code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class lowercase_ (unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , ) -> List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p a__ =size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} a__ =parent a__ =batch_size a__ =num_channels a__ =min_resolution a__ =max_resolution a__ =do_resize a__ =size a__ =do_normalize a__ =image_mean a__ =image_std a__ =do_rescale a__ =rescale_factor a__ =do_pad def __UpperCamelCase ( self) -> Dict: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __UpperCamelCase ( self , lowercase_ , lowercase_=False) -> Any: if not batched: a__ =image_inputs[0] if isinstance(lowercase_ , Image.Image): a__ , a__ =image.size else: a__ , a__ =image.shape[1], image.shape[2] if w < h: a__ =int(self.size['shortest_edge'] * h / w) a__ =self.size['shortest_edge'] elif w > h: a__ =self.size['shortest_edge'] a__ =int(self.size['shortest_edge'] * w / h) else: a__ =self.size['shortest_edge'] a__ =self.size['shortest_edge'] else: a__ =[] for image in image_inputs: a__ , a__ =self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) a__ =max(lowercase_ , key=lambda lowercase_: item[0])[0] a__ =max(lowercase_ , key=lambda lowercase_: item[1])[1] return expected_height, expected_width @require_torch @require_vision class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =ConditionalDetrImageProcessor if is_vision_available() else None def __UpperCamelCase ( self) -> Tuple: a__ =ConditionalDetrImageProcessingTester(self) @property def __UpperCamelCase ( self) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self) -> Any: a__ =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase_ , 'image_mean')) self.assertTrue(hasattr(lowercase_ , 'image_std')) self.assertTrue(hasattr(lowercase_ , 'do_normalize')) self.assertTrue(hasattr(lowercase_ , 'do_resize')) self.assertTrue(hasattr(lowercase_ , 'size')) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333}) self.assertEqual(image_processor.do_pad , lowercase_) a__ =self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84}) self.assertEqual(image_processor.do_pad , lowercase_) def __UpperCamelCase ( self) -> Optional[Any]: pass def __UpperCamelCase ( self) -> Optional[Any]: # Initialize image_processing a__ =self.image_processing_class(**self.image_processor_dict) # create random PIL images a__ =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image) # Test not batched input a__ =image_processing(image_inputs[0] , return_tensors='pt').pixel_values a__ , a__ =self.image_processor_tester.get_expected_values(lowercase_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a__ , a__ =self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_) a__ =image_processing(lowercase_ , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCamelCase ( self) -> Optional[int]: # Initialize image_processing a__ =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors a__ =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray) # Test not batched input a__ =image_processing(image_inputs[0] , return_tensors='pt').pixel_values a__ , a__ =self.image_processor_tester.get_expected_values(lowercase_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a__ =image_processing(lowercase_ , return_tensors='pt').pixel_values a__ , a__ =self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCamelCase ( self) -> Optional[Any]: # Initialize image_processing a__ =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors a__ =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor) # Test not batched input a__ =image_processing(image_inputs[0] , return_tensors='pt').pixel_values a__ , a__ =self.image_processor_tester.get_expected_values(lowercase_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a__ =image_processing(lowercase_ , return_tensors='pt').pixel_values a__ , a__ =self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __UpperCamelCase ( self) -> List[Any]: # prepare image and target a__ =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r') as f: a__ =json.loads(f.read()) a__ ={'image_id': 39769, 'annotations': target} # encode them a__ =ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50') a__ =image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors='pt') # verify pixel values a__ =torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding['pixel_values'].shape , lowercase_) a__ =torch.tensor([0.27_96, 0.31_38, 0.34_81]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase_ , atol=1e-4)) # verify area a__ =torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase_)) # verify boxes a__ =torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase_) a__ =torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase_ , atol=1e-3)) # verify image_id a__ =torch.tensor([39769]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase_)) # verify is_crowd a__ =torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase_)) # verify class_labels a__ =torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase_)) # verify orig_size a__ =torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase_)) # verify size a__ =torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase_)) @slow def __UpperCamelCase ( self) -> Dict: # prepare image, target and masks_path a__ =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r') as f: a__ =json.loads(f.read()) a__ ={'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} a__ =pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic') # encode them a__ =ConditionalDetrImageProcessor(format='coco_panoptic') a__ =image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors='pt') # verify pixel values a__ =torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding['pixel_values'].shape , lowercase_) a__ =torch.tensor([0.27_96, 0.31_38, 0.34_81]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase_ , atol=1e-4)) # verify area a__ =torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase_)) # verify boxes a__ =torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase_) a__ =torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase_ , atol=1e-3)) # verify image_id a__ =torch.tensor([39769]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase_)) # verify is_crowd a__ =torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase_)) # verify class_labels a__ =torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase_)) # verify masks a__ =822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , lowercase_) # verify orig_size a__ =torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase_)) # verify size a__ =torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase_))
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCAmelCase: Optional[Any] = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: List[str] = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _lowerCAmelCase: List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
20
1
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase: List[Any] = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class lowercase_ (lowercase__ ): snake_case ='autoformer' snake_case ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , lowercase_ = None , lowercase_ = None , lowercase_ = "student_t" , lowercase_ = "nll" , lowercase_ = 1 , lowercase_ = [1, 2, 3, 4, 5, 6, 7] , lowercase_ = True , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 64 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 32 , lowercase_ = 32 , lowercase_ = "gelu" , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 100 , lowercase_ = 0.02 , lowercase_ = True , lowercase_=True , lowercase_ = 10 , lowercase_ = 25 , lowercase_ = 3 , **lowercase_ , ) -> Union[str, Any]: # time series specific configuration a__ =prediction_length a__ =context_length if context_length is not None else prediction_length a__ =distribution_output a__ =loss a__ =input_size a__ =num_time_features a__ =lags_sequence a__ =scaling a__ =num_dynamic_real_features a__ =num_static_real_features a__ =num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`') a__ =cardinality else: a__ =[0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`') a__ =embedding_dimension else: a__ =[min(50 , (cat + 1) // 2) for cat in self.cardinality] a__ =num_parallel_samples # Transformer architecture configuration a__ =input_size * len(self.lags_sequence) + self._number_of_features a__ =d_model a__ =encoder_attention_heads a__ =decoder_attention_heads a__ =encoder_ffn_dim a__ =decoder_ffn_dim a__ =encoder_layers a__ =decoder_layers a__ =dropout a__ =attention_dropout a__ =activation_dropout a__ =encoder_layerdrop a__ =decoder_layerdrop a__ =activation_function a__ =init_std a__ =use_cache # Autoformer a__ =label_length a__ =moving_average a__ =autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def __UpperCamelCase ( self) -> int: return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
20
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase: str = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class lowercase_ (lowercase__ ): snake_case ='big_bird' def __init__( self , lowercase_=50358 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu_new" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=4096 , lowercase_=2 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=66 , lowercase_="block_sparse" , lowercase_=True , lowercase_=False , lowercase_=64 , lowercase_=3 , lowercase_=None , **lowercase_ , ) -> Any: super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , sep_token_id=lowercase_ , **lowercase_ , ) a__ =vocab_size a__ =max_position_embeddings a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =initializer_range a__ =type_vocab_size a__ =layer_norm_eps a__ =use_cache a__ =rescale_embeddings a__ =attention_type a__ =use_bias a__ =block_size a__ =num_random_blocks a__ =classifier_dropout class lowercase_ (lowercase__ ): @property def __UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a__ ={0: 'batch', 1: 'choice', 2: 'sequence'} else: a__ ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
20
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase_ : def __init__( self , lowercase_ , lowercase_=2 , lowercase_=3 , lowercase_=4 , lowercase_=2 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=99 , lowercase_=36 , lowercase_=3 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=16 , lowercase_=2 , lowercase_=0.02 , lowercase_=6 , lowercase_=6 , lowercase_=3 , lowercase_=4 , lowercase_=None , lowercase_=1000 , ) -> str: a__ =parent a__ =batch_size a__ =num_channels a__ =image_size a__ =patch_size a__ =text_seq_length a__ =is_training a__ =use_input_mask a__ =use_token_type_ids a__ =use_labels a__ =vocab_size a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =max_position_embeddings a__ =type_vocab_size a__ =type_sequence_label_size a__ =initializer_range a__ =coordinate_size a__ =shape_size a__ =num_labels a__ =num_choices a__ =scope a__ =range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) a__ =text_seq_length a__ =(image_size // patch_size) ** 2 + 1 a__ =self.text_seq_length + self.image_seq_length def __UpperCamelCase ( self) -> Optional[Any]: a__ =ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size) a__ =ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: a__ =bbox[i, j, 3] a__ =bbox[i, j, 1] a__ =t if bbox[i, j, 2] < bbox[i, j, 0]: a__ =bbox[i, j, 2] a__ =bbox[i, j, 0] a__ =t a__ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ =None if self.use_input_mask: a__ =random_attention_mask([self.batch_size, self.text_seq_length]) a__ =None if self.use_token_type_ids: a__ =ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size) a__ =None a__ =None if self.use_labels: a__ =ids_tensor([self.batch_size] , self.type_sequence_label_size) a__ =ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels) a__ =LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> str: a__ =LayoutLMvaModel(config=lowercase_) model.to(lowercase_) model.eval() # text + image a__ =model(lowercase_ , pixel_values=lowercase_) a__ =model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_) a__ =model(lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , token_type_ids=lowercase_) a__ =model(lowercase_ , bbox=lowercase_ , pixel_values=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) # text only a__ =model(lowercase_) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size)) # image only a__ =model(pixel_values=lowercase_) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size)) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> List[str]: a__ =self.num_labels a__ =LayoutLMvaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() a__ =model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> str: a__ =self.num_labels a__ =LayoutLMvaForTokenClassification(config=lowercase_) model.to(lowercase_) model.eval() a__ =model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels)) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> str: a__ =LayoutLMvaForQuestionAnswering(config=lowercase_) model.to(lowercase_) model.eval() a__ =model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def __UpperCamelCase ( self) -> Tuple: a__ =self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) =config_and_inputs a__ ={ 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class lowercase_ (lowercase__ , lowercase__ , unittest.TestCase ): snake_case =False snake_case =False snake_case =False snake_case =( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) snake_case =( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Dict: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def __UpperCamelCase ( self) -> int: a__ =LayoutLMvaModelTester(self) a__ =ConfigTester(self , config_class=lowercase_ , hidden_size=37) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_=False) -> Tuple: a__ =copy.deepcopy(lowercase_) if model_class in get_values(lowercase_): a__ ={ k: v.unsqueeze(1).expand(-1 , self.model_tester.num_choices , -1).contiguous() if isinstance(lowercase_ , torch.Tensor) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowercase_): a__ =torch.ones(self.model_tester.batch_size , dtype=torch.long , device=lowercase_) elif model_class in get_values(lowercase_): a__ =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_) a__ =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_) elif model_class in [ *get_values(lowercase_), ]: a__ =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_) elif model_class in [ *get_values(lowercase_), ]: a__ =torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=lowercase_ , ) return inputs_dict def __UpperCamelCase ( self) -> str: self.config_tester.run_common_tests() def __UpperCamelCase ( self) -> List[str]: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def __UpperCamelCase ( self) -> Optional[Any]: a__ =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a__ =type self.model_tester.create_and_check_model(*lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_) def __UpperCamelCase ( self) -> List[str]: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_) def __UpperCamelCase ( self) -> List[str]: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_) @slow def __UpperCamelCase ( self) -> Optional[Any]: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ =LayoutLMvaModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def _lowercase( ): a__ =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class lowercase_ (unittest.TestCase ): @cached_property def __UpperCamelCase ( self) -> List[str]: return LayoutLMvaImageProcessor(apply_ocr=lowercase_) if is_vision_available() else None @slow def __UpperCamelCase ( self) -> Optional[Any]: a__ =LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base').to(lowercase_) a__ =self.default_image_processor a__ =prepare_img() a__ =image_processor(images=lowercase_ , return_tensors='pt').pixel_values.to(lowercase_) a__ =torch.tensor([[1, 2]]) a__ =torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).unsqueeze(0) # forward pass a__ =model( input_ids=input_ids.to(lowercase_) , bbox=bbox.to(lowercase_) , pixel_values=pixel_values.to(lowercase_) , ) # verify the logits a__ =torch.Size((1, 199, 768)) self.assertEqual(outputs.last_hidden_state.shape , lowercase_) a__ =torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]]).to(lowercase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase_ , atol=1e-4))
20
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger(__name__) _lowerCAmelCase: Tuple = torch.device('cpu') def _lowercase( ): a__ ='http://images.cocodataset.org/val2017/000000039769.jpg' a__ =Image.open(requests.get(__a , stream=__a ).raw ) return im def _lowercase( __a : Optional[Any] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _lowercase( __a : int , __a : int , __a : Optional[Any] ): a__ =dct.pop(__a ) a__ =val def _lowercase( __a : Optional[Any] ): a__ =[] for k in state_dict.keys(): a__ =k if ".pwconv" in k: a__ =k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: a__ =k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: a__ =k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: a__ =k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: a__ =k_new.split('.' ) if ls[2].isdigit(): a__ ='swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: a__ =k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _lowercase( __a : Union[str, Any] , __a : int , __a : str ): a__ =SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a__ =1000 a__ ='huggingface/label-files' a__ ='imagenet-1k-id2label.json' a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a__ =[3, 3, 6, 4] a__ =[48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a__ =[3, 3, 9, 6] a__ =[48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a__ =[4, 3, 10, 5] a__ =[48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a__ =[4, 4, 12, 6] a__ =[64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): a__ =torch.hub.load_state_dict_from_url(__a , map_location='cpu' , check_hash=__a ) else: a__ =torch.load(__a , map_location='cpu' ) a__ =checkpoint a__ =create_rename_keys(__a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__a , __a , __a ) # load HuggingFace model a__ =SwiftFormerForImageClassification(__a ).eval() hf_model.load_state_dict(__a ) # prepare test inputs a__ =prepare_img() a__ =ViTImageProcessor.from_pretrained('preprocessor_config' ) a__ =processor(images=__a , return_tensors='pt' ) # compare outputs from both models a__ =get_expected_output(__a ) a__ =hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , __a , atol=1e-3 ) Path(__a ).mkdir(exist_ok=__a ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') _lowerCAmelCase: Optional[int] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
20
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType _lowerCAmelCase: Union[str, Any] = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'microsoft/layoutlmv3-base': 'https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json', } class lowercase_ (lowercase__ ): snake_case ='layoutlmv3' def __init__( self , lowercase_=50265 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=2 , lowercase_=0.02 , lowercase_=1e-5 , lowercase_=1 , lowercase_=0 , lowercase_=2 , lowercase_=1024 , lowercase_=128 , lowercase_=128 , lowercase_=True , lowercase_=32 , lowercase_=128 , lowercase_=64 , lowercase_=256 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=224 , lowercase_=3 , lowercase_=16 , lowercase_=None , **lowercase_ , ) -> int: super().__init__( vocab_size=lowercase_ , hidden_size=lowercase_ , num_hidden_layers=lowercase_ , num_attention_heads=lowercase_ , intermediate_size=lowercase_ , hidden_act=lowercase_ , hidden_dropout_prob=lowercase_ , attention_probs_dropout_prob=lowercase_ , max_position_embeddings=lowercase_ , type_vocab_size=lowercase_ , initializer_range=lowercase_ , layer_norm_eps=lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ , ) a__ =max_ad_position_embeddings a__ =coordinate_size a__ =shape_size a__ =has_relative_attention_bias a__ =rel_pos_bins a__ =max_rel_pos a__ =has_spatial_attention_bias a__ =rel_ad_pos_bins a__ =max_rel_ad_pos a__ =text_embed a__ =visual_embed a__ =input_size a__ =num_channels a__ =patch_size a__ =classifier_dropout class lowercase_ (lowercase__ ): snake_case =version.parse('1.12' ) @property def __UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ]) @property def __UpperCamelCase ( self) -> float: return 1e-5 @property def __UpperCamelCase ( self) -> int: return 12 def __UpperCamelCase ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , lowercase_ = 3 , lowercase_ = 40 , lowercase_ = 40 , ) -> Mapping[str, Any]: setattr(processor.image_processor , 'apply_ocr' , lowercase_) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX a__ =compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX a__ =processor.tokenizer.num_special_tokens_to_add(lowercase_) a__ =compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase_) # Generate dummy inputs according to compute batch and sequence a__ =[[' '.join([processor.tokenizer.unk_token]) * seq_length]] * batch_size # Generate dummy bounding boxes a__ =[[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) a__ =self._generate_dummy_images(lowercase_ , lowercase_ , lowercase_ , lowercase_) a__ =dict( processor( lowercase_ , text=lowercase_ , boxes=lowercase_ , return_tensors=lowercase_ , )) return inputs
20
from __future__ import annotations from typing import Any class lowercase_ : def __init__( self , lowercase_) -> None: a__ =num_of_nodes a__ =[] a__ ={} def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: self.m_edges.append([u_node, v_node, weight]) def __UpperCamelCase ( self , lowercase_) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node]) def __UpperCamelCase ( self , lowercase_) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: a__ =self.find_component(lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: if component_size[u_node] <= component_size[v_node]: a__ =v_node component_size[v_node] += component_size[u_node] self.set_component(lowercase_) elif component_size[u_node] >= component_size[v_node]: a__ =self.find_component(lowercase_) component_size[u_node] += component_size[v_node] self.set_component(lowercase_) def __UpperCamelCase ( self) -> None: a__ =[] a__ =0 a__ =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes): self.m_component.update({node: node}) component_size.append(1) a__ =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: a__ , a__ , a__ =edge a__ =self.m_component[u] a__ =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): a__ =[u, v, w] for edge in minimum_weight_edge: if isinstance(lowercase_ , lowercase_): a__ , a__ , a__ =edge a__ =self.m_component[u] a__ =self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowercase_ , lowercase_ , lowercase_) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""") num_of_components -= 1 a__ =[-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""") def _lowercase( ): pass if __name__ == "__main__": import doctest doctest.testmod()
20
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase: Dict = { 'configuration_mobilenet_v2': [ 'MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileNetV2Config', 'MobileNetV2OnnxConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: List[str] = ['MobileNetV2FeatureExtractor'] _lowerCAmelCase: Optional[int] = ['MobileNetV2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: Dict = [ 'MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileNetV2ForImageClassification', 'MobileNetV2ForSemanticSegmentation', 'MobileNetV2Model', 'MobileNetV2PreTrainedModel', 'load_tf_weights_in_mobilenet_v2', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys _lowerCAmelCase: Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
20
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCAmelCase: Union[str, Any] = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' _lowerCAmelCase: Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' _lowerCAmelCase: List[Any] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): def __UpperCamelCase ( self) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=True , lowercase_=False) -> Any: if rouge_types is None: a__ =['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] a__ =rouge_scorer.RougeScorer(rouge_types=lowercase_ , use_stemmer=lowercase_) if use_aggregator: a__ =scoring.BootstrapAggregator() else: a__ =[] for ref, pred in zip(lowercase_ , lowercase_): a__ =scorer.score(lowercase_ , lowercase_) if use_aggregator: aggregator.add_scores(lowercase_) else: scores.append(lowercase_) if use_aggregator: a__ =aggregator.aggregate() else: a__ ={} for key in scores[0]: a__ =[score[key] for score in scores] return result
20
1
def _lowercase( __a : list ): a__ =len(__a ) for i in range(1 , __a ): a__ =collection[i] a__ =0 a__ =i - 1 while low <= high: a__ =(low + high) // 2 if val < collection[mid]: a__ =mid - 1 else: a__ =mid + 1 for j in range(__a , __a , -1 ): a__ =collection[j - 1] a__ =val return collection if __name__ == "__main__": _lowerCAmelCase: Optional[int] = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase: str = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
20
from __future__ import annotations _lowerCAmelCase: str = '#' class lowercase_ : def __init__( self) -> None: a__ ={} def __UpperCamelCase ( self , lowercase_) -> None: a__ =self._trie for char in text: if char not in trie: a__ ={} a__ =trie[char] a__ =True def __UpperCamelCase ( self , lowercase_) -> tuple | list: a__ =self._trie for char in prefix: if char in trie: a__ =trie[char] else: return [] return self._elements(lowercase_) def __UpperCamelCase ( self , lowercase_) -> tuple: a__ =[] for c, v in d.items(): a__ =[' '] if c == END else [(c + s) for s in self._elements(lowercase_)] result.extend(lowercase_) return tuple(lowercase_) _lowerCAmelCase: Optional[int] = Trie() _lowerCAmelCase: List[str] = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def _lowercase( __a : str ): a__ =trie.find_word(__a ) return tuple(string + word for word in suffixes ) def _lowercase( ): print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
20
1
from __future__ import annotations from decimal import Decimal from numpy import array def _lowercase( __a : list[list[float]] ): a__ =Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(__a ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix a__ =float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements a__ =[[0.0, 0.0], [0.0, 0.0]] a__ , a__ =matrix[1][1], matrix[0][0] a__ , a__ =-matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(__a ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(__a ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule a__ =float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix a__ =[ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] a__ =(d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) a__ =-( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) a__ =(d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) a__ =-( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) a__ =(d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) a__ =-( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) a__ =(d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) a__ =-( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) a__ =(d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) a__ =array(__a ) for i in range(3 ): for j in range(3 ): a__ =cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix a__ =array(__a ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(__a ) # Calculate the inverse of the matrix return [[float(d(__a ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
20
_lowerCAmelCase: List[str] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def _lowercase( ): a__ =input('Enter message: ' ) a__ =input('Enter key [alphanumeric]: ' ) a__ =input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): a__ ='encrypt' a__ =encrypt_message(__a , __a ) elif mode.lower().startswith('d' ): a__ ='decrypt' a__ =decrypt_message(__a , __a ) print(f"""\n{mode.title()}ed message:""" ) print(__a ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'encrypt' ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'decrypt' ) def _lowercase( __a : str , __a : str , __a : str ): a__ =[] a__ =0 a__ =key.upper() for symbol in message: a__ =LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__a ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__a ): a__ =0 else: translated.append(__a ) return "".join(__a ) if __name__ == "__main__": main()
20
1
def _lowercase( __a : str ): a__ =[0 for i in range(len(__a ) )] # initialize interval's left pointer and right pointer a__ , a__ =0, 0 for i in range(1 , len(__a ) ): # case when current index is inside the interval if i <= right_pointer: a__ =min(right_pointer - i + 1 , z_result[i - left_pointer] ) a__ =min_edge while go_next(__a , __a , __a ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: a__ , a__ =i, i + z_result[i] - 1 return z_result def _lowercase( __a : int , __a : list[int] , __a : str ): return i + z_result[i] < len(__a ) and s[z_result[i]] == s[i + z_result[i]] def _lowercase( __a : str , __a : str ): a__ =0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string a__ =z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(__a ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
20
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
1
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _lowercase( __a : int , __a : int , __a : int , __a : int , __a : int , __a : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: a__ =ksize + 1 a__ =np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__a ): for x in range(__a ): # distance from center a__ =x - ksize // 2 a__ =y - ksize // 2 # degree to radiant a__ =theta / 180 * np.pi a__ =np.cos(_theta ) a__ =np.sin(_theta ) # get kernel x a__ =cos_theta * px + sin_theta * py # get kernel y a__ =-sin_theta * px + cos_theta * py # fill kernel a__ =np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _lowerCAmelCase: Union[str, Any] = imread('../image_data/lena.jpg') # turn image in gray scale value _lowerCAmelCase: Tuple = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _lowerCAmelCase: Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _lowerCAmelCase: Any = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _lowerCAmelCase: Tuple = out / out.max() * 255 _lowerCAmelCase: int = out.astype(np.uinta) imshow('Original', gray) imshow('Gabor filter with 20x20 mask and 6 directions', out) waitKey(0)
20
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =KandinskyVaaPriorPipeline snake_case =['prompt'] snake_case =['prompt', 'negative_prompt'] snake_case =[ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] snake_case =False @property def __UpperCamelCase ( self) -> Optional[int]: return 32 @property def __UpperCamelCase ( self) -> Tuple: return 32 @property def __UpperCamelCase ( self) -> int: return self.time_input_dim @property def __UpperCamelCase ( self) -> str: return self.time_input_dim * 4 @property def __UpperCamelCase ( self) -> Optional[int]: return 100 @property def __UpperCamelCase ( self) -> Union[str, Any]: a__ =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self) -> Union[str, Any]: torch.manual_seed(0) a__ =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowercase_) @property def __UpperCamelCase ( self) -> Tuple: torch.manual_seed(0) a__ ={ 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } a__ =PriorTransformer(**lowercase_) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 a__ =nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def __UpperCamelCase ( self) -> Any: torch.manual_seed(0) a__ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) a__ =CLIPVisionModelWithProjection(lowercase_) return model @property def __UpperCamelCase ( self) -> Optional[int]: a__ =CLIPImageProcessor( crop_size=224 , do_center_crop=lowercase_ , do_normalize=lowercase_ , do_resize=lowercase_ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor def __UpperCamelCase ( self) -> Any: a__ =self.dummy_prior a__ =self.dummy_image_encoder a__ =self.dummy_text_encoder a__ =self.dummy_tokenizer a__ =self.dummy_image_processor a__ =UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=lowercase_ , clip_sample_range=10.0 , ) a__ ={ 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def __UpperCamelCase ( self , lowercase_ , lowercase_=0) -> Tuple: if str(lowercase_).startswith('mps'): a__ =torch.manual_seed(lowercase_) else: a__ =torch.Generator(device=lowercase_).manual_seed(lowercase_) a__ ={ 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __UpperCamelCase ( self) -> int: a__ ='cpu' a__ =self.get_dummy_components() a__ =self.pipeline_class(**lowercase_) a__ =pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) a__ =pipe(**self.get_dummy_inputs(lowercase_)) a__ =output.image_embeds a__ =pipe( **self.get_dummy_inputs(lowercase_) , return_dict=lowercase_ , )[0] a__ =image[0, -10:] a__ =image_from_tuple[0, -10:] assert image.shape == (1, 32) a__ =np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def __UpperCamelCase ( self) -> List[Any]: a__ =torch_device == 'cpu' a__ =True a__ =False self._test_inference_batch_single_identical( test_max_difference=lowercase_ , relax_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , ) @skip_mps def __UpperCamelCase ( self) -> Optional[int]: a__ =torch_device == 'cpu' a__ =False self._test_attention_slicing_forward_pass( test_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , )
20
1
from argparse import ArgumentParser from . import BaseTransformersCLICommand def _lowercase( __a : Optional[int] ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowercase_ (lowercase__ ): @staticmethod def __UpperCamelCase ( lowercase_) -> Optional[Any]: a__ =parser.add_parser('download') download_parser.add_argument( '--cache-dir' , type=lowercase_ , default=lowercase_ , help='Path to location to store the models') download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir') download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=lowercase_ , help='Name of the model to download') download_parser.set_defaults(func=lowercase_) def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> str: a__ =model a__ =cache a__ =force a__ =trust_remote_code def __UpperCamelCase ( self) -> Optional[int]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code)
20
from manim import * class lowercase_ (lowercase__ ): def __UpperCamelCase ( self) -> List[Any]: a__ =Rectangle(height=0.5 , width=0.5) a__ =Rectangle(height=0.46 , width=0.46).set_stroke(width=0) a__ =[mem.copy() for i in range(6)] a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(lowercase_ , lowercase_).arrange(lowercase_ , buff=0) a__ =Text('CPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) cpu.move_to([-2.5, -0.5, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(4)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('GPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) gpu.move_to([-1, -1, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Model' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) model.move_to([3, -1.0, 0]) self.add(lowercase_) a__ =[] for i, rect in enumerate(lowercase_): rect.set_stroke(lowercase_) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) a__ =Rectangle(height=0.46 / 4 , width=0.46 / 3).set_stroke(width=0.0).set_fill(lowercase_ , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=lowercase_) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0) self.add(lowercase_) cpu_targs.append(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Loaded Checkpoint' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4) checkpoint.move_to([3, 0.5, 0]) a__ =Square(side_length=2.2) key.move_to([-5, 2, 0]) a__ =MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(lowercase_ , lowercase_) a__ =MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left()) a__ =MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(lowercase_) , Write(lowercase_)) self.play(Write(lowercase_ , run_time=1) , Create(lowercase_ , run_time=1)) a__ =[] a__ =[] for i, rect in enumerate(lowercase_): a__ =fill.copy().set_fill(lowercase_ , opacity=0.7) target.move_to(lowercase_) first_animations.append(GrowFromCenter(lowercase_ , run_time=1)) a__ =target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.target.move_to(cpu_right_col_base[i - 5]) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5)) self.play(*lowercase_) self.play(*lowercase_) self.wait()
