additional_special_token''' ] SCREAMING_SNAKE_CASE__: List[str]= added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(lowerCAmelCase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCAmelCase , lowerCAmelCase ) with open(os.path.join(lowerCAmelCase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCAmelCase , lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE__: Optional[Any]= tokenizer_class.from_pretrained( lowerCAmelCase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE__: Optional[int]= added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowerCAmelCase )] SCREAMING_SNAKE_CASE__: int= tokenizer_class.from_pretrained( lowerCAmelCase , additional_special_tokens=lowerCAmelCase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def UpperCamelCase_ ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE__: Union[str, Any]= self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '''�''' ) def UpperCamelCase_ ( self ) -> Optional[int]: pass def UpperCamelCase_ ( self ) -> Union[str, Any]: pass def UpperCamelCase_ ( self ) -> Any: pass def UpperCamelCase_ ( self ) -> Optional[Any]: pass def UpperCamelCase_ ( self ) -> str: # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens SCREAMING_SNAKE_CASE__: List[str]= self.get_tokenizers(fast=lowerCAmelCase , do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): SCREAMING_SNAKE_CASE__: List[Any]= ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] SCREAMING_SNAKE_CASE__: Dict= tokenizer.convert_tokens_to_string(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase )
64
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _a = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _a = parser.parse_args() if args.model_type == "bert": _a = BertForMaskedLM.from_pretrained(args.model_name) _a = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _a = model.state_dict() _a = {} for w in ["word_embeddings", "position_embeddings"]: _a = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _a = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] _a = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _a = state_dict["""cls.predictions.decoder.weight"""] _a = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _a = state_dict[F"""cls.predictions.transform.dense.{w}"""] _a = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
19
0
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' if isinstance(__UpperCamelCase , torch.Tensor ): return image elif isinstance(__UpperCamelCase , PIL.Image.Image ): UpperCAmelCase__ : List[Any] = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCAmelCase__ : Optional[int] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] UpperCAmelCase__ : Union[str, Any] = np.concatenate(__UpperCamelCase , axis=0 ) UpperCAmelCase__ : str = np.array(__UpperCamelCase ).astype(np.floataa ) / 255.0 UpperCAmelCase__ : List[str] = image.transpose(0 , 3 , 1 , 2 ) UpperCAmelCase__ : Optional[int] = 2.0 * image - 1.0 UpperCAmelCase__ : List[Any] = torch.from_numpy(__UpperCamelCase ) elif isinstance(image[0] , torch.Tensor ): UpperCAmelCase__ : List[Any] = torch.cat(__UpperCamelCase , dim=0 ) return image def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=0.9995 ): '''simple docstring''' if not isinstance(__UpperCamelCase , np.ndarray ): UpperCAmelCase__ : Any = True UpperCAmelCase__ : Optional[int] = va.device UpperCAmelCase__ : Tuple = va.cpu().numpy() UpperCAmelCase__ : Optional[int] = va.cpu().numpy() UpperCAmelCase__ : Dict = np.sum(va * va / (np.linalg.norm(__UpperCamelCase ) * np.linalg.norm(__UpperCamelCase )) ) if np.abs(__UpperCamelCase ) > DOT_THRESHOLD: UpperCAmelCase__ : Tuple = (1 - t) * va + t * va else: UpperCAmelCase__ : str = np.arccos(__UpperCamelCase ) UpperCAmelCase__ : int = np.sin(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = theta_a * t UpperCAmelCase__ : int = np.sin(__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = np.sin(theta_a - theta_t ) / sin_theta_a UpperCAmelCase__ : Tuple = sin_theta_t / sin_theta_a UpperCAmelCase__ : List[Any] = sa * va + sa * va if inputs_are_torch: UpperCAmelCase__ : Dict = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) return va def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : str = F.normalize(__UpperCamelCase , dim=-1 ) UpperCAmelCase__ : Union[str, Any] = F.normalize(__UpperCamelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' for param in model.parameters(): UpperCAmelCase__ : Any = value class __lowercase ( __lowerCamelCase ): def __init__( self : Tuple ,A : AutoencoderKL ,A : CLIPTextModel ,A : CLIPModel ,A : CLIPTokenizer ,A : UNetaDConditionModel ,A : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] ,A : CLIPFeatureExtractor ,A : Optional[Any]=None ,A : Union[str, Any]=None ,A : str=None ,): '''simple docstring''' super().__init__() self.register_modules( vae=A ,text_encoder=A ,clip_model=A ,tokenizer=A ,unet=A ,scheduler=A ,feature_extractor=A ,coca_model=A ,coca_tokenizer=A ,coca_transform=A ,) UpperCAmelCase__ : List[Any] = ( feature_extractor.size if isinstance(feature_extractor.size ,A ) else feature_extractor.size["""shortest_edge"""] ) UpperCAmelCase__ : str = transforms.Normalize(mean=feature_extractor.image_mean ,std=feature_extractor.image_std ) set_requires_grad(self.text_encoder ,A ) set_requires_grad(self.clip_model ,A ) def __lowercase ( self : Optional[int] ,A : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase__ : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def __lowercase ( self : int ): '''simple docstring''' self.enable_attention_slicing(A ) def __lowercase ( self : List[str] ): '''simple docstring''' set_requires_grad(self.vae ,A ) def __lowercase ( self : List[Any] ): '''simple docstring''' set_requires_grad(self.vae ,A ) def __lowercase ( self : List[str] ): '''simple docstring''' set_requires_grad(self.unet ,A ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' set_requires_grad(self.unet ,A ) def __lowercase ( self : Dict ,A : str ,A : List[Any] ,A : int ): '''simple docstring''' # get the original timestep using init_timestep UpperCAmelCase__ : Any = min(int(num_inference_steps * strength ) ,A ) UpperCAmelCase__ : List[Any] = max(num_inference_steps - init_timestep ,0 ) UpperCAmelCase__ : Any = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __lowercase ( self : str ,A : Optional[int] ,A : Dict ,A : int ,A : Optional[int] ,A : Optional[Any] ,A : int=None ): '''simple docstring''' if not isinstance(A ,torch.Tensor ): raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(A )}" ) UpperCAmelCase__ : int = image.to(device=A ,dtype=A ) if isinstance(A ,A ): UpperCAmelCase__ : List[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A ) ] UpperCAmelCase__ : Union[str, Any] = torch.cat(A ,dim=0 ) else: UpperCAmelCase__ : List[Any] = self.vae.encode(A ).latent_dist.sample(A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase__ : Any = 0.1_8_2_1_5 * init_latents UpperCAmelCase__ : Tuple = init_latents.repeat_interleave(A ,dim=0 ) UpperCAmelCase__ : Any = randn_tensor(init_latents.shape ,generator=A ,device=A ,dtype=A ) # get latents UpperCAmelCase__ : Optional[Any] = self.scheduler.add_noise(A ,A ,A ) UpperCAmelCase__ : Union[str, Any] = init_latents return latents def __lowercase ( self : List[Any] ,A : List[str] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.coca_transform(A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): UpperCAmelCase__ : Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device ,dtype=self.coca_model.dtype ) ) UpperCAmelCase__ : str = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" ,"""""" ).rstrip(""" .,""" ) def __lowercase ( self : str ,A : List[str] ,A : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.feature_extractor.preprocess(A ) UpperCAmelCase__ : List[Any] = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() UpperCAmelCase__ : Optional[Any] = self.clip_model.get_image_features(A ) UpperCAmelCase__ : Dict = image_embeddings_clip / image_embeddings_clip.norm(p=2 ,dim=-1 ,keepdim=A ) UpperCAmelCase__ : Tuple = image_embeddings_clip.repeat_interleave(A ,dim=0 ) return image_embeddings_clip @torch.enable_grad() def __lowercase ( self : Any ,A : List[Any] ,A : List[Any] ,A : int ,A : int ,A : int ,A : List[str] ,A : Optional[int] ,): '''simple docstring''' UpperCAmelCase__ : Tuple = latents.detach().requires_grad_() UpperCAmelCase__ : Tuple = self.scheduler.scale_model_input(A ,A ) # predict the noise residual UpperCAmelCase__ : List[Any] = self.unet(A ,A ,encoder_hidden_states=A ).sample if isinstance(self.scheduler ,(PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): UpperCAmelCase__ : str = self.scheduler.alphas_cumprod[timestep] UpperCAmelCase__ : Any = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase__ : Dict = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 UpperCAmelCase__ : int = torch.sqrt(A ) UpperCAmelCase__ : List[Any] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler ,A ): UpperCAmelCase__ : List[Any] = self.scheduler.sigmas[index] UpperCAmelCase__ : Any = latents - sigma * noise_pred else: raise ValueError(f"scheduler type {type(self.scheduler )} not supported" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase__ : List[Any] = 1 / 0.1_8_2_1_5 * sample UpperCAmelCase__ : Union[str, Any] = self.vae.decode(A ).sample UpperCAmelCase__ : Optional[int] = (image / 2 + 0.5).clamp(0 ,1 ) UpperCAmelCase__ : Tuple = transforms.Resize(self.feature_extractor_size )(A ) UpperCAmelCase__ : List[Any] = self.normalize(A ).to(latents.dtype ) UpperCAmelCase__ : Union[str, Any] = self.clip_model.get_image_features(A ) UpperCAmelCase__ : Optional[int] = image_embeddings_clip / image_embeddings_clip.norm(p=2 ,dim=-1 ,keepdim=A ) UpperCAmelCase__ : Union[str, Any] = spherical_dist_loss(A ,A ).mean() * clip_guidance_scale UpperCAmelCase__ : List[Any] = -torch.autograd.grad(A ,A )[0] if isinstance(self.scheduler ,A ): UpperCAmelCase__ : List[str] = latents.detach() + grads * (sigma**2) UpperCAmelCase__ : Optional[Any] = noise_pred_original else: UpperCAmelCase__ : Tuple = noise_pred_original - torch.sqrt(A ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Dict ,A : Union[torch.FloatTensor, PIL.Image.Image] ,A : Union[torch.FloatTensor, PIL.Image.Image] ,A : Optional[str] = None ,A : Optional[str] = None ,A : Optional[int] = 512 ,A : Optional[int] = 512 ,A : float = 0.6 ,A : Optional[int] = 50 ,A : Optional[float] = 7.5 ,A : Optional[int] = 1 ,A : float = 0.0 ,A : Optional[float] = 100 ,A : Optional[torch.Generator] = None ,A : Optional[str] = "pil" ,A : bool = True ,A : float = 0.8 ,A : float = 0.1 ,A : float = 0.1 ,): '''simple docstring''' if isinstance(A ,A ) and len(A ) != batch_size: raise ValueError(f"You have passed {batch_size} batch_size, but only {len(A )} generators." ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if isinstance(A ,torch.Generator ) and batch_size > 1: UpperCAmelCase__ : int = [generator] + [None] * (batch_size - 1) UpperCAmelCase__ : Union[str, Any] = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] UpperCAmelCase__ : str = [x[0] for x in coca_is_none if x[1]] UpperCAmelCase__ : Optional[Any] = """, """.join(A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A ): raise ValueError( f"Content prompt is None and CoCa [{coca_is_none_str}] is None." f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) UpperCAmelCase__ : Union[str, Any] = self.get_image_description(A ) if style_prompt is None: if len(A ): raise ValueError( f"Style prompt is None and CoCa [{coca_is_none_str}] is None." f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) UpperCAmelCase__ : Optional[Any] = self.get_image_description(A ) # get prompt text embeddings for content and style UpperCAmelCase__ : Any = self.tokenizer( A ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,truncation=A ,return_tensors="""pt""" ,) UpperCAmelCase__ : List[Any] = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase__ : List[str] = self.tokenizer( A ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,truncation=A ,return_tensors="""pt""" ,) UpperCAmelCase__ : List[str] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase__ : Tuple = slerp(A ,A ,A ) # duplicate text embeddings for each generation per prompt UpperCAmelCase__ : Any = text_embeddings.repeat_interleave(A ,dim=0 ) # set timesteps UpperCAmelCase__ : List[Any] = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) UpperCAmelCase__ : Any = {} if accepts_offset: UpperCAmelCase__ : List[Any] = 1 self.scheduler.set_timesteps(A ,**A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.get_timesteps(A ,A ,self.device ) UpperCAmelCase__ : List[str] = timesteps[:1].repeat(A ) # Preprocess image UpperCAmelCase__ : Tuple = preprocess(A ,A ,A ) UpperCAmelCase__ : str = self.prepare_latents( A ,A ,A ,text_embeddings.dtype ,self.device ,A ) UpperCAmelCase__ : Tuple = preprocess(A ,A ,A ) UpperCAmelCase__ : Dict = self.prepare_latents( A ,A ,A ,text_embeddings.dtype ,self.device ,A ) UpperCAmelCase__ : int = slerp(A ,A ,A ) if clip_guidance_scale > 0: UpperCAmelCase__ : List[Any] = self.get_clip_image_embeddings(A ,A ) UpperCAmelCase__ : Any = self.get_clip_image_embeddings(A ,A ) UpperCAmelCase__ : Optional[Any] = slerp( A ,A ,A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase__ : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase__ : Dict = content_text_input.input_ids.shape[-1] UpperCAmelCase__ : List[Any] = self.tokenizer([""""""] ,padding="""max_length""" ,max_length=A ,return_tensors="""pt""" ) UpperCAmelCase__ : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt UpperCAmelCase__ : Optional[int] = uncond_embeddings.repeat_interleave(A ,dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase__ : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase__ : Dict = (batch_size, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase__ : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps UpperCAmelCase__ : Union[str, Any] = torch.randn(A ,generator=A ,device="""cpu""" ,dtype=A ).to( self.device ) else: UpperCAmelCase__ : Optional[int] = torch.randn(A ,generator=A ,device=self.device ,dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) UpperCAmelCase__ : List[Any] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase__ : Optional[int] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase__ : Union[str, Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase__ : Optional[int] = {} if accepts_eta: UpperCAmelCase__ : Union[str, Any] = eta # check if the scheduler accepts generator UpperCAmelCase__ : str = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: UpperCAmelCase__ : Optional[int] = generator with self.progress_bar(total=A ): for i, t in enumerate(A ): # expand the latents if we are doing classifier free guidance UpperCAmelCase__ : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase__ : int = self.scheduler.scale_model_input(A ,A ) # predict the noise residual UpperCAmelCase__ : Tuple = self.unet(A ,A ,encoder_hidden_states=A ).sample # perform classifier free guidance if do_classifier_free_guidance: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = noise_pred.chunk(2 ) UpperCAmelCase__ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: UpperCAmelCase__ : Optional[int] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.cond_fn( A ,A ,A ,A ,A ,A ,A ,) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase__ : List[Any] = self.scheduler.step(A ,A ,A ,**A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase__ : Any = 1 / 0.1_8_2_1_5 * latents UpperCAmelCase__ : int = self.vae.decode(A ).sample UpperCAmelCase__ : Any = (image / 2 + 0.5).clamp(0 ,1 ) UpperCAmelCase__ : Optional[Any] = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": UpperCAmelCase__ : int = self.numpy_to_pil(A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A ,nsfw_content_detected=A )
65
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _a = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class _UpperCAmelCase: lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = 'gelu' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=False , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a=0.1 , __a=0.1 , __a=20 , __a=2 , __a=1 , __a=0 , ) -> int: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) _UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) _UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCamelCase = prepare_pegasus_inputs_dict(__a , __a , __a) return config, inputs_dict def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids''']) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a) _UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''') _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __a , decoder_attention_mask=__a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__a , ) _UpperCamelCase = model.decode(__a , __a) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''') def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids''']) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a) _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__a , decoder_position_ids=__a , ) _UpperCamelCase = model.decode(__a , __a , decoder_attention_mask=__a) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''') def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=None, __snake_case=None, ) -> Union[str, Any]: """simple docstring""" if attention_mask is None: _UpperCamelCase = np.not_equal(__snake_case, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _UpperCamelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = FlaxPegasusModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = self._prepare_for_class(__a , __a) _UpperCamelCase = model_class(__a) @jax.jit def encode_jitted(__a , __a=None , **__a): return model.encode(input_ids=__a , attention_mask=__a) with self.subTest('''JIT Enabled'''): _UpperCamelCase = encode_jitted(**__a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): _UpperCamelCase = encode_jitted(**__a).to_tuple() self.assertEqual(len(__a) , len(__a)) for jitted_output, output in zip(__a , __a): self.assertEqual(jitted_output.shape , output.shape) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = model_class(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask''']) _UpperCamelCase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(__a , __a , __a): return model.decode( decoder_input_ids=__a , decoder_attention_mask=__a , encoder_outputs=__a , ) with self.subTest('''JIT Enabled'''): _UpperCamelCase = decode_jitted(**__a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): _UpperCamelCase = decode_jitted(**__a).to_tuple() self.assertEqual(len(__a) , len(__a)) for jitted_output, output in zip(__a , __a): self.assertEqual(jitted_output.shape , output.shape) @slow def UpperCAmelCase ( self) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=__a) _UpperCamelCase = np.ones((1, 1)) _UpperCamelCase = model(__a) self.assertIsNotNone(__a) @slow def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''') _UpperCamelCase = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''') _UpperCamelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] _UpperCamelCase = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] _UpperCamelCase = tokenizer(__a , return_tensors='''np''' , truncation=__a , max_length=5_12 , padding=__a) _UpperCamelCase = model.generate(**__a , num_beams=2).sequences _UpperCamelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a) assert tgt_text == decoded
19
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): _lowercase : str = tempfile.mkdtemp() # fmt: off _lowercase : str = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _lowercase : Any = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) _lowercase : Any = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] _lowercase : List[str] = {'unk_token': '<unk>'} _lowercase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowercase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_lowerCAmelCase ) ) _lowercase : int = { 'do_resize': True, 'size': 2_0, 'do_center_crop': True, 'crop_size': 1_8, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } _lowercase : str = os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def __a ( self , **_lowerCAmelCase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self , **_lowerCAmelCase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self , **_lowerCAmelCase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self ): shutil.rmtree(self.tmpdirname ) def __a ( self ): _lowercase : Dict = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _lowercase : int = [Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __a ( self ): _lowercase : Dict = self.get_tokenizer() _lowercase : Any = self.get_rust_tokenizer() _lowercase : List[str] = self.get_image_processor() _lowercase : List[Any] = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) _lowercase : Union[str, Any] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCAmelCase ) _lowercase : Dict = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) _lowercase : int = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowercase : Optional[Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowercase : List[str] = self.get_image_processor(do_normalize=_lowerCAmelCase , padding_value=1.0 ) _lowercase : List[Any] = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) def __a ( self ): _lowercase : Dict = self.get_image_processor() _lowercase : Union[str, Any] = self.get_tokenizer() _lowercase : Any = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) _lowercase : Any = self.prepare_image_inputs() _lowercase : int = image_processor(_lowerCAmelCase , return_tensors='np' ) _lowercase : List[Any] = processor(images=_lowerCAmelCase , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __a ( self ): _lowercase : Any = self.get_image_processor() _lowercase : Any = self.get_tokenizer() _lowercase : str = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) _lowercase : Dict = 'lower newer' _lowercase : Any = processor(text=_lowerCAmelCase ) _lowercase : Tuple = tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __a ( self ): _lowercase : int = self.get_image_processor() _lowercase : Union[str, Any] = self.get_tokenizer() _lowercase : int = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) _lowercase : int = 'lower newer' _lowercase : Optional[Any] = self.prepare_image_inputs() _lowercase : List[str] = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def __a ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Tuple = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) _lowercase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase : int = processor.batch_decode(_lowerCAmelCase ) _lowercase : Dict = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.get_image_processor() _lowercase : Optional[Any] = self.get_tokenizer() _lowercase : Any = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) _lowercase : List[Any] = 'lower newer' _lowercase : List[str] = self.prepare_image_inputs() _lowercase : Dict = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
66
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , __a=0 , ) -> Any: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope _UpperCamelCase = projection_dim def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) _UpperCamelCase = DPRConfig(projection_dim=self.projection_dim , **config.to_dict()) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = TFDPRContextEncoder(config=__a) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFDPRQuestionEncoder(config=__a) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = TFDPRReader(config=__a) _UpperCamelCase = model(__a , attention_mask=__a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,)) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowercase__ = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDPRModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__a) @slow def UpperCAmelCase ( self) -> str: '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRContextEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRContextEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRQuestionEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRReader.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''') _UpperCamelCase = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]]) # [CLS] hello, is my dog cute? [SEP] _UpperCamelCase = model(__a)[0] # embedding shape = (1, 768) # compare the actual values for a slice. _UpperCamelCase = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ]) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4))
19
0
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
67
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x2_0000 and cp <= 0x2_A6DF) # or (cp >= 0x2_A700 and cp <= 0x2_B73F) # or (cp >= 0x2_B740 and cp <= 0x2_B81F) # or (cp >= 0x2_B820 and cp <= 0x2_CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2_F800 and cp <= 0x2_FA1F) # ): # return True return False def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" for char in word: _UpperCamelCase = ord(__snake_case ) if not _is_chinese_char(__snake_case ): return 0 return 1 def lowerCamelCase__ ( __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = set() for token in tokens: _UpperCamelCase = len(__snake_case ) > 1 and is_chinese(__snake_case ) if chinese_word: word_set.add(__snake_case ) _UpperCamelCase = list(__snake_case ) return word_list def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" if not chinese_word_set: return bert_tokens _UpperCamelCase = max([len(__snake_case ) for w in chinese_word_set] ) _UpperCamelCase = bert_tokens _UpperCamelCase , _UpperCamelCase = 0, len(__snake_case ) while start < end: _UpperCamelCase = True if is_chinese(bert_word[start] ): _UpperCamelCase = min(end - start, __snake_case ) for i in range(__snake_case, 1, -1 ): _UpperCamelCase = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _UpperCamelCase = '''##''' + bert_word[j] _UpperCamelCase = start + i _UpperCamelCase = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws _UpperCamelCase = [get_chinese_word(__snake_case ) for r in res] ltp_res.extend(__snake_case ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=__snake_case, truncation=__snake_case, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for input_ids, chinese_word in zip(__snake_case, __snake_case ): _UpperCamelCase = [] for id in input_ids: _UpperCamelCase = bert_tokenizer._convert_id_to_token(__snake_case ) input_tokens.append(__snake_case ) _UpperCamelCase = add_sub_symbol(__snake_case, __snake_case ) _UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__snake_case ): if token[:2] == "##": _UpperCamelCase = token[2:] # save chinese tokens' pos if len(__snake_case ) == 1 and _is_chinese_char(ord(__snake_case ) ): ref_id.append(__snake_case ) ref_ids.append(__snake_case ) assert len(__snake_case ) == len(__snake_case ) return ref_ids def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _UpperCamelCase = f.readlines() _UpperCamelCase = [line.strip() for line in data if len(__snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _UpperCamelCase = LTP(args.ltp ) # faster in GPU device _UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) _UpperCamelCase = prepare_ref(__snake_case, __snake_case, __snake_case ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _UpperCamelCase = [json.dumps(__snake_case ) + '''\n''' for ref in ref_ids] f.writelines(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) _a = parser.parse_args() main(args)
19
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _A ( unittest.TestCase ): """simple docstring""" def _a ( self : Tuple ) -> List[Any]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __UpperCAmelCase =[[1, 2, 4], [1, 2, 3, 4]] __UpperCAmelCase =DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) self.assertTrue(isinstance(dc.token_ids , __SCREAMING_SNAKE_CASE ) ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _a ( self : Union[str, Any] ) -> Optional[Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __UpperCAmelCase =[[1, 2], [1, 2, 3, 4]] with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) # fails here def _a ( self : int ) -> Tuple: __UpperCAmelCase =[[1, 2, 3], [1, 2, 4]] __UpperCAmelCase =DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =dc.update(1 ) __UpperCAmelCase =stepped is True and completed is False and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =dc.update(2 ) __UpperCAmelCase =stepped is True and completed is False and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =dc.update(3 ) __UpperCAmelCase =stepped is True and completed is True and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _a ( self : Optional[Any] ) -> Optional[int]: __UpperCAmelCase =[[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __UpperCAmelCase =DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
68
"""simple docstring""" import heapq def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" _UpperCamelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__snake_case, [-1 * len(__snake_case ), (key, value)] ) # chosen_vertices = set of chosen vertices _UpperCamelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _UpperCamelCase = heapq.heappop(__snake_case )[1][0] chosen_vertices.add(__snake_case ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _UpperCamelCase = elem[1][1].index(__snake_case ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__snake_case ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _a = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
19
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Union[str, Any] = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
69
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _UpperCamelCase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj ) assert isinstance(_test_patching.os.path, _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" assert _test_patching.open is open _UpperCamelCase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, '''open''', __snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching, '''pandas.read_csv''', __snake_case ): pass def lowerCamelCase__ ( ) -> Dict: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, '''len''', __snake_case ) is None with patch_submodule(_test_patching, '''len''', __snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_start_and_stop_mock__''' _UpperCamelCase = patch_submodule(_test_patching, '''open''', __snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _UpperCamelCase = '''__test_patch_submodule_successive_join__''' _UpperCamelCase = '''__test_patch_submodule_successive_dirname__''' _UpperCamelCase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> str: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching, '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''', __snake_case ): pass with patch_submodule(_test_patching, '''os.__attribute_that_doesn_exist__''', __snake_case ): pass
19
0
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowerCamelCase : Any = "hf-internal-testing/tiny-random-bert" lowerCamelCase : Optional[int] = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") lowerCamelCase : str = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = cached_file(A_ , A_ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(A_ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(A_ , A_ ) ) ) with open(os.path.join(A_ , 'refs' , 'main' ) ) as f: lowerCamelCase_ = f.read() self.assertEqual(A_ , os.path.join(A_ , 'snapshots' , A_ , A_ ) ) self.assertTrue(os.path.isfile(A_ ) ) # File is cached at the same place the second time. lowerCamelCase_ = cached_file(A_ , A_ ) self.assertEqual(A_ , A_ ) # Using a specific revision to test the full commit hash. lowerCamelCase_ = cached_file(A_ , A_ , revision='9b8c223' ) self.assertEqual(A_ , os.path.join(A_ , 'snapshots' , A_ , A_ ) ) def a__ ( self : Tuple ) -> str: """simple docstring""" with self.assertRaisesRegex(A_ , 'is not a valid model identifier' ): lowerCamelCase_ = cached_file('tiny-random-bert' , A_ ) with self.assertRaisesRegex(A_ , 'is not a valid git identifier' ): lowerCamelCase_ = cached_file(A_ , A_ , revision='aaaa' ) with self.assertRaisesRegex(A_ , 'does not appear to have a file named' ): lowerCamelCase_ = cached_file(A_ , 'conf' ) def a__ ( self : Dict ) -> str: """simple docstring""" with self.assertRaisesRegex(A_ , 'does not appear to have a file named' ): lowerCamelCase_ = cached_file(A_ , 'conf' ) with open(os.path.join(A_ , 'refs' , 'main' ) ) as f: lowerCamelCase_ = f.read() self.assertTrue(os.path.isfile(os.path.join(A_ , '.no_exist' , A_ , 'conf' ) ) ) lowerCamelCase_ = cached_file(A_ , 'conf' , _raise_exceptions_for_missing_entries=A_ ) self.assertIsNone(A_ ) lowerCamelCase_ = cached_file(A_ , 'conf' , local_files_only=A_ , _raise_exceptions_for_missing_entries=A_ ) self.assertIsNone(A_ ) lowerCamelCase_ = mock.Mock() lowerCamelCase_ = 500 lowerCamelCase_ = {} lowerCamelCase_ = HTTPError lowerCamelCase_ = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head: lowerCamelCase_ = cached_file(A_ , 'conf' , _raise_exceptions_for_connection_errors=A_ ) self.assertIsNone(A_ ) # This check we did call the fake head request mock_head.assert_called() def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , A_ ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , A_ ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , A_ ) ) def a__ ( self : Dict ) -> List[str]: """simple docstring""" self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(A_ , 'is not a valid model identifier' ): get_file_from_repo('bert-base-case' , A_ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(A_ , 'is not a valid git identifier' ): get_file_from_repo('bert-base-cased' , A_ , revision='ahaha' ) lowerCamelCase_ = get_file_from_repo('bert-base-cased' , A_ ) # The name is the cached name which is not very easy to test, so instead we load the content. lowerCamelCase_ = json.loads(open(A_ , 'r' ).read() ) self.assertEqual(config['hidden_size'] , 768 ) def a__ ( self : Dict ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase_ = Path(A_ ) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(A_ , 'a.txt' ) , str(A_ ) ) self.assertIsNone(get_file_from_repo(A_ , 'b.txt' ) )