20
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase: Dict = logging.get_logger(__name__) _lowerCAmelCase: Tuple = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class lowercase_ (lowercase__ ): snake_case ='glpn' def __init__( self , lowercase_=3 , lowercase_=4 , lowercase_=[2, 2, 2, 2] , lowercase_=[8, 4, 2, 1] , lowercase_=[32, 64, 160, 256] , lowercase_=[7, 3, 3, 3] , lowercase_=[4, 2, 2, 2] , lowercase_=[1, 2, 5, 8] , lowercase_=[4, 4, 4, 4] , lowercase_="gelu" , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=0.1 , lowercase_=1e-6 , lowercase_=64 , lowercase_=10 , lowercase_=-1 , **lowercase_ , ) -> int: super().__init__(**lowercase_) a__ =num_channels a__ =num_encoder_blocks a__ =depths a__ =sr_ratios a__ =hidden_sizes a__ =patch_sizes a__ =strides a__ =mlp_ratios a__ =num_attention_heads a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =initializer_range a__ =drop_path_rate a__ =layer_norm_eps a__ =decoder_hidden_size a__ =max_depth a__ =head_in_index
20
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _lowerCAmelCase: Any = sys.version_info >= (3, 10) def _lowercase( __a : int=None , __a : Any=None ): return field(default_factory=lambda: default , metadata=__a ) @dataclass class lowercase_ : snake_case =42 snake_case =42 snake_case =42 snake_case =42 @dataclass class lowercase_ : snake_case =42 snake_case =field(default='toto' , metadata={'help': 'help message'} ) @dataclass class lowercase_ : snake_case =False snake_case =True snake_case =None class lowercase_ (lowercase__ ): snake_case ='titi' snake_case ='toto' class lowercase_ (lowercase__ ): snake_case ='titi' snake_case ='toto' snake_case =42 @dataclass class lowercase_ : snake_case ="toto" def __UpperCamelCase ( self) -> List[str]: a__ =BasicEnum(self.foo) @dataclass class lowercase_ : snake_case ="toto" def __UpperCamelCase ( self) -> List[str]: a__ =MixedTypeEnum(self.foo) @dataclass class lowercase_ : snake_case =None snake_case =field(default=lowercase__ , metadata={'help': 'help message'} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) @dataclass class lowercase_ : snake_case =list_field(default=[] ) snake_case =list_field(default=[1, 2, 3] ) snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] ) snake_case =list_field(default=[0.1, 0.2, 0.3] ) @dataclass class lowercase_ : snake_case =field() snake_case =field() snake_case =field() def __UpperCamelCase ( self) -> List[Any]: a__ =BasicEnum(self.required_enum) @dataclass class lowercase_ : snake_case =42 snake_case =field() snake_case =None snake_case =field(default='toto' , metadata={'help': 'help message'} ) snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class lowercase_ : snake_case =False snake_case =True snake_case =None @dataclass class lowercase_ : snake_case =None snake_case =field(default=lowercase__ , metadata={'help': 'help message'} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self , lowercase_ , lowercase_) -> int: self.assertEqual(len(a._actions) , len(b._actions)) for x, y in zip(a._actions , b._actions): a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'} a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , lowercase_) and yy.get('choices' , lowercase_): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](lowercase_) , yy['type'](lowercase_)) del xx["type"], yy["type"] self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_) expected.add_argument('--bar' , type=lowercase_ , required=lowercase_) expected.add_argument('--baz' , type=lowercase_ , required=lowercase_) expected.add_argument('--flag' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') self.argparsersEqual(lowercase_ , lowercase_) a__ =['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((a__) , ) =parser.parse_args_into_dataclasses(lowercase_ , look_for_args_file=lowercase_) self.assertFalse(example.flag) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=lowercase_) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message') self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Optional[Any]: a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') expected.add_argument('--baz' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=lowercase_ , dest='baz') expected.add_argument('--opt' , type=lowercase_ , default=lowercase_) a__ =[WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_) for dataclass_type in dataclass_types: a__ =HfArgumentParser(lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', '--no_baz']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', '--baz']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(args.foo , 'toto') a__ =parser.parse_args_into_dataclasses([])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto) a__ =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') a__ =parser.parse_args_into_dataclasses(['--foo', 'titi'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi) a__ =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) a__ =parser.parse_args_into_dataclasses(['--foo', '42'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo) def __UpperCamelCase ( self) -> List[Any]: @dataclass class lowercase_ : snake_case ="toto" a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(args.foo , 'toto') a__ =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') a__ =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) def __UpperCamelCase ( self) -> Optional[int]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=lowercase_) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=lowercase_) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual( lowercase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3]) , ) a__ =parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split()) self.assertEqual(lowercase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7])) def __UpperCamelCase ( self) -> Dict: a__ =argparse.ArgumentParser() expected.add_argument('--foo' , default=lowercase_ , type=lowercase_) expected.add_argument('--bar' , default=lowercase_ , type=lowercase_ , help='help message') expected.add_argument('--baz' , default=lowercase_ , type=lowercase_) expected.add_argument('--ces' , nargs='+' , default=[] , type=lowercase_) expected.add_argument('--des' , nargs='+' , default=[] , type=lowercase_) a__ =[OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_) for dataclass_type in dataclass_types: a__ =HfArgumentParser(lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , bar=lowercase_ , baz=lowercase_ , ces=[] , des=[])) a__ =parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split()) self.assertEqual(lowercase_ , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3])) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=lowercase_ , required=lowercase_) expected.add_argument('--required_str' , type=lowercase_ , required=lowercase_) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , ) self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , ) expected.add_argument('--opt' , type=lowercase_ , default=lowercase_) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message') expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_) self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } a__ =parser.parse_dict(lowercase_)[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(lowercase_ , parser.parse_dict , lowercase_ , allow_extra_keys=lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: a__ =os.path.join(lowercase_ , 'temp_json') os.mkdir(lowercase_) with open(temp_local_path + '.json' , 'w+') as f: json.dump(lowercase_ , lowercase_) a__ =parser.parse_yaml_file(Path(temp_local_path + '.json'))[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Any: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: a__ =os.path.join(lowercase_ , 'temp_yaml') os.mkdir(lowercase_) with open(temp_local_path + '.yaml' , 'w+') as f: yaml.dump(lowercase_ , lowercase_) a__ =parser.parse_yaml_file(Path(temp_local_path + '.yaml'))[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) self.assertIsNotNone(lowercase_)
20
1
import math from collections.abc import Iterator from itertools import takewhile def _lowercase( __a : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowercase( ): a__ =2 while True: if is_prime(__a ): yield num num += 1 def _lowercase( __a : int = 200_0000 ): return sum(takewhile(lambda __a : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"""{solution() = }""")
20
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase: List[Any] = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class lowercase_ (lowercase__ ): snake_case ='autoformer' snake_case ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , lowercase_ = None , lowercase_ = None , lowercase_ = "student_t" , lowercase_ = "nll" , lowercase_ = 1 , lowercase_ = [1, 2, 3, 4, 5, 6, 7] , lowercase_ = True , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 64 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 32 , lowercase_ = 32 , lowercase_ = "gelu" , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 100 , lowercase_ = 0.02 , lowercase_ = True , lowercase_=True , lowercase_ = 10 , lowercase_ = 25 , lowercase_ = 3 , **lowercase_ , ) -> Union[str, Any]: # time series specific configuration a__ =prediction_length a__ =context_length if context_length is not None else prediction_length a__ =distribution_output a__ =loss a__ =input_size a__ =num_time_features a__ =lags_sequence a__ =scaling a__ =num_dynamic_real_features a__ =num_static_real_features a__ =num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`') a__ =cardinality else: a__ =[0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`') a__ =embedding_dimension else: a__ =[min(50 , (cat + 1) // 2) for cat in self.cardinality] a__ =num_parallel_samples # Transformer architecture configuration a__ =input_size * len(self.lags_sequence) + self._number_of_features a__ =d_model a__ =encoder_attention_heads a__ =decoder_attention_heads a__ =encoder_ffn_dim a__ =decoder_ffn_dim a__ =encoder_layers a__ =decoder_layers a__ =dropout a__ =attention_dropout a__ =activation_dropout a__ =encoder_layerdrop a__ =decoder_layerdrop a__ =activation_function a__ =init_std a__ =use_cache # Autoformer a__ =label_length a__ =moving_average a__ =autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def __UpperCamelCase ( self) -> int: return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
20
1
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCAmelCase: Union[str, Any] = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' _lowerCAmelCase: Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' _lowerCAmelCase: List[Any] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): def __UpperCamelCase ( self) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=True , lowercase_=False) -> Any: if rouge_types is None: a__ =['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] a__ =rouge_scorer.RougeScorer(rouge_types=lowercase_ , use_stemmer=lowercase_) if use_aggregator: a__ =scoring.BootstrapAggregator() else: a__ =[] for ref, pred in zip(lowercase_ , lowercase_): a__ =scorer.score(lowercase_ , lowercase_) if use_aggregator: aggregator.add_scores(lowercase_) else: scores.append(lowercase_) if use_aggregator: a__ =aggregator.aggregate() else: a__ ={} for key in scores[0]: a__ =[score[key] for score in scores] return result
20
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowerCAmelCase: List[Any] = logging.get_logger(__name__) class lowercase_ (lowercase__ ): snake_case =['pixel_values'] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = None , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: super().__init__(**lowercase_) a__ =size if size is not None else {'shortest_edge': 256} a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) a__ =crop_size if crop_size is not None else {'height': 224, 'width': 224} a__ =get_size_dict(lowercase_ , param_name='crop_size') a__ =do_resize a__ =size a__ =resample a__ =do_center_crop a__ =crop_size a__ =do_rescale a__ =rescale_factor a__ =do_normalize a__ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a__ =image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") a__ =get_resize_output_image_size(lowercase_ , size=size['shortest_edge'] , default_to_square=lowercase_) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: a__ =get_size_dict(lowercase_) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""") return center_crop(lowercase_ , size=(size['height'], size['width']) , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_) -> np.ndarray: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> Tuple: a__ =do_resize if do_resize is not None else self.do_resize a__ =size if size is not None else self.size a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) a__ =resample if resample is not None else self.resample a__ =do_center_crop if do_center_crop is not None else self.do_center_crop a__ =crop_size if crop_size is not None else self.crop_size a__ =get_size_dict(lowercase_ , param_name='crop_size') a__ =do_rescale if do_rescale is not None else self.do_rescale a__ =rescale_factor if rescale_factor is not None else self.rescale_factor a__ =do_normalize if do_normalize is not None else self.do_normalize a__ =image_mean if image_mean is not None else self.image_mean a__ =image_std if image_std is not None else self.image_std a__ =make_list_of_images(lowercase_) if not valid_images(lowercase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a__ =[to_numpy_array(lowercase_) for image in images] if do_resize: a__ =[self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_) for image in images] if do_center_crop: a__ =[self.center_crop(image=lowercase_ , size=lowercase_) for image in images] if do_rescale: a__ =[self.rescale(image=lowercase_ , scale=lowercase_) for image in images] if do_normalize: a__ =[self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_) for image in images] a__ =[to_channel_dimension_format(lowercase_ , lowercase_) for image in images] a__ ={'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None) -> str: a__ =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_) != len(lowercase_): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(lowercase_): a__ =target_sizes.numpy() a__ =[] for idx in range(len(lowercase_)): a__ =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_) a__ =resized_logits[0].argmax(dim=0) semantic_segmentation.append(lowercase_) else: a__ =logits.argmax(dim=1) a__ =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
20
1
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _lowerCAmelCase: Tuple = logging.get_logger(__name__) _lowerCAmelCase: Union[str, Any] = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) _lowerCAmelCase: List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _lowercase( __a : str ): for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: a__ =model_type_to_module_name(__a ) a__ =importlib.import_module(f""".{module_name}""" , 'transformers.models' ) try: return getattr(__a , __a ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(__a , '__name__' , __a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a__ =importlib.import_module('transformers' ) if hasattr(__a , __a ): return getattr(__a , __a ) return None def _lowercase( __a : Union[str, os.PathLike] , __a : Optional[Union[str, os.PathLike]] = None , __a : bool = False , __a : bool = False , __a : Optional[Dict[str, str]] = None , __a : Optional[Union[bool, str]] = None , __a : Optional[str] = None , __a : bool = False , **__a : Any , ): a__ =get_file_from_repo( __a , __a , cache_dir=__a , force_download=__a , resume_download=__a , proxies=__a , use_auth_token=__a , revision=__a , local_files_only=__a , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(__a , encoding='utf-8' ) as reader: return json.load(__a ) class lowercase_ : def __init__( self) -> str: raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.') @classmethod @replace_list_option_in_docstrings(lowercase_) def __UpperCamelCase ( cls , lowercase_ , **lowercase_) -> str: a__ =kwargs.pop('config' , lowercase_) a__ =kwargs.pop('trust_remote_code' , lowercase_) a__ =True a__ , a__ =ImageProcessingMixin.get_image_processor_dict(lowercase_ , **lowercase_) a__ =config_dict.get('image_processor_type' , lowercase_) a__ =None if "AutoImageProcessor" in config_dict.get('auto_map' , {}): a__ =config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: a__ =config_dict.pop('feature_extractor_type' , lowercase_) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.') a__ =feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor') if "AutoFeatureExtractor" in config_dict.get('auto_map' , {}): a__ =config_dict['auto_map']['AutoFeatureExtractor'] a__ =feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor') logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.') # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(lowercase_ , lowercase_): a__ =AutoConfig.from_pretrained(lowercase_ , **lowercase_) # It could be in `config.image_processor_type`` a__ =getattr(lowercase_ , 'image_processor_type' , lowercase_) if hasattr(lowercase_ , 'auto_map') and "AutoImageProcessor" in config.auto_map: a__ =config.auto_map['AutoImageProcessor'] if image_processor_class is not None: a__ =image_processor_class_from_name(lowercase_) a__ =image_processor_auto_map is not None a__ =image_processor_class is not None or type(lowercase_) in IMAGE_PROCESSOR_MAPPING a__ =resolve_trust_remote_code( lowercase_ , lowercase_ , lowercase_ , lowercase_) if has_remote_code and trust_remote_code: a__ =get_class_from_dynamic_module( lowercase_ , lowercase_ , **lowercase_) a__ =kwargs.pop('code_revision' , lowercase_) if os.path.isdir(lowercase_): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(lowercase_ , **lowercase_) elif image_processor_class is not None: return image_processor_class.from_dict(lowercase_ , **lowercase_) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(lowercase_) in IMAGE_PROCESSOR_MAPPING: a__ =IMAGE_PROCESSOR_MAPPING[type(lowercase_)] return image_processor_class.from_dict(lowercase_ , **lowercase_) raise ValueError( F"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ F"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys())}""") @staticmethod def __UpperCamelCase ( lowercase_ , lowercase_) -> Union[str, Any]: IMAGE_PROCESSOR_MAPPING.register(lowercase_ , lowercase_)
20
from importlib import import_module from .logging import get_logger _lowerCAmelCase: str = get_logger(__name__) class lowercase_ : def __init__( self , lowercase_ , lowercase_=None) -> Tuple: a__ =attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__'): setattr(self , lowercase_ , getattr(lowercase_ , lowercase_)) a__ =module._original_module if isinstance(lowercase_ , _PatchedModuleObj) else module class lowercase_ : snake_case =[] def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None) -> List[str]: a__ =obj a__ =target a__ =new a__ =target.split('.')[0] a__ ={} a__ =attrs or [] def __enter__( self) -> Optional[int]: *a__ , a__ =self.target.split('.') # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowercase_)): try: a__ =import_module('.'.join(submodules[: i + 1])) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): a__ =getattr(self.obj , lowercase_) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowercase_ , _PatchedModuleObj) and obj_attr._original_module is submodule) ): a__ =obj_attr # patch at top level setattr(self.obj , lowercase_ , _PatchedModuleObj(lowercase_ , attrs=self.attrs)) a__ =getattr(self.obj , lowercase_) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowercase_ , lowercase_ , _PatchedModuleObj(getattr(lowercase_ , lowercase_ , lowercase_) , attrs=self.attrs)) a__ =getattr(lowercase_ , lowercase_) # finally set the target attribute setattr(lowercase_ , lowercase_ , self.new) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: a__ =getattr(import_module('.'.join(lowercase_)) , lowercase_) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowercase_) is attr_value: a__ =getattr(self.obj , lowercase_) setattr(self.obj , lowercase_ , self.new) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" a__ =globals()['__builtins__'][target_attr] setattr(self.obj , lowercase_ , self.new) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""") def __exit__( self , *lowercase_) -> str: for attr in list(self.original): setattr(self.obj , lowercase_ , self.original.pop(lowercase_)) def __UpperCamelCase ( self) -> Any: self.__enter__() self._active_patches.append(self) def __UpperCamelCase ( self) -> Union[str, Any]: try: self._active_patches.remove(self) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
20
1
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase_ : def __init__( self , lowercase_ , lowercase_=13 , lowercase_=30 , lowercase_=2 , lowercase_=3 , lowercase_=True , lowercase_=True , lowercase_=32 , lowercase_=2 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=10 , lowercase_=0.02 , lowercase_=3 , lowercase_=0.6 , lowercase_=None , ) -> Dict: a__ =parent a__ =batch_size a__ =image_size a__ =patch_size a__ =num_channels a__ =is_training a__ =use_labels a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =type_sequence_label_size a__ =initializer_range a__ =mask_ratio a__ =scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) a__ =(image_size // patch_size) ** 2 a__ =int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def __UpperCamelCase ( self) -> List[Any]: a__ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ =None if self.use_labels: a__ =ids_tensor([self.batch_size] , self.type_sequence_label_size) a__ =self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self) -> Dict: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> Any: a__ =TFViTMAEModel(config=lowercase_) a__ =model(lowercase_ , training=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> Optional[int]: a__ =TFViTMAEForPreTraining(lowercase_) a__ =model(lowercase_ , training=lowercase_) # expected sequence length = num_patches a__ =(self.image_size // self.patch_size) ** 2 a__ =self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images a__ =1 a__ =TFViTMAEForPreTraining(lowercase_) a__ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a__ =model(lowercase_ , training=lowercase_) a__ =self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def __UpperCamelCase ( self) -> List[str]: a__ =self.prepare_config_and_inputs() ((a__) , (a__) , (a__)) =config_and_inputs a__ ={'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowercase_ (lowercase__ , lowercase__ , unittest.TestCase ): snake_case =(TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () snake_case ={'feature-extraction': TFViTMAEModel} if is_tf_available() else {} snake_case =False snake_case =False snake_case =False snake_case =False def __UpperCamelCase ( self) -> Dict: a__ =TFViTMAEModelTester(self) a__ =ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37) def __UpperCamelCase ( self) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds') def __UpperCamelCase ( self) -> Optional[int]: pass def __UpperCamelCase ( self) -> List[Any]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer)) a__ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , tf.keras.layers.Layer)) def __UpperCamelCase ( self) -> Dict: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) a__ =inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ =[*signature.parameters.keys()] a__ =['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase_) def __UpperCamelCase ( self) -> Any: # make the mask reproducible np.random.seed(2) a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =int((config.image_size // config.patch_size) ** 2) a__ =np.random.uniform(size=(self.model_tester.batch_size, num_patches)) for model_class in self.all_model_classes: a__ =model_class(lowercase_) a__ =self._prepare_for_class(lowercase_ , lowercase_) a__ =model(lowercase_ , noise=lowercase_) a__ =copy.deepcopy(self._prepare_for_class(lowercase_ , lowercase_)) a__ =model(**lowercase_ , noise=lowercase_) a__ =outputs_dict[0].numpy() a__ =outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords)) , 1e-6) def __UpperCamelCase ( self) -> Any: # make the mask reproducible np.random.seed(2) a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =int((config.image_size // config.patch_size) ** 2) a__ =np.random.uniform(size=(self.model_tester.batch_size, num_patches)) def prepare_numpy_arrays(lowercase_): a__ ={} for k, v in inputs_dict.items(): if tf.is_tensor(lowercase_): a__ =v.numpy() else: a__ =np.array(lowercase_) return inputs_np_dict for model_class in self.all_model_classes: a__ =model_class(lowercase_) a__ =self._prepare_for_class(lowercase_ , lowercase_) a__ =prepare_numpy_arrays(lowercase_) a__ =model(lowercase_ , noise=lowercase_) a__ =model(**lowercase_ , noise=lowercase_) self.assert_outputs_same(lowercase_ , lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> Union[str, Any]: # make masks reproducible np.random.seed(2) a__ =int((tf_model.config.image_size // tf_model.config.patch_size) ** 2) a__ =np.random.uniform(size=(self.model_tester.batch_size, num_patches)) a__ =tf.constant(lowercase_) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument a__ =tf_noise super().check_pt_tf_models(lowercase_ , lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: # make mask reproducible np.random.seed(2) a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ ={ module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__),) for module_member_name in dir(lowercase_) if module_member_name.endswith('MainLayer') # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('MainLayer')] == model_class.__name__[: -len('Model')] for module_member in (getattr(lowercase_ , lowercase_),) if isinstance(lowercase_ , lowercase_) and tf.keras.layers.Layer in module_member.__bases__ and getattr(lowercase_ , '_keras_serializable' , lowercase_) } a__ =int((config.image_size // config.patch_size) ** 2) a__ =np.random.uniform(size=(self.model_tester.batch_size, num_patches)) a__ =tf.convert_to_tensor(lowercase_) inputs_dict.update({'noise': noise}) for main_layer_class in tf_main_layer_classes: a__ =main_layer_class(lowercase_) a__ ={ name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype) for name, tensor in inputs_dict.items() } a__ =tf.keras.Model(lowercase_ , outputs=main_layer(lowercase_)) a__ =model(lowercase_) with tempfile.TemporaryDirectory() as tmpdirname: a__ =os.path.join(lowercase_ , 'keras_model.h5') model.save(lowercase_) a__ =tf.keras.models.load_model( lowercase_ , custom_objects={main_layer_class.__name__: main_layer_class}) assert isinstance(lowercase_ , tf.keras.Model) a__ =model(lowercase_) self.assert_outputs_same(lowercase_ , lowercase_) @slow def __UpperCamelCase ( self) -> Union[str, Any]: # make mask reproducible np.random.seed(2) a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =int((config.image_size // config.patch_size) ** 2) a__ =np.random.uniform(size=(self.model_tester.batch_size, num_patches)) for model_class in self.all_model_classes: a__ =model_class(lowercase_) a__ =self._prepare_for_class(lowercase_ , lowercase_) a__ =model(lowercase_ , noise=lowercase_) if model_class.__name__ == "TFViTMAEModel": a__ =outputs.last_hidden_state.numpy() a__ =0 else: a__ =outputs.logits.numpy() a__ =0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ , saved_model=lowercase_) a__ =model_class.from_pretrained(lowercase_) a__ =model(lowercase_ , noise=lowercase_) if model_class.__name__ == "TFViTMAEModel": a__ =after_outputs['last_hidden_state'].numpy() a__ =0 else: a__ =after_outputs['logits'].numpy() a__ =0 a__ =np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowercase_ , 1e-5) def __UpperCamelCase ( self) -> Any: # make mask reproducible np.random.seed(2) a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =int((config.image_size // config.patch_size) ** 2) a__ =np.random.uniform(size=(self.model_tester.batch_size, num_patches)) for model_class in self.all_model_classes: a__ =model_class(lowercase_) a__ =self._prepare_for_class(lowercase_ , lowercase_) a__ =model(lowercase_ , noise=lowercase_) a__ =model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(lowercase_) a__ =model_class.from_config(model.get_config()) # make sure it also accepts a normal config a__ =model_class.from_config(model.config) a__ =new_model(lowercase_) # Build model new_model.set_weights(model.get_weights()) a__ =new_model(lowercase_ , noise=lowercase_) self.assert_outputs_same(lowercase_ , lowercase_) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self) -> Any: pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load') def __UpperCamelCase ( self) -> List[str]: pass @slow def __UpperCamelCase ( self) -> int: a__ =TFViTMAEModel.from_pretrained('google/vit-base-patch16-224') self.assertIsNotNone(lowercase_) def _lowercase( ): a__ =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowercase_ (unittest.TestCase ): @cached_property def __UpperCamelCase ( self) -> Dict: return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None @slow def __UpperCamelCase ( self) -> Optional[int]: # make random mask reproducible across the PT and TF model np.random.seed(2) a__ =TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base') a__ =self.default_image_processor a__ =prepare_img() a__ =image_processor(images=lowercase_ , return_tensors='tf') # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) a__ =ViTMAEConfig() a__ =int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) a__ =np.random.uniform(size=(1, num_patches)) # forward pass a__ =model(**lowercase_ , noise=lowercase_) # verify the logits a__ =tf.convert_to_tensor([1, 196, 768]) self.assertEqual(outputs.logits.shape , lowercase_) a__ =tf.convert_to_tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]]) tf.debugging.assert_near(outputs.logits[0, :3, :3] , lowercase_ , atol=1e-4)
20
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": _lowerCAmelCase: int = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def _lowercase( __a : Optional[Any] ): if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) _lowerCAmelCase: str = parser.parse_args() _lowerCAmelCase: Tuple = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
20
1
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowercase_ : def __init__( self , lowercase_ , lowercase_=sys.maxsize) -> Any: a__ ='bilinear' a__ =max_size a__ =short_edge_length def __call__( self , lowercase_) -> List[Any]: a__ =[] for img in imgs: a__ , a__ =img.shape[:2] # later: provide list and randomly choose index for resize a__ =np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img a__ =size * 1.0 / min(lowercase_ , lowercase_) if h < w: a__ , a__ =size, scale * w else: a__ , a__ =scale * h, size if max(lowercase_ , lowercase_) > self.max_size: a__ =self.max_size * 1.0 / max(lowercase_ , lowercase_) a__ =newh * scale a__ =neww * scale a__ =int(neww + 0.5) a__ =int(newh + 0.5) if img.dtype == np.uinta: a__ =Image.fromarray(lowercase_) a__ =pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) a__ =np.asarray(lowercase_) else: a__ =img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw a__ =nn.functional.interpolate( lowercase_ , (newh, neww) , mode=self.interp_method , align_corners=lowercase_).squeeze(0) img_augs.append(lowercase_) return img_augs class lowercase_ : def __init__( self , lowercase_) -> Any: a__ =ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) a__ =cfg.INPUT.FORMAT a__ =cfg.SIZE_DIVISIBILITY a__ =cfg.PAD_VALUE a__ =cfg.INPUT.MAX_SIZE_TEST a__ =cfg.MODEL.DEVICE a__ =torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) a__ =torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) a__ =lambda lowercase_: (x - self.pixel_mean) / self.pixel_std def __UpperCamelCase ( self , lowercase_) -> Tuple: a__ =tuple(max(lowercase_) for s in zip(*[img.shape for img in images])) a__ =[im.shape[-2:] for im in images] a__ =[ nn.functional.pad( lowercase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(lowercase_ , lowercase_) ] return torch.stack(lowercase_), torch.tensor(lowercase_) def __call__( self , lowercase_ , lowercase_=False) -> Dict: with torch.no_grad(): if not isinstance(lowercase_ , lowercase_): a__ =[images] if single_image: assert len(lowercase_) == 1 for i in range(len(lowercase_)): if isinstance(images[i] , torch.Tensor): images.insert(lowercase_ , images.pop(lowercase_).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( lowercase_ , torch.as_tensor(img_tensorize(images.pop(lowercase_) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge a__ =torch.tensor([im.shape[:2] for im in images]) a__ =self.aug(lowercase_) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic a__ =[self.normalizer(lowercase_) for x in images] # now pad them to do the following operations a__ , a__ =self.pad(lowercase_) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad a__ =torch.true_divide(lowercase_ , lowercase_) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _lowercase( __a : str , __a : Tuple ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _lowercase( __a : Dict , __a : Tuple[int, int] ): assert torch.isfinite(__a ).all(), "Box tensor contains infinite or NaN!" a__ , a__ =box_size tensor[:, 0].clamp_(min=0 , max=__a ) tensor[:, 1].clamp_(min=0 , max=__a ) tensor[:, 2].clamp_(min=0 , max=__a ) tensor[:, 3].clamp_(min=0 , max=__a )
20