70
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = original_name.split('''.''' )[0] _UpperCamelCase = key.split('''.''' ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 2] ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 1] ) _UpperCamelCase = orig_block_num - offset _UpperCamelCase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''', F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = OrderedDict() _UpperCamelCase , _UpperCamelCase = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): _UpperCamelCase = key.replace('''network''', '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 _UpperCamelCase = key[: key.find('''proj''' )] _UpperCamelCase = key.replace(__snake_case, F'''patch_embeddings.{total_embed_found}.''' ) _UpperCamelCase = key.replace('''proj''', '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: _UpperCamelCase = '''poolformer.encoder.''' + key if "mlp.fc1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc1''', '''output.conv1''' ) if "mlp.fc2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc2''', '''output.conv2''' ) if "norm1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm1''', '''before_norm''' ) if "norm2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm2''', '''after_norm''' ) if "layer_scale_1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_1''', '''layer_scale_1''' ) if "layer_scale_2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_2''', '''layer_scale_2''' ) if "head" in key: _UpperCamelCase = key.replace('''head''', '''classifier''' ) _UpperCamelCase = value return new_state_dict def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase = Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return image @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = PoolFormerConfig() # set attributes based on model_name _UpperCamelCase = '''huggingface/label-files''' _UpperCamelCase = model_name[-3:] _UpperCamelCase = 10_00 _UpperCamelCase = '''imagenet-1k-id2label.json''' _UpperCamelCase = (1, 10_00) # set config attributes _UpperCamelCase = json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type='''dataset''' ), '''r''' ) ) _UpperCamelCase = {int(__snake_case ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} if size == "s12": _UpperCamelCase = [2, 2, 6, 2] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s24": _UpperCamelCase = [4, 4, 12, 4] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.9 elif size == "m36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 elif size == "m48": _UpperCamelCase = [8, 8, 24, 8] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) # Prepare image _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__snake_case, return_tensors='''pt''' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict _UpperCamelCase = torch.load(__snake_case, map_location=torch.device('''cpu''' ) ) # rename keys _UpperCamelCase = rename_keys(__snake_case ) # create HuggingFace model and load state dict _UpperCamelCase = PoolFormerForImageClassification(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # Define image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) _UpperCamelCase = image_processor(images=prepare_img(), return_tensors='''pt''' ).pixel_values # forward pass _UpperCamelCase = model(__snake_case ) _UpperCamelCase = outputs.logits # define expected logit slices for different models if size == "s12": _UpperCamelCase = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": _UpperCamelCase = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": _UpperCamelCase = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": _UpperCamelCase = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": _UpperCamelCase = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3], __snake_case, atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _a = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
19
0
'''simple docstring''' from __future__ import annotations def a__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[list[str]] , _SCREAMING_SNAKE_CASE : int , ) -> None: """simple docstring""" UpperCAmelCase_ : Optional[int] = len(_SCREAMING_SNAKE_CASE ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_SCREAMING_SNAKE_CASE ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) def a__ ( _SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" UpperCAmelCase_ : list[list[str]] = [] depth_first_search([] , [] , [] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Print all the boards for board in boards: for column in board: print(_SCREAMING_SNAKE_CASE ) print("" ) print(len(_SCREAMING_SNAKE_CASE ) , "solutions were found." ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
71
"""simple docstring""" import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class _UpperCAmelCase( lowerCamelCase ): lowercase__ = (DPMSolverSDEScheduler,) lowercase__ = 10 def UpperCAmelCase ( self , **__a) -> int: '''simple docstring''' _UpperCamelCase = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**__a) return config def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02]): self.check_over_configs(beta_start=__a , beta_end=__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a) def UpperCAmelCase ( self) -> str: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''') _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a , use_karras_sigmas=__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2
19
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class __magic_name__ ( __SCREAMING_SNAKE_CASE ): @staticmethod @abstractmethod def _A( snake_case_ ): raise NotImplementedError() @abstractmethod def _A( self ): raise NotImplementedError()
72
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['pixel_values'] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BICUBIC , __a = True , __a = True , __a = 1 / 2_55 , __a = None , __a = True , __a = None , __a = None , **__a , ) -> None: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a , default_to_square=__a , param_name='''crop_size''') _UpperCamelCase = do_resize _UpperCamelCase = do_rescale _UpperCamelCase = do_normalize _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = rescale_factor _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BILINEAR , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "shortest_edge" in size: _UpperCamelCase = get_resize_output_image_size(__a , size=size['''shortest_edge'''] , default_to_square=__a) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''') return resize(__a , size=__a , resample=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''') return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a) -> np.ndarray: '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> BatchFeature: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(__a , param_name='''crop_size''' , default_to_square=__a) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(__a) if not is_batched(__a): _UpperCamelCase = [images] if not valid_images(__a): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(__a) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=__a , size=__a , resample=__a) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=__a , size=__a) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=__a , scale=__a) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=__a , mean=__a , std=__a) for image in images] _UpperCamelCase = [to_channel_dimension_format(__a , __a) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=__a , tensor_type=__a)
19
0
from __future__ import annotations def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = sum(_UpperCAmelCase) create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return result def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): if sum(_UpperCAmelCase) > max_sum or (remaining_nums_sum + sum(_UpperCAmelCase)) < max_sum: return if sum(_UpperCAmelCase) == max_sum: result.append(_UpperCAmelCase) return for index in range(_UpperCAmelCase , len(_UpperCAmelCase)): create_state_space_tree( _UpperCAmelCase , _UpperCAmelCase , index + 1 , [*path, nums[index]] , _UpperCAmelCase , remaining_nums_sum - nums[index] , ) a_ : Tuple = [3, 34, 4, 12, 5, 2] a_ : str = 9 a_ : Dict = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
73
"""simple docstring""" # Imports import numpy as np class _UpperCAmelCase: def __init__( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) def UpperCAmelCase ( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' if red is not None: _UpperCamelCase = red if green is not None: _UpperCamelCase = green if blue is not None: _UpperCamelCase = blue if red_edge is not None: _UpperCamelCase = red_edge if nir is not None: _UpperCamelCase = nir return True def UpperCAmelCase ( self , __a="" , __a=None , __a=None , __a=None , __a=None , __a=None) -> List[str]: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) _UpperCamelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''') return False def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self) -> Any: '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self , __a=0.08 , __a=1.22 , __a=0.03) -> Optional[Any]: '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir / self.green) - 1 def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.red - self.blue) / self.red def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir - self.green def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def UpperCAmelCase ( self , __a=0.16) -> Optional[Any]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self , __a=0.5) -> Dict: '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self , __a=None , __a=None) -> Any: '''simple docstring''' return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self) -> Any: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> str: '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) _UpperCamelCase = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Any: '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
19
0
def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = [0 for i in range(len(snake_case ) )] # initialize interval's left pointer and right pointer __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = 0, 0 for i in range(1 , len(snake_case ) ): # case when current index is inside the interval if i <= right_pointer: __SCREAMING_SNAKE_CASE : List[Any] = min(right_pointer - i + 1 , z_result[i - left_pointer] ) __SCREAMING_SNAKE_CASE : Dict = min_edge while go_next(snake_case , snake_case , snake_case ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = i, i + z_result[i] - 1 return z_result def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" return i + z_result[i] < len(snake_case ) and s[z_result[i]] == s[i + z_result[i]] def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string __SCREAMING_SNAKE_CASE : str = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(snake_case ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
74
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=64 , __a=2 , __a=3 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a=[1, 16, 4, 4] , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _UpperCamelCase = (self.image_size // 32) ** 2 _UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__a , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.type_sequence_label_size _UpperCamelCase = ViTHybridForImageClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowercase__ = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''') def UpperCAmelCase ( self) -> Dict: '''simple docstring''' pass def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear)) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _UpperCamelCase = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = ViTHybridModel.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase( unittest.TestCase ): @cached_property def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( __a) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''').to(__a) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__a) # verify the logits _UpperCamelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor([-1.9090, -0.4993, -0.2389]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4)) @slow @require_accelerate def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''') _UpperCamelCase = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''') _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''') _UpperCamelCase = model(**__a) _UpperCamelCase = outputs.logits # model predicts one of the 1000 ImageNet classes _UpperCamelCase = logits.argmax(-1).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''')
19
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class lowerCamelCase_ : # setable values lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None # sigma(t_i) @classmethod def lowercase_ ( cls : Dict ): '''simple docstring''' return cls() @dataclass class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 class lowerCamelCase_ ( __a , __a ): @property def lowercase_ ( self : Tuple ): '''simple docstring''' return True @register_to_config def __init__( self : int , _A : float = 0.0_2 , _A : float = 100 , _A : float = 1.0_0_7 , _A : float = 80 , _A : float = 0.0_5 , _A : float = 50 , ): '''simple docstring''' pass def lowercase_ ( self : List[str] ): '''simple docstring''' return KarrasVeSchedulerState.create() def lowercase_ ( self : int , _A : KarrasVeSchedulerState , _A : int , _A : Tuple = () ): '''simple docstring''' UpperCAmelCase__ : Any = jnp.arange(0 , _A )[::-1].copy() UpperCAmelCase__ : Union[str, Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=_A , schedule=jnp.array(_A , dtype=jnp.floataa ) , timesteps=_A , ) def lowercase_ ( self : List[str] , _A : KarrasVeSchedulerState , _A : jnp.ndarray , _A : float , _A : random.KeyArray , ): '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: UpperCAmelCase__ : str = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: UpperCAmelCase__ : Union[str, Any] = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCAmelCase__ : Optional[Any] = random.split(_A , num=1 ) UpperCAmelCase__ : Union[str, Any] = self.config.s_noise * random.normal(key=_A , shape=sample.shape ) UpperCAmelCase__ : Dict = sigma + gamma * sigma UpperCAmelCase__ : Union[str, Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def lowercase_ ( self : Dict , _A : KarrasVeSchedulerState , _A : jnp.ndarray , _A : float , _A : float , _A : jnp.ndarray , _A : bool = True , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = sample_hat + sigma_hat * model_output UpperCAmelCase__ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat UpperCAmelCase__ : List[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_A , derivative=_A , state=_A ) def lowercase_ ( self : Dict , _A : KarrasVeSchedulerState , _A : jnp.ndarray , _A : float , _A : float , _A : jnp.ndarray , _A : jnp.ndarray , _A : jnp.ndarray , _A : bool = True , ): '''simple docstring''' UpperCAmelCase__ : Dict = sample_prev + sigma_prev * model_output UpperCAmelCase__ : Any = (sample_prev - pred_original_sample) / sigma_prev UpperCAmelCase__ : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_A , derivative=_A , state=_A ) def lowercase_ ( self : Optional[int] , _A : KarrasVeSchedulerState , _A : Union[str, Any] , _A : int , _A : Any ): '''simple docstring''' raise NotImplementedError()
75
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['vqvae'] def __init__( self , __a , __a , __a , __a , ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules(unet=__a , scheduler=__a , mel=__a , vqvae=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' return 50 if isinstance(self.scheduler , __a) else 10_00 @torch.no_grad() def __call__( self , __a = 1 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = 0 , __a = None , __a = None , __a=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' _UpperCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(__a) _UpperCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: _UpperCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _UpperCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__a , device=self.device , ) _UpperCamelCase = noise _UpperCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__a , __a) _UpperCamelCase = self.mel.audio_slice_to_image(__a) _UpperCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''').reshape( (input_image.height, input_image.width)) _UpperCamelCase = (input_image / 2_55) * 2 - 1 _UpperCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: _UpperCamelCase = self.vqvae.encode(torch.unsqueeze(__a , 0)).latent_dist.sample( generator=__a)[0] _UpperCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _UpperCamelCase = self.scheduler.add_noise(__a , __a , self.scheduler.timesteps[start_step - 1]) _UpperCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _UpperCamelCase = int(mask_start_secs * pixels_per_second) _UpperCamelCase = int(mask_end_secs * pixels_per_second) _UpperCamelCase = self.scheduler.add_noise(__a , __a , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , __a): _UpperCamelCase = self.unet(__a , __a , __a)['''sample'''] else: _UpperCamelCase = self.unet(__a , __a)['''sample'''] if isinstance(self.scheduler , __a): _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , eta=__a , generator=__a , )['''prev_sample'''] else: _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , generator=__a , )['''prev_sample'''] if mask is not None: if mask_start > 0: _UpperCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _UpperCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _UpperCamelCase = 1 / self.vqvae.config.scaling_factor * images _UpperCamelCase = self.vqvae.decode(__a)['''sample'''] _UpperCamelCase = (images / 2 + 0.5).clamp(0 , 1) _UpperCamelCase = images.cpu().permute(0 , 2 , 3 , 1).numpy() _UpperCamelCase = (images * 2_55).round().astype('''uint8''') _UpperCamelCase = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__a , mode='''RGB''').convert('''L''') for _ in images)) _UpperCamelCase = [self.mel.image_to_audio(__a) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__a)[:, np.newaxis, :]) , **ImagePipelineOutput(__a)) @torch.no_grad() def UpperCAmelCase ( self , __a , __a = 50) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , __a) self.scheduler.set_timesteps(__a) _UpperCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''').reshape((1, image.height, image.width)) for image in images]) _UpperCamelCase = (sample / 2_55) * 2 - 1 _UpperCamelCase = torch.Tensor(__a).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): _UpperCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _UpperCamelCase = self.scheduler.alphas_cumprod[t] _UpperCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _UpperCamelCase = 1 - alpha_prod_t _UpperCamelCase = self.unet(__a , __a)['''sample'''] _UpperCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _UpperCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _UpperCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase ( __a , __a , __a) -> torch.Tensor: '''simple docstring''' _UpperCamelCase = acos(torch.dot(torch.flatten(__a) , torch.flatten(__a)) / torch.norm(__a) / torch.norm(__a)) return sin((1 - alpha) * theta) * xa / sin(__a) + sin(alpha * theta) * xa / sin(__a)
19
0
"""simple docstring""" import numpy as np import datasets a_ = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' a_ = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' a_ = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def _lowerCamelCase ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''X''': datasets.Sequence(datasets.Value('''float''' , id='''sequence''' ) , id='''X''' ), } ) , ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: # convert to numpy arrays __lowercase : Dict = np.array(UpperCamelCase_ ) __lowercase : str = np.array(UpperCamelCase_ ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('''Expected `X` to be a 2D vector''' ) if len(reference_distribution.shape ) != 2: raise ValueError('''Expected `reference_distribution` to be a 2D vector''' ) if reference_distribution.shape[0] < 2: raise ValueError( '''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''' ) # Get mahalanobis distance for each prediction __lowercase : Tuple = X - np.mean(UpperCamelCase_ ) __lowercase : List[Any] = np.cov(reference_distribution.T ) try: __lowercase : Tuple = np.linalg.inv(UpperCamelCase_ ) except np.linalg.LinAlgError: __lowercase : str = np.linalg.pinv(UpperCamelCase_ ) __lowercase : Any = np.dot(UpperCamelCase_ , UpperCamelCase_ ) __lowercase : Optional[Any] = np.dot(UpperCamelCase_ , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
76
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'detr' lowercase__ = ['past_key_values'] lowercase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __a=True , __a=None , __a=3 , __a=1_00 , __a=6 , __a=20_48 , __a=8 , __a=6 , __a=20_48 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=2_56 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=1 , __a=1 , __a=5 , __a=2 , __a=0.1 , **__a , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__a , __a): _UpperCamelCase = backbone_config.get('''model_type''') _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(__a) # set timm attributes to None _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None, None, None _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = encoder_layers _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase ( cls , __a , **__a) -> int: '''simple docstring''' return cls(backbone_config=__a , **__a) def UpperCAmelCase ( self) -> Dict[str, any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output class _UpperCAmelCase( lowerCamelCase ): lowercase__ = version.parse('1.11' ) @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def UpperCAmelCase ( self) -> float: '''simple docstring''' return 1e-5 @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return 12
19
0
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> int: """simple docstring""" __UpperCAmelCase : Dict = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): __UpperCAmelCase : Union[str, Any] = n - k # Calculate C(n,k) for i in range(UpperCamelCase ): result *= n - i result //= i + 1 return result def _UpperCamelCase ( UpperCamelCase ) -> int: """simple docstring""" return binomial_coefficient(2 * node_count , UpperCamelCase ) // (node_count + 1) def _UpperCamelCase ( UpperCamelCase ) -> int: """simple docstring""" if n < 0: raise ValueError("factorial() not defined for negative values" ) __UpperCAmelCase : Optional[Any] = 1 for i in range(1 , n + 1 ): result *= i return result def _UpperCamelCase ( UpperCamelCase ) -> int: """simple docstring""" return catalan_number(UpperCamelCase ) * factorial(UpperCamelCase ) if __name__ == "__main__": A = int(input("""Enter the number of nodes: """).strip() or 0) if node_count <= 0: raise ValueError("""We need some nodes to work with.""") print( f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' f'''binary trees and {catalan_number(node_count)} binary search trees.''' )
77
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'wavlm' def __init__( self , __a=32 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.1 , __a=0.02 , __a=1e-5 , __a="group" , __a="gelu" , __a=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __a=(5, 2, 2, 2, 2, 2, 2) , __a=(10, 3, 3, 3, 3, 2, 2) , __a=False , __a=1_28 , __a=16 , __a=3_20 , __a=8_00 , __a=False , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=3_20 , __a=2 , __a=0.1 , __a=1_00 , __a=2_56 , __a=2_56 , __a=0.1 , __a="mean" , __a=False , __a=False , __a=2_56 , __a=(5_12, 5_12, 5_12, 5_12, 15_00) , __a=(5, 3, 3, 1, 1) , __a=(1, 2, 3, 1, 1) , __a=5_12 , __a=80 , __a=0 , __a=1 , __a=2 , __a=False , __a=3 , __a=2 , __a=3 , __a=None , **__a , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a) _UpperCamelCase = hidden_size _UpperCamelCase = feat_extract_norm _UpperCamelCase = feat_extract_activation _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = conv_bias _UpperCamelCase = num_buckets _UpperCamelCase = max_bucket_distance _UpperCamelCase = num_conv_pos_embeddings _UpperCamelCase = num_conv_pos_embedding_groups _UpperCamelCase = len(self.conv_dim) _UpperCamelCase = num_hidden_layers _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = feat_proj_dropout _UpperCamelCase = final_dropout _UpperCamelCase = layerdrop _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = num_ctc_classes _UpperCamelCase = vocab_size _UpperCamelCase = do_stable_layer_norm _UpperCamelCase = use_weighted_layer_sum _UpperCamelCase = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCamelCase = apply_spec_augment _UpperCamelCase = mask_time_prob _UpperCamelCase = mask_time_length _UpperCamelCase = mask_time_min_masks _UpperCamelCase = mask_feature_prob _UpperCamelCase = mask_feature_length # parameters for pretraining with codevector quantized representations _UpperCamelCase = num_codevectors_per_group _UpperCamelCase = num_codevector_groups _UpperCamelCase = contrastive_logits_temperature _UpperCamelCase = num_negatives _UpperCamelCase = codevector_dim _UpperCamelCase = proj_codevector_dim _UpperCamelCase = diversity_loss_weight # ctc loss _UpperCamelCase = ctc_loss_reduction _UpperCamelCase = ctc_zero_infinity # adapter _UpperCamelCase = add_adapter _UpperCamelCase = adapter_kernel_size _UpperCamelCase = adapter_stride _UpperCamelCase = num_adapter_layers _UpperCamelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = xvector_output_dim @property def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
19
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : Optional[Any] ) -> int: '''simple docstring''' if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(snake_case_ , n - 1 , snake_case_ ) * a) % mod else: UpperCAmelCase_ = binary_exponentiation(snake_case_ , n / 2 , snake_case_ ) return (b * b) % mod # a prime number SCREAMING_SNAKE_CASE_: Optional[int] =7_01 SCREAMING_SNAKE_CASE_: Any =10_00_00_00_00 SCREAMING_SNAKE_CASE_: Optional[Any] =10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
78
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _a = """bart""" _a = True @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> Dict: """simple docstring""" if LOAD_DENSE_INDEX: _UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _UpperCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _UpperCamelCase = qar_model.eval() else: _UpperCamelCase , _UpperCamelCase = (None, None) if MODEL_TYPE == "bart": _UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _UpperCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _UpperCamelCase = sas_model.eval() else: _UpperCamelCase , _UpperCamelCase = make_qa_sas_model( model_name='''t5-small''', from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''', device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: _UpperCamelCase = faiss.StandardGpuResources() _UpperCamelCase = datasets.load_dataset(path='''wiki_snippets''', name='''wiki40b_en_100_0''' )['''train'''] _UpperCamelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''', dtype='''float32''', mode='''r''', shape=(wikiaab_passages.num_rows, 1_28), ) _UpperCamelCase = faiss.IndexFlatIP(1_28 ) _UpperCamelCase = faiss.index_cpu_to_gpu(__snake_case, 1, __snake_case ) wikiaab_gpu_index_flat.add(__snake_case ) # TODO fix for larger GPU else: _UpperCamelCase , _UpperCamelCase = (None, None) _UpperCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = datasets.load_dataset('''eli5''', name='''LFQA_reddit''' ) _UpperCamelCase = elia['''train_eli5'''] _UpperCamelCase = np.memmap( '''eli5_questions_reps.dat''', dtype='''float32''', mode='''r''', shape=(elia_train.num_rows, 1_28) ) _UpperCamelCase = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(__snake_case ) return (elia_train, eli5_train_q_index) _a , _a , _a = load_indexes() _a , _a , _a , _a = load_models() _a , _a = load_train_data() def lowerCamelCase__ ( __snake_case, __snake_case=10 ) -> List[Any]: """simple docstring""" _UpperCamelCase = embed_questions_for_retrieval([question], __snake_case, __snake_case ) _UpperCamelCase , _UpperCamelCase = eli5_train_q_index.search(__snake_case, __snake_case ) _UpperCamelCase = [elia_train[int(__snake_case )] for i in I[0]] return nn_examples def lowerCamelCase__ ( __snake_case, __snake_case="wiki40b", __snake_case="dense", __snake_case=10 ) -> List[str]: """simple docstring""" if source == "none": _UpperCamelCase , _UpperCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _UpperCamelCase , _UpperCamelCase = query_qa_dense_index( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) else: _UpperCamelCase , _UpperCamelCase = query_es_index( __snake_case, __snake_case, index_name='''english_wiki40b_snippets_100w''', n_results=__snake_case, ) _UpperCamelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _UpperCamelCase = '''question: {} context: {}'''.format(__snake_case, __snake_case ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __snake_case : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __snake_case : None), } ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=64, __snake_case=2_56, __snake_case=False, __snake_case=2, __snake_case=0.95, __snake_case=0.8 ) -> Dict: """simple docstring""" with torch.no_grad(): _UpperCamelCase = qa_sas_generate( __snake_case, __snake_case, __snake_case, num_answers=1, num_beams=__snake_case, min_len=__snake_case, max_len=__snake_case, do_sample=__snake_case, temp=__snake_case, top_p=__snake_case, top_k=__snake_case, max_input_length=10_24, device='''cuda:0''', )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar _a = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" _a = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _a = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) _a = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] _a = st.sidebar.checkbox("""Demo options""") if demo_options: _a = st.sidebar.selectbox( """""", action_list, index=3, ) _a = action_list.index(action_st) _a = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) _a = show_type == """Show full text of passages""" else: _a = 3 _a = True _a = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: _a = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) _a = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) _a = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: _a = """wiki40b""" _a = """dense""" _a = """beam""" _a = 2 _a = 64 _a = 256 _a = None _a = None _a = st.sidebar.checkbox("""Generation options""") if generate_options: _a = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) _a = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) _a = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) _a = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": _a = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _a = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _a = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _a = None # start main text _a = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] _a = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": _a = st.text_input("""Enter your question here:""", """""") else: _a = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": _a , _a = make_support(question, source=wiki_source, method="""dense""", n_results=10) _a , _a = make_support(question, source=wiki_source, method="""sparse""", n_results=10) _a = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _a = support_list[:10] _a = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: _a , _a = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _a , _a = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): _a = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) _a = res[1].strip() if sec_titles == "": _a = """[{}]({})""".format(res[0], wiki_url) else: _a = sec_titles.split(""" & """) _a = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: _a = find_nearest_training(question) _a = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) _a = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) _a = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
19
0
import argparse import os import torch from transformers.utils import WEIGHTS_NAME SCREAMING_SNAKE_CASE__ : List[Any] = ["""small""", """medium""", """large"""] SCREAMING_SNAKE_CASE__ : Optional[int] = """lm_head.decoder.weight""" SCREAMING_SNAKE_CASE__ : Tuple = """lm_head.weight""" def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> int: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = torch.load(__lowerCamelCase ) UpperCAmelCase__ : List[Any] = d.pop(__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) SCREAMING_SNAKE_CASE__ : Optional[Any] = parser.parse_args() for MODEL in DIALOGPT_MODELS: SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') SCREAMING_SNAKE_CASE__ : int = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
79
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } _a = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> Tuple: """simple docstring""" for attribute in key.split('''.''' ): _UpperCamelCase = getattr(__snake_case, __snake_case ) if weight_type is not None: _UpperCamelCase = getattr(__snake_case, __snake_case ).shape else: _UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase = value elif weight_type == "weight_g": _UpperCamelCase = value elif weight_type == "weight_v": _UpperCamelCase = value elif weight_type == "bias": _UpperCamelCase = value else: _UpperCamelCase = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = fairseq_model.state_dict() _UpperCamelCase = hf_model.feature_extractor _UpperCamelCase = hf_model.adapter for name, value in fairseq_dict.items(): _UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __snake_case, __snake_case, __snake_case, __snake_case, hf_model.config.feat_extract_norm == '''group''', ) _UpperCamelCase = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(__snake_case, __snake_case, __snake_case, __snake_case ) _UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCamelCase = True if "*" in mapped_key: _UpperCamelCase = name.split(__snake_case )[0].split('''.''' )[-2] _UpperCamelCase = mapped_key.replace('''*''', __snake_case ) if "weight_g" in name: _UpperCamelCase = '''weight_g''' elif "weight_v" in name: _UpperCamelCase = '''weight_v''' elif "bias" in name: _UpperCamelCase = '''bias''' elif "weight" in name: _UpperCamelCase = '''weight''' else: _UpperCamelCase = None set_recursively(__snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = full_name.split('''conv_layers.''' )[-1] _UpperCamelCase = name.split('''.''' ) _UpperCamelCase = int(items[0] ) _UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = full_name.split('''adaptor.''' )[-1] _UpperCamelCase = name.split('''.''' ) if items[1].isdigit(): _UpperCamelCase = int(items[1] ) else: _UpperCamelCase = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' _UpperCamelCase = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(__snake_case, __snake_case ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase , _UpperCamelCase = emb.weight.shape _UpperCamelCase = nn.Linear(__snake_case, __snake_case, bias=__snake_case ) _UpperCamelCase = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = WavaVecaConfig.from_pretrained( __snake_case, add_adapter=__snake_case, adapter_stride=__snake_case, adapter_kernel_size=__snake_case, use_auth_token=__snake_case, output_hidden_size=__snake_case, ) _UpperCamelCase = MBartConfig.from_pretrained(__snake_case ) # load model _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, }, ) _UpperCamelCase = model[0].eval() # load feature extractor _UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(__snake_case, use_auth_token=__snake_case ) # set weights for wav2vec2 encoder _UpperCamelCase = WavaVecaModel(__snake_case ) recursively_load_weights_wavaveca(model.encoder, __snake_case ) # load decoder weights _UpperCamelCase = MBartForCausalLM(__snake_case ) _UpperCamelCase , _UpperCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=__snake_case ) logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) _UpperCamelCase = SpeechEncoderDecoderModel(encoder=__snake_case, decoder=__snake_case ) _UpperCamelCase = False _UpperCamelCase = MBartaaTokenizer(__snake_case ) tokenizer.save_pretrained(__snake_case ) _UpperCamelCase = hf_wavavec.config.to_dict() _UpperCamelCase = tokenizer.pad_token_id _UpperCamelCase = tokenizer.bos_token_id _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = '''mbart50''' _UpperCamelCase = '''wav2vec2''' _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = 25_00_04 _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = SpeechEncoderDecoderConfig.from_dict(__snake_case ) hf_wavavec.save_pretrained(__snake_case ) feature_extractor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1024, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=25_0004, type=int, help="""`decoder_start_token_id` of model config""") _a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
19
0
import os import sys import unittest __UpperCamelCase : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __UpperCamelCase : Optional[int] = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") __UpperCamelCase : str = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class __UpperCamelCase ( unittest.TestCase ): def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = get_test_to_tester_mapping(_lowerCAmelCase ) __lowercase = get_test_to_tester_mapping(_lowerCAmelCase ) __lowercase = {"""BertModelTest""": """BertModelTester"""} __lowercase = { """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(get_test_info.to_json(_lowerCAmelCase ) , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = get_model_to_test_mapping(_lowerCAmelCase ) __lowercase = get_model_to_test_mapping(_lowerCAmelCase ) __lowercase = { """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } __lowercase = { """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(get_test_info.to_json(_lowerCAmelCase ) , _lowerCAmelCase ) def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase = get_model_to_tester_mapping(_lowerCAmelCase ) __lowercase = get_model_to_tester_mapping(_lowerCAmelCase ) __lowercase = { """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } __lowercase = { """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(get_test_info.to_json(_lowerCAmelCase ) , _lowerCAmelCase )
80
"""simple docstring""" import fire from utils import calculate_rouge, save_json def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case=None, **__snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()] _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()][: len(__snake_case )] _UpperCamelCase = calculate_rouge(__snake_case, __snake_case, **__snake_case ) if save_path is not None: save_json(__snake_case, __snake_case, indent=__snake_case ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
19
0
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Optional[int] = (CMStochasticIterativeScheduler,) __UpperCAmelCase : List[Any] = 10 def __snake_case ( self : Any , **lowerCamelCase : Union[str, Any] ) -> Optional[Any]: __snake_case : Union[str, Any] = { "num_train_timesteps": 201, "sigma_min": 0.0_02, "sigma_max": 80.0, } config.update(**lowerCamelCase ) return config def __snake_case ( self : Optional[int] ) -> List[str]: __snake_case : Optional[int] = 10 __snake_case : Any = self.get_scheduler_config() __snake_case : List[str] = self.scheduler_classes[0](**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) __snake_case : List[Any] = scheduler.timesteps[0] __snake_case : List[Any] = scheduler.timesteps[1] __snake_case : int = self.dummy_sample __snake_case : Optional[int] = 0.1 * sample __snake_case : str = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample __snake_case : str = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __snake_case ( self : Dict ) -> str: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def __snake_case ( self : Optional[int] ) -> Dict: for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=lowerCamelCase ) def __snake_case ( self : Dict ) -> Tuple: __snake_case : Tuple = self.scheduler_classes[0] __snake_case : Union[str, Any] = self.get_scheduler_config() __snake_case : Any = scheduler_class(**lowerCamelCase ) __snake_case : Union[str, Any] = 1 scheduler.set_timesteps(lowerCamelCase ) __snake_case : Union[str, Any] = scheduler.timesteps __snake_case : Optional[Any] = torch.manual_seed(0 ) __snake_case : Tuple = self.dummy_model() __snake_case : Any = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(lowerCamelCase ): # 1. scale model input __snake_case : List[str] = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) # 2. predict noise residual __snake_case : Union[str, Any] = model(lowerCamelCase , lowerCamelCase ) # 3. predict previous sample x_t-1 __snake_case : Any = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ).prev_sample __snake_case : Tuple = pred_prev_sample __snake_case : Union[str, Any] = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : List[str] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 1_92.76_14 ) < 1E-2 assert abs(result_mean.item() - 0.25_10 ) < 1E-3 def __snake_case ( self : str ) -> Optional[Any]: __snake_case : Dict = self.scheduler_classes[0] __snake_case : List[Any] = self.get_scheduler_config() __snake_case : Union[str, Any] = scheduler_class(**lowerCamelCase ) __snake_case : Tuple = [106, 0] scheduler.set_timesteps(timesteps=lowerCamelCase ) __snake_case : Union[str, Any] = scheduler.timesteps __snake_case : List[str] = torch.manual_seed(0 ) __snake_case : Any = self.dummy_model() __snake_case : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input __snake_case : Tuple = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) # 2. predict noise residual __snake_case : List[str] = model(lowerCamelCase , lowerCamelCase ) # 3. predict previous sample x_t-1 __snake_case : str = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ).prev_sample __snake_case : List[Any] = pred_prev_sample __snake_case : Any = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : Optional[int] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 3_47.63_57 ) < 1E-2 assert abs(result_mean.item() - 0.45_27 ) < 1E-3 def __snake_case ( self : List[str] ) -> List[Any]: __snake_case : Optional[int] = self.scheduler_classes[0] __snake_case : str = self.get_scheduler_config() __snake_case : int = scheduler_class(**lowerCamelCase ) __snake_case : Any = [39, 30, 12, 15, 0] with self.assertRaises(lowerCamelCase , msg="`timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=lowerCamelCase ) def __snake_case ( self : Tuple ) -> Union[str, Any]: __snake_case : Optional[int] = self.scheduler_classes[0] __snake_case : int = self.get_scheduler_config() __snake_case : Any = scheduler_class(**lowerCamelCase ) __snake_case : Tuple = [39, 30, 12, 1, 0] __snake_case : Union[str, Any] = len(lowerCamelCase ) with self.assertRaises(lowerCamelCase , msg="Can only pass one of `num_inference_steps` or `timesteps`." ): scheduler.set_timesteps(num_inference_steps=lowerCamelCase , timesteps=lowerCamelCase ) def __snake_case ( self : List[Any] ) -> Optional[int]: __snake_case : str = self.scheduler_classes[0] __snake_case : Dict = self.get_scheduler_config() __snake_case : Optional[int] = scheduler_class(**lowerCamelCase ) __snake_case : int = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCamelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=lowerCamelCase )
81
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['image_processor', 'tokenizer'] lowercase__ = 'ViTImageProcessor' lowercase__ = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __a=None , __a=None , **__a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __a , ) _UpperCamelCase = kwargs.pop('''feature_extractor''') _UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(__a , __a) def __call__( self , __a=None , __a=None , __a=None , __a=None , **__a) -> Tuple: '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''') if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''') if text is not None: _UpperCamelCase = self.tokenizer(__a , return_tensors=__a , **__a) if visual_prompt is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if images is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if visual_prompt is not None and images is not None: _UpperCamelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _UpperCamelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__a) , tensor_type=__a) def UpperCAmelCase ( self , *__a , **__a) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*__a , **__a) def UpperCAmelCase ( self , *__a , **__a) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*__a , **__a) @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __a , ) return self.image_processor_class @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __a , ) return self.image_processor
19
0
"""simple docstring""" import os def a__ ( ): with open(os.path.dirname(lowerCAmelCase__ ) + "/p022_names.txt" ) as file: UpperCAmelCase_ = str(file.readlines()[0] ) UpperCAmelCase_ = names.replace("\"" , "" ).split("," ) names.sort() UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for i, name in enumerate(lowerCAmelCase__ ): for letter in name: name_score += ord(lowerCAmelCase__ ) - 64 total_score += (i + 1) * name_score UpperCAmelCase_ = 0 return total_score if __name__ == "__main__": print(solution())
82
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=32 , __a=3 , __a=4 , __a=[10, 20, 30, 40] , __a=[2, 2, 3, 2] , __a=True , __a=True , __a=37 , __a="gelu" , __a=10 , __a=0.02 , __a=["stage2", "stage3", "stage4"] , __a=3 , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = num_channels _UpperCamelCase = num_stages _UpperCamelCase = hidden_sizes _UpperCamelCase = depths _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = out_features _UpperCamelCase = num_labels _UpperCamelCase = scope _UpperCamelCase = num_stages def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Any: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__a , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=__a , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = UperNetForSemanticSegmentation(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__ = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = UperNetModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a) @unittest.skip(reason='''UperNet does not use inputs_embeds''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not support input and output embeddings''') def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''') def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''') def UpperCAmelCase ( self) -> int: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''') def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' def check_hidden_states_output(__a , __a , __a): _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(__a) , expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) _UpperCamelCase = _config_zero_init(configs_no_init.backbone_config) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason='''UperNet does not have tied weights''') def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' pass @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''', repo_type='''dataset''', filename='''ADE_val_00000001.jpg''' ) _UpperCamelCase = Image.open(__snake_case ).convert('''RGB''' ) return image @require_torch @require_vision @slow class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''') _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''').to(__a) _UpperCamelCase = prepare_img() _UpperCamelCase = processor(images=__a , return_tensors='''pt''').to(__a) with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''') _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''').to(__a) _UpperCamelCase = prepare_img() _UpperCamelCase = processor(images=__a , return_tensors='''pt''').to(__a) with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4))
19
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
83
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase( lowerCamelCase ): lowercase__ = (DDPMScheduler,) def UpperCAmelCase ( self , **__a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__a) return config def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=__a , beta_end=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.check_over_configs(thresholding=__a) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0979)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.02)) < 1e-5 def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = len(__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = torch.manual_seed(0) for t in reversed(range(__a)): # 1. predict noise residual _UpperCamelCase = model(__a , __a) # 2. predict previous mean of sample x_t-1 _UpperCamelCase = scheduler.step(__a , __a , __a , generator=__a).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCamelCase = pred_prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 258.9606) < 1e-2 assert abs(result_mean.item() - 0.3372) < 1e-3 def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''') _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = len(__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = torch.manual_seed(0) for t in reversed(range(__a)): # 1. predict noise residual _UpperCamelCase = model(__a , __a) # 2. predict previous mean of sample x_t-1 _UpperCamelCase = scheduler.step(__a , __a , __a , generator=__a).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCamelCase = pred_prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 202.0296) < 1e-2 assert abs(result_mean.item() - 0.2631) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__a) _UpperCamelCase = scheduler.timesteps for i, timestep in enumerate(__a): if i == len(__a) - 1: _UpperCamelCase = -1 else: _UpperCamelCase = timesteps[i + 1] _UpperCamelCase = scheduler.previous_timestep(__a) _UpperCamelCase = prev_t.item() self.assertEqual(__a , __a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 51, 0] with self.assertRaises(__a , msg='''`custom_timesteps` must be in descending order.'''): scheduler.set_timesteps(timesteps=__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 1, 0] _UpperCamelCase = len(__a) with self.assertRaises(__a , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.'''): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=__a)
19
0
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : List[Any] = """conditional_detr""" _UpperCamelCase : Any = ["""past_key_values"""] _UpperCamelCase : Optional[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case=True , snake_case=None , snake_case=3 , snake_case=300 , snake_case=6 , snake_case=2048 , snake_case=8 , snake_case=6 , snake_case=2048 , snake_case=8 , snake_case=0.0 , snake_case=0.0 , snake_case=True , snake_case="relu" , snake_case=256 , snake_case=0.1 , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1.0 , snake_case=False , snake_case="sine" , snake_case="resnet50" , snake_case=True , snake_case=False , snake_case=2 , snake_case=5 , snake_case=2 , snake_case=1 , snake_case=1 , snake_case=2 , snake_case=5 , snake_case=2 , snake_case=0.25 , **snake_case , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowercase = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case , snake_case ): lowercase = backbone_config.get('model_type' ) lowercase = CONFIG_MAPPING[backbone_model_type] lowercase = config_class.from_dict(snake_case ) lowercase = use_timm_backbone lowercase = backbone_config lowercase = num_channels lowercase = num_queries lowercase = d_model lowercase = encoder_ffn_dim lowercase = encoder_layers lowercase = encoder_attention_heads lowercase = decoder_ffn_dim lowercase = decoder_layers lowercase = decoder_attention_heads lowercase = dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = activation_function lowercase = init_std lowercase = init_xavier_std lowercase = encoder_layerdrop lowercase = decoder_layerdrop lowercase = encoder_layers lowercase = auxiliary_loss lowercase = position_embedding_type lowercase = backbone lowercase = use_pretrained_backbone lowercase = dilation # Hungarian matcher lowercase = class_cost lowercase = bbox_cost lowercase = giou_cost # Loss coefficients lowercase = mask_loss_coefficient lowercase = dice_loss_coefficient lowercase = cls_loss_coefficient lowercase = bbox_loss_coefficient lowercase = giou_loss_coefficient lowercase = focal_alpha super().__init__(is_encoder_decoder=snake_case , **snake_case ) @property def SCREAMING_SNAKE_CASE__ ( self ): return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE__ ( self ): return self.d_model def SCREAMING_SNAKE_CASE__ ( self ): lowercase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowercase = self.backbone_config.to_dict() lowercase = self.__class__.model_type return output class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : List[str] = version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ): return 1E-5 @property def SCREAMING_SNAKE_CASE__ ( self ): return 12
84
"""simple docstring""" from __future__ import annotations from functools import lru_cache from math import ceil _a = 100 _a = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} _UpperCamelCase = set() _UpperCamelCase = 42 _UpperCamelCase = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def lowerCamelCase__ ( __snake_case = 50_00 ) -> int | None: """simple docstring""" for number_to_partition in range(1, __snake_case ): if len(partition(__snake_case ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"""{solution() = }""")
19
0
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib SCREAMING_SNAKE_CASE__ : List[Any] = get_logger() SCREAMING_SNAKE_CASE__ : Optional[dict] = None class snake_case ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self : Any , a_ : Dict=None , a_ : Dict=None , **a_ : Optional[int] )-> Tuple: """simple docstring""" super().__init__(features=a_ ) import jax from jaxlib.xla_client import Device if isinstance(a_ , a_ ): raise ValueError( F'''Expected {device} to be a `str` not {type(a_ )}, as `jaxlib.xla_extension.Device` ''' 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = device if isinstance(a_ , a_ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE__ : List[Any] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F'''Device with string identifier {self.device} not listed among the available ''' F'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' F'''device: {str(jax.devices()[0] )}.''' ) SCREAMING_SNAKE_CASE__ : Tuple = str(jax.devices()[0] ) SCREAMING_SNAKE_CASE__ : List[Any] = jnp_array_kwargs @staticmethod def __lowercase( )-> Dict[str, "jaxlib.xla_extension.Device"]: """simple docstring""" import jax return {str(a_ ): device for device in jax.devices()} def __lowercase( self : str , a_ : Dict )-> List[str]: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a_ , a_ ) and column: if all( isinstance(a_ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(a_ , axis=0 ) return column def __lowercase( self : int , a_ : Union[str, Any] )-> Union[str, Any]: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a_ , (str, bytes, type(a_ )) ): return value elif isinstance(a_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE__ : Optional[int] = {} if isinstance(a_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: SCREAMING_SNAKE_CASE__ : str = {'dtype': jnp.intaa} else: SCREAMING_SNAKE_CASE__ : List[Any] = {'dtype': jnp.intaa} elif isinstance(a_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE__ : Optional[int] = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a_ , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ : List[str] = np.asarray(a_ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE__ : Optional[int] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(a_ , **{**default_dtype, **self.jnp_array_kwargs} ) def __lowercase( self : Optional[Any] , a_ : Any )-> Union[str, Any]: """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(a_ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(a_ , '__array__' ) and not isinstance(a_ , jax.Array ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a_ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a_ ) for substruct in data_struct] ) elif isinstance(a_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a_ ) for substruct in data_struct] ) return self._tensorize(a_ ) def __lowercase( self : Union[str, Any] , a_ : dict )-> List[str]: """simple docstring""" return map_nested(self._recursive_tensorize , a_ , map_list=a_ ) def __lowercase( self : Dict , a_ : pa.Table )-> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.numpy_arrow_extractor().extract_row(a_ ) SCREAMING_SNAKE_CASE__ : List[str] = self.python_features_decoder.decode_row(a_ ) return self.recursive_tensorize(a_ ) def __lowercase( self : Any , a_ : pa.Table )-> "jax.Array": """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.numpy_arrow_extractor().extract_column(a_ ) SCREAMING_SNAKE_CASE__ : List[str] = self.python_features_decoder.decode_column(a_ , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE__ : Dict = self.recursive_tensorize(a_ ) SCREAMING_SNAKE_CASE__ : Tuple = self._consolidate(a_ ) return column def __lowercase( self : Optional[int] , a_ : pa.Table )-> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.numpy_arrow_extractor().extract_batch(a_ ) SCREAMING_SNAKE_CASE__ : str = self.python_features_decoder.decode_batch(a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = self.recursive_tensorize(a_ ) for column_name in batch: SCREAMING_SNAKE_CASE__ : Tuple = self._consolidate(batch[column_name] ) return batch
85
"""simple docstring""" from collections.abc import Callable import numpy as np def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> np.array: """simple docstring""" _UpperCamelCase = int(np.ceil((x_end - xa) / step_size ) ) _UpperCamelCase = np.zeros((n + 1,) ) _UpperCamelCase = ya _UpperCamelCase = xa for k in range(__snake_case ): _UpperCamelCase = y[k] + step_size * ode_func(__snake_case, y[k] ) _UpperCamelCase = y[k] + ( (step_size / 2) * (ode_func(__snake_case, y[k] ) + ode_func(x + step_size, __snake_case )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
19
0
def __snake_case ( __UpperCamelCase : int = 100 ): """simple docstring""" A_ = n * (n + 1) * (2 * n + 1) / 6 A_ = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"{solution() = }")
86
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _a = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _a = parser.parse_args() if args.model_type == "bert": _a = BertForMaskedLM.from_pretrained(args.model_name) _a = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _a = model.state_dict() _a = {} for w in ["word_embeddings", "position_embeddings"]: _a = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _a = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] _a = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _a = state_dict["""cls.predictions.decoder.weight"""] _a = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _a = state_dict[F"""cls.predictions.transform.dense.{w}"""] _a = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
19
0
_lowerCamelCase : Union[str, Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowerCamelCase : Dict = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowerCamelCase : Dict = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
87
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _a = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class _UpperCAmelCase: lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = 'gelu' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=False , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a=0.1 , __a=0.1 , __a=20 , __a=2 , __a=1 , __a=0 , ) -> int: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) _UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) _UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCamelCase = prepare_pegasus_inputs_dict(__a , __a , __a) return config, inputs_dict def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids''']) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a) _UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''') _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __a , decoder_attention_mask=__a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__a , ) _UpperCamelCase = model.decode(__a , __a) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''') def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids''']) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a) _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__a , decoder_position_ids=__a , ) _UpperCamelCase = model.decode(__a , __a , decoder_attention_mask=__a) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''') def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=None, __snake_case=None, ) -> Union[str, Any]: """simple docstring""" if attention_mask is None: _UpperCamelCase = np.not_equal(__snake_case, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _UpperCamelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = FlaxPegasusModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = self._prepare_for_class(__a , __a) _UpperCamelCase = model_class(__a) @jax.jit def encode_jitted(__a , __a=None , **__a): return model.encode(input_ids=__a , attention_mask=__a) with self.subTest('''JIT Enabled'''): _UpperCamelCase = encode_jitted(**__a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): _UpperCamelCase = encode_jitted(**__a).to_tuple() self.assertEqual(len(__a) , len(__a)) for jitted_output, output in zip(__a , __a): self.assertEqual(jitted_output.shape , output.shape) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = model_class(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask''']) _UpperCamelCase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(__a , __a , __a): return model.decode( decoder_input_ids=__a , decoder_attention_mask=__a , encoder_outputs=__a , ) with self.subTest('''JIT Enabled'''): _UpperCamelCase = decode_jitted(**__a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): _UpperCamelCase = decode_jitted(**__a).to_tuple() self.assertEqual(len(__a) , len(__a)) for jitted_output, output in zip(__a , __a): self.assertEqual(jitted_output.shape , output.shape) @slow def UpperCAmelCase ( self) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=__a) _UpperCamelCase = np.ones((1, 1)) _UpperCamelCase = model(__a) self.assertIsNotNone(__a) @slow def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''') _UpperCamelCase = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''') _UpperCamelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] _UpperCamelCase = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] _UpperCamelCase = tokenizer(__a , return_tensors='''np''' , truncation=__a , max_length=5_12 , padding=__a) _UpperCamelCase = model.generate(**__a , num_beams=2).sequences _UpperCamelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a) assert tgt_text == decoded
19
0
"""simple docstring""" def _snake_case ( __snake_case : int ): """simple docstring""" _lowerCamelCase : Optional[int] = 1 for i in range(1 , num + 1 ): fact *= i return fact def _snake_case ( __snake_case : int ): """simple docstring""" _lowerCamelCase : str = 0 while number > 0: _lowerCamelCase : Union[str, Any] = number % 10 sum_of_digits += last_digit _lowerCamelCase : Union[str, Any] = number // 10 # Removing the last_digit from the given number return sum_of_digits def _snake_case ( __snake_case : int = 100 ): """simple docstring""" _lowerCamelCase : List[str] = factorial(__snake_case ) _lowerCamelCase : Union[str, Any] = split_and_add(__snake_case ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
88
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , __a=0 , ) -> Any: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope _UpperCamelCase = projection_dim def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) _UpperCamelCase = DPRConfig(projection_dim=self.projection_dim , **config.to_dict()) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = TFDPRContextEncoder(config=__a) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFDPRQuestionEncoder(config=__a) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = TFDPRReader(config=__a) _UpperCamelCase = model(__a , attention_mask=__a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,)) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowercase__ = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDPRModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__a) @slow def UpperCAmelCase ( self) -> str: '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRContextEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRContextEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRQuestionEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRReader.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''') _UpperCamelCase = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]]) # [CLS] hello, is my dog cute? [SEP] _UpperCamelCase = model(__a)[0] # embedding shape = (1, 768) # compare the actual values for a slice. _UpperCamelCase = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ]) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4))
19
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Any = KandinskyVaaControlnetImgaImgPipeline lowercase_ : Tuple = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] lowercase_ : Optional[int] = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] lowercase_ : str = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowercase_ : List[str] = False @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" return 32 @property def UpperCamelCase ( self) -> Tuple: """simple docstring""" return 32 @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.time_input_dim @property def UpperCamelCase ( self) -> Tuple: """simple docstring""" return self.time_input_dim * 4 @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" return 1_00 @property def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" torch.manual_seed(0) _lowercase : Tuple = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowercase : Tuple = UNetaDConditionModel(**lowerCamelCase) return model @property def UpperCamelCase ( self) -> str: """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def UpperCamelCase ( self) -> Any: """simple docstring""" torch.manual_seed(0) _lowercase : List[Any] = VQModel(**self.dummy_movq_kwargs) return model def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[str] = self.dummy_unet _lowercase : List[Any] = self.dummy_movq _lowercase : Union[str, Any] = { 'num_train_timesteps': 10_00, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } _lowercase : Any = DDIMScheduler(**lowerCamelCase) _lowercase : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> Optional[Any]: """simple docstring""" _lowercase : Dict = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase)).to(lowerCamelCase) _lowercase : Any = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1)).to( lowerCamelCase) # create init_image _lowercase : Tuple = floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCamelCase)).to(lowerCamelCase) _lowercase : str = image.cpu().permute(0, 2, 3, 1)[0] _lowercase : Optional[int] = Image.fromarray(np.uinta(lowerCamelCase)).convert('RGB').resize((2_56, 2_56)) # create hint _lowercase : int = floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCamelCase)).to(lowerCamelCase) if str(lowerCamelCase).startswith('mps'): _lowercase : str = torch.manual_seed(lowerCamelCase) else: _lowercase : Any = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : Any = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Dict = 'cpu' _lowercase : Optional[Any] = self.get_dummy_components() _lowercase : Any = self.pipeline_class(**lowerCamelCase) _lowercase : str = pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = pipe(**self.get_dummy_inputs(lowerCamelCase)) _lowercase : List[str] = output.images _lowercase : List[Any] = pipe( **self.get_dummy_inputs(lowerCamelCase), return_dict=lowerCamelCase, )[0] _lowercase : Tuple = image[0, -3:, -3:, -1] _lowercase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowercase : int = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy') _lowercase : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png') _lowercase : Dict = init_image.resize((5_12, 5_12)) _lowercase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png') _lowercase : List[str] = torch.from_numpy(np.array(lowerCamelCase)).float() / 2_5_5.0 _lowercase : Union[str, Any] = hint.permute(2, 0, 1).unsqueeze(0) _lowercase : int = 'A robot, 4k photo' _lowercase : List[Any] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior', torch_dtype=torch.floataa) pipe_prior.to(lowerCamelCase) _lowercase : Dict = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth', torch_dtype=torch.floataa) _lowercase : Union[str, Any] = pipeline.to(lowerCamelCase) pipeline.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Tuple = torch.Generator(device='cpu').manual_seed(0) _lowercase , _lowercase : str = pipe_prior( lowerCamelCase, image=lowerCamelCase, strength=0.8_5, generator=lowerCamelCase, negative_prompt='', ).to_tuple() _lowercase : Union[str, Any] = pipeline( image=lowerCamelCase, image_embeds=lowerCamelCase, negative_image_embeds=lowerCamelCase, hint=lowerCamelCase, generator=lowerCamelCase, num_inference_steps=1_00, height=5_12, width=5_12, strength=0.5, output_type='np', ) _lowercase : Optional[Any] = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(lowerCamelCase, lowerCamelCase)