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _lowerCAmelCase: Tuple = get_logger(__name__) _lowerCAmelCase: List[str] = Path(__file__).parent / 'model_card_template.md' _lowerCAmelCase: Any = uuida().hex _lowerCAmelCase: List[Any] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase: int = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase: Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def _lowercase( __a : Union[Dict, str, None] = None ): a__ =f"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"""; torch/{_torch_version}""" if is_flax_available(): ua += f"""; jax/{_jax_version}""" ua += f"""; flax/{_flax_version}""" if is_onnx_available(): ua += f"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__a , __a ): ua += "; " + "; ".join(f"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__a , __a ): ua += "; " + user_agent return ua def _lowercase( __a : str , __a : Optional[str] = None , __a : Optional[str] = None ): if token is None: a__ =HfFolder.get_token() if organization is None: a__ =whoami(__a )['name'] return f"""{username}/{model_id}""" else: return f"""{organization}/{model_id}""" def _lowercase( __a : Union[str, Any] , __a : Dict ): if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(__a , 'local_rank' ) and args.local_rank not in [-1, 0]: return a__ =args.hub_token if hasattr(__a , 'hub_token' ) else None a__ =get_full_repo_name(__a , token=__a ) a__ =ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__a , model_name=__a , repo_name=__a , dataset_name=args.dataset_name if hasattr(__a , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__a , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__a , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(__a , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__a , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__a , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__a , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__a , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__a , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(__a , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__a , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) a__ =os.path.join(args.output_dir , 'README.md' ) model_card.save(__a ) def _lowercase( __a : Optional[str] , __a : Optional[str] = None ): if resolved_file is None or commit_hash is not None: return commit_hash a__ =str(Path(__a ).as_posix() ) a__ =re.search(r'snapshots/([^/]+)/' , __a ) if search is None: return None a__ =search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__a ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _lowerCAmelCase: List[str] = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) _lowerCAmelCase: List[str] = os.path.join(hf_cache_home, 'diffusers') def _lowercase( __a : Optional[str] = None , __a : Optional[str] = None ): if new_cache_dir is None: a__ =DIFFUSERS_CACHE if old_cache_dir is None: a__ =old_diffusers_cache a__ =Path(__a ).expanduser() a__ =Path(__a ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): a__ =new_cache_dir / old_blob_path.relative_to(__a ) new_blob_path.parent.mkdir(parents=__a , exist_ok=__a ) os.replace(__a , __a ) try: os.symlink(__a , __a ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _lowerCAmelCase: Dict = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): _lowerCAmelCase: int = 0 else: with open(cache_version_file) as f: try: _lowerCAmelCase: List[Any] = int(f.read()) except ValueError: _lowerCAmelCase: Any = 0 if cache_version < 1: _lowerCAmelCase: str = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: _lowerCAmelCase: Optional[Any] = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ 'the directory exists and can be written to.' ) def _lowercase( __a : str , __a : Optional[str] = None ): if variant is not None: a__ =weights_name.split('.' ) a__ =splits[:-1] + [variant] + splits[-1:] a__ ='.'.join(__a ) return weights_name def _lowercase( __a : Union[str, Any] , *, __a : Optional[Any] , __a : Optional[Any] , __a : List[Any] , __a : Tuple , __a : Optional[Any] , __a : Dict , __a : str , __a : int , __a : Tuple , __a : Union[str, Any] , __a : int=None , ): a__ =str(__a ) if os.path.isfile(__a ): return pretrained_model_name_or_path elif os.path.isdir(__a ): if os.path.isfile(os.path.join(__a , __a ) ): # Load from a PyTorch checkpoint a__ =os.path.join(__a , __a ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__a , __a , __a ) ): a__ =os.path.join(__a , __a , __a ) return model_file else: raise EnvironmentError( f"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__a ).base_version ) >= version.parse('0.20.0' ) ): try: a__ =hf_hub_download( __a , filename=_add_variant(__a , __a ) , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) warnings.warn( f"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __a , ) return model_file except: # noqa: E722 warnings.warn( f"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__a , __a )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__a , __a )}' so that the correct variant file can be added.""" , __a , ) try: # 2. Load model file as usual a__ =hf_hub_download( __a , filename=__a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( f"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ 'this model name. Check the model page at ' f"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( f"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( f"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" f""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" f""" directory containing a file named {weights_name} or""" ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( f"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' f"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ f"""containing a file named {weights_name}""" )
20
1
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase: Optional[int] = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class lowercase_ (lowercase__ ): snake_case ='segformer' def __init__( self , lowercase_=3 , lowercase_=4 , lowercase_=[2, 2, 2, 2] , lowercase_=[8, 4, 2, 1] , lowercase_=[32, 64, 160, 256] , lowercase_=[7, 3, 3, 3] , lowercase_=[4, 2, 2, 2] , lowercase_=[1, 2, 5, 8] , lowercase_=[4, 4, 4, 4] , lowercase_="gelu" , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_=0.02 , lowercase_=0.1 , lowercase_=1e-6 , lowercase_=256 , lowercase_=255 , **lowercase_ , ) -> str: super().__init__(**lowercase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , lowercase_ , ) a__ =num_channels a__ =num_encoder_blocks a__ =depths a__ =sr_ratios a__ =hidden_sizes a__ =patch_sizes a__ =strides a__ =mlp_ratios a__ =num_attention_heads a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =classifier_dropout_prob a__ =initializer_range a__ =drop_path_rate a__ =layer_norm_eps a__ =decoder_hidden_size a__ =kwargs.get('reshape_last_stage' , lowercase_) a__ =semantic_loss_ignore_index class lowercase_ (lowercase__ ): snake_case =version.parse('1.11' ) @property def __UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self) -> float: return 1e-4 @property def __UpperCamelCase ( self) -> int: return 12
20
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger() def _lowercase( __a : int , __a : str , __a : LevitConfig , __a : Path , __a : bool = True ): print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": a__ =timm.create_model('levit_128s' , pretrained=__a ) else: a__ =timm.create_model('levit_128' , pretrained=__a ) if hidden_sizes == 192: a__ =timm.create_model('levit_192' , pretrained=__a ) if hidden_sizes == 256: a__ =timm.create_model('levit_256' , pretrained=__a ) if hidden_sizes == 384: a__ =timm.create_model('levit_384' , pretrained=__a ) from_model.eval() a__ =LevitForImageClassificationWithTeacher(__a ).eval() a__ =OrderedDict() a__ =from_model.state_dict() a__ =list(from_model.state_dict().keys() ) a__ =list(our_model.state_dict().keys() ) print(len(__a ) , len(__a ) ) for i in range(len(__a ) ): a__ =weights[og_keys[i]] our_model.load_state_dict(__a ) a__ =torch.randn((2, 3, 224, 224) ) a__ =from_model(__a ) a__ =our_model(__a ).logits assert torch.allclose(__a , __a ), "The model logits don't match the original one." a__ =name print(__a ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) a__ =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def _lowercase( __a : Path , __a : str = None , __a : bool = True ): a__ ='imagenet-1k-id2label.json' a__ =1000 a__ =(1, num_labels) a__ ='huggingface/label-files' a__ =num_labels a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} a__ =partial(__a , num_labels=__a , idalabel=__a , labelaid=__a ) a__ ={ 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } a__ ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __a , names_to_config[model_name] , __a , __a ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __a , __a , __a , __a ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _lowerCAmelCase: Union[str, Any] = parser.parse_args() _lowerCAmelCase: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
20
1
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": _lowerCAmelCase: List[str] = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') _lowerCAmelCase: Dict = F"""https://www.google.com/search?q={query}&num=100""" _lowerCAmelCase: int = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: _lowerCAmelCase: Dict = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: _lowerCAmelCase: str = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
20
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowerCAmelCase: int = logging.get_logger(__name__) _lowerCAmelCase: Union[str, Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } _lowerCAmelCase: Tuple = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _lowercase( __a : Optional[Any] ): a__ ={} with open(__a , 'r' ) as file: for line_number, line in enumerate(__a ): a__ =line.strip() if line: a__ =line.split() a__ =line_number a__ =words[0] a__ =value return result def _lowercase( __a : Dict , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : str ): for attribute in key.split('.' ): a__ =getattr(__a , __a ) a__ =None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__a ): a__ =PARAM_MAPPING[full_name.split('.' )[-1]] a__ ='param' if weight_type is not None and weight_type != "param": a__ =getattr(__a , __a ).shape elif weight_type is not None and weight_type == "param": a__ =hf_pointer for attribute in hf_param_name.split('.' ): a__ =getattr(__a , __a ) a__ =shape_pointer.shape # let's reduce dimension a__ =value[0] else: a__ =hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a__ =value elif weight_type == "weight_g": a__ =value elif weight_type == "weight_v": a__ =value elif weight_type == "bias": a__ =value elif weight_type == "param": for attribute in hf_param_name.split('.' ): a__ =getattr(__a , __a ) a__ =value else: a__ =value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _lowercase( __a : Optional[int] , __a : int , __a : Optional[int] , __a : Optional[Any] , __a : List[Any] ): a__ =None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__a ): a__ =PARAM_MAPPING[full_name.split('.' )[-1]] a__ ='param' if weight_type is not None and weight_type != "param": a__ ='.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": a__ ='.'.join([key, hf_param_name] ) else: a__ =key a__ =value if 'lm_head' in full_key else value[0] _lowerCAmelCase: Dict = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _lowercase( __a : Dict , __a : int , __a : int=None , __a : List[str]=None ): a__ =False for key, mapped_key in MAPPING.items(): a__ ='wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: a__ =True if "*" in mapped_key: a__ =name.split(__a )[0].split('.' )[-2] a__ =mapped_key.replace('*' , __a ) if "weight_g" in name: a__ ='weight_g' elif "weight_v" in name: a__ ='weight_v' elif "bias" in name: a__ ='bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj a__ ='weight' else: a__ =None if hf_dict is not None: rename_dict(__a , __a , __a , __a , __a ) else: set_recursively(__a , __a , __a , __a , __a ) return is_used return is_used def _lowercase( __a : Union[str, Any] , __a : List[str] , __a : Dict ): a__ =[] a__ =fairseq_model.state_dict() a__ =hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): a__ =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == 'group' , ) a__ =True else: a__ =load_wavaveca_layer(__a , __a , __a ) if not is_used: unused_weights.append(__a ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _lowercase( __a : List[Any] , __a : Optional[Any] , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] ): a__ =full_name.split('conv_layers.' )[-1] a__ =name.split('.' ) a__ =int(items[0] ) a__ =int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def _lowercase( __a : str , __a : str , __a : Any=None , __a : str=None , __a : Any=True , __a : Union[str, Any]=False ): if config_path is not None: a__ =WavaVecaConfig.from_pretrained(__a ) else: a__ =WavaVecaConfig() if is_seq_class: a__ =read_txt_into_dict(__a ) a__ =idalabel a__ =WavaVecaForSequenceClassification(__a ) a__ =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) feature_extractor.save_pretrained(__a ) elif is_finetuned: if dict_path: a__ =Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a__ =target_dict.pad_index a__ =target_dict.bos_index a__ =target_dict.eos_index a__ =len(target_dict.symbols ) a__ =os.path.join(__a , 'vocab.json' ) if not os.path.isdir(__a ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__a ) ) return os.makedirs(__a , exist_ok=__a ) a__ =target_dict.indices # fairseq has the <pad> and <s> switched a__ =0 a__ =1 with open(__a , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(__a , __a ) a__ =WavaVecaCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=__a , ) a__ =True if config.feat_extract_norm == 'layer' else False a__ =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) a__ =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) a__ =WavaVecaForCTC(__a ) else: a__ =WavaVecaForPreTraining(__a ) if is_finetuned or is_seq_class: a__ , a__ , a__ =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: a__ =argparse.Namespace(task='audio_pretraining' ) a__ =fairseq.tasks.setup_task(__a ) a__ , a__ , a__ =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__a ) a__ =model[0].eval() recursively_load_weights(__a , __a , not is_finetuned ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) _lowerCAmelCase: Tuple = parser.parse_args() _lowerCAmelCase: Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
20
1
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self) -> List[str]: a__ ='ylacombe/bark-small' a__ =tempfile.mkdtemp() a__ ='en_speaker_1' a__ ='This is a test string' a__ ='speaker_embeddings_path.json' a__ ='speaker_embeddings' def __UpperCamelCase ( self , **lowercase_) -> Union[str, Any]: return AutoTokenizer.from_pretrained(self.checkpoint , **lowercase_) def __UpperCamelCase ( self) -> str: shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =self.get_tokenizer() a__ =BarkProcessor(tokenizer=lowercase_) processor.save_pretrained(self.tmpdirname) a__ =BarkProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) @slow def __UpperCamelCase ( self) -> List[str]: a__ =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) a__ =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') a__ =BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) def __UpperCamelCase ( self) -> List[Any]: a__ =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) a__ =35 a__ =2 a__ =8 a__ ={ 'semantic_prompt': np.ones(lowercase_), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len)), 'fine_prompt': np.ones((nb_codebooks_total, seq_len)), } # test providing already loaded voice_preset a__ =processor(text=self.input_string , voice_preset=lowercase_) a__ =inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([])).tolist()) # test loading voice preset from npz file a__ =os.path.join(self.tmpdirname , 'file.npz') np.savez(lowercase_ , **lowercase_) a__ =processor(text=self.input_string , voice_preset=lowercase_) a__ =inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([])).tolist()) # test loading voice preset from the hub a__ =processor(text=self.input_string , voice_preset=self.voice_preset) def __UpperCamelCase ( self) -> Dict: a__ =self.get_tokenizer() a__ =BarkProcessor(tokenizer=lowercase_) a__ =processor(text=self.input_string) a__ =tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist())
20
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowercase_ (unittest.TestCase ): @slow def __UpperCamelCase ( self) -> Optional[int]: a__ =AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowercase_).to(lowercase_) a__ =AutoTokenizer.from_pretrained('google/mt5-small') a__ =tokenizer('Hello there' , return_tensors='pt').input_ids a__ =tokenizer('Hi I am' , return_tensors='pt').input_ids a__ =model(input_ids.to(lowercase_) , labels=labels.to(lowercase_)).loss a__ =-(labels.shape[-1] * loss.item()) a__ =-84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
20
1
class lowercase_ : def __init__( self) -> str: a__ =0 a__ =0 a__ ={} def __UpperCamelCase ( self , lowercase_) -> Dict: if vertex not in self.adjacency: a__ ={} self.num_vertices += 1 def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> Dict: self.add_vertex(lowercase_) self.add_vertex(lowercase_) if head == tail: return a__ =weight a__ =weight def __UpperCamelCase ( self) -> Optional[int]: a__ =self.get_edges() for edge in edges: a__ , a__ , a__ =edge edges.remove((tail, head, weight)) for i in range(len(lowercase_)): a__ =list(edges[i]) edges.sort(key=lambda lowercase_: e[2]) for i in range(len(lowercase_) - 1): if edges[i][2] >= edges[i + 1][2]: a__ =edges[i][2] + 1 for edge in edges: a__ , a__ , a__ =edge a__ =weight a__ =weight def __str__( self) -> Tuple: a__ ='' for tail in self.adjacency: for head in self.adjacency[tail]: a__ =self.adjacency[head][tail] string += F"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n') def __UpperCamelCase ( self) -> Union[str, Any]: a__ =[] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def __UpperCamelCase ( self) -> int: return self.adjacency.keys() @staticmethod def __UpperCamelCase ( lowercase_=None , lowercase_=None) -> Dict: a__ =Graph() if vertices is None: a__ =[] if edges is None: a__ =[] for vertex in vertices: g.add_vertex(lowercase_) for edge in edges: g.add_edge(*lowercase_) return g class lowercase_ : def __init__( self) -> Tuple: a__ ={} a__ ={} def __len__( self) -> Dict: return len(self.parent) def __UpperCamelCase ( self , lowercase_) -> Dict: if item in self.parent: return self.find(lowercase_) a__ =item a__ =0 return item def __UpperCamelCase ( self , lowercase_) -> Optional[Any]: if item not in self.parent: return self.make_set(lowercase_) if item != self.parent[item]: a__ =self.find(self.parent[item]) return self.parent[item] def __UpperCamelCase ( self , lowercase_ , lowercase_) -> Dict: a__ =self.find(lowercase_) a__ =self.find(lowercase_) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: a__ =roota return roota if self.rank[roota] < self.rank[roota]: a__ =roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 a__ =roota return roota return None @staticmethod def __UpperCamelCase ( lowercase_) -> Optional[Any]: a__ =graph.num_vertices a__ =Graph.UnionFind() a__ =[] while num_components > 1: a__ ={} for vertex in graph.get_vertices(): a__ =-1 a__ =graph.get_edges() for edge in edges: a__ , a__ , a__ =edge edges.remove((tail, head, weight)) for edge in edges: a__ , a__ , a__ =edge a__ =union_find.find(lowercase_) a__ =union_find.find(lowercase_) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: a__ =[head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: a__ =[head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: a__ , a__ , a__ =cheap_edge[vertex] if union_find.find(lowercase_) != union_find.find(lowercase_): union_find.union(lowercase_ , lowercase_) mst_edges.append(cheap_edge[vertex]) a__ =num_components - 1 a__ =Graph.build(edges=lowercase_) return mst
20
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self) -> int: a__ =tempfile.mkdtemp() a__ =BlipImageProcessor() a__ =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel') a__ =BlipProcessor(lowercase_ , lowercase_) processor.save_pretrained(self.tmpdirname) def __UpperCamelCase ( self , **lowercase_) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).tokenizer def __UpperCamelCase ( self , **lowercase_) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).image_processor def __UpperCamelCase ( self) -> Optional[int]: shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self) -> str: a__ =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] a__ =[Image.fromarray(np.moveaxis(lowercase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self) -> str: a__ =BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) a__ =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') a__ =self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0) a__ =BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowercase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowercase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowercase_) def __UpperCamelCase ( self) -> int: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ =self.prepare_image_inputs() a__ =image_processor(lowercase_ , return_tensors='np') a__ =processor(images=lowercase_ , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self) -> List[str]: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =processor(text=lowercase_) a__ =tokenizer(lowercase_ , return_token_type_ids=lowercase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self) -> int: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =self.prepare_image_inputs() a__ =processor(text=lowercase_ , images=lowercase_) self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask']) # test if it raises when no input is passed with pytest.raises(lowercase_): processor() def __UpperCamelCase ( self) -> Tuple: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a__ =processor.batch_decode(lowercase_) a__ =tokenizer.batch_decode(lowercase_) self.assertListEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =self.prepare_image_inputs() a__ =processor(text=lowercase_ , images=lowercase_) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask'])
20
1
from __future__ import annotations _lowerCAmelCase: Tuple = tuple[int, int, int] _lowerCAmelCase: Any = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase _lowerCAmelCase: int = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- _lowerCAmelCase: Optional[int] = 'EGZWVONAHDCLFQMSIPJBYUKXTR' _lowerCAmelCase: str = 'FOBHMDKEXQNRAULPGSJVTYICZW' _lowerCAmelCase: List[Any] = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- _lowerCAmelCase: Tuple = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- _lowerCAmelCase: str = 'RMDJXFUWGISLHVTCQNKYPBEZOA' _lowerCAmelCase: Any = 'SGLCPQWZHKXAREONTFBVIYJUDM' _lowerCAmelCase: str = 'HVSICLTYKQUBXDWAJZOMFGPREN' _lowerCAmelCase: Tuple = 'RZWQHFMVDBKICJLNTUXAGYPSOE' _lowerCAmelCase: Optional[Any] = 'LFKIJODBEGAMQPXVUHYSTCZRWN' _lowerCAmelCase: List[str] = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def _lowercase( __a : RotorPositionT , __a : RotorSelectionT , __a : str ): # Checks if there are 3 unique rotors if (unique_rotsel := len(set(__a ) )) < 3: a__ =f"""Please use 3 unique rotors (not {unique_rotsel})""" raise Exception(__a ) # Checks if rotor positions are valid a__ , a__ , a__ =rotpos if not 0 < rotorposa <= len(__a ): a__ =f"""First rotor position is not within range of 1..26 ({rotorposa}""" raise ValueError(__a ) if not 0 < rotorposa <= len(__a ): a__ =f"""Second rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(__a ) if not 0 < rotorposa <= len(__a ): a__ =f"""Third rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(__a ) # Validates string and returns dict a__ =_plugboard(__a ) return rotpos, rotsel, pbdict def _lowercase( __a : str ): # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(__a , __a ): a__ =f"""Plugboard setting isn't type string ({type(__a )})""" raise TypeError(__a ) elif len(__a ) % 2 != 0: a__ =f"""Odd number of symbols ({len(__a )})""" raise Exception(__a ) elif pbstring == "": return {} pbstring.replace(' ' , '' ) # Checks if all characters are unique a__ =set() for i in pbstring: if i not in abc: a__ =f"""'{i}' not in list of symbols""" raise Exception(__a ) elif i in tmppbl: a__ =f"""Duplicate symbol ({i})""" raise Exception(__a ) else: tmppbl.add(__a ) del tmppbl # Created the dictionary a__ ={} for j in range(0 , len(__a ) - 1 , 2 ): a__ =pbstring[j + 1] a__ =pbstring[j] return pb def _lowercase( __a : str , __a : RotorPositionT , __a : RotorSelectionT = (rotora, rotora, rotora) , __a : str = "" , ): a__ =text.upper() a__ , a__ , a__ =_validator( __a , __a , plugb.upper() ) a__ , a__ , a__ =rotor_position a__ , a__ , a__ =rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 a__ =[] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: a__ =plugboard[symbol] # rotor ra -------------------------- a__ =abc.index(__a ) + rotorposa a__ =rotora[index % len(__a )] # rotor rb -------------------------- a__ =abc.index(__a ) + rotorposa a__ =rotora[index % len(__a )] # rotor rc -------------------------- a__ =abc.index(__a ) + rotorposa a__ =rotora[index % len(__a )] # reflector -------------------------- # this is the reason you don't need another machine to decipher a__ =reflector[symbol] # 2nd rotors a__ =abc[rotora.index(__a ) - rotorposa] a__ =abc[rotora.index(__a ) - rotorposa] a__ =abc[rotora.index(__a ) - rotorposa] # 2nd plugboard if symbol in plugboard: a__ =plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(__a ): a__ =0 rotorposa += 1 if rotorposa >= len(__a ): a__ =0 rotorposa += 1 if rotorposa >= len(__a ): a__ =0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(__a ) return "".join(__a ) if __name__ == "__main__": _lowerCAmelCase: List[Any] = 'This is my Python script that emulates the Enigma machine from WWII.' _lowerCAmelCase: int = (1, 1, 1) _lowerCAmelCase: Any = 'pictures' _lowerCAmelCase: Any = (rotora, rotora, rotora) _lowerCAmelCase: Any = enigma(message, rotor_pos, rotor_sel, pb) print('Encrypted message:', en) print('Decrypted message:', enigma(en, rotor_pos, rotor_sel, pb))
20
def _lowercase( __a : list[int] ): a__ =len(__a ) for i in range(__a ): for j in range(i + 1 , __a ): if numbers[j] < numbers[i]: a__ , a__ =numbers[j], numbers[i] return numbers if __name__ == "__main__": _lowerCAmelCase: Tuple = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase: int = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
20
1
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase: List[str] = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =BartphoTokenizer snake_case =False snake_case =True def __UpperCamelCase ( self) -> List[str]: super().setUp() a__ =['▁This', '▁is', '▁a', '▁t', 'est'] a__ =dict(zip(lowercase_ , range(len(lowercase_)))) a__ ={'unk_token': '<unk>'} a__ =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file']) with open(self.monolingual_vocab_file , 'w' , encoding='utf-8') as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""") a__ =BartphoTokenizer(lowercase_ , self.monolingual_vocab_file , **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def __UpperCamelCase ( self , **lowercase_) -> Optional[Any]: kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname , **lowercase_) def __UpperCamelCase ( self , lowercase_) -> Dict: a__ ='This is a là test' a__ ='This is a<unk><unk> test' return input_text, output_text def __UpperCamelCase ( self) -> Any: a__ =BartphoTokenizer(lowercase_ , self.monolingual_vocab_file , **self.special_tokens_map) a__ ='This is a là test' a__ ='▁This ▁is ▁a ▁l à ▁t est'.split() a__ =tokenizer.tokenize(lowercase_) self.assertListEqual(lowercase_ , lowercase_) a__ =tokens + [tokenizer.unk_token] a__ =[4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_) , lowercase_)
20
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowercase_ : def __init__( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="resnet50" , lowercase_=3 , lowercase_=32 , lowercase_=3 , lowercase_=True , lowercase_=True , ) -> Union[str, Any]: a__ =parent a__ =out_indices if out_indices is not None else [4] a__ =stage_names a__ =out_features a__ =backbone a__ =batch_size a__ =image_size a__ =num_channels a__ =use_pretrained_backbone a__ =is_training def __UpperCamelCase ( self) -> Optional[Any]: a__ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ =self.get_config() return config, pixel_values def __UpperCamelCase ( self) -> Tuple: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> str: a__ =TimmBackbone(config=lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): a__ =model(lowercase_) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __UpperCamelCase ( self) -> str: a__ =self.prepare_config_and_inputs() a__ , a__ =config_and_inputs a__ ={'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class lowercase_ (lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): snake_case =(TimmBackbone,) if is_torch_available() else () snake_case ={'feature-extraction': TimmBackbone} if is_torch_available() else {} snake_case =False snake_case =False snake_case =False snake_case =False def __UpperCamelCase ( self) -> Optional[Any]: a__ =TimmBackboneModelTester(self) a__ =ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_) def __UpperCamelCase ( self) -> Dict: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self) -> str: a__ ='resnet18' a__ ='microsoft/resnet-18' a__ =AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_) a__ =AutoBackbone.from_pretrained(lowercase_) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(len(timm_model.stage_names) , len(transformers_model.stage_names)) self.assertEqual(timm_model.channels , transformers_model.channels) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,)) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names) - 1]) a__ =AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_ , out_indices=[1, 2, 3]) a__ =AutoBackbone.from_pretrained(lowercase_ , out_indices=[1, 2, 3]) self.assertEqual(timm_model.out_indices , transformers_model.out_indices) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(timm_model.channels , transformers_model.channels) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> Dict: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> List[Any]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.') def __UpperCamelCase ( self) -> str: pass @unittest.skip('Safetensors is not supported by timm.') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self) -> Optional[Any]: pass def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) a__ =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ =[*signature.parameters.keys()] a__ =['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_) def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =True a__ =self.has_attentions # no need to test all models as different heads yield the same functionality a__ =self.all_model_classes[0] a__ =model_class(lowercase_) model.to(lowercase_) a__ =self._prepare_for_class(lowercase_ , lowercase_) a__ =model(**lowercase_) a__ =outputs[0][-1] # Encoder-/Decoder-only models a__ =outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a__ =outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowercase_) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) def __UpperCamelCase ( self) -> List[str]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_) self.assertEqual(len(result.feature_maps) , len(config.out_indices)) self.assertEqual(len(model.channels) , len(config.out_indices)) # Check output of last stage is taken if out_features=None, out_indices=None a__ =copy.deepcopy(lowercase_) a__ =None a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_) self.assertEqual(len(result.feature_maps) , 1) self.assertEqual(len(model.channels) , 1) # Check backbone can be initialized with fresh weights a__ =copy.deepcopy(lowercase_) a__ =False a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_)
20
1
from __future__ import annotations def _lowercase( __a : str , __a : str ): a__ =get_failure_array(__a ) # 2) Step through text searching for pattern a__ , a__ =0, 0 # index into text, pattern while i < len(__a ): if pattern[j] == text[i]: if j == (len(__a ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: a__ =failure[j - 1] continue i += 1 return False def _lowercase( __a : str ): a__ =[0] a__ =0 a__ =1 while j < len(__a ): if pattern[i] == pattern[j]: i += 1 elif i > 0: a__ =failure[i - 1] continue j += 1 failure.append(__a ) return failure if __name__ == "__main__": # Test 1) _lowerCAmelCase: List[Any] = 'abc1abc12' _lowerCAmelCase: List[Any] = 'alskfjaldsabc1abc1abc12k23adsfabcabc' _lowerCAmelCase: Optional[Any] = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) _lowerCAmelCase: Any = 'ABABX' _lowerCAmelCase: Optional[Any] = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) _lowerCAmelCase: Dict = 'AAAB' _lowerCAmelCase: Optional[Any] = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) _lowerCAmelCase: Union[str, Any] = 'abcdabcy' _lowerCAmelCase: Optional[Any] = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) _lowerCAmelCase: Optional[Any] = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCAmelCase: Optional[Any] = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: List[str] = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _lowerCAmelCase: List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
20
1
from __future__ import annotations _lowerCAmelCase: str = '#' class lowercase_ : def __init__( self) -> None: a__ ={} def __UpperCamelCase ( self , lowercase_) -> None: a__ =self._trie for char in text: if char not in trie: a__ ={} a__ =trie[char] a__ =True def __UpperCamelCase ( self , lowercase_) -> tuple | list: a__ =self._trie for char in prefix: if char in trie: a__ =trie[char] else: return [] return self._elements(lowercase_) def __UpperCamelCase ( self , lowercase_) -> tuple: a__ =[] for c, v in d.items(): a__ =[' '] if c == END else [(c + s) for s in self._elements(lowercase_)] result.extend(lowercase_) return tuple(lowercase_) _lowerCAmelCase: Optional[int] = Trie() _lowerCAmelCase: List[str] = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def _lowercase( __a : str ): a__ =trie.find_word(__a ) return tuple(string + word for word in suffixes ) def _lowercase( ): print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
20
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase: str = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class lowercase_ (lowercase__ ): snake_case ='big_bird' def __init__( self , lowercase_=50358 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu_new" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=4096 , lowercase_=2 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=66 , lowercase_="block_sparse" , lowercase_=True , lowercase_=False , lowercase_=64 , lowercase_=3 , lowercase_=None , **lowercase_ , ) -> Any: super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , sep_token_id=lowercase_ , **lowercase_ , ) a__ =vocab_size a__ =max_position_embeddings a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =initializer_range a__ =type_vocab_size a__ =layer_norm_eps a__ =use_cache a__ =rescale_embeddings a__ =attention_type a__ =use_bias a__ =block_size a__ =num_random_blocks a__ =classifier_dropout class lowercase_ (lowercase__ ): @property def __UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a__ ={0: 'batch', 1: 'choice', 2: 'sequence'} else: a__ ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
20
1
from __future__ import annotations from PIL import Image # Define glider example _lowerCAmelCase: Dict = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example _lowerCAmelCase: List[Any] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def _lowercase( __a : list[list[int]] ): a__ =[] for i in range(len(__a ) ): a__ =[] for j in range(len(cells[i] ) ): # Get the number of live neighbours a__ =0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(__a ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(__a ) - 1: neighbour_count += cells[i + 1][j] if i < len(__a ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. a__ =cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(__a ) return next_generation def _lowercase( __a : list[list[int]] , __a : int ): a__ =[] for _ in range(__a ): # Create output image a__ =Image.new('RGB' , (len(cells[0] ), len(__a )) ) a__ =img.load() # Save cells to image for x in range(len(__a ) ): for y in range(len(cells[0] ) ): a__ =255 - cells[y][x] * 255 a__ =(colour, colour, colour) # Save image images.append(__a ) a__ =new_generation(__a ) return images if __name__ == "__main__": _lowerCAmelCase: List[str] = generate_images(GLIDER, 16) images[0].save('out.gif', save_all=True, append_images=images[1:])
20