89
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x2_0000 and cp <= 0x2_A6DF) # or (cp >= 0x2_A700 and cp <= 0x2_B73F) # or (cp >= 0x2_B740 and cp <= 0x2_B81F) # or (cp >= 0x2_B820 and cp <= 0x2_CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2_F800 and cp <= 0x2_FA1F) # ): # return True return False def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" for char in word: _UpperCamelCase = ord(__snake_case ) if not _is_chinese_char(__snake_case ): return 0 return 1 def lowerCamelCase__ ( __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = set() for token in tokens: _UpperCamelCase = len(__snake_case ) > 1 and is_chinese(__snake_case ) if chinese_word: word_set.add(__snake_case ) _UpperCamelCase = list(__snake_case ) return word_list def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" if not chinese_word_set: return bert_tokens _UpperCamelCase = max([len(__snake_case ) for w in chinese_word_set] ) _UpperCamelCase = bert_tokens _UpperCamelCase , _UpperCamelCase = 0, len(__snake_case ) while start < end: _UpperCamelCase = True if is_chinese(bert_word[start] ): _UpperCamelCase = min(end - start, __snake_case ) for i in range(__snake_case, 1, -1 ): _UpperCamelCase = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _UpperCamelCase = '''##''' + bert_word[j] _UpperCamelCase = start + i _UpperCamelCase = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws _UpperCamelCase = [get_chinese_word(__snake_case ) for r in res] ltp_res.extend(__snake_case ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=__snake_case, truncation=__snake_case, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for input_ids, chinese_word in zip(__snake_case, __snake_case ): _UpperCamelCase = [] for id in input_ids: _UpperCamelCase = bert_tokenizer._convert_id_to_token(__snake_case ) input_tokens.append(__snake_case ) _UpperCamelCase = add_sub_symbol(__snake_case, __snake_case ) _UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__snake_case ): if token[:2] == "##": _UpperCamelCase = token[2:] # save chinese tokens' pos if len(__snake_case ) == 1 and _is_chinese_char(ord(__snake_case ) ): ref_id.append(__snake_case ) ref_ids.append(__snake_case ) assert len(__snake_case ) == len(__snake_case ) return ref_ids def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _UpperCamelCase = f.readlines() _UpperCamelCase = [line.strip() for line in data if len(__snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _UpperCamelCase = LTP(args.ltp ) # faster in GPU device _UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) _UpperCamelCase = prepare_ref(__snake_case, __snake_case, __snake_case ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _UpperCamelCase = [json.dumps(__snake_case ) + '''\n''' for ref in ref_ids] f.writelines(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) _a = parser.parse_args() main(args)
19
0
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __UpperCAmelCase = False class a__ ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe.dual_guided( prompt='''first prompt''' , image=lowerCamelCase_ , text_to_image_strength=0.75 , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = VersatileDiffusionPipeline.from_pretrained(lowerCamelCase_ , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = generator.manual_seed(0 ) lowerCAmelCase__ = pipe.dual_guided( prompt='''first prompt''' , image=lowerCamelCase_ , text_to_image_strength=0.75 , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = '''cyberpunk 2077''' lowerCAmelCase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe.dual_guided( prompt=lowerCamelCase_ , image=lowerCamelCase_ , text_to_image_strength=0.75 , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images lowerCAmelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 lowerCAmelCase__ = '''A painting of a squirrel eating a burger ''' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe.text_to_image( prompt=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images lowerCAmelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 lowerCAmelCase__ = pipe.image_variation(lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''numpy''' ).images lowerCAmelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
90
"""simple docstring""" import heapq def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" _UpperCamelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__snake_case, [-1 * len(__snake_case ), (key, value)] ) # chosen_vertices = set of chosen vertices _UpperCamelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _UpperCamelCase = heapq.heappop(__snake_case )[1][0] chosen_vertices.add(__snake_case ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _UpperCamelCase = elem[1][1].index(__snake_case ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__snake_case ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _a = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
19
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowercase = logging.getLogger(__name__) @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _lowerCamelCase: Optional[str] = field( default=_lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _lowerCamelCase: Optional[str] = field( default='''NER''' , metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''} ) _lowerCamelCase: Optional[str] = field( default=_lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _lowerCamelCase: bool = field(default=_lowercase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _lowerCamelCase: Optional[str] = field( default=_lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: str = field( metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''} ) _lowerCamelCase: Optional[str] = field( default=_lowercase , metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''} , ) _lowerCamelCase: int = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowerCamelCase: bool = field( default=_lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A , A , A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A , A , A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) A = import_module('tasks' ) try: A = getattr(snake_case__ , model_args.task_type ) A = token_classification_task_clazz() except AttributeError: raise ValueError( F'Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' F'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , snake_case__ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task A = token_classification_task.get_labels(data_args.labels ) A = dict(enumerate(snake_case__ ) ) A = len(snake_case__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=snake_case__ , idalabel=snake_case__ , labelaid={label: i for i, label in enumerate(snake_case__ )} , cache_dir=model_args.cache_dir , ) A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) A = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=snake_case__ , cache_dir=model_args.cache_dir , ) # Get datasets A = ( TokenClassificationDataset( token_classification_task=snake_case__ , data_dir=data_args.data_dir , tokenizer=snake_case__ , labels=snake_case__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) A = ( TokenClassificationDataset( token_classification_task=snake_case__ , data_dir=data_args.data_dir , tokenizer=snake_case__ , labels=snake_case__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> Tuple[List[int], List[int]]: A = np.argmax(snake_case__ , axis=2 ) A , A = preds.shape A = [[] for _ in range(snake_case__ )] A = [[] for _ in range(snake_case__ )] for i in range(snake_case__ ): for j in range(snake_case__ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(snake_case__ : EvalPrediction ) -> Dict: A , A = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(snake_case__ , snake_case__ ), "precision": precision_score(snake_case__ , snake_case__ ), "recall": recall_score(snake_case__ , snake_case__ ), "f1": fa_score(snake_case__ , snake_case__ ), } # Data collator A = DataCollatorWithPadding(snake_case__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer A = Trainer( model=snake_case__ , args=snake_case__ , train_dataset=snake_case__ , eval_dataset=snake_case__ , compute_metrics=snake_case__ , data_collator=snake_case__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) A = trainer.evaluate() A = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(snake_case__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , snake_case__ , snake_case__ ) writer.write('%s = %s\n' % (key, value) ) results.update(snake_case__ ) # Predict if training_args.do_predict: A = TokenClassificationDataset( token_classification_task=snake_case__ , data_dir=data_args.data_dir , tokenizer=snake_case__ , labels=snake_case__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) A , A , A = trainer.predict(snake_case__ ) A , A = align_predictions(snake_case__ , snake_case__ ) A = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(snake_case__ , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , snake_case__ , snake_case__ ) writer.write('%s = %s\n' % (key, value) ) # Save predictions A = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(snake_case__ , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(snake_case__ , snake_case__ , snake_case__ ) return results def _snake_case ( snake_case__ : Any ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
91
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _UpperCamelCase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj ) assert isinstance(_test_patching.os.path, _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" assert _test_patching.open is open _UpperCamelCase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, '''open''', __snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching, '''pandas.read_csv''', __snake_case ): pass def lowerCamelCase__ ( ) -> Dict: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, '''len''', __snake_case ) is None with patch_submodule(_test_patching, '''len''', __snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_start_and_stop_mock__''' _UpperCamelCase = patch_submodule(_test_patching, '''open''', __snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _UpperCamelCase = '''__test_patch_submodule_successive_join__''' _UpperCamelCase = '''__test_patch_submodule_successive_dirname__''' _UpperCamelCase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> str: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching, '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''', __snake_case ): pass with patch_submodule(_test_patching, '''os.__attribute_that_doesn_exist__''', __snake_case ): pass
19
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = 'trajectory_transformer' lowerCamelCase_ = ['past_key_values'] lowerCamelCase_ = { 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Optional[Any] , UpperCAmelCase__ : List[str]=100 , UpperCAmelCase__ : Optional[int]=5 , UpperCAmelCase__ : int=1 , UpperCAmelCase__ : Any=1 , UpperCAmelCase__ : Optional[int]=249 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : Union[str, Any]=17 , UpperCAmelCase__ : Tuple=25 , UpperCAmelCase__ : Dict=4 , UpperCAmelCase__ : List[str]=4 , UpperCAmelCase__ : str=128 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : str=0.00_06 , UpperCAmelCase__ : Optional[int]=512 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : List[Any]=1E-12 , UpperCAmelCase__ : str=1 , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Optional[Any]=1 , UpperCAmelCase__ : Any=50256 , UpperCAmelCase__ : Any=50256 , **UpperCAmelCase__ : Union[str, Any] , ): '''simple docstring''' lowercase : str =vocab_size lowercase : Tuple =action_weight lowercase : Dict =reward_weight lowercase : str =value_weight lowercase : Tuple =max_position_embeddings lowercase : Any =block_size lowercase : Dict =action_dim lowercase : List[str] =observation_dim lowercase : List[Any] =transition_dim lowercase : Any =learning_rate lowercase : Any =n_layer lowercase : Any =n_head lowercase : int =n_embd lowercase : Optional[Any] =embd_pdrop lowercase : Tuple =attn_pdrop lowercase : Union[str, Any] =resid_pdrop lowercase : Optional[int] =initializer_range lowercase : Union[str, Any] =layer_norm_eps lowercase : Dict =kaiming_initializer_range lowercase : Union[str, Any] =use_cache super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ )
92
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = original_name.split('''.''' )[0] _UpperCamelCase = key.split('''.''' ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 2] ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 1] ) _UpperCamelCase = orig_block_num - offset _UpperCamelCase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''', F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = OrderedDict() _UpperCamelCase , _UpperCamelCase = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): _UpperCamelCase = key.replace('''network''', '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 _UpperCamelCase = key[: key.find('''proj''' )] _UpperCamelCase = key.replace(__snake_case, F'''patch_embeddings.{total_embed_found}.''' ) _UpperCamelCase = key.replace('''proj''', '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: _UpperCamelCase = '''poolformer.encoder.''' + key if "mlp.fc1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc1''', '''output.conv1''' ) if "mlp.fc2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc2''', '''output.conv2''' ) if "norm1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm1''', '''before_norm''' ) if "norm2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm2''', '''after_norm''' ) if "layer_scale_1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_1''', '''layer_scale_1''' ) if "layer_scale_2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_2''', '''layer_scale_2''' ) if "head" in key: _UpperCamelCase = key.replace('''head''', '''classifier''' ) _UpperCamelCase = value return new_state_dict def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase = Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return image @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = PoolFormerConfig() # set attributes based on model_name _UpperCamelCase = '''huggingface/label-files''' _UpperCamelCase = model_name[-3:] _UpperCamelCase = 10_00 _UpperCamelCase = '''imagenet-1k-id2label.json''' _UpperCamelCase = (1, 10_00) # set config attributes _UpperCamelCase = json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type='''dataset''' ), '''r''' ) ) _UpperCamelCase = {int(__snake_case ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} if size == "s12": _UpperCamelCase = [2, 2, 6, 2] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s24": _UpperCamelCase = [4, 4, 12, 4] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.9 elif size == "m36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 elif size == "m48": _UpperCamelCase = [8, 8, 24, 8] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) # Prepare image _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__snake_case, return_tensors='''pt''' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict _UpperCamelCase = torch.load(__snake_case, map_location=torch.device('''cpu''' ) ) # rename keys _UpperCamelCase = rename_keys(__snake_case ) # create HuggingFace model and load state dict _UpperCamelCase = PoolFormerForImageClassification(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # Define image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) _UpperCamelCase = image_processor(images=prepare_img(), return_tensors='''pt''' ).pixel_values # forward pass _UpperCamelCase = model(__snake_case ) _UpperCamelCase = outputs.logits # define expected logit slices for different models if size == "s12": _UpperCamelCase = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": _UpperCamelCase = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": _UpperCamelCase = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": _UpperCamelCase = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": _UpperCamelCase = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3], __snake_case, atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _a = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
19
0
"""simple docstring""" from pathlib import Path import fire def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: """simple docstring""" lowerCAmelCase__ :Any = Path(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[str] = Path(_SCREAMING_SNAKE_CASE ) dest_dir.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) for path in src_dir.iterdir(): lowerCAmelCase__ :Tuple = [x.rstrip() for x in list(path.open().readlines() )][:n] lowerCAmelCase__ :Optional[Any] = dest_dir.joinpath(path.name ) print(_SCREAMING_SNAKE_CASE ) dest_path.open('w' ).write('\n'.join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": fire.Fire(minify)
93
"""simple docstring""" import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class _UpperCAmelCase( lowerCamelCase ): lowercase__ = (DPMSolverSDEScheduler,) lowercase__ = 10 def UpperCAmelCase ( self , **__a) -> int: '''simple docstring''' _UpperCamelCase = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**__a) return config def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02]): self.check_over_configs(beta_start=__a , beta_end=__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a) def UpperCAmelCase ( self) -> str: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''') _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a , use_karras_sigmas=__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2
19
0
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets SCREAMING_SNAKE_CASE = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' SCREAMING_SNAKE_CASE = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' SCREAMING_SNAKE_CASE = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def A__ ( self : Tuple ) -> Dict: '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def A__ ( self : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , ) -> Union[str, Any]: '''simple docstring''' lowercase : Union[str, Any] =len(references[0] ) if any(len(UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) lowercase : List[Any] =[[refs[i] for refs in references] for i in range(UpperCAmelCase )] lowercase : int =TER( normalized=UpperCAmelCase , no_punct=UpperCAmelCase , asian_support=UpperCAmelCase , case_sensitive=UpperCAmelCase , ) lowercase : Union[str, Any] =sb_ter.corpus_score(UpperCAmelCase , UpperCAmelCase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
94
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['pixel_values'] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BICUBIC , __a = True , __a = True , __a = 1 / 2_55 , __a = None , __a = True , __a = None , __a = None , **__a , ) -> None: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a , default_to_square=__a , param_name='''crop_size''') _UpperCamelCase = do_resize _UpperCamelCase = do_rescale _UpperCamelCase = do_normalize _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = rescale_factor _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BILINEAR , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "shortest_edge" in size: _UpperCamelCase = get_resize_output_image_size(__a , size=size['''shortest_edge'''] , default_to_square=__a) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''') return resize(__a , size=__a , resample=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''') return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a) -> np.ndarray: '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> BatchFeature: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(__a , param_name='''crop_size''' , default_to_square=__a) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(__a) if not is_batched(__a): _UpperCamelCase = [images] if not valid_images(__a): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(__a) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=__a , size=__a , resample=__a) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=__a , size=__a) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=__a , scale=__a) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=__a , mean=__a , std=__a) for image in images] _UpperCamelCase = [to_channel_dimension_format(__a , __a) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=__a , tensor_type=__a)
19
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCamelCase_ : @staticmethod def _SCREAMING_SNAKE_CASE ( *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Dict ) -> str: pass def snake_case ( A__ ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. lowerCamelCase_ = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class UpperCamelCase_ (unittest.TestCase ): __magic_name__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : int = pipeline( "document-question-answering" , model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) UpperCAmelCase_ : int = INVOICE_URL UpperCAmelCase_ : Union[str, Any] = list(zip(*apply_tesseract(load_image(lowerCAmelCase_ ) , lowerCAmelCase_ , "" ) ) ) UpperCAmelCase_ : Optional[Any] = "What is the placebo?" UpperCAmelCase_ : Tuple = [ { "image": load_image(lowerCAmelCase_ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] ) -> int: UpperCAmelCase_ : Union[str, Any] = dqa_pipeline(lowerCAmelCase_ , top_k=2 ) self.assertEqual( lowerCAmelCase_ , [ [ {"score": ANY(lowerCAmelCase_ ), "answer": ANY(lowerCAmelCase_ ), "start": ANY(lowerCAmelCase_ ), "end": ANY(lowerCAmelCase_ )}, {"score": ANY(lowerCAmelCase_ ), "answer": ANY(lowerCAmelCase_ ), "start": ANY(lowerCAmelCase_ ), "end": ANY(lowerCAmelCase_ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: UpperCAmelCase_ : Tuple = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) UpperCAmelCase_ : Dict = INVOICE_URL UpperCAmelCase_ : int = "How many cats are there?" UpperCAmelCase_ : Any = [ {"score": 0.0_0_0_1, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_0_0_1, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] UpperCAmelCase_ : List[str] = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase_ , decimals=4 ) , lowerCAmelCase_ ) UpperCAmelCase_ : Dict = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase_ , decimals=4 ) , lowerCAmelCase_ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably UpperCAmelCase_ : int = "./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ : Dict = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual(lowerCAmelCase_ , [] ) # We can optionnally pass directly the words and bounding boxes UpperCAmelCase_ : int = "./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[Any] = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , words=lowerCAmelCase_ , boxes=lowerCAmelCase_ , top_k=2 ) self.assertEqual(lowerCAmelCase_ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _SCREAMING_SNAKE_CASE ( self : Any ) -> int: UpperCAmelCase_ : Dict = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) UpperCAmelCase_ : Optional[Any] = INVOICE_URL UpperCAmelCase_ : Dict = "What is the invoice number?" UpperCAmelCase_ : int = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_4_4, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_0_0_9, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : int = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_4_4, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_0_0_9, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : Any = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"score": 0.9_9_4_4, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_0_0_9, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: UpperCAmelCase_ : Tuple = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) UpperCAmelCase_ : Tuple = INVOICE_URL UpperCAmelCase_ : Any = "What is the invoice number?" UpperCAmelCase_ : str = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_7_4, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_9_4_8, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : Optional[int] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_7_4, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_9_4_8, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : str = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"score": 0.9_9_7_4, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_9_4_8, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowerCAmelCase_ ) UpperCAmelCase_ : str = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowerCAmelCase_ , revision="3dc6de3" , ) UpperCAmelCase_ : Any = INVOICE_URL UpperCAmelCase_ : List[str] = "What is the invoice number?" UpperCAmelCase_ : str = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.4_2_5_1, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_8_1_9, "answer": "1110212019", "start": 23, "end": 23}, ] , ) UpperCAmelCase_ : Dict = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.4_2_5_1, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_8_1_9, "answer": "1110212019", "start": 23, "end": 23}, ] , ) UpperCAmelCase_ : Union[str, Any] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"score": 0.4_2_5_1, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_8_1_9, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) UpperCAmelCase_ : Dict = list(zip(*apply_tesseract(load_image(lowerCAmelCase_ ) , lowerCAmelCase_ , "" ) ) ) # This model should also work if `image` is set to None UpperCAmelCase_ : List[str] = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.4_2_5_1, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_8_1_9, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowerCAmelCase_ ) UpperCAmelCase_ : str = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowerCAmelCase_ , revision="3dc6de3" , max_seq_len=50 , ) UpperCAmelCase_ : List[Any] = INVOICE_URL UpperCAmelCase_ : Optional[int] = "What is the invoice number?" UpperCAmelCase_ : int = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_9_9, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_9_9_8, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : Tuple = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"score": 0.9_9_9_9, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_9_9_8, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) UpperCAmelCase_ : Optional[int] = list(zip(*apply_tesseract(load_image(lowerCAmelCase_ ) , lowerCAmelCase_ , "" ) ) ) # This model should also work if `image` is set to None UpperCAmelCase_ : Dict = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_9_9, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_9_9_8, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) UpperCAmelCase_ : Optional[int] = INVOICE_URL UpperCAmelCase_ : int = "What is the invoice number?" UpperCAmelCase_ : List[str] = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase_ , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: pass
95
"""simple docstring""" # Imports import numpy as np class _UpperCAmelCase: def __init__( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) def UpperCAmelCase ( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' if red is not None: _UpperCamelCase = red if green is not None: _UpperCamelCase = green if blue is not None: _UpperCamelCase = blue if red_edge is not None: _UpperCamelCase = red_edge if nir is not None: _UpperCamelCase = nir return True def UpperCAmelCase ( self , __a="" , __a=None , __a=None , __a=None , __a=None , __a=None) -> List[str]: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) _UpperCamelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''') return False def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self) -> Any: '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self , __a=0.08 , __a=1.22 , __a=0.03) -> Optional[Any]: '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir / self.green) - 1 def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.red - self.blue) / self.red def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir - self.green def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def UpperCAmelCase ( self , __a=0.16) -> Optional[Any]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self , __a=0.5) -> Dict: '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self , __a=None , __a=None) -> Any: '''simple docstring''' return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self) -> Any: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> str: '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) _UpperCamelCase = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Any: '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
19
0
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __A ( unittest.TestCase ): def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[Any]: __magic_name__: List[str] = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __magic_name__: List[Any] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __magic_name__: Union[str, Any] = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __magic_name__: Optional[int] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_6_0_0_0, """return_attention_mask""": False, """do_normalize""": True, } __magic_name__: int = tempfile.mkdtemp() __magic_name__: Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__: Tuple = os.path.join(self.tmpdirname , __snake_case ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__snake_case ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__snake_case ) + """\n""" ) # load decoder from hub __magic_name__: Dict = """hf-internal-testing/ngram-beam-search-decoder""" def lowerCamelCase__ ( self : Any , **__snake_case : str ) -> Optional[int]: __magic_name__: Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(__snake_case ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def lowerCamelCase__ ( self : str , **__snake_case : int ) -> Dict: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__snake_case ) def lowerCamelCase__ ( self : int , **__snake_case : List[str] ) -> int: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self : List[Any] ) -> Optional[Any]: __magic_name__: Dict = self.get_tokenizer() __magic_name__: Any = self.get_feature_extractor() __magic_name__: Tuple = self.get_decoder() __magic_name__: Tuple = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) processor.save_pretrained(self.tmpdirname ) __magic_name__: Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __snake_case ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __snake_case ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __snake_case ) def lowerCamelCase__ ( self : Any ) -> Tuple: __magic_name__: Union[str, Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __magic_name__: int = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCamelCase__ ( self : Optional[int] ) -> Optional[Any]: __magic_name__: Union[str, Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__snake_case , """include""" ): WavaVecaProcessorWithLM( tokenizer=__snake_case , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCamelCase__ ( self : Union[str, Any] ) -> int: __magic_name__: int = self.get_feature_extractor() __magic_name__: Optional[Any] = self.get_tokenizer() __magic_name__: List[Any] = self.get_decoder() __magic_name__: int = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) __magic_name__: Tuple = floats_list((3, 1_0_0_0) ) __magic_name__: List[str] = feature_extractor(__snake_case , return_tensors="""np""" ) __magic_name__: Tuple = processor(__snake_case , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ ( self : Union[str, Any] ) -> List[str]: __magic_name__: Tuple = self.get_feature_extractor() __magic_name__: List[str] = self.get_tokenizer() __magic_name__: str = self.get_decoder() __magic_name__: Tuple = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) __magic_name__: Optional[int] = """This is a test string""" __magic_name__: List[str] = processor(text=__snake_case ) __magic_name__: Tuple = tokenizer(__snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ ( self : int , __snake_case : List[str]=(2, 1_0, 1_6) , __snake_case : List[Any]=7_7 ) -> Dict: np.random.seed(__snake_case ) return np.random.rand(*__snake_case ) def lowerCamelCase__ ( self : Any ) -> Any: __magic_name__: int = self.get_feature_extractor() __magic_name__: Tuple = self.get_tokenizer() __magic_name__: Any = self.get_decoder() __magic_name__: Tuple = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) __magic_name__: List[Any] = self._get_dummy_logits(shape=(1_0, 1_6) , seed=1_3 ) __magic_name__: str = processor.decode(__snake_case ) __magic_name__: Optional[int] = decoder.decode_beams(__snake_case )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowerCamelCase__ ( self : int , __snake_case : Dict ) -> Any: __magic_name__: int = self.get_feature_extractor() __magic_name__: List[Any] = self.get_tokenizer() __magic_name__: int = self.get_decoder() __magic_name__: Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) __magic_name__: Optional[int] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __magic_name__: Optional[int] = processor.batch_decode(__snake_case ) else: with get_context(__snake_case ).Pool() as pool: __magic_name__: Any = processor.batch_decode(__snake_case , __snake_case ) __magic_name__: Dict = list(__snake_case ) with get_context("""fork""" ).Pool() as p: __magic_name__: List[str] = decoder.decode_beams_batch(__snake_case , __snake_case ) __magic_name__, __magic_name__, __magic_name__: Optional[int] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__snake_case , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__snake_case , decoded_processor.logit_score ) self.assertListEqual(__snake_case , decoded_processor.lm_score ) def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: __magic_name__: List[str] = self.get_feature_extractor() __magic_name__: Optional[Any] = self.get_tokenizer() __magic_name__: Optional[int] = self.get_decoder() __magic_name__: Dict = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) __magic_name__: str = self._get_dummy_logits() __magic_name__: Dict = 1_5 __magic_name__: int = -20.0 __magic_name__: int = -4.0 __magic_name__: Dict = processor.batch_decode( __snake_case , beam_width=__snake_case , beam_prune_logp=__snake_case , token_min_logp=__snake_case , ) __magic_name__: Optional[int] = decoded_processor_out.text __magic_name__: Union[str, Any] = list(__snake_case ) with get_context("""fork""" ).Pool() as pool: __magic_name__: str = decoder.decode_beams_batch( __snake_case , __snake_case , beam_width=__snake_case , beam_prune_logp=__snake_case , token_min_logp=__snake_case , ) __magic_name__: Any = [d[0][0] for d in decoded_decoder_out] __magic_name__: Optional[int] = [d[0][2] for d in decoded_decoder_out] __magic_name__: Optional[Any] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __snake_case ) self.assertTrue(np.array_equal(__snake_case , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __snake_case , atol=1E-3 ) ) self.assertTrue(np.array_equal(__snake_case , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __snake_case , atol=1E-3 ) ) def lowerCamelCase__ ( self : Union[str, Any] ) -> int: __magic_name__: int = self.get_feature_extractor() __magic_name__: Any = self.get_tokenizer() __magic_name__: Union[str, Any] = self.get_decoder() __magic_name__: str = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) __magic_name__: Any = self._get_dummy_logits() __magic_name__: Union[str, Any] = 2.0 __magic_name__: Optional[Any] = 5.0 __magic_name__: Optional[Any] = -20.0 __magic_name__: List[str] = True __magic_name__: List[Any] = processor.batch_decode( __snake_case , alpha=__snake_case , beta=__snake_case , unk_score_offset=__snake_case , lm_score_boundary=__snake_case , ) __magic_name__: Union[str, Any] = decoded_processor_out.text __magic_name__: Union[str, Any] = list(__snake_case ) decoder.reset_params( alpha=__snake_case , beta=__snake_case , unk_score_offset=__snake_case , lm_score_boundary=__snake_case , ) with get_context("""fork""" ).Pool() as pool: __magic_name__: str = decoder.decode_beams_batch( __snake_case , __snake_case , ) __magic_name__: List[str] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __snake_case ) __magic_name__: List[str] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> List[Any]: __magic_name__: List[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __magic_name__: Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] __magic_name__: Union[str, Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __magic_name__: Optional[int] = os.listdir(__snake_case ) __magic_name__: Union[str, Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__snake_case , __snake_case ) def lowerCamelCase__ ( self : Any ) -> Any: __magic_name__: int = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __magic_name__: List[Any] = WavaVecaProcessorWithLM.from_pretrained(__snake_case ) __magic_name__: Any = processor.decoder.model_container[processor.decoder._model_key] __magic_name__: int = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __magic_name__: str = os.listdir(__snake_case ) __magic_name__: Tuple = os.listdir(__snake_case ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__snake_case , __snake_case ) def lowerCamelCase__ ( self : Optional[int] ) -> int: __magic_name__: List[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __magic_name__: List[str] = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __magic_name__: List[str] = floats_list((3, 1_0_0_0) ) __magic_name__: Tuple = processor_wavaveca(__snake_case , return_tensors="""np""" ) __magic_name__: Optional[Any] = processor_auto(__snake_case , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __magic_name__: int = self._get_dummy_logits() __magic_name__: List[Any] = processor_wavaveca.batch_decode(__snake_case ) __magic_name__: Union[str, Any] = processor_auto.batch_decode(__snake_case ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCamelCase__ ( self : Union[str, Any] ) -> str: __magic_name__: Optional[int] = self.get_feature_extractor() __magic_name__: Any = self.get_tokenizer() __magic_name__: Dict = self.get_decoder() __magic_name__: List[str] = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowerCamelCase__ ( __snake_case : Optional[int] , __snake_case : int ) -> int: __magic_name__: Any = [d[key] for d in offsets] return retrieved_list def lowerCamelCase__ ( self : str ) -> Union[str, Any]: __magic_name__: Tuple = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __magic_name__: Tuple = self._get_dummy_logits()[0] __magic_name__: List[Any] = processor.decode(__snake_case , output_word_offsets=__snake_case ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__snake_case , __snake_case ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowerCamelCase__ ( self : Optional[int] ) -> Dict: __magic_name__: Optional[int] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __magic_name__: Optional[int] = self._get_dummy_logits() __magic_name__: Any = processor.batch_decode(__snake_case , output_word_offsets=__snake_case ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__snake_case , __snake_case ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__snake_case , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCamelCase__ ( self : Union[str, Any] ) -> int: import torch __magic_name__: List[Any] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__snake_case ) __magic_name__: Dict = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_6_0_0_0 ) ) __magic_name__: Any = iter(__snake_case ) __magic_name__: Optional[int] = next(__snake_case ) __magic_name__: Optional[int] = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __magic_name__: Tuple = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __magic_name__: List[str] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __magic_name__: List[Any] = model(__snake_case ).logits.cpu().numpy() __magic_name__: Optional[Any] = processor.decode(logits[0] , output_word_offsets=__snake_case ) __magic_name__: List[str] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __magic_name__: str = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __magic_name__: Tuple = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__snake_case , """word""" ) ) , __snake_case ) self.assertEqual(""" """.join(self.get_from_offsets(__snake_case , """word""" ) ) , output.text ) # output times __magic_name__: Dict = torch.tensor(self.get_from_offsets(__snake_case , """start_time""" ) ) __magic_name__: Optional[Any] = torch.tensor(self.get_from_offsets(__snake_case , """end_time""" ) ) # fmt: off __magic_name__: Tuple = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __magic_name__: int = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=0.01 ) ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=0.01 ) )
96
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=64 , __a=2 , __a=3 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a=[1, 16, 4, 4] , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _UpperCamelCase = (self.image_size // 32) ** 2 _UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__a , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.type_sequence_label_size _UpperCamelCase = ViTHybridForImageClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowercase__ = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''') def UpperCAmelCase ( self) -> Dict: '''simple docstring''' pass def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear)) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _UpperCamelCase = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = ViTHybridModel.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase( unittest.TestCase ): @cached_property def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( __a) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''').to(__a) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__a) # verify the logits _UpperCamelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor([-1.9090, -0.4993, -0.2389]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4)) @slow @require_accelerate def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''') _UpperCamelCase = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''') _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''') _UpperCamelCase = model(**__a) _UpperCamelCase = outputs.logits # model predicts one of the 1000 ImageNet classes _UpperCamelCase = logits.argmax(-1).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''')
19
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class lowercase__( UpperCAmelCase ): """simple docstring""" a :List[str] = ['image_processor'] a :Tuple = 'SamImageProcessor' def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : int ) -> List[str]: super().__init__(SCREAMING_SNAKE_CASE_ ) lowercase_ = self.image_processor lowercase_ = -1_0 lowercase_ = self.image_processor.size['''longest_edge'''] def __call__( self : Any , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> BatchEncoding: lowercase_ = self.image_processor( SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # pop arguments that are not used in the foward but used nevertheless lowercase_ = encoding_image_processor['''original_sizes'''] if hasattr(SCREAMING_SNAKE_CASE_ , '''numpy''' ): # Checks if Torch or TF tensor lowercase_ = original_sizes.numpy() lowercase_ , lowercase_ , lowercase_ = self._check_and_preprocess_points( input_points=SCREAMING_SNAKE_CASE_ , input_labels=SCREAMING_SNAKE_CASE_ , input_boxes=SCREAMING_SNAKE_CASE_ , ) lowercase_ = self._normalize_and_convert( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , input_points=SCREAMING_SNAKE_CASE_ , input_labels=SCREAMING_SNAKE_CASE_ , input_boxes=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , ) return encoding_image_processor def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : List[str]="pt" , ) -> Dict: if input_points is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): lowercase_ = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , original_sizes[0] ) for point in input_points ] else: lowercase_ = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for point, original_size in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: lowercase_ , lowercase_ = self._pad_points_and_labels(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = np.array(SCREAMING_SNAKE_CASE_ ) if input_labels is not None: lowercase_ = np.array(SCREAMING_SNAKE_CASE_ ) if input_boxes is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): lowercase_ = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , original_sizes[0] , is_bounding_box=SCREAMING_SNAKE_CASE_ ) for box in input_boxes ] else: lowercase_ = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , is_bounding_box=SCREAMING_SNAKE_CASE_ ) for box, original_size in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] lowercase_ = np.array(SCREAMING_SNAKE_CASE_ ) if input_boxes is not None: if return_tensors == "pt": lowercase_ = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # boxes batch size of 1 by default lowercase_ = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": lowercase_ = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) # boxes batch size of 1 by default lowercase_ = tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'''input_boxes''': input_boxes} ) if input_points is not None: if return_tensors == "pt": lowercase_ = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default lowercase_ = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": lowercase_ = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default lowercase_ = tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'''input_points''': input_points} ) if input_labels is not None: if return_tensors == "pt": lowercase_ = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default lowercase_ = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": lowercase_ = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default lowercase_ = tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'''input_labels''': input_labels} ) return encoding_image_processor def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict ) -> Union[str, Any]: lowercase_ = max([point.shape[0] for point in input_points] ) lowercase_ = [] for i, point in enumerate(SCREAMING_SNAKE_CASE_ ): if point.shape[0] != expected_nb_points: lowercase_ = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) lowercase_ = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(SCREAMING_SNAKE_CASE_ ) lowercase_ = processed_input_points return input_points, input_labels def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Dict=False ) -> np.ndarray: lowercase_ , lowercase_ = original_size lowercase_ , lowercase_ = self.image_processor._get_preprocess_shape(SCREAMING_SNAKE_CASE_ , longest_edge=SCREAMING_SNAKE_CASE_ ) lowercase_ = deepcopy(SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) if is_bounding_box: lowercase_ = coords.reshape(-1 , 2 , 2 ) lowercase_ = coords[..., 0] * (new_w / old_w) lowercase_ = coords[..., 1] * (new_h / old_h) if is_bounding_box: lowercase_ = coords.reshape(-1 , 4 ) return coords def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , ) -> List[str]: if input_points is not None: if hasattr(SCREAMING_SNAKE_CASE_ , '''numpy''' ): # Checks for TF or Torch tensor lowercase_ = input_points.numpy().tolist() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_points[0] , SCREAMING_SNAKE_CASE_ ): raise ValueError('''Input points must be a list of list of floating points.''' ) lowercase_ = [np.array(SCREAMING_SNAKE_CASE_ ) for input_point in input_points] else: lowercase_ = None if input_labels is not None: if hasattr(SCREAMING_SNAKE_CASE_ , '''numpy''' ): lowercase_ = input_labels.numpy().tolist() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_labels[0] , SCREAMING_SNAKE_CASE_ ): raise ValueError('''Input labels must be a list of list integers.''' ) lowercase_ = [np.array(SCREAMING_SNAKE_CASE_ ) for label in input_labels] else: lowercase_ = None if input_boxes is not None: if hasattr(SCREAMING_SNAKE_CASE_ , '''numpy''' ): lowercase_ = input_boxes.numpy().tolist() if ( not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_boxes[0] , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_boxes[0][0] , SCREAMING_SNAKE_CASE_ ) ): raise ValueError('''Input boxes must be a list of list of list of floating points.''' ) lowercase_ = [np.array(SCREAMING_SNAKE_CASE_ ).astype(np.floataa ) for box in input_boxes] else: lowercase_ = None return input_points, input_labels, input_boxes @property def _lowercase ( self : int ) -> List[Any]: lowercase_ = self.image_processor.model_input_names return list(dict.fromkeys(SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : Optional[int] , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: return self.image_processor.post_process_masks(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
97
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['vqvae'] def __init__( self , __a , __a , __a , __a , ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules(unet=__a , scheduler=__a , mel=__a , vqvae=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' return 50 if isinstance(self.scheduler , __a) else 10_00 @torch.no_grad() def __call__( self , __a = 1 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = 0 , __a = None , __a = None , __a=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' _UpperCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(__a) _UpperCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: _UpperCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _UpperCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__a , device=self.device , ) _UpperCamelCase = noise _UpperCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__a , __a) _UpperCamelCase = self.mel.audio_slice_to_image(__a) _UpperCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''').reshape( (input_image.height, input_image.width)) _UpperCamelCase = (input_image / 2_55) * 2 - 1 _UpperCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: _UpperCamelCase = self.vqvae.encode(torch.unsqueeze(__a , 0)).latent_dist.sample( generator=__a)[0] _UpperCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _UpperCamelCase = self.scheduler.add_noise(__a , __a , self.scheduler.timesteps[start_step - 1]) _UpperCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _UpperCamelCase = int(mask_start_secs * pixels_per_second) _UpperCamelCase = int(mask_end_secs * pixels_per_second) _UpperCamelCase = self.scheduler.add_noise(__a , __a , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , __a): _UpperCamelCase = self.unet(__a , __a , __a)['''sample'''] else: _UpperCamelCase = self.unet(__a , __a)['''sample'''] if isinstance(self.scheduler , __a): _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , eta=__a , generator=__a , )['''prev_sample'''] else: _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , generator=__a , )['''prev_sample'''] if mask is not None: if mask_start > 0: _UpperCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _UpperCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _UpperCamelCase = 1 / self.vqvae.config.scaling_factor * images _UpperCamelCase = self.vqvae.decode(__a)['''sample'''] _UpperCamelCase = (images / 2 + 0.5).clamp(0 , 1) _UpperCamelCase = images.cpu().permute(0 , 2 , 3 , 1).numpy() _UpperCamelCase = (images * 2_55).round().astype('''uint8''') _UpperCamelCase = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__a , mode='''RGB''').convert('''L''') for _ in images)) _UpperCamelCase = [self.mel.image_to_audio(__a) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__a)[:, np.newaxis, :]) , **ImagePipelineOutput(__a)) @torch.no_grad() def UpperCAmelCase ( self , __a , __a = 50) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , __a) self.scheduler.set_timesteps(__a) _UpperCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''').reshape((1, image.height, image.width)) for image in images]) _UpperCamelCase = (sample / 2_55) * 2 - 1 _UpperCamelCase = torch.Tensor(__a).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): _UpperCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _UpperCamelCase = self.scheduler.alphas_cumprod[t] _UpperCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _UpperCamelCase = 1 - alpha_prod_t _UpperCamelCase = self.unet(__a , __a)['''sample'''] _UpperCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _UpperCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _UpperCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase ( __a , __a , __a) -> torch.Tensor: '''simple docstring''' _UpperCamelCase = acos(torch.dot(torch.flatten(__a) , torch.flatten(__a)) / torch.norm(__a) / torch.norm(__a)) return sin((1 - alpha) * theta) * xa / sin(__a) + sin(alpha * theta) * xa / sin(__a)
19
0
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any]=13 , lowerCAmelCase__ : List[str]=30 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Tuple=32 , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : int=4 , lowerCAmelCase__ : List[str]=37 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : str=10 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Any=0.6 , lowerCAmelCase__ : Optional[Any]=None , ) -> str: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = mask_ratio _UpperCamelCase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _UpperCamelCase = (image_size // patch_size) ** 2 _UpperCamelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def snake_case__ ( self : Dict ) -> int: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = self.get_config() return config, pixel_values, labels def snake_case__ ( self : List[Any] ) -> List[str]: '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def snake_case__ ( self : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = TFViTMAEModel(config=lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ , training=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = TFViTMAEForPreTraining(lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ , training=lowerCAmelCase__ ) # expected sequence length = num_patches _UpperCamelCase = (self.image_size // self.patch_size) ** 2 _UpperCamelCase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _UpperCamelCase = 1 _UpperCamelCase = TFViTMAEForPreTraining(lowerCAmelCase__ ) _UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase = model(lowerCAmelCase__ , training=lowerCAmelCase__ ) _UpperCamelCase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def snake_case__ ( self : str ) -> int: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ((_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase)) = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : List[Any] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _snake_case : int = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {} _snake_case : Any = False _snake_case : Dict = False _snake_case : Any = False _snake_case : List[Any] = False def snake_case__ ( self : Tuple ) -> Tuple: '''simple docstring''' _UpperCamelCase = TFViTMAEModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def snake_case__ ( self : str ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def snake_case__ ( self : Any ) -> Tuple: '''simple docstring''' pass def snake_case__ ( self : Dict ) -> Dict: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , tf.keras.layers.Layer ) ) def snake_case__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ) _UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase__ ) def snake_case__ ( self : str ) -> List[str]: '''simple docstring''' np.random.seed(2 ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) _UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ) _UpperCamelCase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ , noise=lowerCAmelCase__ ) _UpperCamelCase = copy.deepcopy(self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCamelCase = model(**lowerCAmelCase__ , noise=lowerCAmelCase__ ) _UpperCamelCase = outputs_dict[0].numpy() _UpperCamelCase = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 ) def snake_case__ ( self : Dict ) -> int: '''simple docstring''' np.random.seed(2 ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) _UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(lowerCAmelCase__ : Optional[Any] ): _UpperCamelCase = {} for k, v in inputs_dict.items(): if tf.is_tensor(lowerCAmelCase__ ): _UpperCamelCase = v.numpy() else: _UpperCamelCase = np.array(lowerCAmelCase__ ) return inputs_np_dict for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ) _UpperCamelCase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = prepare_numpy_arrays(lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ , noise=lowerCAmelCase__ ) _UpperCamelCase = model(**lowerCAmelCase__ , noise=lowerCAmelCase__ ) self.assert_outputs_same(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' np.random.seed(2 ) _UpperCamelCase = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) _UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _UpperCamelCase = tf.constant(lowerCAmelCase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _UpperCamelCase = tf_noise super().check_pt_tf_models(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] ) -> str: '''simple docstring''' np.random.seed(2 ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(lowerCAmelCase__ ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(lowerCAmelCase__ , lowerCAmelCase__ ),) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(lowerCAmelCase__ , '''_keras_serializable''' , lowerCAmelCase__ ) } _UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) _UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _UpperCamelCase = tf.convert_to_tensor(lowerCAmelCase__ ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: _UpperCamelCase = main_layer_class(lowerCAmelCase__ ) _UpperCamelCase = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } _UpperCamelCase = tf.keras.Model(lowerCAmelCase__ , outputs=main_layer(lowerCAmelCase__ ) ) _UpperCamelCase = model(lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = os.path.join(lowerCAmelCase__ , '''keras_model.h5''' ) model.save(lowerCAmelCase__ ) _UpperCamelCase = tf.keras.models.load_model( lowerCAmelCase__ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(lowerCAmelCase__ , tf.keras.Model ) _UpperCamelCase = model(lowerCAmelCase__ ) self.assert_outputs_same(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def snake_case__ ( self : Union[str, Any] ) -> int: '''simple docstring''' np.random.seed(2 ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) _UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ) _UpperCamelCase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ , noise=lowerCAmelCase__ ) if model_class.__name__ == "TFViTMAEModel": _UpperCamelCase = outputs.last_hidden_state.numpy() _UpperCamelCase = 0 else: _UpperCamelCase = outputs.logits.numpy() _UpperCamelCase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase__ , saved_model=lowerCAmelCase__ ) _UpperCamelCase = model_class.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ , noise=lowerCAmelCase__ ) if model_class.__name__ == "TFViTMAEModel": _UpperCamelCase = after_outputs['''last_hidden_state'''].numpy() _UpperCamelCase = 0 else: _UpperCamelCase = after_outputs['''logits'''].numpy() _UpperCamelCase = 0 _UpperCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase__ , 1e-5 ) def snake_case__ ( self : str ) -> List[Any]: '''simple docstring''' np.random.seed(2 ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) _UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ) _UpperCamelCase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ , noise=lowerCAmelCase__ ) _UpperCamelCase = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(lowerCAmelCase__ ) _UpperCamelCase = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config _UpperCamelCase = model_class.from_config(model.config ) _UpperCamelCase = new_model(lowerCAmelCase__ ) # Build model new_model.set_weights(model.get_weights() ) _UpperCamelCase = new_model(lowerCAmelCase__ , noise=lowerCAmelCase__ ) self.assert_outputs_same(lowerCAmelCase__ , lowerCAmelCase__ ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def snake_case__ ( self : List[Any] ) -> Dict: '''simple docstring''' pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def snake_case__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' pass @slow def snake_case__ ( self : List[str] ) -> Tuple: '''simple docstring''' _UpperCamelCase = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(lowerCAmelCase__ ) def a__ ( ) -> List[str]: """simple docstring""" _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case__ ( self : int ) -> Any: '''simple docstring''' return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def snake_case__ ( self : Optional[Any] ) -> str: '''simple docstring''' np.random.seed(2 ) _UpperCamelCase = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=lowerCAmelCase__ , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _UpperCamelCase = ViTMAEConfig() _UpperCamelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _UpperCamelCase = np.random.uniform(size=(1, num_patches) ) # forward pass _UpperCamelCase = model(**lowerCAmelCase__ , noise=lowerCAmelCase__ ) # verify the logits _UpperCamelCase = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) _UpperCamelCase = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 )
98
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'detr' lowercase__ = ['past_key_values'] lowercase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __a=True , __a=None , __a=3 , __a=1_00 , __a=6 , __a=20_48 , __a=8 , __a=6 , __a=20_48 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=2_56 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=1 , __a=1 , __a=5 , __a=2 , __a=0.1 , **__a , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__a , __a): _UpperCamelCase = backbone_config.get('''model_type''') _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(__a) # set timm attributes to None _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None, None, None _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = encoder_layers _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase ( cls , __a , **__a) -> int: '''simple docstring''' return cls(backbone_config=__a , **__a) def UpperCAmelCase ( self) -> Dict[str, any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output class _UpperCAmelCase( lowerCamelCase ): lowercase__ = version.parse('1.11' ) @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def UpperCAmelCase ( self) -> float: '''simple docstring''' return 1e-5 @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return 12
19
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
99
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'wavlm' def __init__( self , __a=32 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.1 , __a=0.02 , __a=1e-5 , __a="group" , __a="gelu" , __a=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __a=(5, 2, 2, 2, 2, 2, 2) , __a=(10, 3, 3, 3, 3, 2, 2) , __a=False , __a=1_28 , __a=16 , __a=3_20 , __a=8_00 , __a=False , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=3_20 , __a=2 , __a=0.1 , __a=1_00 , __a=2_56 , __a=2_56 , __a=0.1 , __a="mean" , __a=False , __a=False , __a=2_56 , __a=(5_12, 5_12, 5_12, 5_12, 15_00) , __a=(5, 3, 3, 1, 1) , __a=(1, 2, 3, 1, 1) , __a=5_12 , __a=80 , __a=0 , __a=1 , __a=2 , __a=False , __a=3 , __a=2 , __a=3 , __a=None , **__a , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a) _UpperCamelCase = hidden_size _UpperCamelCase = feat_extract_norm _UpperCamelCase = feat_extract_activation _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = conv_bias _UpperCamelCase = num_buckets _UpperCamelCase = max_bucket_distance _UpperCamelCase = num_conv_pos_embeddings _UpperCamelCase = num_conv_pos_embedding_groups _UpperCamelCase = len(self.conv_dim) _UpperCamelCase = num_hidden_layers _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = feat_proj_dropout _UpperCamelCase = final_dropout _UpperCamelCase = layerdrop _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = num_ctc_classes _UpperCamelCase = vocab_size _UpperCamelCase = do_stable_layer_norm _UpperCamelCase = use_weighted_layer_sum _UpperCamelCase = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCamelCase = apply_spec_augment _UpperCamelCase = mask_time_prob _UpperCamelCase = mask_time_length _UpperCamelCase = mask_time_min_masks _UpperCamelCase = mask_feature_prob _UpperCamelCase = mask_feature_length # parameters for pretraining with codevector quantized representations _UpperCamelCase = num_codevectors_per_group _UpperCamelCase = num_codevector_groups _UpperCamelCase = contrastive_logits_temperature _UpperCamelCase = num_negatives _UpperCamelCase = codevector_dim _UpperCamelCase = proj_codevector_dim _UpperCamelCase = diversity_loss_weight # ctc loss _UpperCamelCase = ctc_loss_reduction _UpperCamelCase = ctc_zero_infinity # adapter _UpperCamelCase = add_adapter _UpperCamelCase = adapter_kernel_size _UpperCamelCase = adapter_stride _UpperCamelCase = num_adapter_layers _UpperCamelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = xvector_output_dim @property def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
19