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger(__name__) _lowerCAmelCase: Tuple = torch.device('cpu') def _lowercase( ): a__ ='http://images.cocodataset.org/val2017/000000039769.jpg' a__ =Image.open(requests.get(__a , stream=__a ).raw ) return im def _lowercase( __a : Optional[Any] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _lowercase( __a : int , __a : int , __a : Optional[Any] ): a__ =dct.pop(__a ) a__ =val def _lowercase( __a : Optional[Any] ): a__ =[] for k in state_dict.keys(): a__ =k if ".pwconv" in k: a__ =k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: a__ =k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: a__ =k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: a__ =k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: a__ =k_new.split('.' ) if ls[2].isdigit(): a__ ='swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: a__ =k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _lowercase( __a : Union[str, Any] , __a : int , __a : str ): a__ =SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a__ =1000 a__ ='huggingface/label-files' a__ ='imagenet-1k-id2label.json' a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a__ =[3, 3, 6, 4] a__ =[48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a__ =[3, 3, 9, 6] a__ =[48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a__ =[4, 3, 10, 5] a__ =[48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a__ =[4, 4, 12, 6] a__ =[64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): a__ =torch.hub.load_state_dict_from_url(__a , map_location='cpu' , check_hash=__a ) else: a__ =torch.load(__a , map_location='cpu' ) a__ =checkpoint a__ =create_rename_keys(__a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__a , __a , __a ) # load HuggingFace model a__ =SwiftFormerForImageClassification(__a ).eval() hf_model.load_state_dict(__a ) # prepare test inputs a__ =prepare_img() a__ =ViTImageProcessor.from_pretrained('preprocessor_config' ) a__ =processor(images=__a , return_tensors='pt' ) # compare outputs from both models a__ =get_expected_output(__a ) a__ =hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , __a , atol=1e-3 ) Path(__a ).mkdir(exist_ok=__a ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') _lowerCAmelCase: Optional[int] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
20
1
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _lowerCAmelCase: Tuple = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') _lowerCAmelCase: Tuple = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('utf-8').split() _lowerCAmelCase: int = '|'.join(sys.argv[1:]) _lowerCAmelCase: Optional[Any] = re.compile(RF"""^({joined_dirs}).*?\.py$""") _lowerCAmelCase: Dict = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
20
from __future__ import annotations from typing import Any class lowercase_ : def __init__( self , lowercase_) -> None: a__ =num_of_nodes a__ =[] a__ ={} def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: self.m_edges.append([u_node, v_node, weight]) def __UpperCamelCase ( self , lowercase_) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node]) def __UpperCamelCase ( self , lowercase_) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: a__ =self.find_component(lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: if component_size[u_node] <= component_size[v_node]: a__ =v_node component_size[v_node] += component_size[u_node] self.set_component(lowercase_) elif component_size[u_node] >= component_size[v_node]: a__ =self.find_component(lowercase_) component_size[u_node] += component_size[v_node] self.set_component(lowercase_) def __UpperCamelCase ( self) -> None: a__ =[] a__ =0 a__ =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes): self.m_component.update({node: node}) component_size.append(1) a__ =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: a__ , a__ , a__ =edge a__ =self.m_component[u] a__ =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): a__ =[u, v, w] for edge in minimum_weight_edge: if isinstance(lowercase_ , lowercase_): a__ , a__ , a__ =edge a__ =self.m_component[u] a__ =self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowercase_ , lowercase_ , lowercase_) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""") num_of_components -= 1 a__ =[-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""") def _lowercase( ): pass if __name__ == "__main__": import doctest doctest.testmod()
20
1
import math def _lowercase( __a : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowercase( __a : float = 0.1 ): a__ =3 a__ =3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__a ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
20
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCAmelCase: Union[str, Any] = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' _lowerCAmelCase: Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' _lowerCAmelCase: List[Any] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): def __UpperCamelCase ( self) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=True , lowercase_=False) -> Any: if rouge_types is None: a__ =['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] a__ =rouge_scorer.RougeScorer(rouge_types=lowercase_ , use_stemmer=lowercase_) if use_aggregator: a__ =scoring.BootstrapAggregator() else: a__ =[] for ref, pred in zip(lowercase_ , lowercase_): a__ =scorer.score(lowercase_ , lowercase_) if use_aggregator: aggregator.add_scores(lowercase_) else: scores.append(lowercase_) if use_aggregator: a__ =aggregator.aggregate() else: a__ ={} for key in scores[0]: a__ =[score[key] for score in scores] return result
20
1
from __future__ import annotations def _lowercase( __a : int ): a__ =2 a__ =[] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__a ) if n > 1: factors.append(__a ) return factors if __name__ == "__main__": import doctest doctest.testmod()
20
from __future__ import annotations _lowerCAmelCase: str = '#' class lowercase_ : def __init__( self) -> None: a__ ={} def __UpperCamelCase ( self , lowercase_) -> None: a__ =self._trie for char in text: if char not in trie: a__ ={} a__ =trie[char] a__ =True def __UpperCamelCase ( self , lowercase_) -> tuple | list: a__ =self._trie for char in prefix: if char in trie: a__ =trie[char] else: return [] return self._elements(lowercase_) def __UpperCamelCase ( self , lowercase_) -> tuple: a__ =[] for c, v in d.items(): a__ =[' '] if c == END else [(c + s) for s in self._elements(lowercase_)] result.extend(lowercase_) return tuple(lowercase_) _lowerCAmelCase: Optional[int] = Trie() _lowerCAmelCase: List[str] = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def _lowercase( __a : str ): a__ =trie.find_word(__a ) return tuple(string + word for word in suffixes ) def _lowercase( ): print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
20
1
import requests def _lowercase( __a : str , __a : str ): a__ ={'Content-Type': 'application/json'} a__ =requests.post(__a , json={'text': message_body} , headers=__a ) if response.status_code != 200: a__ =( 'Request to slack returned an error ' f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(__a ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
20
_lowerCAmelCase: List[str] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def _lowercase( ): a__ =input('Enter message: ' ) a__ =input('Enter key [alphanumeric]: ' ) a__ =input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): a__ ='encrypt' a__ =encrypt_message(__a , __a ) elif mode.lower().startswith('d' ): a__ ='decrypt' a__ =decrypt_message(__a , __a ) print(f"""\n{mode.title()}ed message:""" ) print(__a ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'encrypt' ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'decrypt' ) def _lowercase( __a : str , __a : str , __a : str ): a__ =[] a__ =0 a__ =key.upper() for symbol in message: a__ =LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__a ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__a ): a__ =0 else: translated.append(__a ) return "".join(__a ) if __name__ == "__main__": main()
20
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowercase_ (unittest.TestCase ): @slow def __UpperCamelCase ( self) -> Union[str, Any]: a__ =XLMRobertaModel.from_pretrained('xlm-roberta-base') a__ =torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house a__ =torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim a__ =torch.tensor( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): a__ =model(lowercase_)['last_hidden_state'].detach() self.assertEqual(output.shape , lowercase_) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowercase_ , atol=1e-3)) @slow def __UpperCamelCase ( self) -> Tuple: a__ =XLMRobertaModel.from_pretrained('xlm-roberta-large') a__ =torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house a__ =torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim a__ =torch.tensor( [[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): a__ =model(lowercase_)['last_hidden_state'].detach() self.assertEqual(output.shape , lowercase_) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowercase_ , atol=1e-3))
20
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase_ (lowercase__ ): snake_case =['image_processor', 'tokenizer'] snake_case ='ViltImageProcessor' snake_case =('BertTokenizer', 'BertTokenizerFast') def __init__( self , lowercase_=None , lowercase_=None , **lowercase_) -> Optional[Any]: a__ =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase_ , ) a__ =kwargs.pop('feature_extractor') a__ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(lowercase_ , lowercase_) a__ =self.image_processor def __call__( self , lowercase_ , lowercase_ = None , lowercase_ = True , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = True , lowercase_ = None , **lowercase_ , ) -> BatchEncoding: a__ =self.tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) # add pixel_values + pixel_mask a__ =self.image_processor(lowercase_ , return_tensors=lowercase_) encoding.update(lowercase_) return encoding def __UpperCamelCase ( self , *lowercase_ , **lowercase_) -> int: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_) def __UpperCamelCase ( self , *lowercase_ , **lowercase_) -> Tuple: return self.tokenizer.decode(*lowercase_ , **lowercase_) @property def __UpperCamelCase ( self) -> Optional[Any]: a__ =self.tokenizer.model_input_names a__ =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def __UpperCamelCase ( self) -> List[str]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowercase_ , ) return self.image_processor_class @property def __UpperCamelCase ( self) -> Union[str, Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowercase_ , ) return self.image_processor
20
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =KandinskyVaaPriorPipeline snake_case =['prompt'] snake_case =['prompt', 'negative_prompt'] snake_case =[ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] snake_case =False @property def __UpperCamelCase ( self) -> Optional[int]: return 32 @property def __UpperCamelCase ( self) -> Tuple: return 32 @property def __UpperCamelCase ( self) -> int: return self.time_input_dim @property def __UpperCamelCase ( self) -> str: return self.time_input_dim * 4 @property def __UpperCamelCase ( self) -> Optional[int]: return 100 @property def __UpperCamelCase ( self) -> Union[str, Any]: a__ =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self) -> Union[str, Any]: torch.manual_seed(0) a__ =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowercase_) @property def __UpperCamelCase ( self) -> Tuple: torch.manual_seed(0) a__ ={ 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } a__ =PriorTransformer(**lowercase_) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 a__ =nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def __UpperCamelCase ( self) -> Any: torch.manual_seed(0) a__ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) a__ =CLIPVisionModelWithProjection(lowercase_) return model @property def __UpperCamelCase ( self) -> Optional[int]: a__ =CLIPImageProcessor( crop_size=224 , do_center_crop=lowercase_ , do_normalize=lowercase_ , do_resize=lowercase_ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor def __UpperCamelCase ( self) -> Any: a__ =self.dummy_prior a__ =self.dummy_image_encoder a__ =self.dummy_text_encoder a__ =self.dummy_tokenizer a__ =self.dummy_image_processor a__ =UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=lowercase_ , clip_sample_range=10.0 , ) a__ ={ 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def __UpperCamelCase ( self , lowercase_ , lowercase_=0) -> Tuple: if str(lowercase_).startswith('mps'): a__ =torch.manual_seed(lowercase_) else: a__ =torch.Generator(device=lowercase_).manual_seed(lowercase_) a__ ={ 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __UpperCamelCase ( self) -> int: a__ ='cpu' a__ =self.get_dummy_components() a__ =self.pipeline_class(**lowercase_) a__ =pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) a__ =pipe(**self.get_dummy_inputs(lowercase_)) a__ =output.image_embeds a__ =pipe( **self.get_dummy_inputs(lowercase_) , return_dict=lowercase_ , )[0] a__ =image[0, -10:] a__ =image_from_tuple[0, -10:] assert image.shape == (1, 32) a__ =np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def __UpperCamelCase ( self) -> List[Any]: a__ =torch_device == 'cpu' a__ =True a__ =False self._test_inference_batch_single_identical( test_max_difference=lowercase_ , relax_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , ) @skip_mps def __UpperCamelCase ( self) -> Optional[int]: a__ =torch_device == 'cpu' a__ =False self._test_attention_slicing_forward_pass( test_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , )
20
1
_lowerCAmelCase: Optional[Any] = { 0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: 'a', 11: 'b', 12: 'c', 13: 'd', 14: 'e', 15: 'f', } def _lowercase( __a : float ): assert type(__a ) in (int, float) and decimal == int(__a ) a__ =int(__a ) a__ ='' a__ =False if decimal < 0: a__ =True decimal *= -1 while decimal > 0: a__ , a__ =divmod(__a , 16 ) a__ =values[remainder] + hexadecimal a__ ='0x' + hexadecimal if negative: a__ ='-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
20
from manim import * class lowercase_ (lowercase__ ): def __UpperCamelCase ( self) -> List[Any]: a__ =Rectangle(height=0.5 , width=0.5) a__ =Rectangle(height=0.46 , width=0.46).set_stroke(width=0) a__ =[mem.copy() for i in range(6)] a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(lowercase_ , lowercase_).arrange(lowercase_ , buff=0) a__ =Text('CPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) cpu.move_to([-2.5, -0.5, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(4)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('GPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) gpu.move_to([-1, -1, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Model' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) model.move_to([3, -1.0, 0]) self.add(lowercase_) a__ =[] for i, rect in enumerate(lowercase_): rect.set_stroke(lowercase_) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) a__ =Rectangle(height=0.46 / 4 , width=0.46 / 3).set_stroke(width=0.0).set_fill(lowercase_ , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=lowercase_) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0) self.add(lowercase_) cpu_targs.append(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Loaded Checkpoint' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4) checkpoint.move_to([3, 0.5, 0]) a__ =Square(side_length=2.2) key.move_to([-5, 2, 0]) a__ =MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(lowercase_ , lowercase_) a__ =MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left()) a__ =MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(lowercase_) , Write(lowercase_)) self.play(Write(lowercase_ , run_time=1) , Create(lowercase_ , run_time=1)) a__ =[] a__ =[] for i, rect in enumerate(lowercase_): a__ =fill.copy().set_fill(lowercase_ , opacity=0.7) target.move_to(lowercase_) first_animations.append(GrowFromCenter(lowercase_ , run_time=1)) a__ =target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.target.move_to(cpu_right_col_base[i - 5]) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5)) self.play(*lowercase_) self.play(*lowercase_) self.wait()
20
1
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() _lowerCAmelCase: Union[str, Any] = logging.get_logger('transformers.models.encodec') _lowerCAmelCase: List[Any] = { 'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited', 'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size', 'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed', 'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg', } _lowerCAmelCase: str = { 'encoder.model.0.conv.conv': 'encoder.layers.0.conv', 'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv', 'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv', 'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv', 'encoder.model.3.conv.conv': 'encoder.layers.3.conv', 'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv', 'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv', 'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv', 'encoder.model.6.conv.conv': 'encoder.layers.6.conv', 'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv', 'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv', 'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv', 'encoder.model.9.conv.conv': 'encoder.layers.9.conv', 'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv', 'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv', 'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv', 'encoder.model.12.conv.conv': 'encoder.layers.12.conv', 'encoder.model.13.lstm': 'encoder.layers.13.lstm', 'encoder.model.15.conv.conv': 'encoder.layers.15.conv', } _lowerCAmelCase: Optional[int] = { 'encoder.model.0.conv.norm': 'encoder.layers.0.norm', 'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm', 'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm', 'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm', 'encoder.model.3.conv.norm': 'encoder.layers.3.norm', 'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm', 'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm', 'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm', 'encoder.model.6.conv.norm': 'encoder.layers.6.norm', 'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm', 'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm', 'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm', 'encoder.model.9.conv.norm': 'encoder.layers.9.norm', 'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm', 'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm', 'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm', 'encoder.model.12.conv.norm': 'encoder.layers.12.norm', 'encoder.model.15.conv.norm': 'encoder.layers.15.norm', } _lowerCAmelCase: Dict = { 'decoder.model.0.conv.conv': 'decoder.layers.0.conv', 'decoder.model.1.lstm': 'decoder.layers.1.lstm', 'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv', 'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv', 'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv', 'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv', 'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv', 'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv', 'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv', 'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv', 'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv', 'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv', 'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv', 'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv', 'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv', 'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv', 'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv', 'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv', 'decoder.model.15.conv.conv': 'decoder.layers.15.conv', } _lowerCAmelCase: Tuple = { 'decoder.model.0.conv.norm': 'decoder.layers.0.norm', 'decoder.model.3.convtr.norm': 'decoder.layers.3.norm', 'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm', 'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm', 'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm', 'decoder.model.6.convtr.norm': 'decoder.layers.6.norm', 'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm', 'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm', 'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm', 'decoder.model.9.convtr.norm': 'decoder.layers.9.norm', 'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm', 'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm', 'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm', 'decoder.model.12.convtr.norm': 'decoder.layers.12.norm', 'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm', 'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm', 'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm', 'decoder.model.15.conv.norm': 'decoder.layers.15.norm', } _lowerCAmelCase: str = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } _lowerCAmelCase: Dict = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } _lowerCAmelCase: Tuple = [] _lowerCAmelCase: str = [] def _lowercase( __a : Any , __a : List[str] , __a : Tuple , __a : Union[str, Any] , __a : Optional[Any] ): for attribute in key.split('.' ): a__ =getattr(__a , __a ) if weight_type is not None: a__ =getattr(__a , __a ).shape else: a__ =hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a__ =value elif weight_type == "weight_g": a__ =value elif weight_type == "weight_v": a__ =value elif weight_type == "bias": a__ =value elif weight_type == "running_mean": a__ =value elif weight_type == "running_var": a__ =value elif weight_type == "num_batches_tracked": a__ =value elif weight_type == "weight_ih_l0": a__ =value elif weight_type == "weight_hh_l0": a__ =value elif weight_type == "bias_ih_l0": a__ =value elif weight_type == "bias_hh_l0": a__ =value elif weight_type == "weight_ih_l1": a__ =value elif weight_type == "weight_hh_l1": a__ =value elif weight_type == "bias_ih_l1": a__ =value elif weight_type == "bias_hh_l1": a__ =value else: a__ =value logger.info(f"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def _lowercase( __a : Optional[int] , __a : Union[str, Any] ): for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: a__ , a__ =key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowercase( __a : str , __a : int , __a : Tuple ): a__ =[] if model_name == "encodec_24khz" or "encodec_32khz": a__ =MAPPING_24K elif model_name == "encodec_48khz": a__ =MAPPING_48K else: raise ValueError(f"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(__a , __a ): logger.info(f"""{name} was ignored""" ) continue a__ =False for key, mapped_key in MAPPING.items(): if "*" in key: a__ , a__ =key.split('.*.' ) if prefix in name and suffix in name: a__ =suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue a__ =True if "*" in mapped_key: a__ =name.split(__a )[0].split('.' )[-2] a__ =mapped_key.replace('*' , __a ) if "weight_g" in name: a__ ='weight_g' elif "weight_v" in name: a__ ='weight_v' elif "weight_ih_l0" in name: a__ ='weight_ih_l0' elif "weight_hh_l0" in name: a__ ='weight_hh_l0' elif "bias_ih_l0" in name: a__ ='bias_ih_l0' elif "bias_hh_l0" in name: a__ ='bias_hh_l0' elif "weight_ih_l1" in name: a__ ='weight_ih_l1' elif "weight_hh_l1" in name: a__ ='weight_hh_l1' elif "bias_ih_l1" in name: a__ ='bias_ih_l1' elif "bias_hh_l1" in name: a__ ='bias_hh_l1' elif "bias" in name: a__ ='bias' elif "weight" in name: a__ ='weight' elif "running_mean" in name: a__ ='running_mean' elif "running_var" in name: a__ ='running_var' elif "num_batches_tracked" in name: a__ ='num_batches_tracked' else: a__ =None set_recursively(__a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(f"""Unused weights: {unused_weights}""" ) @torch.no_grad() def _lowercase( __a : str , __a : int , __a : str , __a : Tuple=None , __a : Optional[int]=None , ): if config_path is not None: a__ =EncodecConfig.from_pretrained(__a ) else: a__ =EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": a__ =[8, 5, 4, 4] a__ =[2.2] a__ =64 a__ =3_2000 a__ =2048 a__ =False a__ =False a__ =False elif model_name == "encodec_48khz": a__ =[8, 5, 4, 2] a__ =[3.0, 6.0, 12.0, 24.0] a__ =4_8000 a__ =2 a__ =False a__ ='time_group_norm' a__ =True a__ =1.0 a__ =0.01 else: raise ValueError(f"""Unknown model name: {model_name}""" ) a__ =EncodecModel(__a ) a__ =EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__a ) a__ =torch.load(__a ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights a__ =original_checkpoint['best_state'] recursively_load_weights(__a , __a , __a ) model.save_pretrained(__a ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(__a ) model.push_to_hub(__a ) if __name__ == "__main__": _lowerCAmelCase: str = argparse.ArgumentParser() parser.add_argument( '--model', default='encodec_24khz', type=str, help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase: str = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
20
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _lowerCAmelCase: Any = sys.version_info >= (3, 10) def _lowercase( __a : int=None , __a : Any=None ): return field(default_factory=lambda: default , metadata=__a ) @dataclass class lowercase_ : snake_case =42 snake_case =42 snake_case =42 snake_case =42 @dataclass class lowercase_ : snake_case =42 snake_case =field(default='toto' , metadata={'help': 'help message'} ) @dataclass class lowercase_ : snake_case =False snake_case =True snake_case =None class lowercase_ (lowercase__ ): snake_case ='titi' snake_case ='toto' class lowercase_ (lowercase__ ): snake_case ='titi' snake_case ='toto' snake_case =42 @dataclass class lowercase_ : snake_case ="toto" def __UpperCamelCase ( self) -> List[str]: a__ =BasicEnum(self.foo) @dataclass class lowercase_ : snake_case ="toto" def __UpperCamelCase ( self) -> List[str]: a__ =MixedTypeEnum(self.foo) @dataclass class lowercase_ : snake_case =None snake_case =field(default=lowercase__ , metadata={'help': 'help message'} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) @dataclass class lowercase_ : snake_case =list_field(default=[] ) snake_case =list_field(default=[1, 2, 3] ) snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] ) snake_case =list_field(default=[0.1, 0.2, 0.3] ) @dataclass class lowercase_ : snake_case =field() snake_case =field() snake_case =field() def __UpperCamelCase ( self) -> List[Any]: a__ =BasicEnum(self.required_enum) @dataclass class lowercase_ : snake_case =42 snake_case =field() snake_case =None snake_case =field(default='toto' , metadata={'help': 'help message'} ) snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class lowercase_ : snake_case =False snake_case =True snake_case =None @dataclass class lowercase_ : snake_case =None snake_case =field(default=lowercase__ , metadata={'help': 'help message'} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self , lowercase_ , lowercase_) -> int: self.assertEqual(len(a._actions) , len(b._actions)) for x, y in zip(a._actions , b._actions): a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'} a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , lowercase_) and yy.get('choices' , lowercase_): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](lowercase_) , yy['type'](lowercase_)) del xx["type"], yy["type"] self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_) expected.add_argument('--bar' , type=lowercase_ , required=lowercase_) expected.add_argument('--baz' , type=lowercase_ , required=lowercase_) expected.add_argument('--flag' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') self.argparsersEqual(lowercase_ , lowercase_) a__ =['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((a__) , ) =parser.parse_args_into_dataclasses(lowercase_ , look_for_args_file=lowercase_) self.assertFalse(example.flag) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=lowercase_) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message') self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Optional[Any]: a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') expected.add_argument('--baz' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=lowercase_ , dest='baz') expected.add_argument('--opt' , type=lowercase_ , default=lowercase_) a__ =[WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_) for dataclass_type in dataclass_types: a__ =HfArgumentParser(lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', '--no_baz']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', '--baz']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(args.foo , 'toto') a__ =parser.parse_args_into_dataclasses([])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto) a__ =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') a__ =parser.parse_args_into_dataclasses(['--foo', 'titi'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi) a__ =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) a__ =parser.parse_args_into_dataclasses(['--foo', '42'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo) def __UpperCamelCase ( self) -> List[Any]: @dataclass class lowercase_ : snake_case ="toto" a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(args.foo , 'toto') a__ =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') a__ =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) def __UpperCamelCase ( self) -> Optional[int]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=lowercase_) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=lowercase_) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual( lowercase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3]) , ) a__ =parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split()) self.assertEqual(lowercase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7])) def __UpperCamelCase ( self) -> Dict: a__ =argparse.ArgumentParser() expected.add_argument('--foo' , default=lowercase_ , type=lowercase_) expected.add_argument('--bar' , default=lowercase_ , type=lowercase_ , help='help message') expected.add_argument('--baz' , default=lowercase_ , type=lowercase_) expected.add_argument('--ces' , nargs='+' , default=[] , type=lowercase_) expected.add_argument('--des' , nargs='+' , default=[] , type=lowercase_) a__ =[OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_) for dataclass_type in dataclass_types: a__ =HfArgumentParser(lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , bar=lowercase_ , baz=lowercase_ , ces=[] , des=[])) a__ =parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split()) self.assertEqual(lowercase_ , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3])) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=lowercase_ , required=lowercase_) expected.add_argument('--required_str' , type=lowercase_ , required=lowercase_) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , ) self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , ) expected.add_argument('--opt' , type=lowercase_ , default=lowercase_) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message') expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_) self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } a__ =parser.parse_dict(lowercase_)[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(lowercase_ , parser.parse_dict , lowercase_ , allow_extra_keys=lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: a__ =os.path.join(lowercase_ , 'temp_json') os.mkdir(lowercase_) with open(temp_local_path + '.json' , 'w+') as f: json.dump(lowercase_ , lowercase_) a__ =parser.parse_yaml_file(Path(temp_local_path + '.json'))[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Any: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: a__ =os.path.join(lowercase_ , 'temp_yaml') os.mkdir(lowercase_) with open(temp_local_path + '.yaml' , 'w+') as f: yaml.dump(lowercase_ , lowercase_) a__ =parser.parse_yaml_file(Path(temp_local_path + '.yaml'))[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) self.assertIsNotNone(lowercase_)
20
1
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: Any = logging.get_logger(__name__) def _lowercase( __a : Tuple ): a__ =ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: a__ =128 elif "12-12" in model_name: a__ =12 a__ =12 elif "14-14" in model_name: a__ =14 a__ =14 elif "16-16" in model_name: a__ =16 a__ =16 else: raise ValueError('Model not supported' ) a__ ='huggingface/label-files' if "speech-commands" in model_name: a__ =35 a__ ='speech-commands-v2-id2label.json' else: a__ =527 a__ ='audioset-id2label.json' a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} return config def _lowercase( __a : Any ): if "module.v" in name: a__ =name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: a__ =name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: a__ =name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: a__ =name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: a__ =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: a__ =name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: a__ =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: a__ =name.replace('attn' , 'attention.self' ) if "norm1" in name: a__ =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: a__ =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: a__ =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: a__ =name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: a__ =name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: a__ =name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: a__ =name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def _lowercase( __a : Any , __a : Tuple ): for key in orig_state_dict.copy().keys(): a__ =orig_state_dict.pop(__a ) if "qkv" in key: a__ =key.split('.' ) a__ =int(key_split[3] ) a__ =config.hidden_size if "weight" in key: a__ =val[:dim, :] a__ =val[dim : dim * 2, :] a__ =val[-dim:, :] else: a__ =val[:dim] a__ =val[dim : dim * 2] a__ =val[-dim:] else: a__ =val return orig_state_dict def _lowercase( __a : Dict ): a__ =[ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(__a , __a ) @torch.no_grad() def _lowercase( __a : str , __a : List[Any] , __a : Any=False ): a__ =get_audio_spectrogram_transformer_config(__a ) a__ ={ 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict a__ =model_name_to_url[model_name] a__ =torch.hub.load_state_dict_from_url(__a , map_location='cpu' ) # remove some keys remove_keys(__a ) # rename some keys a__ =convert_state_dict(__a , __a ) # load 🤗 model a__ =ASTForAudioClassification(__a ) model.eval() model.load_state_dict(__a ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 a__ =-4.2_67_73_93 if 'speech-commands' not in model_name else -6.84_59_78 a__ =4.5_68_99_74 if 'speech-commands' not in model_name else 5.5_65_45_26 a__ =1024 if 'speech-commands' not in model_name else 128 a__ =ASTFeatureExtractor(mean=__a , std=__a , max_length=__a ) if "speech-commands" in model_name: a__ =load_dataset('speech_commands' , 'v0.02' , split='validation' ) a__ =dataset[0]['audio']['array'] else: a__ =hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) a__ , a__ =torchaudio.load(__a ) a__ =waveform.squeeze().numpy() a__ =feature_extractor(__a , sampling_rate=1_6000 , return_tensors='pt' ) # forward pass a__ =model(**__a ) a__ =outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": a__ =torch.tensor([-0.87_60, -7.00_42, -8.66_02] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": a__ =torch.tensor([-1.19_86, -7.09_03, -8.27_18] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": a__ =torch.tensor([-2.61_28, -8.00_80, -9.43_44] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": a__ =torch.tensor([-1.50_80, -7.45_34, -8.89_17] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": a__ =torch.tensor([-0.50_50, -6.58_33, -8.08_43] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": a__ =torch.tensor([-0.38_26, -7.03_36, -8.24_13] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": a__ =torch.tensor([-1.21_13, -6.91_01, -8.34_70] ) elif model_name == "ast-finetuned-speech-commands-v2": a__ =torch.tensor([6.15_89, -8.05_66, -8.79_84] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , __a , atol=1e-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(__a ).mkdir(exist_ok=__a ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(f"""Saving feature extractor to {pytorch_dump_folder_path}""" ) feature_extractor.save_pretrained(__a ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(f"""MIT/{model_name}""" ) feature_extractor.push_to_hub(f"""MIT/{model_name}""" ) if __name__ == "__main__": _lowerCAmelCase: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _lowerCAmelCase: Union[str, Any] = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