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __snake_case ( unittest.TestCase ): '''simple docstring''' def lowercase_ ( self , A_ , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = jnp.ones((batch_size, length) ) / length return scores def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = 20 SCREAMING_SNAKE_CASE__ = self._get_uniform_logits(batch_size=2 , length=A_ ) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE__ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch SCREAMING_SNAKE_CASE__ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE__ = jax.nn.softmax(A_ , axis=-1 ) SCREAMING_SNAKE_CASE__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE__ = FlaxTemperatureLogitsWarper(temperature=1.3 ) SCREAMING_SNAKE_CASE__ = jax.nn.softmax(temp_dist_warper_sharper(A_ , scores.copy() , cur_len=A_ ) , axis=-1 ) SCREAMING_SNAKE_CASE__ = jax.nn.softmax(temp_dist_warper_smoother(A_ , scores.copy() , cur_len=A_ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = 2 # create ramp distribution SCREAMING_SNAKE_CASE__ = np.broadcast_to(np.arange(A_ )[None, :] , (batch_size, vocab_size) ).copy() SCREAMING_SNAKE_CASE__ = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE__ = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE__ = top_k_warp(A_ , A_ , cur_len=A_ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case SCREAMING_SNAKE_CASE__ = 5 SCREAMING_SNAKE_CASE__ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) SCREAMING_SNAKE_CASE__ = np.broadcast_to(np.arange(A_ )[None, :] , (batch_size, length) ).copy() SCREAMING_SNAKE_CASE__ = top_k_warp_safety_check(A_ , A_ , cur_len=A_ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) SCREAMING_SNAKE_CASE__ = FlaxTopPLogitsWarper(0.8 ) SCREAMING_SNAKE_CASE__ = np.exp(top_p_warp(A_ , A_ , cur_len=A_ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE__ = np.broadcast_to(np.arange(A_ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE__ = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE__ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) SCREAMING_SNAKE_CASE__ = top_p_warp(A_ , A_ , cur_len=A_ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 20 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=A_ ) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE__ = ids_tensor((batch_size, 20) , vocab_size=20 ) SCREAMING_SNAKE_CASE__ = 5 SCREAMING_SNAKE_CASE__ = self._get_uniform_logits(A_ , A_ ) SCREAMING_SNAKE_CASE__ = min_dist_processor(A_ , A_ , cur_len=A_ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE__ = self._get_uniform_logits(A_ , A_ ) SCREAMING_SNAKE_CASE__ = 15 SCREAMING_SNAKE_CASE__ = min_dist_processor(A_ , A_ , cur_len=A_ ) self.assertFalse(jnp.isinf(A_ ).any() ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 20 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=A_ ) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE__ = ids_tensor((batch_size, 1) , vocab_size=20 ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = self._get_uniform_logits(A_ , A_ ) SCREAMING_SNAKE_CASE__ = logits_processor(A_ , A_ , cur_len=A_ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = self._get_uniform_logits(A_ , A_ ) SCREAMING_SNAKE_CASE__ = logits_processor(A_ , A_ , cur_len=A_ ) self.assertFalse(jnp.isinf(A_ ).any() ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 20 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 5 SCREAMING_SNAKE_CASE__ = FlaxForcedEOSTokenLogitsProcessor(max_length=A_ , eos_token_id=A_ ) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE__ = ids_tensor((batch_size, 4) , vocab_size=20 ) SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = self._get_uniform_logits(A_ , A_ ) SCREAMING_SNAKE_CASE__ = logits_processor(A_ , A_ , cur_len=A_ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = self._get_uniform_logits(A_ , A_ ) SCREAMING_SNAKE_CASE__ = logits_processor(A_ , A_ , cur_len=A_ ) self.assertFalse(jnp.isinf(A_ ).any() ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = 15 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE__ = ids_tensor((batch_size, sequence_length) , A_ ) SCREAMING_SNAKE_CASE__ = input_ids.copy() SCREAMING_SNAKE_CASE__ = self._get_uniform_logits(A_ , A_ ) SCREAMING_SNAKE_CASE__ = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE__ = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors SCREAMING_SNAKE_CASE__ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=A_ ) SCREAMING_SNAKE_CASE__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=A_ ) SCREAMING_SNAKE_CASE__ = FlaxForcedEOSTokenLogitsProcessor(max_length=A_ , eos_token_id=A_ ) SCREAMING_SNAKE_CASE__ = 10 # no processor list SCREAMING_SNAKE_CASE__ = temp_dist_warp(A_ , A_ , cur_len=A_ ) SCREAMING_SNAKE_CASE__ = top_k_warp(A_ , A_ , cur_len=A_ ) SCREAMING_SNAKE_CASE__ = top_p_warp(A_ , A_ , cur_len=A_ ) SCREAMING_SNAKE_CASE__ = min_dist_proc(A_ , A_ , cur_len=A_ ) SCREAMING_SNAKE_CASE__ = bos_dist_proc(A_ , A_ , cur_len=A_ ) SCREAMING_SNAKE_CASE__ = eos_dist_proc(A_ , A_ , cur_len=A_ ) # with processor list SCREAMING_SNAKE_CASE__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) SCREAMING_SNAKE_CASE__ = processor(A_ , A_ , cur_len=A_ ) # scores should be equal self.assertTrue(jnp.allclose(A_ , A_ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = 15 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE__ = ids_tensor((batch_size, sequence_length) , A_ ) SCREAMING_SNAKE_CASE__ = input_ids.copy() SCREAMING_SNAKE_CASE__ = self._get_uniform_logits(A_ , A_ ) SCREAMING_SNAKE_CASE__ = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE__ = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors SCREAMING_SNAKE_CASE__ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=A_ ) SCREAMING_SNAKE_CASE__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=A_ ) SCREAMING_SNAKE_CASE__ = FlaxForcedEOSTokenLogitsProcessor(max_length=A_ , eos_token_id=A_ ) SCREAMING_SNAKE_CASE__ = 10 # no processor list def run_no_processor_list(A_ , A_ , A_ ): SCREAMING_SNAKE_CASE__ = temp_dist_warp(A_ , A_ , cur_len=A_ ) SCREAMING_SNAKE_CASE__ = top_k_warp(A_ , A_ , cur_len=A_ ) SCREAMING_SNAKE_CASE__ = top_p_warp(A_ , A_ , cur_len=A_ ) SCREAMING_SNAKE_CASE__ = min_dist_proc(A_ , A_ , cur_len=A_ ) SCREAMING_SNAKE_CASE__ = bos_dist_proc(A_ , A_ , cur_len=A_ ) SCREAMING_SNAKE_CASE__ = eos_dist_proc(A_ , A_ , cur_len=A_ ) return scores # with processor list def run_processor_list(A_ , A_ , A_ ): SCREAMING_SNAKE_CASE__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) SCREAMING_SNAKE_CASE__ = processor(A_ , A_ , cur_len=A_ ) return scores SCREAMING_SNAKE_CASE__ = jax.jit(A_ ) SCREAMING_SNAKE_CASE__ = jax.jit(A_ ) SCREAMING_SNAKE_CASE__ = jitted_run_no_processor_list(A_ , A_ , A_ ) SCREAMING_SNAKE_CASE__ = jitted_run_processor_list(A_ , A_ , A_ ) # scores should be equal self.assertTrue(jnp.allclose(A_ , A_ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
100
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _a = """bart""" _a = True @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> Dict: """simple docstring""" if LOAD_DENSE_INDEX: _UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _UpperCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _UpperCamelCase = qar_model.eval() else: _UpperCamelCase , _UpperCamelCase = (None, None) if MODEL_TYPE == "bart": _UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _UpperCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _UpperCamelCase = sas_model.eval() else: _UpperCamelCase , _UpperCamelCase = make_qa_sas_model( model_name='''t5-small''', from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''', device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: _UpperCamelCase = faiss.StandardGpuResources() _UpperCamelCase = datasets.load_dataset(path='''wiki_snippets''', name='''wiki40b_en_100_0''' )['''train'''] _UpperCamelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''', dtype='''float32''', mode='''r''', shape=(wikiaab_passages.num_rows, 1_28), ) _UpperCamelCase = faiss.IndexFlatIP(1_28 ) _UpperCamelCase = faiss.index_cpu_to_gpu(__snake_case, 1, __snake_case ) wikiaab_gpu_index_flat.add(__snake_case ) # TODO fix for larger GPU else: _UpperCamelCase , _UpperCamelCase = (None, None) _UpperCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = datasets.load_dataset('''eli5''', name='''LFQA_reddit''' ) _UpperCamelCase = elia['''train_eli5'''] _UpperCamelCase = np.memmap( '''eli5_questions_reps.dat''', dtype='''float32''', mode='''r''', shape=(elia_train.num_rows, 1_28) ) _UpperCamelCase = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(__snake_case ) return (elia_train, eli5_train_q_index) _a , _a , _a = load_indexes() _a , _a , _a , _a = load_models() _a , _a = load_train_data() def lowerCamelCase__ ( __snake_case, __snake_case=10 ) -> List[Any]: """simple docstring""" _UpperCamelCase = embed_questions_for_retrieval([question], __snake_case, __snake_case ) _UpperCamelCase , _UpperCamelCase = eli5_train_q_index.search(__snake_case, __snake_case ) _UpperCamelCase = [elia_train[int(__snake_case )] for i in I[0]] return nn_examples def lowerCamelCase__ ( __snake_case, __snake_case="wiki40b", __snake_case="dense", __snake_case=10 ) -> List[str]: """simple docstring""" if source == "none": _UpperCamelCase , _UpperCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _UpperCamelCase , _UpperCamelCase = query_qa_dense_index( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) else: _UpperCamelCase , _UpperCamelCase = query_es_index( __snake_case, __snake_case, index_name='''english_wiki40b_snippets_100w''', n_results=__snake_case, ) _UpperCamelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _UpperCamelCase = '''question: {} context: {}'''.format(__snake_case, __snake_case ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __snake_case : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __snake_case : None), } ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=64, __snake_case=2_56, __snake_case=False, __snake_case=2, __snake_case=0.95, __snake_case=0.8 ) -> Dict: """simple docstring""" with torch.no_grad(): _UpperCamelCase = qa_sas_generate( __snake_case, __snake_case, __snake_case, num_answers=1, num_beams=__snake_case, min_len=__snake_case, max_len=__snake_case, do_sample=__snake_case, temp=__snake_case, top_p=__snake_case, top_k=__snake_case, max_input_length=10_24, device='''cuda:0''', )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar _a = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" _a = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _a = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) _a = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] _a = st.sidebar.checkbox("""Demo options""") if demo_options: _a = st.sidebar.selectbox( """""", action_list, index=3, ) _a = action_list.index(action_st) _a = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) _a = show_type == """Show full text of passages""" else: _a = 3 _a = True _a = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: _a = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) _a = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) _a = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: _a = """wiki40b""" _a = """dense""" _a = """beam""" _a = 2 _a = 64 _a = 256 _a = None _a = None _a = st.sidebar.checkbox("""Generation options""") if generate_options: _a = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) _a = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) _a = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) _a = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": _a = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _a = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _a = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _a = None # start main text _a = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] _a = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": _a = st.text_input("""Enter your question here:""", """""") else: _a = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": _a , _a = make_support(question, source=wiki_source, method="""dense""", n_results=10) _a , _a = make_support(question, source=wiki_source, method="""sparse""", n_results=10) _a = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _a = support_list[:10] _a = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: _a , _a = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _a , _a = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): _a = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) _a = res[1].strip() if sec_titles == "": _a = """[{}]({})""".format(res[0], wiki_url) else: _a = sec_titles.split(""" & """) _a = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: _a = find_nearest_training(question) _a = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) _a = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) _a = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
19
0
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __lowercase : """simple docstring""" _UpperCAmelCase = 42 _UpperCAmelCase = 42 class __lowercase : """simple docstring""" def __init__( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : list[list[Edge]] = [[] for _ in range(lowerCAmelCase__ )] SCREAMING_SNAKE_CASE_ : List[str] = size def __getitem__( self , lowerCAmelCase__ ): """simple docstring""" return iter(self._graph[vertex] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self._size def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(lowerCAmelCase__ , lowerCAmelCase__ ) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = deque([start_vertex] ) SCREAMING_SNAKE_CASE_ : list[int | None] = [None] * self.size SCREAMING_SNAKE_CASE_ : int = 0 while queue: SCREAMING_SNAKE_CASE_ : Tuple = queue.popleft() SCREAMING_SNAKE_CASE_ : Dict = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: SCREAMING_SNAKE_CASE_ : Dict = current_distance + edge.weight SCREAMING_SNAKE_CASE_ : List[Any] = distances[edge.destination_vertex] if ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and new_distance >= dest_vertex_distance ): continue SCREAMING_SNAKE_CASE_ : Optional[int] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
101
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } _a = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> Tuple: """simple docstring""" for attribute in key.split('''.''' ): _UpperCamelCase = getattr(__snake_case, __snake_case ) if weight_type is not None: _UpperCamelCase = getattr(__snake_case, __snake_case ).shape else: _UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase = value elif weight_type == "weight_g": _UpperCamelCase = value elif weight_type == "weight_v": _UpperCamelCase = value elif weight_type == "bias": _UpperCamelCase = value else: _UpperCamelCase = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = fairseq_model.state_dict() _UpperCamelCase = hf_model.feature_extractor _UpperCamelCase = hf_model.adapter for name, value in fairseq_dict.items(): _UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __snake_case, __snake_case, __snake_case, __snake_case, hf_model.config.feat_extract_norm == '''group''', ) _UpperCamelCase = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(__snake_case, __snake_case, __snake_case, __snake_case ) _UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCamelCase = True if "*" in mapped_key: _UpperCamelCase = name.split(__snake_case )[0].split('''.''' )[-2] _UpperCamelCase = mapped_key.replace('''*''', __snake_case ) if "weight_g" in name: _UpperCamelCase = '''weight_g''' elif "weight_v" in name: _UpperCamelCase = '''weight_v''' elif "bias" in name: _UpperCamelCase = '''bias''' elif "weight" in name: _UpperCamelCase = '''weight''' else: _UpperCamelCase = None set_recursively(__snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = full_name.split('''conv_layers.''' )[-1] _UpperCamelCase = name.split('''.''' ) _UpperCamelCase = int(items[0] ) _UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = full_name.split('''adaptor.''' )[-1] _UpperCamelCase = name.split('''.''' ) if items[1].isdigit(): _UpperCamelCase = int(items[1] ) else: _UpperCamelCase = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' _UpperCamelCase = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(__snake_case, __snake_case ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' _UpperCamelCase = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase , _UpperCamelCase = emb.weight.shape _UpperCamelCase = nn.Linear(__snake_case, __snake_case, bias=__snake_case ) _UpperCamelCase = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = WavaVecaConfig.from_pretrained( __snake_case, add_adapter=__snake_case, adapter_stride=__snake_case, adapter_kernel_size=__snake_case, use_auth_token=__snake_case, output_hidden_size=__snake_case, ) _UpperCamelCase = MBartConfig.from_pretrained(__snake_case ) # load model _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, }, ) _UpperCamelCase = model[0].eval() # load feature extractor _UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(__snake_case, use_auth_token=__snake_case ) # set weights for wav2vec2 encoder _UpperCamelCase = WavaVecaModel(__snake_case ) recursively_load_weights_wavaveca(model.encoder, __snake_case ) # load decoder weights _UpperCamelCase = MBartForCausalLM(__snake_case ) _UpperCamelCase , _UpperCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=__snake_case ) logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) _UpperCamelCase = SpeechEncoderDecoderModel(encoder=__snake_case, decoder=__snake_case ) _UpperCamelCase = False _UpperCamelCase = MBartaaTokenizer(__snake_case ) tokenizer.save_pretrained(__snake_case ) _UpperCamelCase = hf_wavavec.config.to_dict() _UpperCamelCase = tokenizer.pad_token_id _UpperCamelCase = tokenizer.bos_token_id _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = '''mbart50''' _UpperCamelCase = '''wav2vec2''' _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = 25_00_04 _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = SpeechEncoderDecoderConfig.from_dict(__snake_case ) hf_wavavec.save_pretrained(__snake_case ) feature_extractor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1024, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=25_0004, type=int, help="""`decoder_start_token_id` of model config""") _a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
19
0
"""simple docstring""" def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : List[Any] = """""" for i in table: res += inp[i - 1] return res def UpperCamelCase (SCREAMING_SNAKE_CASE ): return data[1:] + data[0] def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = """""" for i in range(len(SCREAMING_SNAKE_CASE ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = int("""0b""" + data[0] + data[-1] , 2 ) UpperCamelCase : Any = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : Any = message[:4] UpperCamelCase : int = message[4:] UpperCamelCase : int = apply_table(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase : str = xor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = apply_sbox(SCREAMING_SNAKE_CASE , temp[:4] ) # noqa: E741 UpperCamelCase : str = apply_sbox(SCREAMING_SNAKE_CASE , temp[4:] ) UpperCamelCase : Union[str, Any] = """0""" * (2 - len(SCREAMING_SNAKE_CASE )) + l # noqa: E741 UpperCamelCase : Union[str, Any] = """0""" * (2 - len(SCREAMING_SNAKE_CASE )) + r UpperCamelCase : int = apply_table(l + r , SCREAMING_SNAKE_CASE ) UpperCamelCase : int = xor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return temp + right if __name__ == "__main__": __magic_name__ : Union[str, Any] = input("""Enter 10 bit key: """) __magic_name__ : Union[str, Any] = input("""Enter 8 bit message: """) __magic_name__ : Dict = [6, 3, 7, 4, 8, 5, 1_0, 9] __magic_name__ : str = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] __magic_name__ : Optional[Any] = [2, 4, 3, 1] __magic_name__ : Tuple = [2, 6, 3, 1, 4, 8, 5, 7] __magic_name__ : str = [4, 1, 3, 5, 7, 2, 8, 6] __magic_name__ : str = [4, 1, 2, 3, 2, 3, 4, 1] __magic_name__ : Any = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __magic_name__ : Any = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __magic_name__ : Dict = apply_table(key, paa_table) __magic_name__ : Union[str, Any] = temp[:5] __magic_name__ : Optional[Any] = temp[5:] __magic_name__ : str = left_shift(left) __magic_name__ : List[str] = left_shift(right) __magic_name__ : Tuple = apply_table(left + right, pa_table) __magic_name__ : Dict = left_shift(left) __magic_name__ : Union[str, Any] = left_shift(right) __magic_name__ : List[Any] = left_shift(left) __magic_name__ : str = left_shift(right) __magic_name__ : List[str] = apply_table(left + right, pa_table) # encryption __magic_name__ : List[str] = apply_table(message, IP) __magic_name__ : str = function(expansion, sa, sa, keya, temp) __magic_name__ : str = temp[4:] + temp[:4] __magic_name__ : Optional[Any] = function(expansion, sa, sa, keya, temp) __magic_name__ : Any = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption __magic_name__ : Tuple = apply_table(CT, IP) __magic_name__ : List[str] = function(expansion, sa, sa, keya, temp) __magic_name__ : Dict = temp[4:] + temp[:4] __magic_name__ : int = function(expansion, sa, sa, keya, temp) __magic_name__ : Any = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
102
"""simple docstring""" import fire from utils import calculate_rouge, save_json def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case=None, **__snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()] _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()][: len(__snake_case )] _UpperCamelCase = calculate_rouge(__snake_case, __snake_case, **__snake_case ) if save_path is not None: save_json(__snake_case, __snake_case, indent=__snake_case ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
19
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor snake_case = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def snake_case ( lowerCAmelCase_ ) -> Tuple: if isinstance(lowerCAmelCase_ , torch.Tensor ): return image elif isinstance(lowerCAmelCase_ , PIL.Image.Image ): _snake_case = [image] _snake_case = [trans(img.convert('''RGB''' ) ) for img in image] _snake_case = torch.stack(lowerCAmelCase_ ) return image class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : str , __lowerCamelCase : str , __lowerCamelCase : str ): """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM _snake_case = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Tuple ): """simple docstring""" if strength < 0 or strength > 1: raise ValueError(f"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] ): """simple docstring""" # get the original timestep using init_timestep _snake_case = min(int(num_inference_steps * strength ) , __lowerCamelCase ) _snake_case = max(num_inference_steps - init_timestep , 0 ) _snake_case = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __UpperCAmelCase ( self : Any , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any]=None ): """simple docstring""" if not isinstance(__lowerCamelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCamelCase )}""" ) _snake_case = image.to(device=__lowerCamelCase , dtype=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(__lowerCamelCase )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _snake_case = init_latents.shape _snake_case = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase , dtype=__lowerCamelCase ) # get latents print('''add noise to latents at timestep''' , __lowerCamelCase ) _snake_case = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _snake_case = init_latents return latents @torch.no_grad() def __call__( self : int , __lowerCamelCase : Union[torch.FloatTensor, PIL.Image.Image] = None , __lowerCamelCase : float = 0.8 , __lowerCamelCase : int = 1 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : float = 0.0 , __lowerCamelCase : int = 5_0 , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , ): """simple docstring""" self.check_inputs(__lowerCamelCase ) # 2. Preprocess image _snake_case = preprocess(__lowerCamelCase ) # 3. set timesteps self.scheduler.set_timesteps(__lowerCamelCase , device=self.device ) _snake_case , _snake_case = self.get_timesteps(__lowerCamelCase , __lowerCamelCase , self.device ) _snake_case = timesteps[:1].repeat(__lowerCamelCase ) # 4. Prepare latent variables _snake_case = self.prepare_latents(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.unet.dtype , self.device , __lowerCamelCase ) _snake_case = latents # 5. Denoising loop for t in self.progress_bar(__lowerCamelCase ): # 1. predict noise model_output _snake_case = self.unet(__lowerCamelCase , __lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _snake_case = self.scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , eta=__lowerCamelCase , use_clipped_model_output=__lowerCamelCase , generator=__lowerCamelCase , ).prev_sample _snake_case = (image / 2 + 0.5).clamp(0 , 1 ) _snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _snake_case = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=__lowerCamelCase )
103
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['image_processor', 'tokenizer'] lowercase__ = 'ViTImageProcessor' lowercase__ = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __a=None , __a=None , **__a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __a , ) _UpperCamelCase = kwargs.pop('''feature_extractor''') _UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(__a , __a) def __call__( self , __a=None , __a=None , __a=None , __a=None , **__a) -> Tuple: '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''') if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''') if text is not None: _UpperCamelCase = self.tokenizer(__a , return_tensors=__a , **__a) if visual_prompt is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if images is not None: _UpperCamelCase = self.image_processor(__a , return_tensors=__a , **__a) if visual_prompt is not None and images is not None: _UpperCamelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _UpperCamelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__a) , tensor_type=__a) def UpperCAmelCase ( self , *__a , **__a) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*__a , **__a) def UpperCAmelCase ( self , *__a , **__a) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*__a , **__a) @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __a , ) return self.image_processor_class @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __a , ) return self.image_processor
19
0
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase_ : int, UpperCAmelCase_ : int ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def _lowerCamelCase ( ) -> None: """simple docstring""" assert and_gate(0, 0 ) == 0 assert and_gate(0, 1 ) == 0 assert and_gate(1, 0 ) == 0 assert and_gate(1, 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
104
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=32 , __a=3 , __a=4 , __a=[10, 20, 30, 40] , __a=[2, 2, 3, 2] , __a=True , __a=True , __a=37 , __a="gelu" , __a=10 , __a=0.02 , __a=["stage2", "stage3", "stage4"] , __a=3 , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = num_channels _UpperCamelCase = num_stages _UpperCamelCase = hidden_sizes _UpperCamelCase = depths _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = out_features _UpperCamelCase = num_labels _UpperCamelCase = scope _UpperCamelCase = num_stages def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Any: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__a , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=__a , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = UperNetForSemanticSegmentation(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__ = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = UperNetModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a) @unittest.skip(reason='''UperNet does not use inputs_embeds''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not support input and output embeddings''') def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''') def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''') def UpperCAmelCase ( self) -> int: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''') def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' def check_hidden_states_output(__a , __a , __a): _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(__a) , expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) _UpperCamelCase = _config_zero_init(configs_no_init.backbone_config) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason='''UperNet does not have tied weights''') def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' pass @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''', repo_type='''dataset''', filename='''ADE_val_00000001.jpg''' ) _UpperCamelCase = Image.open(__snake_case ).convert('''RGB''' ) return image @require_torch @require_vision @slow class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''') _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''').to(__a) _UpperCamelCase = prepare_img() _UpperCamelCase = processor(images=__a , return_tensors='''pt''').to(__a) with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''') _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''').to(__a) _UpperCamelCase = prepare_img() _UpperCamelCase = processor(images=__a , return_tensors='''pt''').to(__a) with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4))
19
0
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor UpperCamelCase__ : List[Any] = logging.get_logger(__name__) class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,*snake_case__ ,**snake_case__ ): warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' ,snake_case__ ,) super().__init__(*snake_case__ ,**snake_case__ )
105
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase( lowerCamelCase ): lowercase__ = (DDPMScheduler,) def UpperCAmelCase ( self , **__a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__a) return config def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=__a , beta_end=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.check_over_configs(thresholding=__a) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0979)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.02)) < 1e-5 def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = len(__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = torch.manual_seed(0) for t in reversed(range(__a)): # 1. predict noise residual _UpperCamelCase = model(__a , __a) # 2. predict previous mean of sample x_t-1 _UpperCamelCase = scheduler.step(__a , __a , __a , generator=__a).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCamelCase = pred_prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 258.9606) < 1e-2 assert abs(result_mean.item() - 0.3372) < 1e-3 def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''') _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = len(__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = torch.manual_seed(0) for t in reversed(range(__a)): # 1. predict noise residual _UpperCamelCase = model(__a , __a) # 2. predict previous mean of sample x_t-1 _UpperCamelCase = scheduler.step(__a , __a , __a , generator=__a).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCamelCase = pred_prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 202.0296) < 1e-2 assert abs(result_mean.item() - 0.2631) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__a) _UpperCamelCase = scheduler.timesteps for i, timestep in enumerate(__a): if i == len(__a) - 1: _UpperCamelCase = -1 else: _UpperCamelCase = timesteps[i + 1] _UpperCamelCase = scheduler.previous_timestep(__a) _UpperCamelCase = prev_t.item() self.assertEqual(__a , __a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 51, 0] with self.assertRaises(__a , msg='''`custom_timesteps` must be in descending order.'''): scheduler.set_timesteps(timesteps=__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [1_00, 87, 50, 1, 0] _UpperCamelCase = len(__a) with self.assertRaises(__a , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.'''): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) _UpperCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=__a)
19
0
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def lowerCamelCase_ ( lowerCAmelCase__ : List[str] ) -> Tuple: '''simple docstring''' if "img_encoder.pos_embed" in name: A = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: A = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: A = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: A = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: A = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: A = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: A = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: A = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: A = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: A = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: A = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: A = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: A = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: A = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: A = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: A = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: A = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: A = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: A = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: A = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: A = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: A = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: A = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: A = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def lowerCamelCase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] ) -> int: '''simple docstring''' for key in orig_state_dict.copy().keys(): A = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors A = key.split('.' ) A , A = int(key_split[2] ), int(key_split[4] ) A = config.vision_config.hidden_size if "weight" in key: A = val[:dim, :] A = val[dim : dim * 2, :] A = val[-dim:, :] else: A = val[:dim] A = val[dim : dim * 2] A = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors A = key.split('.' ) A = int(key_split[3] ) A = config.text_config.hidden_size if "weight" in key: A = val[:dim, :] A = val[ dim : dim * 2, : ] A = val[-dim:, :] else: A = val[:dim] A = val[dim : dim * 2] A = val[-dim:] else: A = rename_key(lowerCAmelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): A = val.squeeze_() else: A = val return orig_state_dict def lowerCamelCase_ ( ) -> List[Any]: '''simple docstring''' A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int]="groupvit-gcc-yfcc" , lowerCAmelCase__ : str=False ) -> Any: '''simple docstring''' A = GroupViTConfig() A = GroupViTModel(lowerCAmelCase__ ).eval() A = torch.load(lowerCAmelCase__ , map_location='cpu' )['model'] A = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) A , A = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0) # verify result A = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) A = prepare_img() A = processor(text=['a photo of a cat', 'a photo of a dog'] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='pt' ) with torch.no_grad(): A = model(**lowerCAmelCase__ ) if model_name == "groupvit-gcc-yfcc": A = torch.tensor([[13.3523, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": A = torch.tensor([[16.1873, 8.6230]] ) else: raise ValueError(F'''Model name {model_name} not supported.''' ) assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1E-3 ) processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print('Successfully saved processor and model to' , lowerCAmelCase__ ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(lowerCAmelCase__ , organization='nielsr' ) model.push_to_hub(lowerCAmelCase__ , organization='nielsr' ) if __name__ == "__main__": __snake_case :List[Any] =argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) __snake_case :Any =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
106
"""simple docstring""" from __future__ import annotations from functools import lru_cache from math import ceil _a = 100 _a = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} _UpperCamelCase = set() _UpperCamelCase = 42 _UpperCamelCase = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def lowerCamelCase__ ( __snake_case = 50_00 ) -> int | None: """simple docstring""" for number_to_partition in range(1, __snake_case ): if len(partition(__snake_case ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"""{solution() = }""")
19
0
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) _UpperCAmelCase : Dict = logging.getLogger(__name__) class lowercase_ ( _UpperCamelCase ): """simple docstring""" def __UpperCAmelCase ( self : List[str], UpperCamelCase__ : str, UpperCamelCase__ : List[Any], UpperCamelCase__ : str=None, UpperCamelCase__ : Tuple=None ) -> List[str]: _A = self.layer[current_layer](UpperCamelCase__, UpperCamelCase__, head_mask[current_layer] ) _A = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , _UpperCamelCase , ) class lowercase_ ( _UpperCamelCase ): """simple docstring""" def __init__( self : Tuple, UpperCamelCase__ : Tuple ) -> List[Any]: super().__init__(UpperCamelCase__ ) _A = BertEncoderWithPabee(UpperCamelCase__ ) self.init_weights() _A = 0 _A = 0 _A = 0 _A = 0 def __UpperCAmelCase ( self : Union[str, Any], UpperCamelCase__ : Optional[int] ) -> Dict: _A = threshold def __UpperCAmelCase ( self : int, UpperCamelCase__ : List[Any] ) -> List[str]: _A = patience def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: _A = 0 _A = 0 def __UpperCAmelCase ( self : List[Any] ) -> Any: _A = self.inference_layers_num / self.inference_instances_num _A = ( f'*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =' f' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***' ) print(UpperCamelCase__ ) @add_start_docstrings_to_model_forward(UpperCamelCase__ ) def __UpperCAmelCase ( self : List[Any], UpperCamelCase__ : Optional[Any]=None, UpperCamelCase__ : Any=None, UpperCamelCase__ : List[str]=None, UpperCamelCase__ : str=None, UpperCamelCase__ : Dict=None, UpperCamelCase__ : Dict=None, UpperCamelCase__ : Dict=None, UpperCamelCase__ : Any=None, UpperCamelCase__ : Union[str, Any]=None, UpperCamelCase__ : List[Any]=None, UpperCamelCase__ : Any=False, ) -> str: if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _A = input_ids.size() elif inputs_embeds is not None: _A = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _A = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _A = torch.ones(UpperCamelCase__, device=UpperCamelCase__ ) if token_type_ids is None: _A = torch.zeros(UpperCamelCase__, dtype=torch.long, device=UpperCamelCase__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _A = self.get_extended_attention_mask(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _A , _A , _A = encoder_hidden_states.size() _A = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _A = torch.ones(UpperCamelCase__, device=UpperCamelCase__ ) _A = self.invert_attention_mask(UpperCamelCase__ ) else: _A = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _A = self.get_head_mask(UpperCamelCase__, self.config.num_hidden_layers ) _A = self.embeddings( input_ids=UpperCamelCase__, position_ids=UpperCamelCase__, token_type_ids=UpperCamelCase__, inputs_embeds=UpperCamelCase__ ) _A = embedding_output if self.training: _A = [] for i in range(self.config.num_hidden_layers ): _A = self.encoder.adaptive_forward( UpperCamelCase__, current_layer=UpperCamelCase__, attention_mask=UpperCamelCase__, head_mask=UpperCamelCase__ ) _A = self.pooler(UpperCamelCase__ ) _A = output_layers[i](output_dropout(UpperCamelCase__ ) ) res.append(UpperCamelCase__ ) elif self.patience == 0: # Use all layers for inference _A = self.encoder( UpperCamelCase__, attention_mask=UpperCamelCase__, head_mask=UpperCamelCase__, encoder_hidden_states=UpperCamelCase__, encoder_attention_mask=UpperCamelCase__, ) _A = self.pooler(encoder_outputs[0] ) _A = [output_layers[self.config.num_hidden_layers - 1](UpperCamelCase__ )] else: _A = 0 _A = None _A = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _A = self.encoder.adaptive_forward( UpperCamelCase__, current_layer=UpperCamelCase__, attention_mask=UpperCamelCase__, head_mask=UpperCamelCase__ ) _A = self.pooler(UpperCamelCase__ ) _A = output_layers[i](UpperCamelCase__ ) if regression: _A = logits.detach() if patient_result is not None: _A = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _A = 0 else: _A = logits.detach().argmax(dim=1 ) if patient_result is not None: _A = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCamelCase__ ) ): patient_counter += 1 else: _A = 0 _A = logits if patient_counter == self.patience: break _A = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , _UpperCamelCase , ) class lowercase_ ( _UpperCamelCase ): """simple docstring""" def __init__( self : Dict, UpperCamelCase__ : List[str] ) -> Any: super().__init__(UpperCamelCase__ ) _A = config.num_labels _A = BertModelWithPabee(UpperCamelCase__ ) _A = nn.Dropout(config.hidden_dropout_prob ) _A = nn.ModuleList( [nn.Linear(config.hidden_size, self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCamelCase__ ) def __UpperCAmelCase ( self : Dict, UpperCamelCase__ : int=None, UpperCamelCase__ : str=None, UpperCamelCase__ : Any=None, UpperCamelCase__ : List[Any]=None, UpperCamelCase__ : Union[str, Any]=None, UpperCamelCase__ : Tuple=None, UpperCamelCase__ : List[str]=None, ) -> str: _A = self.bert( input_ids=UpperCamelCase__, attention_mask=UpperCamelCase__, token_type_ids=UpperCamelCase__, position_ids=UpperCamelCase__, head_mask=UpperCamelCase__, inputs_embeds=UpperCamelCase__, output_dropout=self.dropout, output_layers=self.classifiers, regression=self.num_labels == 1, ) _A = (logits[-1],) if labels is not None: _A = None _A = 0 for ix, logits_item in enumerate(UpperCamelCase__ ): if self.num_labels == 1: # We are doing regression _A = MSELoss() _A = loss_fct(logits_item.view(-1 ), labels.view(-1 ) ) else: _A = CrossEntropyLoss() _A = loss_fct(logits_item.view(-1, self.num_labels ), labels.view(-1 ) ) if total_loss is None: _A = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _A = (total_loss / total_weights,) + outputs return outputs
107
"""simple docstring""" from collections.abc import Callable import numpy as np def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> np.array: """simple docstring""" _UpperCamelCase = int(np.ceil((x_end - xa) / step_size ) ) _UpperCamelCase = np.zeros((n + 1,) ) _UpperCamelCase = ya _UpperCamelCase = xa for k in range(__snake_case ): _UpperCamelCase = y[k] + step_size * ode_func(__snake_case, y[k] ) _UpperCamelCase = y[k] + ( (step_size / 2) * (ode_func(__snake_case, y[k] ) + ode_func(x + step_size, __snake_case )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
19
0
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _lowerCamelCase = LEDConfig _lowerCamelCase = {} _lowerCamelCase = '''gelu''' def __init__( self : Dict , lowerCamelCase : str , lowerCamelCase : Optional[int]=13 , lowerCamelCase : Optional[int]=7 , lowerCamelCase : Dict=True , lowerCamelCase : List[Any]=False , lowerCamelCase : Any=99 , lowerCamelCase : Union[str, Any]=32 , lowerCamelCase : List[str]=2 , lowerCamelCase : int=4 , lowerCamelCase : Any=37 , lowerCamelCase : Union[str, Any]=0.1 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : Dict=20 , lowerCamelCase : List[Any]=2 , lowerCamelCase : str=1 , lowerCamelCase : Tuple=0 , lowerCamelCase : Optional[Any]=4 , ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = bos_token_id _UpperCAmelCase = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _UpperCAmelCase = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _UpperCAmelCase = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def lowerCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _UpperCAmelCase = prepare_led_inputs_dict(lowerCamelCase , lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = tf.concat( [tf.zeros_like(lowerCamelCase )[:, :-1], tf.ones_like(lowerCamelCase )[:, -1:]] , axis=-1 , ) _UpperCAmelCase = global_attention_mask return config, inputs_dict def lowerCamelCase ( self : Dict , lowerCamelCase : Dict , lowerCamelCase : Dict ) -> Any: """simple docstring""" _UpperCAmelCase = TFLEDModel(config=lowerCamelCase ).get_decoder() _UpperCAmelCase = inputs_dict["""input_ids"""] _UpperCAmelCase = input_ids[:1, :] _UpperCAmelCase = inputs_dict["""attention_mask"""][:1, :] _UpperCAmelCase = 1 # first forward pass _UpperCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase , use_cache=lowerCamelCase ) _UpperCAmelCase , _UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase )[0] _UpperCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase , past_key_values=lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx] _UpperCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCamelCase , lowerCamelCase , rtol=1E-3 ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , ) -> List[Any]: if attention_mask is None: _UpperCAmelCase = tf.cast(tf.math.not_equal(__snake_case , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowerCamelCase = (TFLEDForConditionalGeneration,) if is_tf_available() else () _lowerCamelCase = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def lowerCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase = TFLEDModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=lowerCamelCase ) def lowerCamelCase ( self : Dict ) -> int: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self : str ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase ) def lowerCamelCase ( self : Any ) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = tf.zeros_like(inputs_dict["""attention_mask"""] ) _UpperCAmelCase = 2 _UpperCAmelCase = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["""global_attention_mask"""] , ) _UpperCAmelCase = True _UpperCAmelCase = self.model_tester.seq_length _UpperCAmelCase = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowerCamelCase : Optional[Any] ): _UpperCAmelCase = outputs.decoder_attentions self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowerCamelCase : Any ): _UpperCAmelCase = [t.numpy() for t in outputs.encoder_attentions] _UpperCAmelCase = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = model_class(lowerCamelCase ) _UpperCAmelCase = model(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) _UpperCAmelCase = len(lowerCamelCase ) self.assertEqual(config.output_hidden_states , lowerCamelCase ) check_encoder_attentions_output(lowerCamelCase ) if self.is_encoder_decoder: _UpperCAmelCase = model_class(lowerCamelCase ) _UpperCAmelCase = model(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase ) check_decoder_attentions_output(lowerCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _UpperCAmelCase = True _UpperCAmelCase = model_class(lowerCamelCase ) _UpperCAmelCase = model(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase ) check_encoder_attentions_output(lowerCamelCase ) # Check attention is always last and order is fine _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(lowerCamelCase ) _UpperCAmelCase = model(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCamelCase ) ) self.assertEqual(model.config.output_hidden_states , lowerCamelCase ) check_encoder_attentions_output(lowerCamelCase ) @unittest.skip("""LED keeps using potentially symbolic tensors in conditionals and breaks tracing.""" ) def lowerCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass def lowerCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" # TODO: Head-masking not yet implement pass def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Any: return tf.constant(__snake_case , dtype=tf.intaa ) __a: int = 1E-4 @slow @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" _UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ).led # change to intended input here _UpperCAmelCase = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCAmelCase = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCAmelCase = prepare_led_inputs_dict(model.config , lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = model(**lowerCamelCase )[0] _UpperCAmelCase = (1, 1024, 768) self.assertEqual(output.shape , lowerCamelCase ) # change to expected output here _UpperCAmelCase = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase , atol=1E-3 ) def lowerCamelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ) # change to intended input here _UpperCAmelCase = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCAmelCase = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCAmelCase = prepare_led_inputs_dict(model.config , lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = model(**lowerCamelCase )[0] _UpperCAmelCase = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , lowerCamelCase ) # change to expected output here _UpperCAmelCase = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase , atol=1E-3 , rtol=1E-3 )
108
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _a = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _a = parser.parse_args() if args.model_type == "bert": _a = BertForMaskedLM.from_pretrained(args.model_name) _a = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _a = model.state_dict() _a = {} for w in ["word_embeddings", "position_embeddings"]: _a = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _a = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] _a = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _a = state_dict["""cls.predictions.decoder.weight"""] _a = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _a = state_dict[F"""cls.predictions.transform.dense.{w}"""] _a = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
19
0
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Tuple = MobileBertTokenizer __UpperCamelCase : List[str] = MobileBertTokenizerFast __UpperCamelCase : Dict = True __UpperCamelCase : List[str] = True __UpperCamelCase : Any = filter_non_english __UpperCamelCase : str = 'google/mobilebert-uncased' def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' super().setUp() __SCREAMING_SNAKE_CASE = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __SCREAMING_SNAKE_CASE = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" __SCREAMING_SNAKE_CASE = """unwanted, running""" return input_text, output_text def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowerCamelCase ,["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) ,[9, 6, 7, 12, 10, 11] ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" __SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCamelCase ) __SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase ,add_special_tokens=lowerCamelCase ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase ,add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase ,lowerCamelCase ) # With lower casing __SCREAMING_SNAKE_CASE = self.get_tokenizer(do_lower_case=lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(do_lower_case=lowerCamelCase ) __SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" __SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCamelCase ) __SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase ,add_special_tokens=lowerCamelCase ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase ,add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) ,["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase ,strip_accents=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""h\u00E9llo"""] ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase ,strip_accents=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase ,strip_accents=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase ,strip_accents=lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase ,never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] __SCREAMING_SNAKE_CASE = {} for i, token in enumerate(lowerCamelCase ): __SCREAMING_SNAKE_CASE = i __SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=lowerCamelCase ,unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) ,[] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) ,["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) ,["""[UNK]""", """runn""", """##ing"""] ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCamelCase ) for t in ["""Test""", """\xad""", """test"""]] ,[["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCamelCase ) for t in ["""Test""", """\xad""", """test"""]] ,[["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" ) __SCREAMING_SNAKE_CASE = tokenizer.encode("""sequence builders""" ,add_special_tokens=lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ,lowerCamelCase ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def UpperCAmelCase__ ( self : int ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" __SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus( lowerCamelCase ,return_attention_mask=lowerCamelCase ,return_token_type_ids=lowerCamelCase ,return_offsets_mapping=lowerCamelCase ,add_special_tokens=lowerCamelCase ,) __SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(lowerCamelCase ,"""do_lower_case""" ) else False __SCREAMING_SNAKE_CASE = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens["""offset_mapping"""] ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""的""", """人""", """有"""] __SCREAMING_SNAKE_CASE = """""".join(lowerCamelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer_p.encode(lowerCamelCase ,add_special_tokens=lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer_r.encode(lowerCamelCase ,add_special_tokens=lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(lowerCamelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCamelCase ,lowerCamelCase ) self.assertListEqual(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer_r.encode(lowerCamelCase ,add_special_tokens=lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer_p.encode(lowerCamelCase ,add_special_tokens=lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(lowerCamelCase ) # it is expected that only the first Chinese character is not preceded by "##". __SCREAMING_SNAKE_CASE = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowerCamelCase ) ] self.assertListEqual(lowerCamelCase ,lowerCamelCase ) self.assertListEqual(lowerCamelCase ,lowerCamelCase )
109
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _a = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class _UpperCAmelCase: lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = 'gelu' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=False , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a=0.1 , __a=0.1 , __a=20 , __a=2 , __a=1 , __a=0 , ) -> int: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) _UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) _UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCamelCase = prepare_pegasus_inputs_dict(__a , __a , __a) return config, inputs_dict def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids''']) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a) _UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''') _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __a , decoder_attention_mask=__a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__a , ) _UpperCamelCase = model.decode(__a , __a) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''') def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids''']) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , __a , __a) _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , __a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__a , decoder_position_ids=__a , ) _UpperCamelCase = model.decode(__a , __a , decoder_attention_mask=__a) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''') def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=None, __snake_case=None, ) -> Union[str, Any]: """simple docstring""" if attention_mask is None: _UpperCamelCase = np.not_equal(__snake_case, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _UpperCamelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = FlaxPegasusModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = self._prepare_for_class(__a , __a) _UpperCamelCase = model_class(__a) @jax.jit def encode_jitted(__a , __a=None , **__a): return model.encode(input_ids=__a , attention_mask=__a) with self.subTest('''JIT Enabled'''): _UpperCamelCase = encode_jitted(**__a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): _UpperCamelCase = encode_jitted(**__a).to_tuple() self.assertEqual(len(__a) , len(__a)) for jitted_output, output in zip(__a , __a): self.assertEqual(jitted_output.shape , output.shape) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = model_class(__a) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask''']) _UpperCamelCase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(__a , __a , __a): return model.decode( decoder_input_ids=__a , decoder_attention_mask=__a , encoder_outputs=__a , ) with self.subTest('''JIT Enabled'''): _UpperCamelCase = decode_jitted(**__a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): _UpperCamelCase = decode_jitted(**__a).to_tuple() self.assertEqual(len(__a) , len(__a)) for jitted_output, output in zip(__a , __a): self.assertEqual(jitted_output.shape , output.shape) @slow def UpperCAmelCase ( self) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=__a) _UpperCamelCase = np.ones((1, 1)) _UpperCamelCase = model(__a) self.assertIsNotNone(__a) @slow def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''') _UpperCamelCase = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''') _UpperCamelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] _UpperCamelCase = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] _UpperCamelCase = tokenizer(__a , return_tensors='''np''' , truncation=__a , max_length=5_12 , padding=__a) _UpperCamelCase = model.generate(**__a , num_beams=2).sequences _UpperCamelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a) assert tgt_text == decoded
19
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class a ( lowercase ): UpperCamelCase : Tuple = """levit""" def __init__( self , UpperCamelCase_=224 , UpperCamelCase_=3 , UpperCamelCase_=3 , UpperCamelCase_=2 , UpperCamelCase_=1 , UpperCamelCase_=16 , UpperCamelCase_=[128, 256, 384] , UpperCamelCase_=[4, 8, 12] , UpperCamelCase_=[4, 4, 4] , UpperCamelCase_=[16, 16, 16] , UpperCamelCase_=0 , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=0.02 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) UpperCAmelCase__ : Optional[Any] = image_size UpperCAmelCase__ : Optional[Any] = num_channels UpperCAmelCase__ : Any = kernel_size UpperCAmelCase__ : Optional[Any] = stride UpperCAmelCase__ : Optional[Any] = padding UpperCAmelCase__ : Union[str, Any] = hidden_sizes UpperCAmelCase__ : Dict = num_attention_heads UpperCAmelCase__ : Union[str, Any] = depths UpperCAmelCase__ : List[str] = key_dim UpperCAmelCase__ : List[str] = drop_path_rate UpperCAmelCase__ : Any = patch_size UpperCAmelCase__ : int = attention_ratio UpperCAmelCase__ : Union[str, Any] = mlp_ratio UpperCAmelCase__ : Optional[Any] = initializer_range UpperCAmelCase__ : List[str] = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class a ( lowercase ): UpperCamelCase : Tuple = version.parse("""1.11""" ) @property def __snake_case ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __snake_case ( self ): return 1E-4
110
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , __a=0 , ) -> Any: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope _UpperCamelCase = projection_dim def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) _UpperCamelCase = DPRConfig(projection_dim=self.projection_dim , **config.to_dict()) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = TFDPRContextEncoder(config=__a) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFDPRQuestionEncoder(config=__a) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = TFDPRReader(config=__a) _UpperCamelCase = model(__a , attention_mask=__a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,)) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowercase__ = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDPRModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__a) @slow def UpperCAmelCase ( self) -> str: '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRContextEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRContextEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRQuestionEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRReader.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''') _UpperCamelCase = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]]) # [CLS] hello, is my dog cute? [SEP] _UpperCamelCase = model(__a)[0] # embedding shape = (1, 768) # compare the actual values for a slice. _UpperCamelCase = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ]) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4))
19
0
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __lowerCAmelCase = trt.Logger(trt.Logger.WARNING) __lowerCAmelCase = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __lowerCAmelCase = logging.getLogger(__name__) __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--onnx_model_path""", default=None, type=str, required=True, help="""Path to ONNX model: """, ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""The output directory where the model checkpoints and predictions will be written.""", ) # Other parameters parser.add_argument( """--tokenizer_name""", default="""""", type=str, required=True, help="""Pretrained tokenizer name or path if not the same as model_name""", ) parser.add_argument( """--version_2_with_negative""", action="""store_true""", help="""If true, the SQuAD examples contain some that do not have an answer.""", ) parser.add_argument( """--null_score_diff_threshold""", type=float, default=0.0, help="""If null_score - best_non_null is greater than the threshold predict null.""", ) parser.add_argument( """--max_seq_length""", default=3_8_4, type=int, help=( """The maximum total input sequence length after WordPiece tokenization. Sequences """ """longer than this will be truncated, and sequences shorter than this will be padded.""" ), ) parser.add_argument( """--doc_stride""", default=1_2_8, type=int, help="""When splitting up a long document into chunks, how much stride to take between chunks.""", ) parser.add_argument("""--per_device_eval_batch_size""", default=8, type=int, help="""Batch size per GPU/CPU for evaluation.""") parser.add_argument( """--n_best_size""", default=2_0, type=int, help="""The total number of n-best predictions to generate in the nbest_predictions.json output file.""", ) parser.add_argument( """--max_answer_length""", default=3_0, type=int, help=( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ), ) parser.add_argument("""--seed""", type=int, default=4_2, help="""random seed for initialization""") parser.add_argument( """--dataset_name""", type=str, default=None, required=True, help="""The name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--dataset_config_name""", type=str, default=None, help="""The configuration name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--preprocessing_num_workers""", type=int, default=4, help="""A csv or a json file containing the training data.""" ) parser.add_argument("""--overwrite_cache""", action="""store_true""", help="""Overwrite the cached training and evaluation sets""") parser.add_argument( """--fp16""", action="""store_true""", help="""Whether to use 16-bit (mixed) precision instead of 32-bit""", ) parser.add_argument( """--int8""", action="""store_true""", help="""Whether to use INT8""", ) __lowerCAmelCase = parser.parse_args() if args.tokenizer_name: __lowerCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) logger.info("""Training/evaluation parameters %s""", args) __lowerCAmelCase = args.per_device_eval_batch_size __lowerCAmelCase = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __lowerCAmelCase = True __lowerCAmelCase = """temp_engine/bert-fp32.engine""" if args.fpaa: __lowerCAmelCase = """temp_engine/bert-fp16.engine""" if args.inta: __lowerCAmelCase = """temp_engine/bert-int8.engine""" # import ONNX file if not os.path.exists("""temp_engine"""): os.makedirs("""temp_engine""") __lowerCAmelCase = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, """rb""") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __lowerCAmelCase = [network.get_input(i) for i in range(network.num_inputs)] __lowerCAmelCase = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __lowerCAmelCase = 1 << 5_0 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __lowerCAmelCase = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __lowerCAmelCase = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, """wb""") as f: f.write(engine.serialize()) def UpperCAmelCase_ (__a : List[Any] , __a : str , __a : List[str] , __a : Optional[Any] , __a : Any , __a : List[str] , __a : int , __a : List[Any] ): """simple docstring""" _a : Union[str, Any] = np.asarray(inputs['input_ids'] , dtype=np.intaa ) _a : Optional[Any] = np.asarray(inputs['attention_mask'] , dtype=np.intaa ) _a : Any = np.asarray(inputs['token_type_ids'] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , __snake_case ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , __snake_case ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , __snake_case ) # start time _a : Union[str, Any] = time.time() # Run inference context.execute_async( bindings=[int(__snake_case ) for d_inp in d_inputs] + [int(__snake_case ), int(__snake_case )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(__snake_case , __snake_case , __snake_case ) cuda.memcpy_dtoh_async(__snake_case , __snake_case , __snake_case ) # Synchronize the stream and take time stream.synchronize() # end time _a : Tuple = time.time() _a : Union[str, Any] = end_time - start_time _a : str = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __lowerCAmelCase = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("""Evaluation requires a dataset name""") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __lowerCAmelCase = raw_datasets["""validation"""].column_names __lowerCAmelCase = """question""" if """question""" in column_names else column_names[0] __lowerCAmelCase = """context""" if """context""" in column_names else column_names[1] __lowerCAmelCase = """answers""" if """answers""" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __lowerCAmelCase = tokenizer.padding_side == """right""" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) __lowerCAmelCase = min(args.max_seq_length, tokenizer.model_max_length) def UpperCAmelCase_ (__a : Dict ): """simple docstring""" _a : Tuple = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. _a : Optional[Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='only_second' if pad_on_right else 'only_first' , max_length=__snake_case , stride=args.doc_stride , return_overflowing_tokens=__snake_case , return_offsets_mapping=__snake_case , padding='max_length' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. _a : Optional[Any] = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. _a : List[Any] = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). _a : str = tokenized_examples.sequence_ids(__snake_case ) _a : Optional[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. _a : int = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. _a : Optional[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples __lowerCAmelCase = raw_datasets["""validation"""] # Validation Feature Creation __lowerCAmelCase = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="""Running tokenizer on validation dataset""", ) __lowerCAmelCase = default_data_collator __lowerCAmelCase = eval_dataset.remove_columns(["""example_id""", """offset_mapping"""]) __lowerCAmelCase = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def UpperCAmelCase_ (__a : Any , __a : str , __a : Optional[int] , __a : Union[str, Any]="eval" ): """simple docstring""" _a : List[str] = postprocess_qa_predictions( examples=__snake_case , features=__snake_case , predictions=__snake_case , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=__snake_case , ) # Format the result to the format the metric expects. if args.version_2_with_negative: _a : Optional[Any] = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: _a : Union[str, Any] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] _a : Any = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=__snake_case , label_ids=__snake_case ) __lowerCAmelCase = load_metric("""squad_v2""" if args.version_2_with_negative else """squad""") # Evaluation! logger.info("""Loading ONNX model %s for evaluation""", args.onnx_model_path) with open(engine_name, """rb""") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def UpperCAmelCase_ (__a : List[Any] ): """simple docstring""" return trt.volume(engine.get_binding_shape(__snake_case ) ) * engine.get_binding_dtype(__snake_case ).itemsize # Allocate device memory for inputs and outputs. __lowerCAmelCase = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __lowerCAmelCase = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __lowerCAmelCase = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __lowerCAmelCase = cuda.mem_alloc(h_outputa.nbytes) __lowerCAmelCase = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __lowerCAmelCase = cuda.Stream() # Evaluation logger.info("""***** Running Evaluation *****""") logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') __lowerCAmelCase = 0.0 __lowerCAmelCase = 0 __lowerCAmelCase = timeit.default_timer() __lowerCAmelCase = None for step, batch in enumerate(eval_dataloader): __lowerCAmelCase , __lowerCAmelCase = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __lowerCAmelCase , __lowerCAmelCase = outputs __lowerCAmelCase = torch.tensor(start_logits) __lowerCAmelCase = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __lowerCAmelCase = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_0_0) __lowerCAmelCase = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_0_0) __lowerCAmelCase = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __lowerCAmelCase = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_0_0) if all_preds is not None: __lowerCAmelCase = nested_truncate(all_preds, len(eval_dataset)) __lowerCAmelCase = timeit.default_timer() - start_time logger.info(""" Evaluation done in total %f secs (%f sec per example)""", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("""Average Inference Time = {:.3f} ms""".format(total_time * 1_0_0_0 / niter)) logger.info("""Total Inference Time = {:.3f} ms""".format(total_time * 1_0_0_0)) logger.info("""Total Number of Inference = %d""", niter) __lowerCAmelCase = post_processing_function(eval_examples, eval_dataset, all_preds) __lowerCAmelCase = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