20
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase: List[Any] = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class lowercase_ (lowercase__ ): snake_case ='autoformer' snake_case ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , lowercase_ = None , lowercase_ = None , lowercase_ = "student_t" , lowercase_ = "nll" , lowercase_ = 1 , lowercase_ = [1, 2, 3, 4, 5, 6, 7] , lowercase_ = True , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 64 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 32 , lowercase_ = 32 , lowercase_ = "gelu" , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 100 , lowercase_ = 0.02 , lowercase_ = True , lowercase_=True , lowercase_ = 10 , lowercase_ = 25 , lowercase_ = 3 , **lowercase_ , ) -> Union[str, Any]: # time series specific configuration a__ =prediction_length a__ =context_length if context_length is not None else prediction_length a__ =distribution_output a__ =loss a__ =input_size a__ =num_time_features a__ =lags_sequence a__ =scaling a__ =num_dynamic_real_features a__ =num_static_real_features a__ =num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`') a__ =cardinality else: a__ =[0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`') a__ =embedding_dimension else: a__ =[min(50 , (cat + 1) // 2) for cat in self.cardinality] a__ =num_parallel_samples # Transformer architecture configuration a__ =input_size * len(self.lags_sequence) + self._number_of_features a__ =d_model a__ =encoder_attention_heads a__ =decoder_attention_heads a__ =encoder_ffn_dim a__ =decoder_ffn_dim a__ =encoder_layers a__ =decoder_layers a__ =dropout a__ =attention_dropout a__ =activation_dropout a__ =encoder_layerdrop a__ =decoder_layerdrop a__ =activation_function a__ =init_std a__ =use_cache # Autoformer a__ =label_length a__ =moving_average a__ =autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def __UpperCamelCase ( self) -> int: return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
20
1
from __future__ import annotations from typing import Generic, TypeVar _lowerCAmelCase: Optional[Any] = TypeVar('T') class lowercase_ (Generic[T] ): def __init__( self , lowercase_) -> None: a__ =data a__ =self a__ =0 class lowercase_ (Generic[T] ): def __init__( self) -> None: # map from node name to the node object a__ ={} def __UpperCamelCase ( self , lowercase_) -> None: # create a new set with x as its member a__ =DisjointSetTreeNode(lowercase_) def __UpperCamelCase ( self , lowercase_) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) a__ =self.map[data] if elem_ref != elem_ref.parent: a__ =self.find_set(elem_ref.parent.data) return elem_ref.parent def __UpperCamelCase ( self , lowercase_ , lowercase_) -> None: # helper function for union operation if nodea.rank > nodea.rank: a__ =nodea else: a__ =nodea if nodea.rank == nodea.rank: nodea.rank += 1 def __UpperCamelCase ( self , lowercase_ , lowercase_) -> None: # merge 2 disjoint sets self.link(self.find_set(lowercase_) , self.find_set(lowercase_)) class lowercase_ (Generic[T] ): def __init__( self) -> None: # connections: map from the node to the neighbouring nodes (with weights) a__ ={} def __UpperCamelCase ( self , lowercase_) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: a__ ={} def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: # add an edge with the given weight self.add_node(lowercase_) self.add_node(lowercase_) a__ =weight a__ =weight def __UpperCamelCase ( self) -> GraphUndirectedWeighted[T]: a__ =[] a__ =set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start)) edges.append((start, end, self.connections[start][end])) edges.sort(key=lambda lowercase_: x[2]) # creating the disjoint set a__ =DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(lowercase_) # MST generation a__ =0 a__ =0 a__ =GraphUndirectedWeighted[T]() while num_edges < len(self.connections) - 1: a__ , a__ , a__ =edges[index] index += 1 a__ =disjoint_set.find_set(lowercase_) a__ =disjoint_set.find_set(lowercase_) if parent_u != parent_v: num_edges += 1 graph.add_edge(lowercase_ , lowercase_ , lowercase_) disjoint_set.union(lowercase_ , lowercase_) return graph
20
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowerCAmelCase: List[Any] = logging.get_logger(__name__) class lowercase_ (lowercase__ ): snake_case =['pixel_values'] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = None , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: super().__init__(**lowercase_) a__ =size if size is not None else {'shortest_edge': 256} a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) a__ =crop_size if crop_size is not None else {'height': 224, 'width': 224} a__ =get_size_dict(lowercase_ , param_name='crop_size') a__ =do_resize a__ =size a__ =resample a__ =do_center_crop a__ =crop_size a__ =do_rescale a__ =rescale_factor a__ =do_normalize a__ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a__ =image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") a__ =get_resize_output_image_size(lowercase_ , size=size['shortest_edge'] , default_to_square=lowercase_) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: a__ =get_size_dict(lowercase_) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""") return center_crop(lowercase_ , size=(size['height'], size['width']) , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_) -> np.ndarray: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> Tuple: a__ =do_resize if do_resize is not None else self.do_resize a__ =size if size is not None else self.size a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) a__ =resample if resample is not None else self.resample a__ =do_center_crop if do_center_crop is not None else self.do_center_crop a__ =crop_size if crop_size is not None else self.crop_size a__ =get_size_dict(lowercase_ , param_name='crop_size') a__ =do_rescale if do_rescale is not None else self.do_rescale a__ =rescale_factor if rescale_factor is not None else self.rescale_factor a__ =do_normalize if do_normalize is not None else self.do_normalize a__ =image_mean if image_mean is not None else self.image_mean a__ =image_std if image_std is not None else self.image_std a__ =make_list_of_images(lowercase_) if not valid_images(lowercase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a__ =[to_numpy_array(lowercase_) for image in images] if do_resize: a__ =[self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_) for image in images] if do_center_crop: a__ =[self.center_crop(image=lowercase_ , size=lowercase_) for image in images] if do_rescale: a__ =[self.rescale(image=lowercase_ , scale=lowercase_) for image in images] if do_normalize: a__ =[self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_) for image in images] a__ =[to_channel_dimension_format(lowercase_ , lowercase_) for image in images] a__ ={'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None) -> str: a__ =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_) != len(lowercase_): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(lowercase_): a__ =target_sizes.numpy() a__ =[] for idx in range(len(lowercase_)): a__ =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_) a__ =resized_logits[0].argmax(dim=0) semantic_segmentation.append(lowercase_) else: a__ =logits.argmax(dim=1) a__ =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
20
1
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def _lowercase( ): a__ =10 a__ =datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) a__ =datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(__a ) ), } , features=__a , ) return dataset @pytest.fixture(scope='session' ) def _lowercase( __a : Optional[int] , __a : Dict ): a__ =str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=__a ) return filename # FILE_CONTENT + files _lowerCAmelCase: Tuple = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='session' ) def _lowercase( __a : List[Any] ): a__ =tmp_path_factory.mktemp('data' ) / 'file.txt' a__ =FILE_CONTENT with open(__a , 'w' ) as f: f.write(__a ) return filename @pytest.fixture(scope='session' ) def _lowercase( __a : List[str] ): import bza a__ =tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' a__ =bytes(__a , 'utf-8' ) with bza.open(__a , 'wb' ) as f: f.write(__a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : List[Any] ): import gzip a__ =str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) a__ =bytes(__a , 'utf-8' ) with gzip.open(__a , 'wb' ) as f: f.write(__a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Tuple ): if datasets.config.LZ4_AVAILABLE: import lza.frame a__ =tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' a__ =bytes(__a , 'utf-8' ) with lza.frame.open(__a , 'wb' ) as f: f.write(__a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : List[Any] , __a : Tuple ): if datasets.config.PY7ZR_AVAILABLE: import pyazr a__ =tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(__a , 'w' ) as archive: archive.write(__a , arcname=os.path.basename(__a ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : str , __a : Optional[int] ): import tarfile a__ =tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(__a , 'w' ) as f: f.add(__a , arcname=os.path.basename(__a ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Union[str, Any] ): import lzma a__ =tmp_path_factory.mktemp('data' ) / 'file.txt.xz' a__ =bytes(__a , 'utf-8' ) with lzma.open(__a , 'wb' ) as f: f.write(__a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : str , __a : Any ): import zipfile a__ =tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(__a , 'w' ) as f: f.write(__a , arcname=os.path.basename(__a ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Tuple ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd a__ =tmp_path_factory.mktemp('data' ) / 'file.txt.zst' a__ =bytes(__a , 'utf-8' ) with zstd.open(__a , 'wb' ) as f: f.write(__a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : str ): a__ =tmp_path_factory.mktemp('data' ) / 'file.xml' a__ =textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(__a , 'w' ) as f: f.write(__a ) return filename _lowerCAmelCase: str = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] _lowerCAmelCase: Any = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] _lowerCAmelCase: Optional[Any] = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } _lowerCAmelCase: List[Any] = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] _lowerCAmelCase: Optional[int] = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='session' ) def _lowercase( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def _lowercase( __a : Optional[int] ): a__ =datasets.Dataset.from_dict(__a ) a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=__a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Optional[Any] ): a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(__a ) ) as con: a__ =con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def _lowercase( __a : List[Any] ): a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(__a , 'w' , newline='' ) as f: a__ =csv.DictWriter(__a , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : List[Any] ): a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(__a , 'w' , newline='' ) as f: a__ =csv.DictWriter(__a , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Optional[int] , __a : Tuple ): import bza a__ =tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(__a , 'rb' ) as f: a__ =f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__a , 'wb' ) as f: f.write(__a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Optional[int] , __a : Optional[Any] , __a : int ): a__ =tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__a , 'w' ) as f: f.write(__a , arcname=os.path.basename(__a ) ) f.write(__a , arcname=os.path.basename(__a ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Dict , __a : str , __a : Tuple ): a__ =tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__a , 'w' ) as f: f.write(__a , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(__a , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Any , __a : str , __a : Union[str, Any] ): a__ =tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(__a , 'w' ) as f: f.write(__a , arcname=os.path.join('main_dir' , os.path.basename(__a ) ) ) f.write(__a , arcname=os.path.join('main_dir' , os.path.basename(__a ) ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : List[Any] ): a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) a__ =pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(__a , 'wb' ) as f: a__ =pq.ParquetWriter(__a , schema=__a ) a__ =pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__a ) )] for k in DATA[0]} , schema=__a ) writer.write_table(__a ) writer.close() return path @pytest.fixture(scope='session' ) def _lowercase( __a : Dict ): a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) a__ ={'data': DATA} with open(__a , 'w' ) as f: json.dump(__a , __a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : str ): a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) a__ ={'data': DATA_DICT_OF_LISTS} with open(__a , 'w' ) as f: json.dump(__a , __a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Optional[Any] ): a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(__a , 'w' ) as f: for item in DATA: f.write(json.dumps(__a ) + '\n' ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Optional[Any] ): a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(__a , 'w' ) as f: for item in DATA: f.write(json.dumps(__a ) + '\n' ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Tuple ): a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(__a , 'w' ) as f: for item in DATA_312: f.write(json.dumps(__a ) + '\n' ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Dict ): a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(__a , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(__a ) + '\n' ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : List[str] , __a : Union[str, Any] ): import gzip a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(__a , 'rb' ) as orig_file: with gzip.open(__a , 'wb' ) as zipped_file: zipped_file.writelines(__a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Optional[Any] , __a : Tuple ): import gzip a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(__a , 'rb' ) as orig_file: with gzip.open(__a , 'wb' ) as zipped_file: zipped_file.writelines(__a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Optional[int] , __a : Optional[int] , __a : List[Any] ): a__ =tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(__a , 'w' ) as f: f.write(__a , arcname=os.path.basename(__a ) ) f.write(__a , arcname=os.path.basename(__a ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Any , __a : Optional[Any] , __a : Tuple , __a : Dict ): a__ =tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(__a , 'w' ) as f: f.write(__a , arcname=os.path.join('nested' , os.path.basename(__a ) ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Optional[int] , __a : Optional[int] , __a : Union[str, Any] ): a__ =tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(__a , 'w' ) as f: f.write(__a , arcname=os.path.join('main_dir' , os.path.basename(__a ) ) ) f.write(__a , arcname=os.path.join('main_dir' , os.path.basename(__a ) ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Optional[Any] , __a : Union[str, Any] , __a : Any ): a__ =tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(__a , 'w' ) as f: f.add(__a , arcname=os.path.basename(__a ) ) f.add(__a , arcname=os.path.basename(__a ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : int , __a : Union[str, Any] , __a : str , __a : Union[str, Any] ): a__ =tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(__a , 'w' ) as f: f.add(__a , arcname=os.path.join('nested' , os.path.basename(__a ) ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Any ): a__ =['0', '1', '2', '3'] a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(__a , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Any ): a__ =['0', '1', '2', '3'] a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(__a , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Any ): a__ =['0', '1', '2', '3'] a__ =tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(__a , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : List[str] , __a : Optional[Any] , __a : Dict ): a__ =tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(__a , 'w' ) as f: f.write(__a , arcname=os.path.basename(__a ) ) f.write(__a , arcname=os.path.basename(__a ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : int , __a : Union[str, Any] , __a : Optional[int] ): a__ =tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(__a , 'w' ) as f: f.write(__a , arcname=os.path.join('main_dir' , os.path.basename(__a ) ) ) f.write(__a , arcname=os.path.join('main_dir' , os.path.basename(__a ) ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : List[Any] , __a : Union[str, Any] , __a : Union[str, Any] ): a__ =tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(__a , 'w' ) as f: f.write(__a , arcname=os.path.basename('unsupported.ext' ) ) f.write(__a , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Dict ): a__ ='\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(__a ) return path @pytest.fixture(scope='session' ) def _lowercase( ): return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def _lowercase( ): return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def _lowercase( __a : Optional[Any] , __a : Optional[Any] ): a__ =tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(__a , 'w' ) as f: f.write(__a , arcname=os.path.basename(__a ) ) f.write(__a , arcname=os.path.basename(__a ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : List[Any] ): a__ =tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
20
from importlib import import_module from .logging import get_logger _lowerCAmelCase: str = get_logger(__name__) class lowercase_ : def __init__( self , lowercase_ , lowercase_=None) -> Tuple: a__ =attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__'): setattr(self , lowercase_ , getattr(lowercase_ , lowercase_)) a__ =module._original_module if isinstance(lowercase_ , _PatchedModuleObj) else module class lowercase_ : snake_case =[] def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None) -> List[str]: a__ =obj a__ =target a__ =new a__ =target.split('.')[0] a__ ={} a__ =attrs or [] def __enter__( self) -> Optional[int]: *a__ , a__ =self.target.split('.') # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowercase_)): try: a__ =import_module('.'.join(submodules[: i + 1])) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): a__ =getattr(self.obj , lowercase_) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowercase_ , _PatchedModuleObj) and obj_attr._original_module is submodule) ): a__ =obj_attr # patch at top level setattr(self.obj , lowercase_ , _PatchedModuleObj(lowercase_ , attrs=self.attrs)) a__ =getattr(self.obj , lowercase_) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowercase_ , lowercase_ , _PatchedModuleObj(getattr(lowercase_ , lowercase_ , lowercase_) , attrs=self.attrs)) a__ =getattr(lowercase_ , lowercase_) # finally set the target attribute setattr(lowercase_ , lowercase_ , self.new) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: a__ =getattr(import_module('.'.join(lowercase_)) , lowercase_) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowercase_) is attr_value: a__ =getattr(self.obj , lowercase_) setattr(self.obj , lowercase_ , self.new) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" a__ =globals()['__builtins__'][target_attr] setattr(self.obj , lowercase_ , self.new) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""") def __exit__( self , *lowercase_) -> str: for attr in list(self.original): setattr(self.obj , lowercase_ , self.original.pop(lowercase_)) def __UpperCamelCase ( self) -> Any: self.__enter__() self._active_patches.append(self) def __UpperCamelCase ( self) -> Union[str, Any]: try: self._active_patches.remove(self) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
20
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ (lowercase__ ): snake_case ='ClapFeatureExtractor' snake_case =('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self , lowercase_ , lowercase_) -> List[str]: super().__init__(lowercase_ , lowercase_) def __call__( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_) -> Optional[Any]: a__ =kwargs.pop('sampling_rate' , lowercase_) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.') if text is not None: a__ =self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_) if audios is not None: a__ =self.feature_extractor( lowercase_ , sampling_rate=lowercase_ , return_tensors=lowercase_ , **lowercase_) if text is not None and audios is not None: a__ =audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_) , tensor_type=lowercase_) def __UpperCamelCase ( self , *lowercase_ , **lowercase_) -> Dict: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_) def __UpperCamelCase ( self , *lowercase_ , **lowercase_) -> Tuple: return self.tokenizer.decode(*lowercase_ , **lowercase_) @property def __UpperCamelCase ( self) -> Optional[Any]: a__ =self.tokenizer.model_input_names a__ =self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
20
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": _lowerCAmelCase: int = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def _lowercase( __a : Optional[Any] ): if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) _lowerCAmelCase: str = parser.parse_args() _lowerCAmelCase: Tuple = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
20
1
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def _lowercase( __a : Optional[int] , __a : Optional[Any] ): if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer a__ =flax_key_tuple[:-1] + ('weight',) a__ =torch.permute(__a , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__a ): # linear layer a__ =flax_key_tuple[:-1] + ('weight',) a__ =flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: a__ =flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def _lowercase( __a : Optional[Any] , __a : List[str] , __a : List[Any] ): if "metadata" in layer: a__ =layer.split('metadata' ) a__ =''.join(split_layer[0] )[:-1] a__ =[tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: a__ =layer.split('kvstore' ) a__ =''.join(split_layer[0] )[:-1] a__ =[tuple(('kvstore' + split_layer[1]).split('/' ) )] else: a__ =layer.split('/' ) a__ ='/'.join(split_layer[:-1] ) a__ =(split_layer[-1],) if "kvstore/path" in layer: a__ =f"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: a__ ='file' else: a__ =checkpoint_info[layer] return curr_real_layer_name, split_layer, content def _lowercase( __a : Tuple , __a : List[str] ): a__ =rename_keys(__a ) a__ ={} for k, v in current_block.items(): a__ =v a__ =new_current_block torch.save(__a , __a ) def _lowercase( __a : List[str] , __a : List[str] , __a : int , __a : Any , __a : str = WEIGHTS_NAME ): a__ =convert_file_size_to_int(__a ) a__ =[] a__ ={} a__ =0 a__ =0 os.makedirs(__a , exist_ok=__a ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: a__ =serialization.msgpack_restore(fp.read() )['optimizer']['target'] a__ =flatten_dict(__a , sep='/' ) a__ ={} for layer in checkpoint_info.keys(): a__ , a__ , a__ =get_key_and_tensorstore_dict( __a , __a , __a ) if curr_real_layer_name in all_layers: a__ =content else: a__ ={split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file a__ =ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() a__ =torch.tensor(__a ) a__ =raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts a__ , a__ =rename_base_flax_keys(tuple(key.split('/' ) ) , __a ) a__ ='/'.join(__a ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: a__ =os.path.join( __a , weights_name.replace('.bin' , f"""-{len(__a )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__a , __a ) sharded_state_dicts.append(current_block.keys() ) del current_block a__ ={} a__ =0 a__ =raw_weights.to(getattr(__a , __a ) ) current_block_size += weight_size total_size += weight_size # Add the last block a__ =os.path.join(__a , weights_name.replace('.bin' , f"""-{len(__a )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__a , __a ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__a ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index a__ ={} a__ ={} for idx, shard in enumerate(__a ): a__ =weights_name.replace( '.bin' , f"""-{idx+1:05d}-of-{len(__a ):05d}.bin""" ) # len(sharded_state_dicts):05d} a__ =os.path.join(__a , weights_name.replace('.bin' , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(__a , os.path.join(__a , __a ) ) a__ =shard for key in shard: a__ =shard_file # Add the metadata a__ ={'total_size': total_size} a__ ={'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__a , __a ) , 'w' , encoding='utf-8' ) as f: a__ =json.dumps(__a , indent=2 , sort_keys=__a ) + '\n' f.write(__a ) return metadata, index if __name__ == "__main__": _lowerCAmelCase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) _lowerCAmelCase: Union[str, Any] = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def _lowercase( ): from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer a__ =SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) a__ =SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) a__ =TaTokenizer.from_pretrained('t5-small' ) a__ ='A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' a__ =tokenizer(__a , return_tensors='pt' ).input_ids a__ =model.generate(__a , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
20
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _lowerCAmelCase: Tuple = get_logger(__name__) _lowerCAmelCase: List[str] = Path(__file__).parent / 'model_card_template.md' _lowerCAmelCase: Any = uuida().hex _lowerCAmelCase: List[Any] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase: int = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase: Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def _lowercase( __a : Union[Dict, str, None] = None ): a__ =f"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"""; torch/{_torch_version}""" if is_flax_available(): ua += f"""; jax/{_jax_version}""" ua += f"""; flax/{_flax_version}""" if is_onnx_available(): ua += f"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__a , __a ): ua += "; " + "; ".join(f"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__a , __a ): ua += "; " + user_agent return ua def _lowercase( __a : str , __a : Optional[str] = None , __a : Optional[str] = None ): if token is None: a__ =HfFolder.get_token() if organization is None: a__ =whoami(__a )['name'] return f"""{username}/{model_id}""" else: return f"""{organization}/{model_id}""" def _lowercase( __a : Union[str, Any] , __a : Dict ): if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(__a , 'local_rank' ) and args.local_rank not in [-1, 0]: return a__ =args.hub_token if hasattr(__a , 'hub_token' ) else None a__ =get_full_repo_name(__a , token=__a ) a__ =ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__a , model_name=__a , repo_name=__a , dataset_name=args.dataset_name if hasattr(__a , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__a , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__a , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(__a , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__a , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__a , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__a , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__a , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__a , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(__a , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__a , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) a__ =os.path.join(args.output_dir , 'README.md' ) model_card.save(__a ) def _lowercase( __a : Optional[str] , __a : Optional[str] = None ): if resolved_file is None or commit_hash is not None: return commit_hash a__ =str(Path(__a ).as_posix() ) a__ =re.search(r'snapshots/([^/]+)/' , __a ) if search is None: return None a__ =search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__a ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _lowerCAmelCase: List[str] = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) _lowerCAmelCase: List[str] = os.path.join(hf_cache_home, 'diffusers') def _lowercase( __a : Optional[str] = None , __a : Optional[str] = None ): if new_cache_dir is None: a__ =DIFFUSERS_CACHE if old_cache_dir is None: a__ =old_diffusers_cache a__ =Path(__a ).expanduser() a__ =Path(__a ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): a__ =new_cache_dir / old_blob_path.relative_to(__a ) new_blob_path.parent.mkdir(parents=__a , exist_ok=__a ) os.replace(__a , __a ) try: os.symlink(__a , __a ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _lowerCAmelCase: Dict = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): _lowerCAmelCase: int = 0 else: with open(cache_version_file) as f: try: _lowerCAmelCase: List[Any] = int(f.read()) except ValueError: _lowerCAmelCase: Any = 0 if cache_version < 1: _lowerCAmelCase: str = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: _lowerCAmelCase: Optional[Any] = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ 'the directory exists and can be written to.' ) def _lowercase( __a : str , __a : Optional[str] = None ): if variant is not None: a__ =weights_name.split('.' ) a__ =splits[:-1] + [variant] + splits[-1:] a__ ='.'.join(__a ) return weights_name def _lowercase( __a : Union[str, Any] , *, __a : Optional[Any] , __a : Optional[Any] , __a : List[Any] , __a : Tuple , __a : Optional[Any] , __a : Dict , __a : str , __a : int , __a : Tuple , __a : Union[str, Any] , __a : int=None , ): a__ =str(__a ) if os.path.isfile(__a ): return pretrained_model_name_or_path elif os.path.isdir(__a ): if os.path.isfile(os.path.join(__a , __a ) ): # Load from a PyTorch checkpoint a__ =os.path.join(__a , __a ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__a , __a , __a ) ): a__ =os.path.join(__a , __a , __a ) return model_file else: raise EnvironmentError( f"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__a ).base_version ) >= version.parse('0.20.0' ) ): try: a__ =hf_hub_download( __a , filename=_add_variant(__a , __a ) , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) warnings.warn( f"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __a , ) return model_file except: # noqa: E722 warnings.warn( f"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__a , __a )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__a , __a )}' so that the correct variant file can be added.""" , __a , ) try: # 2. Load model file as usual a__ =hf_hub_download( __a , filename=__a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( f"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ 'this model name. Check the model page at ' f"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( f"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( f"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" f""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" f""" directory containing a file named {weights_name} or""" ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( f"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' f"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ f"""containing a file named {weights_name}""" )
20
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase: str = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class lowercase_ (lowercase__ ): snake_case ='big_bird' def __init__( self , lowercase_=50358 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu_new" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=4096 , lowercase_=2 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=66 , lowercase_="block_sparse" , lowercase_=True , lowercase_=False , lowercase_=64 , lowercase_=3 , lowercase_=None , **lowercase_ , ) -> Any: super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , sep_token_id=lowercase_ , **lowercase_ , ) a__ =vocab_size a__ =max_position_embeddings a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =initializer_range a__ =type_vocab_size a__ =layer_norm_eps a__ =use_cache a__ =rescale_embeddings a__ =attention_type a__ =use_bias a__ =block_size a__ =num_random_blocks a__ =classifier_dropout class lowercase_ (lowercase__ ): @property def __UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a__ ={0: 'batch', 1: 'choice', 2: 'sequence'} else: a__ ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
20
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger() def _lowercase( __a : int , __a : str , __a : LevitConfig , __a : Path , __a : bool = True ): print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": a__ =timm.create_model('levit_128s' , pretrained=__a ) else: a__ =timm.create_model('levit_128' , pretrained=__a ) if hidden_sizes == 192: a__ =timm.create_model('levit_192' , pretrained=__a ) if hidden_sizes == 256: a__ =timm.create_model('levit_256' , pretrained=__a ) if hidden_sizes == 384: a__ =timm.create_model('levit_384' , pretrained=__a ) from_model.eval() a__ =LevitForImageClassificationWithTeacher(__a ).eval() a__ =OrderedDict() a__ =from_model.state_dict() a__ =list(from_model.state_dict().keys() ) a__ =list(our_model.state_dict().keys() ) print(len(__a ) , len(__a ) ) for i in range(len(__a ) ): a__ =weights[og_keys[i]] our_model.load_state_dict(__a ) a__ =torch.randn((2, 3, 224, 224) ) a__ =from_model(__a ) a__ =our_model(__a ).logits assert torch.allclose(__a , __a ), "The model logits don't match the original one." a__ =name print(__a ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) a__ =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def _lowercase( __a : Path , __a : str = None , __a : bool = True ): a__ ='imagenet-1k-id2label.json' a__ =1000 a__ =(1, num_labels) a__ ='huggingface/label-files' a__ =num_labels a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} a__ =partial(__a , num_labels=__a , idalabel=__a , labelaid=__a ) a__ ={ 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } a__ ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __a , names_to_config[model_name] , __a , __a ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __a , __a , __a , __a ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _lowerCAmelCase: Union[str, Any] = parser.parse_args() _lowerCAmelCase: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
20
1
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 100 * 2**20, 900 * 2**20] ) def _lowercase( __a : Dict , __a : Union[str, Any] , __a : List[str] ): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , __a ) a__ =datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: a__ =dataset_size < in_memory_max_size else: a__ =False a__ =is_small_dataset(__a ) assert result == expected