229
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x2_0000 and cp <= 0x2_A6DF) # or (cp >= 0x2_A700 and cp <= 0x2_B73F) # or (cp >= 0x2_B740 and cp <= 0x2_B81F) # or (cp >= 0x2_B820 and cp <= 0x2_CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2_F800 and cp <= 0x2_FA1F) # ): # return True return False def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" for char in word: _UpperCamelCase = ord(__snake_case ) if not _is_chinese_char(__snake_case ): return 0 return 1 def lowerCamelCase__ ( __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = set() for token in tokens: _UpperCamelCase = len(__snake_case ) > 1 and is_chinese(__snake_case ) if chinese_word: word_set.add(__snake_case ) _UpperCamelCase = list(__snake_case ) return word_list def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" if not chinese_word_set: return bert_tokens _UpperCamelCase = max([len(__snake_case ) for w in chinese_word_set] ) _UpperCamelCase = bert_tokens _UpperCamelCase , _UpperCamelCase = 0, len(__snake_case ) while start < end: _UpperCamelCase = True if is_chinese(bert_word[start] ): _UpperCamelCase = min(end - start, __snake_case ) for i in range(__snake_case, 1, -1 ): _UpperCamelCase = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _UpperCamelCase = '''##''' + bert_word[j] _UpperCamelCase = start + i _UpperCamelCase = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws _UpperCamelCase = [get_chinese_word(__snake_case ) for r in res] ltp_res.extend(__snake_case ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for i in range(0, len(__snake_case ), 1_00 ): _UpperCamelCase = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=__snake_case, truncation=__snake_case, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = [] for input_ids, chinese_word in zip(__snake_case, __snake_case ): _UpperCamelCase = [] for id in input_ids: _UpperCamelCase = bert_tokenizer._convert_id_to_token(__snake_case ) input_tokens.append(__snake_case ) _UpperCamelCase = add_sub_symbol(__snake_case, __snake_case ) _UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__snake_case ): if token[:2] == "##": _UpperCamelCase = token[2:] # save chinese tokens' pos if len(__snake_case ) == 1 and _is_chinese_char(ord(__snake_case ) ): ref_id.append(__snake_case ) ref_ids.append(__snake_case ) assert len(__snake_case ) == len(__snake_case ) return ref_ids def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _UpperCamelCase = f.readlines() _UpperCamelCase = [line.strip() for line in data if len(__snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _UpperCamelCase = LTP(args.ltp ) # faster in GPU device _UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) _UpperCamelCase = prepare_ref(__snake_case, __snake_case, __snake_case ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _UpperCamelCase = [json.dumps(__snake_case ) + '''\n''' for ref in ref_ids] f.writelines(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) _a = parser.parse_args() main(args)
19
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def __lowerCamelCase (UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : Optional[Any] ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__snake_case , **__snake_case ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_config(__snake_case ) model.save_pretrained(__snake_case ) AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
403
"""simple docstring""" import heapq def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" _UpperCamelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__snake_case, [-1 * len(__snake_case ), (key, value)] ) # chosen_vertices = set of chosen vertices _UpperCamelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _UpperCamelCase = heapq.heappop(__snake_case )[1][0] chosen_vertices.add(__snake_case ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _UpperCamelCase = elem[1][1].index(__snake_case ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__snake_case ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _a = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
19
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _snake_case : Any = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class A ( unittest.TestCase ): lowercase_ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowercase_ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowercase_ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowercase_ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] ) -> str: """simple docstring""" _a = ZeroShotClassificationPipeline( model=__a , tokenizer=__a , candidate_labels=['''polics''', '''health'''] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] ) -> Optional[int]: """simple docstring""" _a = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''' ) self.assertEqual(__a , {'''sequence''': ANY(__a ), '''labels''': [ANY(__a )], '''scores''': [ANY(__a )]} ) # No kwarg _a = classifier('''Who are you voting for in 2020?''' , ['''politics'''] ) self.assertEqual(__a , {'''sequence''': ANY(__a ), '''labels''': [ANY(__a )], '''scores''': [ANY(__a )]} ) _a = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics'''] ) self.assertEqual(__a , {'''sequence''': ANY(__a ), '''labels''': [ANY(__a )], '''scores''': [ANY(__a )]} ) _a = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''' ) self.assertEqual( __a , {'''sequence''': ANY(__a ), '''labels''': [ANY(__a ), ANY(__a )], '''scores''': [ANY(__a ), ANY(__a )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) _a = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health'''] ) self.assertEqual( __a , {'''sequence''': ANY(__a ), '''labels''': [ANY(__a ), ANY(__a )], '''scores''': [ANY(__a ), ANY(__a )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) _a = classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''' ) self.assertEqual(__a , {'''sequence''': ANY(__a ), '''labels''': [ANY(__a )], '''scores''': [ANY(__a )]} ) # https://github.com/huggingface/transformers/issues/13846 _a = classifier(['''I am happy'''] , ['''positive''', '''negative'''] ) self.assertEqual( __a , [ {'''sequence''': ANY(__a ), '''labels''': [ANY(__a ), ANY(__a )], '''scores''': [ANY(__a ), ANY(__a )]} for i in range(1 ) ] , ) _a = classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative'''] ) self.assertEqual( __a , [ {'''sequence''': ANY(__a ), '''labels''': [ANY(__a ), ANY(__a )], '''scores''': [ANY(__a ), ANY(__a )]} for i in range(2 ) ] , ) with self.assertRaises(__a ): classifier('''''' , candidate_labels='''politics''' ) with self.assertRaises(__a ): classifier(__a , candidate_labels='''politics''' ) with self.assertRaises(__a ): classifier('''Who are you voting for in 2020?''' , candidate_labels='''''' ) with self.assertRaises(__a ): classifier('''Who are you voting for in 2020?''' , candidate_labels=__a ) with self.assertRaises(__a ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , ) with self.assertRaises(__a ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=__a , ) self.run_entailment_id(__a ) def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : int ) -> List[Any]: """simple docstring""" _a = zero_shot_classifier.model.config _a = config.labelaid _a = zero_shot_classifier.entailment_id _a = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) _a = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _a = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _a = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) _a = original_labelaid self.assertEqual(__a , zero_shot_classifier.entailment_id ) @require_torch def __lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _a = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 1_00 , candidate_labels=['''politics''', '''public health''', '''science'''] ) @require_torch def __lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _a = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) _a = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__a ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def __lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" _a = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , ) _a = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__a ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def __lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" _a = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''' ) _a = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__a ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) _a = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=__a , ) self.assertEqual( nested_simplify(__a ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _a = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''' ) _a = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__a ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) _a = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=__a , ) self.assertEqual( nested_simplify(__a ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
22
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _UpperCamelCase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj ) assert isinstance(_test_patching.os.path, _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" assert _test_patching.open is open _UpperCamelCase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, '''open''', __snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching, '''pandas.read_csv''', __snake_case ): pass def lowerCamelCase__ ( ) -> Dict: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, '''len''', __snake_case ) is None with patch_submodule(_test_patching, '''len''', __snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_start_and_stop_mock__''' _UpperCamelCase = patch_submodule(_test_patching, '''open''', __snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _UpperCamelCase = '''__test_patch_submodule_successive_join__''' _UpperCamelCase = '''__test_patch_submodule_successive_dirname__''' _UpperCamelCase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, '''os.rename''', __snake_case ): with patch_submodule(_test_patching, '''os.path.join''', __snake_case ): with patch_submodule(_test_patching, '''os.path.dirname''', __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> str: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching, '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''', __snake_case ): pass with patch_submodule(_test_patching, '''os.__attribute_that_doesn_exist__''', __snake_case ): pass
19
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" lowerCAmelCase = ['image_processor', 'tokenizer'] lowerCAmelCase = 'ViTImageProcessor' lowerCAmelCase = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Dict=None , **SCREAMING_SNAKE_CASE : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __a , ) lowerCAmelCase = kwargs.pop("feature_extractor" ) lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__a , __a ) def __call__( self : List[str] , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Any=None , **SCREAMING_SNAKE_CASE : Optional[int] ) -> Tuple: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCAmelCase = self.tokenizer(__a , return_tensors=__a , **__a ) if visual_prompt is not None: lowerCAmelCase = self.image_processor(__a , return_tensors=__a , **__a ) if images is not None: lowerCAmelCase = self.image_processor(__a , return_tensors=__a , **__a ) if visual_prompt is not None and images is not None: lowerCAmelCase = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCAmelCase = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__a ) , tensor_type=__a ) def __A ( self : Dict , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : Any ) -> Any: """simple docstring""" return self.tokenizer.batch_decode(*__a , **__a ) def __A ( self : Dict , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : List[str] ) -> List[str]: """simple docstring""" return self.tokenizer.decode(*__a , **__a ) @property def __A ( self : Tuple ) -> List[str]: """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __a , ) return self.image_processor_class @property def __A ( self : str ) -> List[str]: """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __a , ) return self.image_processor
649
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = original_name.split('''.''' )[0] _UpperCamelCase = key.split('''.''' ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 2] ) _UpperCamelCase = int(key_list[key_list.index(__snake_case ) - 1] ) _UpperCamelCase = orig_block_num - offset _UpperCamelCase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''', F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = OrderedDict() _UpperCamelCase , _UpperCamelCase = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): _UpperCamelCase = key.replace('''network''', '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 _UpperCamelCase = key[: key.find('''proj''' )] _UpperCamelCase = key.replace(__snake_case, F'''patch_embeddings.{total_embed_found}.''' ) _UpperCamelCase = key.replace('''proj''', '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: _UpperCamelCase = '''poolformer.encoder.''' + key if "mlp.fc1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc1''', '''output.conv1''' ) if "mlp.fc2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''mlp.fc2''', '''output.conv2''' ) if "norm1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm1''', '''before_norm''' ) if "norm2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''norm2''', '''after_norm''' ) if "layer_scale_1" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_1''', '''layer_scale_1''' ) if "layer_scale_2" in key: _UpperCamelCase = replace_key_with_offset(__snake_case, __snake_case, '''layer_scale_2''', '''layer_scale_2''' ) if "head" in key: _UpperCamelCase = key.replace('''head''', '''classifier''' ) _UpperCamelCase = value return new_state_dict def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase = Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return image @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = PoolFormerConfig() # set attributes based on model_name _UpperCamelCase = '''huggingface/label-files''' _UpperCamelCase = model_name[-3:] _UpperCamelCase = 10_00 _UpperCamelCase = '''imagenet-1k-id2label.json''' _UpperCamelCase = (1, 10_00) # set config attributes _UpperCamelCase = json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type='''dataset''' ), '''r''' ) ) _UpperCamelCase = {int(__snake_case ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} if size == "s12": _UpperCamelCase = [2, 2, 6, 2] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s24": _UpperCamelCase = [4, 4, 12, 4] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 0.9 elif size == "s36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [64, 1_28, 3_20, 5_12] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.9 elif size == "m36": _UpperCamelCase = [6, 6, 18, 6] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 elif size == "m48": _UpperCamelCase = [8, 8, 24, 8] _UpperCamelCase = [96, 1_92, 3_84, 7_68] _UpperCamelCase = 4.0 _UpperCamelCase = 1e-6 _UpperCamelCase = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) # Prepare image _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__snake_case, return_tensors='''pt''' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict _UpperCamelCase = torch.load(__snake_case, map_location=torch.device('''cpu''' ) ) # rename keys _UpperCamelCase = rename_keys(__snake_case ) # create HuggingFace model and load state dict _UpperCamelCase = PoolFormerForImageClassification(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # Define image processor _UpperCamelCase = PoolFormerImageProcessor(crop_pct=__snake_case ) _UpperCamelCase = image_processor(images=prepare_img(), return_tensors='''pt''' ).pixel_values # forward pass _UpperCamelCase = model(__snake_case ) _UpperCamelCase = outputs.logits # define expected logit slices for different models if size == "s12": _UpperCamelCase = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": _UpperCamelCase = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": _UpperCamelCase = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": _UpperCamelCase = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": _UpperCamelCase = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3], __snake_case, atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _a = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
19
0
'''simple docstring''' UpperCamelCase__ : Optional[int] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' UpperCamelCase__ : Optional[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] UpperCamelCase__ : List[Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
614
"""simple docstring""" import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class _UpperCAmelCase( lowerCamelCase ): lowercase__ = (DPMSolverSDEScheduler,) lowercase__ = 10 def UpperCAmelCase ( self , **__a) -> int: '''simple docstring''' _UpperCamelCase = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**__a) return config def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02]): self.check_over_configs(beta_start=__a , beta_end=__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a) def UpperCAmelCase ( self) -> str: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''') _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for i, t in enumerate(scheduler.timesteps): _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**__a , use_karras_sigmas=__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma _UpperCamelCase = sample.to(__a) for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(__a , __a) _UpperCamelCase = model(__a , __a) _UpperCamelCase = scheduler.step(__a , __a , __a) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(__a)) _UpperCamelCase = torch.mean(torch.abs(__a)) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2
19
0
'''simple docstring''' import fire from utils import calculate_rouge, save_json def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Any=None , **__lowerCamelCase : int ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] =[x.strip() for x in open(__snake_case ).readlines()] _UpperCAmelCase : int =[x.strip() for x in open(__snake_case ).readlines()][: len(__snake_case )] _UpperCAmelCase : Tuple =calculate_rouge(__snake_case , __snake_case , **__snake_case ) if save_path is not None: save_json(__snake_case , __snake_case , indent=__snake_case ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
446
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['pixel_values'] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BICUBIC , __a = True , __a = True , __a = 1 / 2_55 , __a = None , __a = True , __a = None , __a = None , **__a , ) -> None: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a , default_to_square=__a , param_name='''crop_size''') _UpperCamelCase = do_resize _UpperCamelCase = do_rescale _UpperCamelCase = do_normalize _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = rescale_factor _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BILINEAR , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "shortest_edge" in size: _UpperCamelCase = get_resize_output_image_size(__a , size=size['''shortest_edge'''] , default_to_square=__a) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''') return resize(__a , size=__a , resample=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''') return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a) -> np.ndarray: '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> BatchFeature: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(__a , param_name='''crop_size''' , default_to_square=__a) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(__a) if not is_batched(__a): _UpperCamelCase = [images] if not valid_images(__a): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(__a) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=__a , size=__a , resample=__a) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=__a , size=__a) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=__a , scale=__a) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=__a , mean=__a , std=__a) for image in images] _UpperCamelCase = [to_channel_dimension_format(__a , __a) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=__a , tensor_type=__a)
19
0
def _a ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int = 0 ) -> list: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = length or len(__snake_case ) SCREAMING_SNAKE_CASE__ : Any = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[Any] = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE__ : Optional[Any] = True return list_data if not swapped else bubble_sort(__snake_case , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
663
"""simple docstring""" # Imports import numpy as np class _UpperCAmelCase: def __init__( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) def UpperCAmelCase ( self , __a=None , __a=None , __a=None , __a=None , __a=None) -> Dict: '''simple docstring''' if red is not None: _UpperCamelCase = red if green is not None: _UpperCamelCase = green if blue is not None: _UpperCamelCase = blue if red_edge is not None: _UpperCamelCase = red_edge if nir is not None: _UpperCamelCase = nir return True def UpperCAmelCase ( self , __a="" , __a=None , __a=None , __a=None , __a=None , __a=None) -> List[str]: '''simple docstring''' self.set_matricies(red=__a , green=__a , blue=__a , red_edge=__a , nir=__a) _UpperCamelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''') return False def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self) -> Any: '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self) -> str: '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self , __a=0.08 , __a=1.22 , __a=0.03) -> Optional[Any]: '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return (self.nir / self.green) - 1 def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.red - self.blue) / self.red def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.nir - self.green def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def UpperCAmelCase ( self , __a=0.16) -> Optional[Any]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self , __a=0.5) -> Dict: '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self , __a=None , __a=None) -> Any: '''simple docstring''' return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self) -> Any: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> str: '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) _UpperCamelCase = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self) -> str: '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.nir / self.red def UpperCAmelCase ( self) -> Any: '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
19
0
import string from math import logaa def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> int: UpperCAmelCase = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) UpperCAmelCase = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> tuple[int, int]: UpperCAmelCase = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' UpperCAmelCase = corpus_without_punctuation.split("\n" ) UpperCAmelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(__snake_case )) def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ) -> float: if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> float: return round(tf * idf , 3 )
323
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=64 , __a=2 , __a=3 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a=[1, 16, 4, 4] , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _UpperCamelCase = (self.image_size // 32) ** 2 _UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__a , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.type_sequence_label_size _UpperCamelCase = ViTHybridForImageClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowercase__ = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ViTHybridModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''') def UpperCAmelCase ( self) -> Dict: '''simple docstring''' pass def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear)) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _UpperCamelCase = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = ViTHybridModel.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase( unittest.TestCase ): @cached_property def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( __a) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''').to(__a) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__a) # verify the logits _UpperCamelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor([-1.9090, -0.4993, -0.2389]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4)) @slow @require_accelerate def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''') _UpperCamelCase = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''') _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''') _UpperCamelCase = model(**__a) _UpperCamelCase = outputs.logits # model predicts one of the 1000 ImageNet classes _UpperCamelCase = logits.argmax(-1).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''')
19
0
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __UpperCamelCase ( ): lowercase__ : Union[str, Any] = HfArgumentParser(__snake_case ) lowercase__ : Optional[int] = parser.parse_args_into_dataclasses()[0] lowercase__ : List[str] = TensorFlowBenchmark(args=__snake_case ) try: lowercase__ : Union[str, Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase__ : Dict = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' lowercase__ : int = ''' '''.join(str(__snake_case ).split(''' ''' )[:-1] ) lowercase__ : List[str] = '''''' lowercase__ : Tuple = eval(str(__snake_case ).split(''' ''' )[-1] ) lowercase__ : Tuple = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__snake_case ) if len(__snake_case ) > 0: lowercase__ : List[Any] = full_error_msg + begin_error_msg + str(__snake_case ) raise ValueError(__snake_case ) benchmark.run() if __name__ == "__main__": main()
152
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['vqvae'] def __init__( self , __a , __a , __a , __a , ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules(unet=__a , scheduler=__a , mel=__a , vqvae=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' return 50 if isinstance(self.scheduler , __a) else 10_00 @torch.no_grad() def __call__( self , __a = 1 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = 0 , __a = None , __a = None , __a=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' _UpperCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(__a) _UpperCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: _UpperCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _UpperCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__a , device=self.device , ) _UpperCamelCase = noise _UpperCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__a , __a) _UpperCamelCase = self.mel.audio_slice_to_image(__a) _UpperCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''').reshape( (input_image.height, input_image.width)) _UpperCamelCase = (input_image / 2_55) * 2 - 1 _UpperCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: _UpperCamelCase = self.vqvae.encode(torch.unsqueeze(__a , 0)).latent_dist.sample( generator=__a)[0] _UpperCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _UpperCamelCase = self.scheduler.add_noise(__a , __a , self.scheduler.timesteps[start_step - 1]) _UpperCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _UpperCamelCase = int(mask_start_secs * pixels_per_second) _UpperCamelCase = int(mask_end_secs * pixels_per_second) _UpperCamelCase = self.scheduler.add_noise(__a , __a , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , __a): _UpperCamelCase = self.unet(__a , __a , __a)['''sample'''] else: _UpperCamelCase = self.unet(__a , __a)['''sample'''] if isinstance(self.scheduler , __a): _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , eta=__a , generator=__a , )['''prev_sample'''] else: _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , generator=__a , )['''prev_sample'''] if mask is not None: if mask_start > 0: _UpperCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _UpperCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _UpperCamelCase = 1 / self.vqvae.config.scaling_factor * images _UpperCamelCase = self.vqvae.decode(__a)['''sample'''] _UpperCamelCase = (images / 2 + 0.5).clamp(0 , 1) _UpperCamelCase = images.cpu().permute(0 , 2 , 3 , 1).numpy() _UpperCamelCase = (images * 2_55).round().astype('''uint8''') _UpperCamelCase = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__a , mode='''RGB''').convert('''L''') for _ in images)) _UpperCamelCase = [self.mel.image_to_audio(__a) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__a)[:, np.newaxis, :]) , **ImagePipelineOutput(__a)) @torch.no_grad() def UpperCAmelCase ( self , __a , __a = 50) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , __a) self.scheduler.set_timesteps(__a) _UpperCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''').reshape((1, image.height, image.width)) for image in images]) _UpperCamelCase = (sample / 2_55) * 2 - 1 _UpperCamelCase = torch.Tensor(__a).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): _UpperCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _UpperCamelCase = self.scheduler.alphas_cumprod[t] _UpperCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _UpperCamelCase = 1 - alpha_prod_t _UpperCamelCase = self.unet(__a , __a)['''sample'''] _UpperCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _UpperCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _UpperCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase ( __a , __a , __a) -> torch.Tensor: '''simple docstring''' _UpperCamelCase = acos(torch.dot(torch.flatten(__a) , torch.flatten(__a)) / torch.norm(__a) / torch.norm(__a)) return sin((1 - alpha) * theta) * xa / sin(__a) + sin(alpha * theta) * xa / sin(__a)
19
0
_snake_case = 8.314_4598 def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 3_00 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
340
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'detr' lowercase__ = ['past_key_values'] lowercase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __a=True , __a=None , __a=3 , __a=1_00 , __a=6 , __a=20_48 , __a=8 , __a=6 , __a=20_48 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=2_56 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=1 , __a=1 , __a=5 , __a=2 , __a=0.1 , **__a , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__a , __a): _UpperCamelCase = backbone_config.get('''model_type''') _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(__a) # set timm attributes to None _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None, None, None _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = encoder_layers _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase ( cls , __a , **__a) -> int: '''simple docstring''' return cls(backbone_config=__a , **__a) def UpperCAmelCase ( self) -> Dict[str, any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output class _UpperCAmelCase( lowerCamelCase ): lowercase__ = version.parse('1.11' ) @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def UpperCAmelCase ( self) -> float: '''simple docstring''' return 1e-5 @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return 12
19
0