20
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowerCAmelCase: int = logging.get_logger(__name__) _lowerCAmelCase: Union[str, Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } _lowerCAmelCase: Tuple = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _lowercase( __a : Optional[Any] ): a__ ={} with open(__a , 'r' ) as file: for line_number, line in enumerate(__a ): a__ =line.strip() if line: a__ =line.split() a__ =line_number a__ =words[0] a__ =value return result def _lowercase( __a : Dict , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : str ): for attribute in key.split('.' ): a__ =getattr(__a , __a ) a__ =None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__a ): a__ =PARAM_MAPPING[full_name.split('.' )[-1]] a__ ='param' if weight_type is not None and weight_type != "param": a__ =getattr(__a , __a ).shape elif weight_type is not None and weight_type == "param": a__ =hf_pointer for attribute in hf_param_name.split('.' ): a__ =getattr(__a , __a ) a__ =shape_pointer.shape # let's reduce dimension a__ =value[0] else: a__ =hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a__ =value elif weight_type == "weight_g": a__ =value elif weight_type == "weight_v": a__ =value elif weight_type == "bias": a__ =value elif weight_type == "param": for attribute in hf_param_name.split('.' ): a__ =getattr(__a , __a ) a__ =value else: a__ =value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _lowercase( __a : Optional[int] , __a : int , __a : Optional[int] , __a : Optional[Any] , __a : List[Any] ): a__ =None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__a ): a__ =PARAM_MAPPING[full_name.split('.' )[-1]] a__ ='param' if weight_type is not None and weight_type != "param": a__ ='.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": a__ ='.'.join([key, hf_param_name] ) else: a__ =key a__ =value if 'lm_head' in full_key else value[0] _lowerCAmelCase: Dict = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _lowercase( __a : Dict , __a : int , __a : int=None , __a : List[str]=None ): a__ =False for key, mapped_key in MAPPING.items(): a__ ='wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: a__ =True if "*" in mapped_key: a__ =name.split(__a )[0].split('.' )[-2] a__ =mapped_key.replace('*' , __a ) if "weight_g" in name: a__ ='weight_g' elif "weight_v" in name: a__ ='weight_v' elif "bias" in name: a__ ='bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj a__ ='weight' else: a__ =None if hf_dict is not None: rename_dict(__a , __a , __a , __a , __a ) else: set_recursively(__a , __a , __a , __a , __a ) return is_used return is_used def _lowercase( __a : Union[str, Any] , __a : List[str] , __a : Dict ): a__ =[] a__ =fairseq_model.state_dict() a__ =hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): a__ =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == 'group' , ) a__ =True else: a__ =load_wavaveca_layer(__a , __a , __a ) if not is_used: unused_weights.append(__a ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _lowercase( __a : List[Any] , __a : Optional[Any] , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] ): a__ =full_name.split('conv_layers.' )[-1] a__ =name.split('.' ) a__ =int(items[0] ) a__ =int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def _lowercase( __a : str , __a : str , __a : Any=None , __a : str=None , __a : Any=True , __a : Union[str, Any]=False ): if config_path is not None: a__ =WavaVecaConfig.from_pretrained(__a ) else: a__ =WavaVecaConfig() if is_seq_class: a__ =read_txt_into_dict(__a ) a__ =idalabel a__ =WavaVecaForSequenceClassification(__a ) a__ =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) feature_extractor.save_pretrained(__a ) elif is_finetuned: if dict_path: a__ =Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a__ =target_dict.pad_index a__ =target_dict.bos_index a__ =target_dict.eos_index a__ =len(target_dict.symbols ) a__ =os.path.join(__a , 'vocab.json' ) if not os.path.isdir(__a ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__a ) ) return os.makedirs(__a , exist_ok=__a ) a__ =target_dict.indices # fairseq has the <pad> and <s> switched a__ =0 a__ =1 with open(__a , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(__a , __a ) a__ =WavaVecaCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=__a , ) a__ =True if config.feat_extract_norm == 'layer' else False a__ =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) a__ =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) a__ =WavaVecaForCTC(__a ) else: a__ =WavaVecaForPreTraining(__a ) if is_finetuned or is_seq_class: a__ , a__ , a__ =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: a__ =argparse.Namespace(task='audio_pretraining' ) a__ =fairseq.tasks.setup_task(__a ) a__ , a__ , a__ =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__a ) a__ =model[0].eval() recursively_load_weights(__a , __a , not is_finetuned ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) _lowerCAmelCase: Tuple = parser.parse_args() _lowerCAmelCase: Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
20
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowerCAmelCase: List[Any] = logging.get_logger(__name__) class lowercase_ (lowercase__ ): snake_case =['pixel_values'] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = None , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: super().__init__(**lowercase_) a__ =size if size is not None else {'shortest_edge': 256} a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) a__ =crop_size if crop_size is not None else {'height': 224, 'width': 224} a__ =get_size_dict(lowercase_ , param_name='crop_size') a__ =do_resize a__ =size a__ =resample a__ =do_center_crop a__ =crop_size a__ =do_rescale a__ =rescale_factor a__ =do_normalize a__ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a__ =image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") a__ =get_resize_output_image_size(lowercase_ , size=size['shortest_edge'] , default_to_square=lowercase_) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: a__ =get_size_dict(lowercase_) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""") return center_crop(lowercase_ , size=(size['height'], size['width']) , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_) -> np.ndarray: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> Tuple: a__ =do_resize if do_resize is not None else self.do_resize a__ =size if size is not None else self.size a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) a__ =resample if resample is not None else self.resample a__ =do_center_crop if do_center_crop is not None else self.do_center_crop a__ =crop_size if crop_size is not None else self.crop_size a__ =get_size_dict(lowercase_ , param_name='crop_size') a__ =do_rescale if do_rescale is not None else self.do_rescale a__ =rescale_factor if rescale_factor is not None else self.rescale_factor a__ =do_normalize if do_normalize is not None else self.do_normalize a__ =image_mean if image_mean is not None else self.image_mean a__ =image_std if image_std is not None else self.image_std a__ =make_list_of_images(lowercase_) if not valid_images(lowercase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a__ =[to_numpy_array(lowercase_) for image in images] if do_resize: a__ =[self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_) for image in images] if do_center_crop: a__ =[self.center_crop(image=lowercase_ , size=lowercase_) for image in images] if do_rescale: a__ =[self.rescale(image=lowercase_ , scale=lowercase_) for image in images] if do_normalize: a__ =[self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_) for image in images] a__ =[to_channel_dimension_format(lowercase_ , lowercase_) for image in images] a__ ={'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None) -> str: a__ =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_) != len(lowercase_): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(lowercase_): a__ =target_sizes.numpy() a__ =[] for idx in range(len(lowercase_)): a__ =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_) a__ =resized_logits[0].argmax(dim=0) semantic_segmentation.append(lowercase_) else: a__ =logits.argmax(dim=1) a__ =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
20
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowercase_ (unittest.TestCase ): @slow def __UpperCamelCase ( self) -> Optional[int]: a__ =AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowercase_).to(lowercase_) a__ =AutoTokenizer.from_pretrained('google/mt5-small') a__ =tokenizer('Hello there' , return_tensors='pt').input_ids a__ =tokenizer('Hi I am' , return_tensors='pt').input_ids a__ =model(input_ids.to(lowercase_) , labels=labels.to(lowercase_)).loss a__ =-(labels.shape[-1] * loss.item()) a__ =-84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
20
1
import argparse from collections import defaultdict import yaml _lowerCAmelCase: int = 'docs/source/en/_toctree.yml' def _lowercase( __a : Union[str, Any] ): a__ =defaultdict(__a ) for doc in model_doc: counts[doc["local"]] += 1 a__ =[key for key, value in counts.items() if value > 1] a__ =[] for duplicate_key in duplicates: a__ =list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(__a ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(__a , key=lambda __a : s["title"].lower() ) def _lowercase( __a : List[Any]=False ): with open(__a , encoding='utf-8' ) as f: a__ =yaml.safe_load(f.read() ) # Get to the API doc a__ =0 while content[api_idx]["title"] != "API": api_idx += 1 a__ =content[api_idx]['sections'] # Then to the model doc a__ =0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 a__ =api_doc[model_idx]['sections'] a__ =[(idx, section) for idx, section in enumerate(__a ) if 'sections' in section] a__ =False for idx, modality_doc in modalities_docs: a__ =modality_doc['sections'] a__ =clean_model_doc_toc(__a ) if old_modality_doc != new_modality_doc: a__ =True if overwrite: a__ =new_modality_doc if diff: if overwrite: a__ =model_doc a__ =api_doc with open(__a , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": _lowerCAmelCase: List[str] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _lowerCAmelCase: List[Any] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
20
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self) -> int: a__ =tempfile.mkdtemp() a__ =BlipImageProcessor() a__ =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel') a__ =BlipProcessor(lowercase_ , lowercase_) processor.save_pretrained(self.tmpdirname) def __UpperCamelCase ( self , **lowercase_) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).tokenizer def __UpperCamelCase ( self , **lowercase_) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).image_processor def __UpperCamelCase ( self) -> Optional[int]: shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self) -> str: a__ =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] a__ =[Image.fromarray(np.moveaxis(lowercase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self) -> str: a__ =BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) a__ =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') a__ =self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0) a__ =BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowercase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowercase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowercase_) def __UpperCamelCase ( self) -> int: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ =self.prepare_image_inputs() a__ =image_processor(lowercase_ , return_tensors='np') a__ =processor(images=lowercase_ , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self) -> List[str]: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =processor(text=lowercase_) a__ =tokenizer(lowercase_ , return_token_type_ids=lowercase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self) -> int: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =self.prepare_image_inputs() a__ =processor(text=lowercase_ , images=lowercase_) self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask']) # test if it raises when no input is passed with pytest.raises(lowercase_): processor() def __UpperCamelCase ( self) -> Tuple: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a__ =processor.batch_decode(lowercase_) a__ =tokenizer.batch_decode(lowercase_) self.assertListEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =self.prepare_image_inputs() a__ =processor(text=lowercase_ , images=lowercase_) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask'])
20
1
import random class lowercase_ : @staticmethod def __UpperCamelCase ( lowercase_) -> tuple[list[int], list[int]]: a__ =[ord(lowercase_) for i in text] a__ =[] a__ =[] for i in plain: a__ =random.randint(1 , 300) a__ =(i + k) * k cipher.append(lowercase_) key.append(lowercase_) return cipher, key @staticmethod def __UpperCamelCase ( lowercase_ , lowercase_) -> str: a__ =[] for i in range(len(lowercase_)): a__ =int((cipher[i] - (key[i]) ** 2) / key[i]) plain.append(chr(lowercase_)) return "".join(lowercase_) if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase: Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
20
def _lowercase( __a : list[int] ): a__ =len(__a ) for i in range(__a ): for j in range(i + 1 , __a ): if numbers[j] < numbers[i]: a__ , a__ =numbers[j], numbers[i] return numbers if __name__ == "__main__": _lowerCAmelCase: Tuple = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase: int = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
20
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowercase_ : def __init__( self , lowercase_ , lowercase_=2 , lowercase_=True , lowercase_=False , lowercase_=10 , lowercase_=3 , lowercase_=32 * 8 , lowercase_=32 * 8 , lowercase_=4 , lowercase_=64 , ) -> Union[str, Any]: a__ =parent a__ =batch_size a__ =is_training a__ =use_auxiliary_loss a__ =num_queries a__ =num_channels a__ =min_size a__ =max_size a__ =num_labels a__ =hidden_dim a__ =hidden_dim def __UpperCamelCase ( self) -> int: a__ =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( lowercase_) a__ =torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowercase_) a__ =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowercase_) > 0.5 ).float() a__ =(torch.rand((self.batch_size, self.num_labels) , device=lowercase_) > 0.5).long() a__ =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __UpperCamelCase ( self) -> List[Any]: a__ =MaskaFormerConfig( hidden_size=self.hidden_dim , ) a__ =self.num_queries a__ =self.num_labels a__ =[1, 1, 1, 1] a__ =self.num_channels a__ =64 a__ =128 a__ =self.hidden_dim a__ =self.hidden_dim a__ =self.hidden_dim return config def __UpperCamelCase ( self) -> str: a__ , a__ , a__ , a__ , a__ =self.prepare_config_and_inputs() a__ ={'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def __UpperCamelCase ( self , lowercase_ , lowercase_) -> Union[str, Any]: a__ =output.encoder_hidden_states a__ =output.pixel_decoder_hidden_states a__ =output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowercase_) , len(config.backbone_config.depths)) self.parent.assertTrue(len(lowercase_) , len(config.backbone_config.depths)) self.parent.assertTrue(len(lowercase_) , config.decoder_layers) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=False) -> Any: with torch.no_grad(): a__ =MaskaFormerModel(config=lowercase_) model.to(lowercase_) model.eval() a__ =model(pixel_values=lowercase_ , pixel_mask=lowercase_) a__ =model(lowercase_ , output_hidden_states=lowercase_) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(lowercase_ , lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Any: a__ =MaskaFormerForUniversalSegmentation(config=lowercase_) model.to(lowercase_) model.eval() def comm_check_on_output(lowercase_): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): a__ =model(pixel_values=lowercase_ , pixel_mask=lowercase_) a__ =model(lowercase_) comm_check_on_output(lowercase_) a__ =model( pixel_values=lowercase_ , pixel_mask=lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_) comm_check_on_output(lowercase_) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape , torch.Size([1])) @require_torch class lowercase_ (lowercase__ , lowercase__ , unittest.TestCase ): snake_case =(MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case ={'feature-extraction': MaskaFormerModel} if is_torch_available() else {} snake_case =False snake_case =False snake_case =False snake_case =False def __UpperCamelCase ( self) -> Optional[int]: a__ =MaskaFormerModelTester(self) a__ =ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: self.config_tester.run_common_tests() def __UpperCamelCase ( self) -> List[str]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowercase_ , **lowercase_ , output_hidden_states=lowercase_) def __UpperCamelCase ( self) -> List[str]: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowercase_) @unittest.skip(reason='Mask2Former does not use inputs_embeds') def __UpperCamelCase ( self) -> str: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method') def __UpperCamelCase ( self) -> Tuple: pass @unittest.skip(reason='Mask2Former is not a generative model') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip(reason='Mask2Former does not use token embeddings') def __UpperCamelCase ( self) -> Tuple: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self) -> str: pass def __UpperCamelCase ( self) -> Optional[Any]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) a__ =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ =[*signature.parameters.keys()] a__ =['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_) @slow def __UpperCamelCase ( self) -> Any: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: a__ =MaskaFormerModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def __UpperCamelCase ( self) -> Dict: a__ =(self.model_tester.min_size,) * 2 a__ ={ 'pixel_values': torch.randn((2, 3, *size) , device=lowercase_), 'mask_labels': torch.randn((2, 10, *size) , device=lowercase_), 'class_labels': torch.zeros(2 , 10 , device=lowercase_).long(), } a__ =self.model_tester.get_config() a__ =MaskaFormerForUniversalSegmentation(lowercase_).to(lowercase_) a__ =model(**lowercase_) self.assertTrue(outputs.loss is not None) def __UpperCamelCase ( self) -> Tuple: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowercase_ , **lowercase_ , output_hidden_states=lowercase_) def __UpperCamelCase ( self) -> int: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_).to(lowercase_) a__ =model(**lowercase_ , output_attentions=lowercase_) self.assertTrue(outputs.attentions is not None) def __UpperCamelCase ( self) -> Union[str, Any]: if not self.model_tester.is_training: return a__ =self.all_model_classes[1] a__ , a__ , a__ , a__ , a__ =self.model_tester.prepare_config_and_inputs() a__ =model_class(lowercase_) model.to(lowercase_) model.train() a__ =model(lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_).loss loss.backward() def __UpperCamelCase ( self) -> Union[str, Any]: a__ =self.all_model_classes[1] a__ , a__ , a__ , a__ , a__ =self.model_tester.prepare_config_and_inputs() a__ =True a__ =True a__ =model_class(lowercase_).to(lowercase_) model.train() a__ =model(lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_) a__ =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() a__ =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() a__ =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() a__ =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowercase_) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) _lowerCAmelCase: str = 1e-4 def _lowercase( ): a__ =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowercase_ (unittest.TestCase ): @cached_property def __UpperCamelCase ( self) -> Tuple: return "facebook/mask2former-swin-small-coco-instance" @cached_property def __UpperCamelCase ( self) -> Optional[Any]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints) if is_vision_available() else None def __UpperCamelCase ( self) -> str: a__ =MaskaFormerModel.from_pretrained(self.model_checkpoints).to(lowercase_) a__ =self.default_image_processor a__ =prepare_img() a__ =image_processor(lowercase_ , return_tensors='pt').to(lowercase_) a__ =inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(lowercase_ , (1, 3, 384, 384)) with torch.no_grad(): a__ =model(**lowercase_) a__ =torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]]).to(lowercase_) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowercase_ , atol=lowercase_)) a__ =torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]]).to(lowercase_) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowercase_ , atol=lowercase_)) a__ =torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]]).to(lowercase_) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowercase_ , atol=lowercase_)) def __UpperCamelCase ( self) -> Any: a__ =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(lowercase_).eval() a__ =self.default_image_processor a__ =prepare_img() a__ =image_processor(lowercase_ , return_tensors='pt').to(lowercase_) a__ =inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(lowercase_ , (1, 3, 384, 384)) with torch.no_grad(): a__ =model(**lowercase_) # masks_queries_logits a__ =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4)) a__ =[ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] a__ =torch.tensor(lowercase_).to(lowercase_) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowercase_ , atol=lowercase_)) # class_queries_logits a__ =outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1)) a__ =torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ]).to(lowercase_) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase_ , atol=lowercase_)) def __UpperCamelCase ( self) -> Optional[Any]: a__ =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(lowercase_).eval() a__ =self.default_image_processor a__ =image_processor( [np.zeros((3, 800, 1333)), np.zeros((3, 800, 1333))] , segmentation_maps=[np.zeros((384, 384)).astype(np.floataa), np.zeros((384, 384)).astype(np.floataa)] , return_tensors='pt' , ) a__ =inputs['pixel_values'].to(lowercase_) a__ =[el.to(lowercase_) for el in inputs['mask_labels']] a__ =[el.to(lowercase_) for el in inputs['class_labels']] with torch.no_grad(): a__ =model(**lowercase_) self.assertTrue(outputs.loss is not None)
20
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowercase_ : def __init__( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="resnet50" , lowercase_=3 , lowercase_=32 , lowercase_=3 , lowercase_=True , lowercase_=True , ) -> Union[str, Any]: a__ =parent a__ =out_indices if out_indices is not None else [4] a__ =stage_names a__ =out_features a__ =backbone a__ =batch_size a__ =image_size a__ =num_channels a__ =use_pretrained_backbone a__ =is_training def __UpperCamelCase ( self) -> Optional[Any]: a__ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ =self.get_config() return config, pixel_values def __UpperCamelCase ( self) -> Tuple: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> str: a__ =TimmBackbone(config=lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): a__ =model(lowercase_) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __UpperCamelCase ( self) -> str: a__ =self.prepare_config_and_inputs() a__ , a__ =config_and_inputs a__ ={'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class lowercase_ (lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): snake_case =(TimmBackbone,) if is_torch_available() else () snake_case ={'feature-extraction': TimmBackbone} if is_torch_available() else {} snake_case =False snake_case =False snake_case =False snake_case =False def __UpperCamelCase ( self) -> Optional[Any]: a__ =TimmBackboneModelTester(self) a__ =ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_) def __UpperCamelCase ( self) -> Dict: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self) -> str: a__ ='resnet18' a__ ='microsoft/resnet-18' a__ =AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_) a__ =AutoBackbone.from_pretrained(lowercase_) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(len(timm_model.stage_names) , len(transformers_model.stage_names)) self.assertEqual(timm_model.channels , transformers_model.channels) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,)) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names) - 1]) a__ =AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_ , out_indices=[1, 2, 3]) a__ =AutoBackbone.from_pretrained(lowercase_ , out_indices=[1, 2, 3]) self.assertEqual(timm_model.out_indices , transformers_model.out_indices) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(timm_model.channels , transformers_model.channels) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> Dict: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> List[Any]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.') def __UpperCamelCase ( self) -> str: pass @unittest.skip('Safetensors is not supported by timm.') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self) -> Optional[Any]: pass def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) a__ =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ =[*signature.parameters.keys()] a__ =['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_) def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =True a__ =self.has_attentions # no need to test all models as different heads yield the same functionality a__ =self.all_model_classes[0] a__ =model_class(lowercase_) model.to(lowercase_) a__ =self._prepare_for_class(lowercase_ , lowercase_) a__ =model(**lowercase_) a__ =outputs[0][-1] # Encoder-/Decoder-only models a__ =outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a__ =outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowercase_) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) def __UpperCamelCase ( self) -> List[str]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_) self.assertEqual(len(result.feature_maps) , len(config.out_indices)) self.assertEqual(len(model.channels) , len(config.out_indices)) # Check output of last stage is taken if out_features=None, out_indices=None a__ =copy.deepcopy(lowercase_) a__ =None a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_) self.assertEqual(len(result.feature_maps) , 1) self.assertEqual(len(model.channels) , 1) # Check backbone can be initialized with fresh weights a__ =copy.deepcopy(lowercase_) a__ =False a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_)
20
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase: List[str] = get_tests_dir('fixtures/test_sentencepiece.model') _lowerCAmelCase: List[Any] = {'target_lang': 'fi', 'source_lang': 'en'} _lowerCAmelCase: int = '>>zh<<' _lowerCAmelCase: int = 'Helsinki-NLP/' if is_torch_available(): _lowerCAmelCase: str = 'pt' elif is_tf_available(): _lowerCAmelCase: Optional[int] = 'tf' else: _lowerCAmelCase: List[Any] = 'jax' @require_sentencepiece class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =MarianTokenizer snake_case =False snake_case =True def __UpperCamelCase ( self) -> Dict: super().setUp() a__ =['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] a__ =dict(zip(lowercase_ , range(len(lowercase_)))) a__ =Path(self.tmpdirname) save_json(lowercase_ , save_dir / VOCAB_FILES_NAMES['vocab']) save_json(lowercase_ , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file']) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase_ , save_dir / VOCAB_FILES_NAMES['source_spm']) copyfile(lowercase_ , save_dir / VOCAB_FILES_NAMES['target_spm']) a__ =MarianTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def __UpperCamelCase ( self , **lowercase_) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase_) def __UpperCamelCase ( self , lowercase_) -> int: return ( "This is a test", "This is a test", ) def __UpperCamelCase ( self) -> Union[str, Any]: a__ ='</s>' a__ =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_) , lowercase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_) , lowercase_) def __UpperCamelCase ( self) -> Dict: a__ =list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '</s>') self.assertEqual(vocab_keys[1] , '<unk>') self.assertEqual(vocab_keys[-1] , '<pad>') self.assertEqual(len(lowercase_) , 9) def __UpperCamelCase ( self) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 9) def __UpperCamelCase ( self) -> Any: a__ =MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""") a__ =en_de_tokenizer(['I am a small frog'] , return_tensors=lowercase_) self.assertIsInstance(lowercase_ , lowercase_) a__ =[38, 121, 14, 697, 38848, 0] self.assertListEqual(lowercase_ , batch.input_ids[0]) a__ =tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase_) a__ =[x.name for x in Path(lowercase_).glob('*')] self.assertIn('source.spm' , lowercase_) MarianTokenizer.from_pretrained(lowercase_) def __UpperCamelCase ( self) -> Tuple: a__ =self.get_tokenizer() a__ =tok( ['I am a small frog' * 1000, 'I am a small frog'] , padding=lowercase_ , truncation=lowercase_ , return_tensors=lowercase_) self.assertIsInstance(lowercase_ , lowercase_) self.assertEqual(batch.input_ids.shape , (2, 512)) def __UpperCamelCase ( self) -> List[str]: a__ =self.get_tokenizer() a__ =tok(['I am a tiny frog', 'I am a small frog'] , padding=lowercase_ , return_tensors=lowercase_) self.assertIsInstance(lowercase_ , lowercase_) self.assertEqual(batch_smaller.input_ids.shape , (2, 10)) @slow def __UpperCamelCase ( self) -> Dict: # fmt: off a__ ={'input_ids': [[43495, 462, 20, 42164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 38999, 6, 8, 464, 132, 1703, 492, 13, 4669, 37867, 13, 7525, 27, 1593, 988, 13, 33972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 12338, 2, 13958, 387, 2, 3629, 6953, 188, 2900, 2, 13958, 8011, 11501, 23, 8460, 4073, 34009, 20, 435, 11439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 37867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 26453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10767, 6, 316, 304, 4239, 3, 0], [148, 15722, 19, 1839, 12, 1350, 13, 22327, 5082, 5418, 47567, 35938, 59, 318, 19552, 108, 2183, 54, 14976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 19088, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100], [36, 6395, 12570, 39147, 11597, 6, 266, 4, 45405, 7296, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def __UpperCamelCase ( self) -> List[Any]: a__ =MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs') a__ ='Tämä on testi' a__ ='This is a test' a__ =[76, 7, 2047, 2] a__ =[69, 12, 11, 940, 2] a__ =tokenizer(lowercase_).input_ids self.assertListEqual(lowercase_ , lowercase_) a__ =tokenizer(text_target=lowercase_).input_ids self.assertListEqual(lowercase_ , lowercase_) a__ =tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_) self.assertEqual(lowercase_ , lowercase_)
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCAmelCase: Optional[Any] = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: List[str] = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _lowerCAmelCase: List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
20
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase: List[Any] = logging.get_logger(__name__) _lowerCAmelCase: Optional[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k', 'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v', 'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q', 'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u', 'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v', 'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out', 'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos', 'self_attn.rotary_emb': 'encoder.embed_positions', 'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm', 'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1', 'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2', 'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv', 'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm', 'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm', 'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense', 'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense', 'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm', 'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense', 'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense', 'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } _lowerCAmelCase: Any = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _lowercase( __a : Any , __a : Union[str, Any] , __a : Any , __a : Tuple , __a : int ): for attribute in key.split('.' ): a__ =getattr(__a , __a ) if weight_type is not None: a__ =getattr(__a , __a ).shape else: a__ =hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a__ =value elif weight_type == "weight_g": a__ =value elif weight_type == "weight_v": a__ =value elif weight_type == "bias": a__ =value elif weight_type == "running_mean": a__ =value elif weight_type == "running_var": a__ =value elif weight_type == "num_batches_tracked": a__ =value elif weight_type == "inv_freq": a__ =value else: a__ =value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _lowercase( __a : Optional[Any] , __a : Tuple , __a : List[str] ): a__ =[] a__ =fairseq_model.state_dict() a__ =hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): a__ =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == 'group' , ) a__ =True else: for key, mapped_key in MAPPING.items(): a__ ='wav2vec2_conformer.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: a__ =True if "*" in mapped_key: a__ =name.split(__a )[0].split('.' )[-2] a__ =mapped_key.replace('*' , __a ) if "pos_bias_u" in name: a__ =None elif "pos_bias_v" in name: a__ =None elif "weight_g" in name: a__ ='weight_g' elif "weight_v" in name: a__ ='weight_v' elif "bias" in name: a__ ='bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj a__ ='weight' elif "running_mean" in name: a__ ='running_mean' elif "inv_freq" in name: a__ ='inv_freq' elif "running_var" in name: a__ ='running_var' elif "num_batches_tracked" in name: a__ ='num_batches_tracked' else: a__ =None set_recursively(__a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _lowercase( __a : Union[str, Any] , __a : Union[str, Any] , __a : Dict , __a : List[str] , __a : int ): a__ =full_name.split('conv_layers.' )[-1] a__ =name.split('.' ) a__ =int(items[0] ) a__ =int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def _lowercase( __a : List[Any] , __a : str , __a : Dict=None , __a : Optional[int]=None , __a : Union[str, Any]=True ): if config_path is not None: a__ =WavaVecaConformerConfig.from_pretrained(__a , hidden_act='swish' ) else: a__ =WavaVecaConformerConfig() if "rope" in checkpoint_path: a__ ='rotary' if is_finetuned: if dict_path: a__ =Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a__ =target_dict.pad_index a__ =target_dict.bos_index a__ =target_dict.eos_index a__ =len(target_dict.symbols ) a__ =os.path.join(__a , 'vocab.json' ) if not os.path.isdir(__a ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__a ) ) return os.makedirs(__a , exist_ok=__a ) a__ =target_dict.indices # fairseq has the <pad> and <s> switched a__ =0 a__ =1 with open(__a , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(__a , __a ) a__ =WavaVecaCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=__a , ) a__ =True if config.feat_extract_norm == 'layer' else False a__ =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) a__ =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) a__ =WavaVecaConformerForCTC(__a ) else: a__ =WavaVecaConformerForPreTraining(__a ) if is_finetuned: a__ , a__ , a__ =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: a__ =argparse.Namespace(task='audio_pretraining' ) a__ =fairseq.tasks.setup_task(__a ) a__ , a__ , a__ =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__a ) a__ =model[0].eval() recursively_load_weights(__a , __a , not is_finetuned ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) _lowerCAmelCase: int = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
20
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase: str = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class lowercase_ (lowercase__ ): snake_case ='big_bird' def __init__( self , lowercase_=50358 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu_new" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=4096 , lowercase_=2 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=66 , lowercase_="block_sparse" , lowercase_=True , lowercase_=False , lowercase_=64 , lowercase_=3 , lowercase_=None , **lowercase_ , ) -> Any: super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , sep_token_id=lowercase_ , **lowercase_ , ) a__ =vocab_size a__ =max_position_embeddings a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =initializer_range a__ =type_vocab_size a__ =layer_norm_eps a__ =use_cache a__ =rescale_embeddings a__ =attention_type a__ =use_bias a__ =block_size a__ =num_random_blocks a__ =classifier_dropout class lowercase_ (lowercase__ ): @property def __UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a__ ={0: 'batch', 1: 'choice', 2: 'sequence'} else: a__ ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
20
1
from math import factorial def _lowercase( __a : int , __a : int , __a : float ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__a , __a ) or not isinstance(__a , __a ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) a__ =(prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! a__ =float(factorial(__a ) ) coefficient /= factorial(__a ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
20
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger(__name__) _lowerCAmelCase: Tuple = torch.device('cpu') def _lowercase( ): a__ ='http://images.cocodataset.org/val2017/000000039769.jpg' a__ =Image.open(requests.get(__a , stream=__a ).raw ) return im def _lowercase( __a : Optional[Any] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _lowercase( __a : int , __a : int , __a : Optional[Any] ): a__ =dct.pop(__a ) a__ =val def _lowercase( __a : Optional[Any] ): a__ =[] for k in state_dict.keys(): a__ =k if ".pwconv" in k: a__ =k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: a__ =k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: a__ =k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: a__ =k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: a__ =k_new.split('.' ) if ls[2].isdigit(): a__ ='swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: a__ =k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _lowercase( __a : Union[str, Any] , __a : int , __a : str ): a__ =SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a__ =1000 a__ ='huggingface/label-files' a__ ='imagenet-1k-id2label.json' a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a__ =[3, 3, 6, 4] a__ =[48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a__ =[3, 3, 9, 6] a__ =[48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a__ =[4, 3, 10, 5] a__ =[48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a__ =[4, 4, 12, 6] a__ =[64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): a__ =torch.hub.load_state_dict_from_url(__a , map_location='cpu' , check_hash=__a ) else: a__ =torch.load(__a , map_location='cpu' ) a__ =checkpoint a__ =create_rename_keys(__a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__a , __a , __a ) # load HuggingFace model a__ =SwiftFormerForImageClassification(__a ).eval() hf_model.load_state_dict(__a ) # prepare test inputs a__ =prepare_img() a__ =ViTImageProcessor.from_pretrained('preprocessor_config' ) a__ =processor(images=__a , return_tensors='pt' ) # compare outputs from both models a__ =get_expected_output(__a ) a__ =hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , __a , atol=1e-3 ) Path(__a ).mkdir(exist_ok=__a ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') _lowerCAmelCase: Optional[int] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
20
1
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch _lowerCAmelCase: Dict = True except ImportError: _lowerCAmelCase: Tuple = False try: from torch.hub import _get_torch_home _lowerCAmelCase: Any = _get_torch_home() except ImportError: _lowerCAmelCase: int = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) _lowerCAmelCase: Optional[int] = os.path.join(torch_cache_home, 'transformers') _lowerCAmelCase: List[Any] = 'https://cdn.huggingface.co' _lowerCAmelCase: List[str] = 'https://s3.amazonaws.com/models.huggingface.co/bert' _lowerCAmelCase: int = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) _lowerCAmelCase: str = os.path.join(PATH, 'config.yaml') _lowerCAmelCase: Tuple = os.path.join(PATH, 'attributes.txt') _lowerCAmelCase: Dict = os.path.join(PATH, 'objects.txt') _lowerCAmelCase: int = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) _lowerCAmelCase: Union[str, Any] = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) _lowerCAmelCase: List[Any] = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) _lowerCAmelCase: Union[str, Any] = 'pytorch_model.bin' _lowerCAmelCase: Dict = 'config.yaml' def _lowercase( __a : List[Any]=OBJECTS , __a : List[str]=ATTRIBUTES ): a__ =[] with open(__a ) as f: for object in f.readlines(): vg_classes.append(object.split(',' )[0].lower().strip() ) a__ =[] with open(__a ) as f: for object in f.readlines(): vg_attrs.append(object.split(',' )[0].lower().strip() ) return vg_classes, vg_attrs def _lowercase( __a : Dict ): a__ =OrderedDict() with open(__a , 'rb' ) as f: a__ =pkl.load(__a )['model'] for k in copy.deepcopy(list(ckp.keys() ) ): a__ =ckp.pop(__a ) if isinstance(__a , np.ndarray ): a__ =torch.tensor(__a ) else: assert isinstance(__a , torch.tensor ), type(__a ) a__ =v return r class lowercase_ : snake_case ={} def __init__( self , lowercase_ , lowercase_ = "root" , lowercase_=0) -> Any: a__ =name a__ =level a__ ={} for k, v in dictionary.items(): if v is None: raise ValueError() a__ =copy.deepcopy(lowercase_) a__ =copy.deepcopy(lowercase_) if isinstance(lowercase_ , lowercase_): a__ =Config(lowercase_ , name=lowercase_ , level=level + 1) a__ =v setattr(self , lowercase_ , lowercase_) a__ =d def __repr__( self) -> Optional[Any]: return str(list((self._pointer.keys()))) def __setattr__( self , lowercase_ , lowercase_) -> Dict: a__ =val a__ =val a__ =key.split('.') a__ =len(lowercase_) - 1 a__ =self._pointer if len(lowercase_) > 1: for i, l in enumerate(lowercase_): if hasattr(self , lowercase_) and isinstance(getattr(self , lowercase_) , lowercase_): setattr(getattr(self , lowercase_) , '.'.join(levels[i:]) , lowercase_) if l == last_level: a__ =val else: a__ =pointer[l] def __UpperCamelCase ( self) -> List[str]: return self._pointer def __UpperCamelCase ( self , lowercase_ , lowercase_) -> Any: with open(F"""{file_name}""" , 'w') as stream: dump(lowercase_ , lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> Union[str, Any]: with open(F"""{file_name}""" , 'w') as stream: json.dump(lowercase_ , lowercase_) @staticmethod def __UpperCamelCase ( lowercase_) -> Any: with open(lowercase_) as stream: a__ =load(lowercase_ , Loader=lowercase_) return data def __str__( self) -> Dict: a__ =' ' if self._name != "root": a__ =F"""{t * (self._level-1)}{self._name}:\n""" else: a__ ='' a__ =self._level for i, (k, v) in enumerate(self._pointer.items()): if isinstance(lowercase_ , lowercase_): r += F"""{t * (self._level)}{v}\n""" self._level += 1 else: r += F"""{t * (self._level)}{k}: {v} ({type(lowercase_).__name__})\n""" a__ =level return r[:-1] @classmethod def __UpperCamelCase ( cls , lowercase_ , **lowercase_) -> Union[str, Any]: a__ , a__ =cls.get_config_dict(lowercase_ , **lowercase_) return cls(lowercase_) @classmethod def __UpperCamelCase ( cls , lowercase_ , **lowercase_) -> Tuple: a__ =kwargs.pop('cache_dir' , lowercase_) a__ =kwargs.pop('force_download' , lowercase_) a__ =kwargs.pop('resume_download' , lowercase_) a__ =kwargs.pop('proxies' , lowercase_) a__ =kwargs.pop('local_files_only' , lowercase_) if os.path.isdir(lowercase_): a__ =os.path.join(lowercase_ , lowercase_) elif os.path.isfile(lowercase_) or is_remote_url(lowercase_): a__ =pretrained_model_name_or_path else: a__ =hf_bucket_url(lowercase_ , filename=lowercase_ , use_cdn=lowercase_) try: # Load from URL or cache if already cached a__ =cached_path( lowercase_ , cache_dir=lowercase_ , force_download=lowercase_ , proxies=lowercase_ , resume_download=lowercase_ , local_files_only=lowercase_ , ) # Load config dict if resolved_config_file is None: raise EnvironmentError a__ =Config.load_yaml(lowercase_) except EnvironmentError: a__ ='Can\'t load config for' raise EnvironmentError(lowercase_) if resolved_config_file == config_file: print('loading configuration file from path') else: print('loading configuration file cache') return Config.load_yaml(lowercase_), kwargs def _lowercase( __a : List[str] ): a__ =torch.load('dump.pt' , map_location=in_tensor.device ) a__ =in_tensor.numpy() a__ =out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(__a , __a , rtol=0.01 , atol=0.1 ), ( f"""{sum([1 for x in np.isclose(__a , __a , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %""" " element-wise mismatch" ) raise Exception('tensors are all good' ) # Hugging face functions below def _lowercase( __a : Union[str, Any] ): a__ =urlparse(__a ) return parsed.scheme in ("http", "https") def _lowercase( __a : str , __a : str , __a : Any=True ): a__ =CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX a__ ='/' not in model_id if legacy_format: return f"""{endpoint}/{model_id}-{filename}""" else: return f"""{endpoint}/{model_id}/{filename}""" def _lowercase( __a : Optional[int] , __a : Dict , __a : str=None , __a : List[str]=0 , __a : Optional[Any]=None , ): a__ ='python/{}'.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(__a , __a ): ua += "; " + "; ".join('{}/{}'.format(__a , __a ) for k, v in user_agent.items() ) elif isinstance(__a , __a ): ua += "; " + user_agent a__ ={'user-agent': ua} if resume_size > 0: a__ ='bytes=%d-' % (resume_size,) a__ =requests.get(__a , stream=__a , proxies=__a , headers=__a ) if response.status_code == 416: # Range not satisfiable return a__ =response.headers.get('Content-Length' ) a__ =resume_size + int(__a ) if content_length is not None else None a__ =tqdm( unit='B' , unit_scale=__a , total=__a , initial=__a , desc='Downloading' , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(__a ) ) temp_file.write(__a ) progress.close() def _lowercase( __a : Optional[int] , __a : int=None , __a : Optional[int]=False , __a : str=None , __a : Optional[Any]=10 , __a : Optional[Any]=False , __a : Optional[Any]=None , __a : int=False , ): if cache_dir is None: a__ =TRANSFORMERS_CACHE if isinstance(__a , __a ): a__ =str(__a ) os.makedirs(__a , exist_ok=__a ) a__ =None if not local_files_only: try: a__ =requests.head(__a , allow_redirects=__a , proxies=__a , timeout=__a ) if response.status_code == 200: a__ =response.headers.get('ETag' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass a__ =url_to_filename(__a , __a ) # get cache path to put the file a__ =os.path.join(__a , __a ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(__a ): return cache_path else: a__ =[ file for file in fnmatch.filter(os.listdir(__a ) , filename + '.*' ) if not file.endswith('.json' ) and not file.endswith('.lock' ) ] if len(__a ) > 0: return os.path.join(__a , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( 'Cannot find the requested files in the cached path and outgoing traffic has been' ' disabled. To enable model look-ups and downloads online, set \'local_files_only\'' ' to False.' ) return None # From now on, etag is not None. if os.path.exists(__a ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. a__ =cache_path + '.lock' with FileLock(__a ): # If the download just completed while the lock was activated. if os.path.exists(__a ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: a__ =cache_path + '.incomplete' @contextmanager def _resumable_file_manager(): with open(__a , 'a+b' ) as f: yield f a__ =_resumable_file_manager if os.path.exists(__a ): a__ =os.stat(__a ).st_size else: a__ =0 else: a__ =partial(tempfile.NamedTemporaryFile , dir=__a , delete=__a ) a__ =0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '%s not found in cache or force_download set to True, downloading to %s' , __a , temp_file.name , ) http_get( __a , __a , proxies=__a , resume_size=__a , user_agent=__a , ) os.replace(temp_file.name , __a ) a__ ={'url': url, 'etag': etag} a__ =cache_path + '.json' with open(__a , 'w' ) as meta_file: json.dump(__a , __a ) return cache_path def _lowercase( __a : Dict , __a : List[Any]=None ): a__ =url.encode('utf-8' ) a__ =shaaaa(__a ) a__ =url_hash.hexdigest() if etag: a__ =etag.encode('utf-8' ) a__ =shaaaa(__a ) filename += "." + etag_hash.hexdigest() if url.endswith('.h5' ): filename += ".h5" return filename def _lowercase( __a : int , __a : int=None , __a : str=False , __a : List[str]=None , __a : Dict=False , __a : Union[str, Any]=None , __a : Any=False , __a : List[Any]=False , __a : Optional[Any]=False , ): if cache_dir is None: a__ =TRANSFORMERS_CACHE if isinstance(__a , __a ): a__ =str(__a ) if isinstance(__a , __a ): a__ =str(__a ) if is_remote_url(__a ): # URL, so get it from the cache (downloading if necessary) a__ =get_from_cache( __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , user_agent=__a , local_files_only=__a , ) elif os.path.exists(__a ): # File, and it exists. a__ =url_or_filename elif urlparse(__a ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('file {} not found'.format(__a ) ) else: # Something unknown raise ValueError('unable to parse {} as a URL or as a local path'.format(__a ) ) if extract_compressed_file: if not is_zipfile(__a ) and not tarfile.is_tarfile(__a ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" a__ , a__ =os.path.split(__a ) a__ =output_file.replace('.' , '-' ) + '-extracted' a__ =os.path.join(__a , __a ) if os.path.isdir(__a ) and os.listdir(__a ) and not force_extract: return output_path_extracted # Prevent parallel extractions a__ =output_path + '.lock' with FileLock(__a ): shutil.rmtree(__a , ignore_errors=__a ) os.makedirs(__a ) if is_zipfile(__a ): with ZipFile(__a , 'r' ) as zip_file: zip_file.extractall(__a ) zip_file.close() elif tarfile.is_tarfile(__a ): a__ =tarfile.open(__a ) tar_file.extractall(__a ) tar_file.close() else: raise EnvironmentError('Archive format of {} could not be identified'.format(__a ) ) return output_path_extracted return output_path def _lowercase( __a : List[str] , __a : List[str]="," ): assert isinstance(__a , __a ) if os.path.isfile(__a ): with open(__a ) as f: a__ =eval(f.read() ) else: a__ =requests.get(__a ) try: a__ =requests.json() except Exception: a__ =req.content.decode() assert data is not None, "could not connect" try: a__ =eval(__a ) except Exception: a__ =data.split('\n' ) req.close() return data def _lowercase( __a : List[Any] ): a__ =requests.get(__a ) a__ =np.array(Image.open(BytesIO(response.content ) ) ) return img def _lowercase( __a : List[Any] ): a__ =url.split('/' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(__a ) with open(__a , 'rb' ) as stream: a__ =pkl.load(__a ) a__ =weights.pop('model' ) a__ ={} for k, v in model.items(): a__ =torch.from_numpy(__a ) if "running_var" in k: a__ =torch.tensor([0] ) a__ =k.replace('running_var' , 'num_batches_tracked' ) a__ =zero return new def _lowercase( ): print(f"""{os.path.abspath(os.path.join(__a , os.pardir ) )}/demo.ipynb""" ) def _lowercase( __a : Dict , __a : Any="RGB" ): assert isinstance(__a , __a ) if os.path.isfile(__a ): a__ =cva.imread(__a ) else: a__ =get_image_from_url(__a ) assert img is not None, f"""could not connect to: {im}""" a__ =cva.cvtColor(__a , cva.COLOR_BGR2RGB ) if input_format == "RGB": a__ =img[:, :, ::-1] return img def _lowercase( __a : Any , __a : str=1 ): return (images[i : i + batch] for i in range(0 , len(__a ) , __a ))
20
from __future__ import annotations from typing import Any class lowercase_ : def __init__( self , lowercase_) -> None: a__ =num_of_nodes a__ =[] a__ ={} def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: self.m_edges.append([u_node, v_node, weight]) def __UpperCamelCase ( self , lowercase_) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node]) def __UpperCamelCase ( self , lowercase_) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: a__ =self.find_component(lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: if component_size[u_node] <= component_size[v_node]: a__ =v_node component_size[v_node] += component_size[u_node] self.set_component(lowercase_) elif component_size[u_node] >= component_size[v_node]: a__ =self.find_component(lowercase_) component_size[u_node] += component_size[v_node] self.set_component(lowercase_) def __UpperCamelCase ( self) -> None: a__ =[] a__ =0 a__ =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes): self.m_component.update({node: node}) component_size.append(1) a__ =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: a__ , a__ , a__ =edge a__ =self.m_component[u] a__ =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): a__ =[u, v, w] for edge in minimum_weight_edge: if isinstance(lowercase_ , lowercase_): a__ , a__ , a__ =edge a__ =self.m_component[u] a__ =self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowercase_ , lowercase_ , lowercase_) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""") num_of_components -= 1 a__ =[-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""") def _lowercase( ): pass if __name__ == "__main__": import doctest doctest.testmod()
20
1
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase_ (unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=3 , lowercase_=32 , lowercase_=3 , lowercase_=10 , lowercase_=[10, 20, 30, 40] , lowercase_=[1, 1, 2, 1] , lowercase_=True , lowercase_=True , lowercase_="relu" , lowercase_=3 , lowercase_=None , ) -> List[str]: a__ =parent a__ =batch_size a__ =image_size a__ =num_channels a__ =embeddings_size a__ =hidden_sizes a__ =depths a__ =is_training a__ =use_labels a__ =hidden_act a__ =num_labels a__ =scope a__ =len(lowercase_) def __UpperCamelCase ( self) -> List[str]: a__ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ =self.get_config() return config, pixel_values def __UpperCamelCase ( self) -> List[str]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> Any: a__ =FlaxRegNetModel(config=lowercase_) a__ =model(lowercase_) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> str: a__ =self.num_labels a__ =FlaxRegNetForImageClassification(config=lowercase_) a__ =model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __UpperCamelCase ( self) -> Dict: a__ =self.prepare_config_and_inputs() a__ , a__ =config_and_inputs a__ ={'pixel_values': pixel_values} return config, inputs_dict @require_flax class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () snake_case =False snake_case =False snake_case =False def __UpperCamelCase ( self) -> None: a__ =FlaxRegNetModelTester(self) a__ =ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_) def __UpperCamelCase ( self) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self) -> List[Any]: return def __UpperCamelCase ( self) -> Dict: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def __UpperCamelCase ( self) -> int: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_) @unittest.skip(reason='RegNet does not use inputs_embeds') def __UpperCamelCase ( self) -> int: pass @unittest.skip(reason='RegNet does not support input and output embeddings') def __UpperCamelCase ( self) -> Dict: pass def __UpperCamelCase ( self) -> Optional[int]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) a__ =inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ =[*signature.parameters.keys()] a__ =['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: def check_hidden_states_output(lowercase_ , lowercase_ , lowercase_): a__ =model_class(lowercase_) a__ =model(**self._prepare_for_class(lowercase_ , lowercase_)) a__ =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a__ =self.model_tester.num_stages self.assertEqual(len(lowercase_) , expected_num_stages + 1) a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ =True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[str]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): a__ =self._prepare_for_class(lowercase_ , lowercase_) a__ =model_class(lowercase_) @jax.jit def model_jitted(lowercase_ , **lowercase_): return model(pixel_values=lowercase_ , **lowercase_) with self.subTest('JIT Enabled'): a__ =model_jitted(**lowercase_).to_tuple() with self.subTest('JIT Disabled'): with jax.disable_jit(): a__ =model_jitted(**lowercase_).to_tuple() self.assertEqual(len(lowercase_) , len(lowercase_)) for jitted_output, output in zip(lowercase_ , lowercase_): self.assertEqual(jitted_output.shape , output.shape) def _lowercase( ): a__ =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class lowercase_ (unittest.TestCase ): @cached_property def __UpperCamelCase ( self) -> Optional[Any]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040') if is_vision_available() else None @slow def __UpperCamelCase ( self) -> List[Any]: a__ =FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040') a__ =self.default_image_processor a__ =prepare_img() a__ =image_processor(images=lowercase_ , return_tensors='np') a__ =model(**lowercase_) # verify the logits a__ =(1, 1000) self.assertEqual(outputs.logits.shape , lowercase_) a__ =jnp.array([-0.41_80, -1.50_51, -3.48_36]) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4))
20
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCAmelCase: Union[str, Any] = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' _lowerCAmelCase: Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' _lowerCAmelCase: List[Any] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): def __UpperCamelCase ( self) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=True , lowercase_=False) -> Any: if rouge_types is None: a__ =['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] a__ =rouge_scorer.RougeScorer(rouge_types=lowercase_ , use_stemmer=lowercase_) if use_aggregator: a__ =scoring.BootstrapAggregator() else: a__ =[] for ref, pred in zip(lowercase_ , lowercase_): a__ =scorer.score(lowercase_ , lowercase_) if use_aggregator: aggregator.add_scores(lowercase_) else: scores.append(lowercase_) if use_aggregator: a__ =aggregator.aggregate() else: a__ ={} for key in scores[0]: a__ =[score[key] for score in scores] return result
20
1
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class lowercase_ (lowercase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_) -> Union[str, Any]: a__ =dataset a__ =process a__ =params def __len__( self) -> List[str]: return len(self.dataset) def __getitem__( self , lowercase_) -> str: a__ =self.dataset[i] a__ =self.process(lowercase_ , **self.params) return processed class lowercase_ (lowercase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None) -> Optional[int]: a__ =loader a__ =infer a__ =params if loader_batch_size == 1: # Let's spare some time by deactivating altogether a__ =None a__ =loader_batch_size # Internal bookkeeping a__ =None a__ =None def __len__( self) -> List[Any]: return len(self.loader) def __iter__( self) -> Dict: a__ =iter(self.loader) return self def __UpperCamelCase ( self) -> Any: if isinstance(self._loader_batch_data , torch.Tensor): # Batch data is simple tensor, just fetch the slice a__ =self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) a__ ={} for k, element in self._loader_batch_data.items(): if isinstance(lowercase_ , lowercase_): # Convert ModelOutput to tuple first a__ =element.to_tuple() if isinstance(element[0] , torch.Tensor): a__ =tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0] , np.ndarray): a__ =tuple(np.expand_dims(el[self._loader_batch_index] , 0) for el in element) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(lowercase_ , lowercase_): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor): a__ =tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0] , np.ndarray): a__ =tuple(np.expand_dims(el[self._loader_batch_index] , 0) for el in element) continue if element is None: # This can happen for optional data that get passed around a__ =None elif isinstance(element[self._loader_batch_index] , torch.Tensor): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers a__ =element[self._loader_batch_index].unsqueeze(0) elif isinstance(element[self._loader_batch_index] , np.ndarray): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers a__ =np.expand_dims(element[self._loader_batch_index] , 0) else: # This is typically a list, so no need to `unsqueeze`. a__ =element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 a__ =self._loader_batch_data.__class__(lowercase_) self._loader_batch_index += 1 return result def __UpperCamelCase ( self) -> List[Any]: if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch a__ =next(self.iterator) a__ =self.infer(lowercase_ , **self.params) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(lowercase_ , torch.Tensor): a__ =processed else: a__ =list(processed.keys())[0] a__ =processed[key] if isinstance(lowercase_ , lowercase_): a__ =len(lowercase_) else: a__ =first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. a__ =observed_batch_size # Setting internal index to unwrap the batch a__ =processed a__ =0 return self.loader_batch_item() else: # We're not unrolling batches return processed class lowercase_ (lowercase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None) -> Optional[Any]: super().__init__(lowercase_ , lowercase_ , lowercase_) def __iter__( self) -> str: a__ =iter(self.loader) a__ =None return self def __UpperCamelCase ( self) -> Tuple: if self.subiterator is None: a__ =self.infer(next(self.iterator) , **self.params) try: # Try to return next item a__ =next(self.subiterator) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators a__ =self.infer(next(self.iterator) , **self.params) a__ =next(self.subiterator) return processed class lowercase_ (lowercase__ ): def __iter__( self) -> Dict: a__ =iter(self.loader) return self def __UpperCamelCase ( self) -> str: # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. a__ =False a__ =[] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: a__ =self.loader_batch_item() a__ =item.pop('is_last') accumulator.append(lowercase_) if is_last: return accumulator while not is_last: a__ =self.infer(next(self.iterator) , **self.params) if self.loader_batch_size is not None: if isinstance(lowercase_ , torch.Tensor): a__ =processed else: a__ =list(processed.keys())[0] a__ =processed[key] if isinstance(lowercase_ , lowercase_): a__ =len(lowercase_) else: a__ =first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. a__ =observed_batch_size a__ =processed a__ =0 while self._loader_batch_index < self.loader_batch_size: a__ =self.loader_batch_item() a__ =item.pop('is_last') accumulator.append(lowercase_) if is_last: return accumulator else: a__ =processed a__ =item.pop('is_last') accumulator.append(lowercase_) return accumulator class lowercase_ (lowercase__ ): def __init__( self , lowercase_ , lowercase_) -> Union[str, Any]: a__ =dataset a__ =key def __len__( self) -> Optional[Any]: return len(self.dataset) def __getitem__( self , lowercase_) -> Any: return self.dataset[i][self.key] class lowercase_ (lowercase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_) -> str: a__ =dataset a__ =keya a__ =keya def __len__( self) -> Any: return len(self.dataset) def __getitem__( self , lowercase_) -> List[str]: return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
20
from __future__ import annotations _lowerCAmelCase: str = '#' class lowercase_ : def __init__( self) -> None: a__ ={} def __UpperCamelCase ( self , lowercase_) -> None: a__ =self._trie for char in text: if char not in trie: a__ ={} a__ =trie[char] a__ =True def __UpperCamelCase ( self , lowercase_) -> tuple | list: a__ =self._trie for char in prefix: if char in trie: a__ =trie[char] else: return [] return self._elements(lowercase_) def __UpperCamelCase ( self , lowercase_) -> tuple: a__ =[] for c, v in d.items(): a__ =[' '] if c == END else [(c + s) for s in self._elements(lowercase_)] result.extend(lowercase_) return tuple(lowercase_) _lowerCAmelCase: Optional[int] = Trie() _lowerCAmelCase: List[str] = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def _lowercase( __a : str ): a__ =trie.find_word(__a ) return tuple(string + word for word in suffixes ) def _lowercase( ): print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
20
1
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowercase_ : def __init__( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="resnet50" , lowercase_=3 , lowercase_=32 , lowercase_=3 , lowercase_=True , lowercase_=True , ) -> Union[str, Any]: a__ =parent a__ =out_indices if out_indices is not None else [4] a__ =stage_names a__ =out_features a__ =backbone a__ =batch_size a__ =image_size a__ =num_channels a__ =use_pretrained_backbone a__ =is_training def __UpperCamelCase ( self) -> Optional[Any]: a__ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ =self.get_config() return config, pixel_values def __UpperCamelCase ( self) -> Tuple: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> str: a__ =TimmBackbone(config=lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): a__ =model(lowercase_) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __UpperCamelCase ( self) -> str: a__ =self.prepare_config_and_inputs() a__ , a__ =config_and_inputs a__ ={'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class lowercase_ (lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): snake_case =(TimmBackbone,) if is_torch_available() else () snake_case ={'feature-extraction': TimmBackbone} if is_torch_available() else {} snake_case =False snake_case =False snake_case =False snake_case =False def __UpperCamelCase ( self) -> Optional[Any]: a__ =TimmBackboneModelTester(self) a__ =ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_) def __UpperCamelCase ( self) -> Dict: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self) -> str: a__ ='resnet18' a__ ='microsoft/resnet-18' a__ =AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_) a__ =AutoBackbone.from_pretrained(lowercase_) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(len(timm_model.stage_names) , len(transformers_model.stage_names)) self.assertEqual(timm_model.channels , transformers_model.channels) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,)) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names) - 1]) a__ =AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_ , out_indices=[1, 2, 3]) a__ =AutoBackbone.from_pretrained(lowercase_ , out_indices=[1, 2, 3]) self.assertEqual(timm_model.out_indices , transformers_model.out_indices) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(timm_model.channels , transformers_model.channels) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> Dict: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> List[Any]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.') def __UpperCamelCase ( self) -> str: pass @unittest.skip('Safetensors is not supported by timm.') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self) -> Optional[Any]: pass def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) a__ =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ =[*signature.parameters.keys()] a__ =['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_) def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =True a__ =self.has_attentions # no need to test all models as different heads yield the same functionality a__ =self.all_model_classes[0] a__ =model_class(lowercase_) model.to(lowercase_) a__ =self._prepare_for_class(lowercase_ , lowercase_) a__ =model(**lowercase_) a__ =outputs[0][-1] # Encoder-/Decoder-only models a__ =outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a__ =outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowercase_) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) def __UpperCamelCase ( self) -> List[str]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_) self.assertEqual(len(result.feature_maps) , len(config.out_indices)) self.assertEqual(len(model.channels) , len(config.out_indices)) # Check output of last stage is taken if out_features=None, out_indices=None a__ =copy.deepcopy(lowercase_) a__ =None a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_) self.assertEqual(len(result.feature_maps) , 1) self.assertEqual(len(model.channels) , 1) # Check backbone can be initialized with fresh weights a__ =copy.deepcopy(lowercase_) a__ =False a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_)
20
_lowerCAmelCase: List[str] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def _lowercase( ): a__ =input('Enter message: ' ) a__ =input('Enter key [alphanumeric]: ' ) a__ =input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): a__ ='encrypt' a__ =encrypt_message(__a , __a ) elif mode.lower().startswith('d' ): a__ ='decrypt' a__ =decrypt_message(__a , __a ) print(f"""\n{mode.title()}ed message:""" ) print(__a ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'encrypt' ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'decrypt' ) def _lowercase( __a : str , __a : str , __a : str ): a__ =[] a__ =0 a__ =key.upper() for symbol in message: a__ =LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__a ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__a ): a__ =0 else: translated.append(__a ) return "".join(__a ) if __name__ == "__main__": main()
20
1
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: _lowerCAmelCase: Optional[int] = None _lowerCAmelCase: str = logging.get_logger(__name__) _lowerCAmelCase: Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} _lowerCAmelCase: List[Any] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 _lowerCAmelCase: Union[str, Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowercase_ (lowercase__ ): snake_case =VOCAB_FILES_NAMES snake_case =PRETRAINED_VOCAB_FILES_MAP snake_case =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case =['input_ids', 'attention_mask'] snake_case =TaTokenizer snake_case =[] def __init__( self , lowercase_=None , lowercase_=None , lowercase_="</s>" , lowercase_="<unk>" , lowercase_="<pad>" , lowercase_=100 , lowercase_=None , **lowercase_ , ) -> List[str]: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: a__ =[F"""<extra_id_{i}>""" for i in range(lowercase_)] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens a__ =len(set(filter(lambda lowercase_: bool('extra_id_' in str(lowercase_)) , lowercase_))) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens') super().__init__( lowercase_ , tokenizer_file=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , extra_ids=lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ , ) a__ =vocab_file a__ =False if not self.vocab_file else True a__ =extra_ids @staticmethod def __UpperCamelCase ( lowercase_ , lowercase_ , lowercase_) -> Dict: if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: a__ =TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , lowercase_ , ) return max_model_length def __UpperCamelCase ( self , lowercase_ , lowercase_ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowercase_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return a__ =os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase_): copyfile(self.vocab_file , lowercase_) logger.info(F"""Copy vocab file to {out_vocab_file}""") return (out_vocab_file,) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None) -> List[int]: a__ =token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: a__ =token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def __UpperCamelCase ( self , lowercase_ , lowercase_ = None) -> List[int]: a__ =[self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos) * [0] return len(token_ids_a + eos + token_ids_a + eos) * [0] def __UpperCamelCase ( self) -> Union[str, Any]: return list( set(filter(lambda lowercase_: bool(re.search(R'<extra_id_\d+>' , lowercase_)) is not None , self.additional_special_tokens))) def __UpperCamelCase ( self) -> List[Any]: return [self.convert_tokens_to_ids(lowercase_) for token in self.get_sentinel_tokens()]
20
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
1
from ..utils import DummyObject, requires_backends class lowercase_ (metaclass=lowercase__ ): snake_case =['keras_nlp'] def __init__( self , *lowercase_ , **lowercase_) -> str: requires_backends(self , ['keras_nlp'])
20
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =KandinskyVaaPriorPipeline snake_case =['prompt'] snake_case =['prompt', 'negative_prompt'] snake_case =[ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] snake_case =False @property def __UpperCamelCase ( self) -> Optional[int]: return 32 @property def __UpperCamelCase ( self) -> Tuple: return 32 @property def __UpperCamelCase ( self) -> int: return self.time_input_dim @property def __UpperCamelCase ( self) -> str: return self.time_input_dim * 4 @property def __UpperCamelCase ( self) -> Optional[int]: return 100 @property def __UpperCamelCase ( self) -> Union[str, Any]: a__ =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self) -> Union[str, Any]: torch.manual_seed(0) a__ =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowercase_) @property def __UpperCamelCase ( self) -> Tuple: torch.manual_seed(0) a__ ={ 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } a__ =PriorTransformer(**lowercase_) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 a__ =nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def __UpperCamelCase ( self) -> Any: torch.manual_seed(0) a__ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) a__ =CLIPVisionModelWithProjection(lowercase_) return model @property def __UpperCamelCase ( self) -> Optional[int]: a__ =CLIPImageProcessor( crop_size=224 , do_center_crop=lowercase_ , do_normalize=lowercase_ , do_resize=lowercase_ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor def __UpperCamelCase ( self) -> Any: a__ =self.dummy_prior a__ =self.dummy_image_encoder a__ =self.dummy_text_encoder a__ =self.dummy_tokenizer a__ =self.dummy_image_processor a__ =UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=lowercase_ , clip_sample_range=10.0 , ) a__ ={ 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def __UpperCamelCase ( self , lowercase_ , lowercase_=0) -> Tuple: if str(lowercase_).startswith('mps'): a__ =torch.manual_seed(lowercase_) else: a__ =torch.Generator(device=lowercase_).manual_seed(lowercase_) a__ ={ 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __UpperCamelCase ( self) -> int: a__ ='cpu' a__ =self.get_dummy_components() a__ =self.pipeline_class(**lowercase_) a__ =pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) a__ =pipe(**self.get_dummy_inputs(lowercase_)) a__ =output.image_embeds a__ =pipe( **self.get_dummy_inputs(lowercase_) , return_dict=lowercase_ , )[0] a__ =image[0, -10:] a__ =image_from_tuple[0, -10:] assert image.shape == (1, 32) a__ =np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def __UpperCamelCase ( self) -> List[Any]: a__ =torch_device == 'cpu' a__ =True a__ =False self._test_inference_batch_single_identical( test_max_difference=lowercase_ , relax_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , ) @skip_mps def __UpperCamelCase ( self) -> Optional[int]: a__ =torch_device == 'cpu' a__ =False self._test_attention_slicing_forward_pass( test_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , )
20
1
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _lowerCAmelCase: Optional[int] = logging.getLogger(__name__) def _lowercase( __a : Dict , __a : List[Any] ): a__ =np.argmax(__a , axis=1 ) return np.sum(outputs == labels ) def _lowercase( __a : Union[str, Any] ): with open(__a , encoding='utf_8' ) as f: a__ =csv.reader(__a ) a__ =[] next(__a ) # skip the first line for line in tqdm(__a ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _lowercase( __a : int , __a : List[Any] , __a : Dict , __a : Tuple , __a : List[Any] , __a : Tuple ): a__ =[] for dataset in encoded_datasets: a__ =len(__a ) a__ =np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) a__ =np.zeros((n_batch, 2) , dtype=np.intaa ) a__ =np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) a__ =np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(__a ): a__ =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] a__ =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] a__ =with_conta a__ =with_conta a__ =len(__a ) - 1 a__ =len(__a ) - 1 a__ =with_conta a__ =with_conta a__ =mc_label a__ =(input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(__a ) for t in all_inputs ) ) return tensor_datasets def _lowercase( ): a__ =argparse.ArgumentParser() parser.add_argument('--model_name' , type=__a , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=__a , type=__a , required=__a , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=__a , default='' ) parser.add_argument('--eval_dataset' , type=__a , default='' ) parser.add_argument('--seed' , type=__a , default=42 ) parser.add_argument('--num_train_epochs' , type=__a , default=3 ) parser.add_argument('--train_batch_size' , type=__a , default=8 ) parser.add_argument('--eval_batch_size' , type=__a , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=__a , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=__a , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=__a , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=__a , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=__a , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=__a , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=__a , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=__a , default=0.01 ) parser.add_argument('--lm_coef' , type=__a , default=0.9 ) parser.add_argument('--n_valid' , type=__a , default=374 ) parser.add_argument('--server_ip' , type=__a , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__a , default='' , help='Can be used for distant debugging.' ) a__ =parser.parse_args() print(__a ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__a ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) a__ =torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) a__ =torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(__a , __a ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset a__ =['_start_', '_delimiter_', '_classify_'] a__ =OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(__a ) a__ =tokenizer.convert_tokens_to_ids(__a ) a__ =OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(__a ) ) model.to(__a ) # Load and encode the datasets def tokenize_and_encode(__a : Any ): if isinstance(__a , __a ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(__a ) ) elif isinstance(__a , __a ): return obj return [tokenize_and_encode(__a ) for o in obj] logger.info('Encoding dataset...' ) a__ =load_rocstories_dataset(args.train_dataset ) a__ =load_rocstories_dataset(args.eval_dataset ) a__ =(train_dataset, eval_dataset) a__ =tokenize_and_encode(__a ) # Compute the max input length for the Transformer a__ =model.config.n_positions // 2 - 2 a__ =max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) a__ =min(__a , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders a__ =pre_process_datasets(__a , __a , __a , *__a ) a__ , a__ =tensor_datasets[0], tensor_datasets[1] a__ =TensorDataset(*__a ) a__ =RandomSampler(__a ) a__ =DataLoader(__a , sampler=__a , batch_size=args.train_batch_size ) a__ =TensorDataset(*__a ) a__ =SequentialSampler(__a ) a__ =DataLoader(__a , sampler=__a , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: a__ =args.max_steps a__ =args.max_steps // (len(__a ) // args.gradient_accumulation_steps) + 1 else: a__ =len(__a ) // args.gradient_accumulation_steps * args.num_train_epochs a__ =list(model.named_parameters() ) a__ =['bias', 'LayerNorm.bias', 'LayerNorm.weight'] a__ =[ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] a__ =AdamW(__a , lr=args.learning_rate , eps=args.adam_epsilon ) a__ =get_linear_schedule_with_warmup( __a , num_warmup_steps=args.warmup_steps , num_training_steps=__a ) if args.do_train: a__ , a__ , a__ =0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): a__ =0 a__ =0 a__ =tqdm(__a , desc='Training' ) for step, batch in enumerate(__a ): a__ =tuple(t.to(__a ) for t in batch ) a__ , a__ , a__ , a__ =batch a__ =model(__a , mc_token_ids=__a , lm_labels=__a , mc_labels=__a ) a__ =args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() a__ =( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 a__ ='Training loss: {:.2e} lr: {:.2e}'.format(__a , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer a__ =model.module if hasattr(__a , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` a__ =os.path.join(args.output_dir , __a ) a__ =os.path.join(args.output_dir , __a ) torch.save(model_to_save.state_dict() , __a ) model_to_save.config.to_json_file(__a ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned a__ =OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) a__ =OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(__a ) if args.do_eval: model.eval() a__ , a__ =0, 0 a__ , a__ =0, 0 for batch in tqdm(__a , desc='Evaluating' ): a__ =tuple(t.to(__a ) for t in batch ) a__ , a__ , a__ , a__ =batch with torch.no_grad(): a__ , a__ , a__ , a__ =model( __a , mc_token_ids=__a , lm_labels=__a , mc_labels=__a ) a__ =mc_logits.detach().cpu().numpy() a__ =mc_labels.to('cpu' ).numpy() a__ =accuracy(__a , __a ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 a__ =eval_loss / nb_eval_steps a__ =eval_accuracy / nb_eval_examples a__ =tr_loss / nb_tr_steps if args.do_train else None a__ ={'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} a__ =os.path.join(args.output_dir , 'eval_results.txt' ) with open(__a , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , __a , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
20
from manim import * class lowercase_ (lowercase__ ): def __UpperCamelCase ( self) -> List[Any]: a__ =Rectangle(height=0.5 , width=0.5) a__ =Rectangle(height=0.46 , width=0.46).set_stroke(width=0) a__ =[mem.copy() for i in range(6)] a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(lowercase_ , lowercase_).arrange(lowercase_ , buff=0) a__ =Text('CPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) cpu.move_to([-2.5, -0.5, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(4)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('GPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) gpu.move_to([-1, -1, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Model' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) model.move_to([3, -1.0, 0]) self.add(lowercase_) a__ =[] for i, rect in enumerate(lowercase_): rect.set_stroke(lowercase_) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) a__ =Rectangle(height=0.46 / 4 , width=0.46 / 3).set_stroke(width=0.0).set_fill(lowercase_ , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=lowercase_) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0) self.add(lowercase_) cpu_targs.append(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Loaded Checkpoint' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4) checkpoint.move_to([3, 0.5, 0]) a__ =Square(side_length=2.2) key.move_to([-5, 2, 0]) a__ =MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(lowercase_ , lowercase_) a__ =MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left()) a__ =MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(lowercase_) , Write(lowercase_)) self.play(Write(lowercase_ , run_time=1) , Create(lowercase_ , run_time=1)) a__ =[] a__ =[] for i, rect in enumerate(lowercase_): a__ =fill.copy().set_fill(lowercase_ , opacity=0.7) target.move_to(lowercase_) first_animations.append(GrowFromCenter(lowercase_ , run_time=1)) a__ =target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.target.move_to(cpu_right_col_base[i - 5]) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5)) self.play(*lowercase_) self.play(*lowercase_) self.wait()
20
1
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _lowercase( __a : Optional[Any] ): return EnvironmentCommand() class lowercase_ (lowercase__ ): @staticmethod def __UpperCamelCase ( lowercase_) -> Optional[int]: a__ =parser.add_parser('env') download_parser.set_defaults(func=lowercase_) def __UpperCamelCase ( self) -> Dict: a__ =huggingface_hub.__version__ a__ ='not installed' a__ ='NA' if is_torch_available(): import torch a__ =torch.__version__ a__ =torch.cuda.is_available() a__ ='not installed' if is_transformers_available(): import transformers a__ =transformers.__version__ a__ ='not installed' if is_accelerate_available(): import accelerate a__ =accelerate.__version__ a__ ='not installed' if is_xformers_available(): import xformers a__ =xformers.__version__ a__ ={ '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n') print(self.format_dict(lowercase_)) return info @staticmethod def __UpperCamelCase ( lowercase_) -> List[Any]: return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()]) + "\n"
20
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _lowerCAmelCase: Any = sys.version_info >= (3, 10) def _lowercase( __a : int=None , __a : Any=None ): return field(default_factory=lambda: default , metadata=__a ) @dataclass class lowercase_ : snake_case =42 snake_case =42 snake_case =42 snake_case =42 @dataclass class lowercase_ : snake_case =42 snake_case =field(default='toto' , metadata={'help': 'help message'} ) @dataclass class lowercase_ : snake_case =False snake_case =True snake_case =None class lowercase_ (lowercase__ ): snake_case ='titi' snake_case ='toto' class lowercase_ (lowercase__ ): snake_case ='titi' snake_case ='toto' snake_case =42 @dataclass class lowercase_ : snake_case ="toto" def __UpperCamelCase ( self) -> List[str]: a__ =BasicEnum(self.foo) @dataclass class lowercase_ : snake_case ="toto" def __UpperCamelCase ( self) -> List[str]: a__ =MixedTypeEnum(self.foo) @dataclass class lowercase_ : snake_case =None snake_case =field(default=lowercase__ , metadata={'help': 'help message'} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) @dataclass class lowercase_ : snake_case =list_field(default=[] ) snake_case =list_field(default=[1, 2, 3] ) snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] ) snake_case =list_field(default=[0.1, 0.2, 0.3] ) @dataclass class lowercase_ : snake_case =field() snake_case =field() snake_case =field() def __UpperCamelCase ( self) -> List[Any]: a__ =BasicEnum(self.required_enum) @dataclass class lowercase_ : snake_case =42 snake_case =field() snake_case =None snake_case =field(default='toto' , metadata={'help': 'help message'} ) snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class lowercase_ : snake_case =False snake_case =True snake_case =None @dataclass class lowercase_ : snake_case =None snake_case =field(default=lowercase__ , metadata={'help': 'help message'} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self , lowercase_ , lowercase_) -> int: self.assertEqual(len(a._actions) , len(b._actions)) for x, y in zip(a._actions , b._actions): a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'} a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , lowercase_) and yy.get('choices' , lowercase_): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](lowercase_) , yy['type'](lowercase_)) del xx["type"], yy["type"] self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_) expected.add_argument('--bar' , type=lowercase_ , required=lowercase_) expected.add_argument('--baz' , type=lowercase_ , required=lowercase_) expected.add_argument('--flag' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') self.argparsersEqual(lowercase_ , lowercase_) a__ =['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((a__) , ) =parser.parse_args_into_dataclasses(lowercase_ , look_for_args_file=lowercase_) self.assertFalse(example.flag) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=lowercase_) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message') self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Optional[Any]: a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') expected.add_argument('--baz' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=lowercase_ , dest='baz') expected.add_argument('--opt' , type=lowercase_ , default=lowercase_) a__ =[WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_) for dataclass_type in dataclass_types: a__ =HfArgumentParser(lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', '--no_baz']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', '--baz']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(args.foo , 'toto') a__ =parser.parse_args_into_dataclasses([])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto) a__ =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') a__ =parser.parse_args_into_dataclasses(['--foo', 'titi'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi) a__ =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) a__ =parser.parse_args_into_dataclasses(['--foo', '42'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo) def __UpperCamelCase ( self) -> List[Any]: @dataclass class lowercase_ : snake_case ="toto" a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(args.foo , 'toto') a__ =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') a__ =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) def __UpperCamelCase ( self) -> Optional[int]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=lowercase_) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=lowercase_) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual( lowercase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3]) , ) a__ =parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split()) self.assertEqual(lowercase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7])) def __UpperCamelCase ( self) -> Dict: a__ =argparse.ArgumentParser() expected.add_argument('--foo' , default=lowercase_ , type=lowercase_) expected.add_argument('--bar' , default=lowercase_ , type=lowercase_ , help='help message') expected.add_argument('--baz' , default=lowercase_ , type=lowercase_) expected.add_argument('--ces' , nargs='+' , default=[] , type=lowercase_) expected.add_argument('--des' , nargs='+' , default=[] , type=lowercase_) a__ =[OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_) for dataclass_type in dataclass_types: a__ =HfArgumentParser(lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , bar=lowercase_ , baz=lowercase_ , ces=[] , des=[])) a__ =parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split()) self.assertEqual(lowercase_ , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3])) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=lowercase_ , required=lowercase_) expected.add_argument('--required_str' , type=lowercase_ , required=lowercase_) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , ) self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , ) expected.add_argument('--opt' , type=lowercase_ , default=lowercase_) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message') expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_) self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } a__ =parser.parse_dict(lowercase_)[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(lowercase_ , parser.parse_dict , lowercase_ , allow_extra_keys=lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: a__ =os.path.join(lowercase_ , 'temp_json') os.mkdir(lowercase_) with open(temp_local_path + '.json' , 'w+') as f: json.dump(lowercase_ , lowercase_) a__ =parser.parse_yaml_file(Path(temp_local_path + '.json'))[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Any: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: a__ =os.path.join(lowercase_ , 'temp_yaml') os.mkdir(lowercase_) with open(temp_local_path + '.yaml' , 'w+') as f: yaml.dump(lowercase_ , lowercase_) a__ =parser.parse_yaml_file(Path(temp_local_path + '.yaml'))[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) self.assertIsNotNone(lowercase_)
20
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowercase_ (unittest.TestCase ): @slow def __UpperCamelCase ( self) -> Optional[int]: a__ =AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowercase_).to(lowercase_) a__ =AutoTokenizer.from_pretrained('google/mt5-small') a__ =tokenizer('Hello there' , return_tensors='pt').input_ids a__ =tokenizer('Hi I am' , return_tensors='pt').input_ids a__ =model(input_ids.to(lowercase_) , labels=labels.to(lowercase_)).loss a__ =-(labels.shape[-1] * loss.item()) a__ =-84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
20
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase: List[Any] = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class lowercase_ (lowercase__ ): snake_case ='autoformer' snake_case ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , lowercase_ = None , lowercase_ = None , lowercase_ = "student_t" , lowercase_ = "nll" , lowercase_ = 1 , lowercase_ = [1, 2, 3, 4, 5, 6, 7] , lowercase_ = True , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 64 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 32 , lowercase_ = 32 , lowercase_ = "gelu" , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 100 , lowercase_ = 0.02 , lowercase_ = True , lowercase_=True , lowercase_ = 10 , lowercase_ = 25 , lowercase_ = 3 , **lowercase_ , ) -> Union[str, Any]: # time series specific configuration a__ =prediction_length a__ =context_length if context_length is not None else prediction_length a__ =distribution_output a__ =loss a__ =input_size a__ =num_time_features a__ =lags_sequence a__ =scaling a__ =num_dynamic_real_features a__ =num_static_real_features a__ =num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`') a__ =cardinality else: a__ =[0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`') a__ =embedding_dimension else: a__ =[min(50 , (cat + 1) // 2) for cat in self.cardinality] a__ =num_parallel_samples # Transformer architecture configuration a__ =input_size * len(self.lags_sequence) + self._number_of_features a__ =d_model a__ =encoder_attention_heads a__ =decoder_attention_heads a__ =encoder_ffn_dim a__ =decoder_ffn_dim a__ =encoder_layers a__ =decoder_layers a__ =dropout a__ =attention_dropout a__ =activation_dropout a__ =encoder_layerdrop a__ =decoder_layerdrop a__ =activation_function a__ =init_std a__ =use_cache # Autoformer a__ =label_length a__ =moving_average a__ =autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def __UpperCamelCase ( self) -> int: return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
20
1
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class lowercase_ (lowercase__ ): def __init__( self , lowercase_ , lowercase_) -> Tuple: a__ =params a__ =np.array(lowercase_) a__ =np.array([len(lowercase_) for t in data]) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , lowercase_) -> List[str]: return (self.token_ids[index], self.lengths[index]) def __len__( self) -> Any: return len(self.lengths) def __UpperCamelCase ( self) -> Any: assert len(self.token_ids) == len(self.lengths) assert all(self.lengths[i] == len(self.token_ids[i]) for i in range(len(self.lengths))) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =self.params.max_model_input_size a__ =self.lengths > max_len logger.info(F"""Splitting {sum(lowercase_)} too long sequences.""") def divide_chunks(lowercase_ , lowercase_): return [l[i : i + n] for i in range(0 , len(lowercase_) , lowercase_)] a__ =[] a__ =[] if self.params.mlm: a__ , a__ =self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: a__ , a__ =self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_) new_lengths.append(len_) else: a__ =[] for sub_s in divide_chunks(seq_ , max_len - 2): if sub_s[0] != cls_id: a__ =np.insert(lowercase_ , 0 , lowercase_) if sub_s[-1] != sep_id: a__ =np.insert(lowercase_ , len(lowercase_) , lowercase_) assert len(lowercase_) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(lowercase_) new_tok_ids.extend(lowercase_) new_lengths.extend([len(lowercase_) for l in sub_seqs]) a__ =np.array(lowercase_) a__ =np.array(lowercase_) def __UpperCamelCase ( self) -> Tuple: a__ =len(self) a__ =self.lengths > 11 a__ =self.token_ids[indices] a__ =self.lengths[indices] a__ =len(self) logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""") def __UpperCamelCase ( self) -> Any: if "unk_token" not in self.params.special_tok_ids: return else: a__ =self.params.special_tok_ids['unk_token'] a__ =len(self) a__ =np.array([np.count_nonzero(a == unk_token_id) for a in self.token_ids]) a__ =(unk_occs / self.lengths) < 0.5 a__ =self.token_ids[indices] a__ =self.lengths[indices] a__ =len(self) logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""") def __UpperCamelCase ( self) -> List[str]: if not self.params.is_master: return logger.info(F"""{len(self)} sequences""") # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __UpperCamelCase ( self , lowercase_) -> str: a__ =[t[0] for t in batch] a__ =[t[1] for t in batch] assert len(lowercase_) == len(lowercase_) # Max for paddings a__ =max(lowercase_) # Pad token ids if self.params.mlm: a__ =self.params.special_tok_ids['pad_token'] else: a__ =self.params.special_tok_ids['unk_token'] a__ =[list(t.astype(lowercase_)) + [pad_idx] * (max_seq_len_ - len(lowercase_)) for t in token_ids] assert len(tk_) == len(lowercase_) assert all(len(lowercase_) == max_seq_len_ for t in tk_) a__ =torch.tensor(tk_) # (bs, max_seq_len_) a__ =torch.tensor(lowercase_) # (bs) return tk_t, lg_t
20
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowerCAmelCase: List[Any] = logging.get_logger(__name__) class lowercase_ (lowercase__ ): snake_case =['pixel_values'] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = None , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: super().__init__(**lowercase_) a__ =size if size is not None else {'shortest_edge': 256} a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) a__ =crop_size if crop_size is not None else {'height': 224, 'width': 224} a__ =get_size_dict(lowercase_ , param_name='crop_size') a__ =do_resize a__ =size a__ =resample a__ =do_center_crop a__ =crop_size a__ =do_rescale a__ =rescale_factor a__ =do_normalize a__ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a__ =image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") a__ =get_resize_output_image_size(lowercase_ , size=size['shortest_edge'] , default_to_square=lowercase_) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: a__ =get_size_dict(lowercase_) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""") return center_crop(lowercase_ , size=(size['height'], size['width']) , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_) -> np.ndarray: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> Tuple: a__ =do_resize if do_resize is not None else self.do_resize a__ =size if size is not None else self.size a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) a__ =resample if resample is not None else self.resample a__ =do_center_crop if do_center_crop is not None else self.do_center_crop a__ =crop_size if crop_size is not None else self.crop_size a__ =get_size_dict(lowercase_ , param_name='crop_size') a__ =do_rescale if do_rescale is not None else self.do_rescale a__ =rescale_factor if rescale_factor is not None else self.rescale_factor a__ =do_normalize if do_normalize is not None else self.do_normalize a__ =image_mean if image_mean is not None else self.image_mean a__ =image_std if image_std is not None else self.image_std a__ =make_list_of_images(lowercase_) if not valid_images(lowercase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a__ =[to_numpy_array(lowercase_) for image in images] if do_resize: a__ =[self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_) for image in images] if do_center_crop: a__ =[self.center_crop(image=lowercase_ , size=lowercase_) for image in images] if do_rescale: a__ =[self.rescale(image=lowercase_ , scale=lowercase_) for image in images] if do_normalize: a__ =[self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_) for image in images] a__ =[to_channel_dimension_format(lowercase_ , lowercase_) for image in images] a__ ={'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None) -> str: a__ =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_) != len(lowercase_): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(lowercase_): a__ =target_sizes.numpy() a__ =[] for idx in range(len(lowercase_)): a__ =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_) a__ =resized_logits[0].argmax(dim=0) semantic_segmentation.append(lowercase_) else: a__ =logits.argmax(dim=1) a__ =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
20
1
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
from importlib import import_module from .logging import get_logger _lowerCAmelCase: str = get_logger(__name__) class lowercase_ : def __init__( self , lowercase_ , lowercase_=None) -> Tuple: a__ =attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__'): setattr(self , lowercase_ , getattr(lowercase_ , lowercase_)) a__ =module._original_module if isinstance(lowercase_ , _PatchedModuleObj) else module class lowercase_ : snake_case =[] def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None) -> List[str]: a__ =obj a__ =target a__ =new a__ =target.split('.')[0] a__ ={} a__ =attrs or [] def __enter__( self) -> Optional[int]: *a__ , a__ =self.target.split('.') # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowercase_)): try: a__ =import_module('.'.join(submodules[: i + 1])) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): a__ =getattr(self.obj , lowercase_) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowercase_ , _PatchedModuleObj) and obj_attr._original_module is submodule) ): a__ =obj_attr # patch at top level setattr(self.obj , lowercase_ , _PatchedModuleObj(lowercase_ , attrs=self.attrs)) a__ =getattr(self.obj , lowercase_) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowercase_ , lowercase_ , _PatchedModuleObj(getattr(lowercase_ , lowercase_ , lowercase_) , attrs=self.attrs)) a__ =getattr(lowercase_ , lowercase_) # finally set the target attribute setattr(lowercase_ , lowercase_ , self.new) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: a__ =getattr(import_module('.'.join(lowercase_)) , lowercase_) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowercase_) is attr_value: a__ =getattr(self.obj , lowercase_) setattr(self.obj , lowercase_ , self.new) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" a__ =globals()['__builtins__'][target_attr] setattr(self.obj , lowercase_ , self.new) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""") def __exit__( self , *lowercase_) -> str: for attr in list(self.original): setattr(self.obj , lowercase_ , self.original.pop(lowercase_)) def __UpperCamelCase ( self) -> Any: self.__enter__() self._active_patches.append(self) def __UpperCamelCase ( self) -> Union[str, Any]: try: self._active_patches.remove(self) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
20
1
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class lowercase_ : def __init__( self , lowercase_ , lowercase_=14 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=99 , lowercase_=32 , lowercase_=4 , lowercase_=4 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=0.02 , ) -> int: a__ =parent a__ =batch_size a__ =seq_length a__ =is_training a__ =use_input_mask a__ =use_token_type_ids a__ =use_labels a__ =vocab_size a__ =hidden_size a__ =rotary_dim a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =max_position_embeddings a__ =initializer_range a__ =None a__ =vocab_size - 1 a__ =vocab_size - 1 a__ =vocab_size - 1 def __UpperCamelCase ( self) -> List[Any]: a__ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a__ =None if self.use_input_mask: a__ =random_attention_mask([self.batch_size, self.seq_length]) a__ =GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowercase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def __UpperCamelCase ( self) -> str: a__ =self.prepare_config_and_inputs() a__ , a__ , a__ =config_and_inputs a__ ={'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Any: a__ =20 a__ =model_class_name(lowercase_) a__ =model.init_cache(input_ids.shape[0] , lowercase_) a__ =jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4') a__ =jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) a__ =model( input_ids[:, :-1] , attention_mask=lowercase_ , past_key_values=lowercase_ , position_ids=lowercase_ , ) a__ =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4') a__ =model( input_ids[:, -1:] , attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , position_ids=lowercase_ , ) a__ =model(lowercase_) a__ =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""") def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> str: a__ =20 a__ =model_class_name(lowercase_) a__ =jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , ) a__ =model.init_cache(input_ids.shape[0] , lowercase_) a__ =jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) a__ =model( input_ids[:, :-1] , attention_mask=lowercase_ , past_key_values=lowercase_ , position_ids=lowercase_ , ) a__ =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4') a__ =model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowercase_ , position_ids=lowercase_ , ) a__ =model(lowercase_ , attention_mask=lowercase_) a__ =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""") @require_flax class lowercase_ (lowercase__ , lowercase__ , unittest.TestCase ): snake_case =(FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () snake_case =(FlaxGPTJForCausalLM,) if is_flax_available() else () def __UpperCamelCase ( self) -> List[Any]: a__ =FlaxGPTJModelTester(self) def __UpperCamelCase ( self) -> Tuple: for model_class_name in self.all_model_classes: a__ , a__ , a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Any: for model_class_name in self.all_model_classes: a__ , a__ , a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowercase_ , lowercase_ , lowercase_ , lowercase_) @tooslow def __UpperCamelCase ( self) -> Any: a__ =GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left') a__ =tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=lowercase_ , truncation=lowercase_) a__ =FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B') a__ =False a__ =model.config.eos_token_id a__ =jax.jit(model.generate) a__ =jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id).sequences a__ =tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_) a__ =[ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(lowercase_ , lowercase_) @is_pt_flax_cross_test def __UpperCamelCase ( self) -> List[str]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs a__ =self._prepare_for_class(lowercase_ , lowercase_) a__ ={k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class a__ =model_class.__name__[4:] # Skip the "Flax" at the beginning a__ =getattr(lowercase_ , lowercase_) a__ , a__ =pt_inputs['input_ids'].shape a__ =np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(lowercase_): a__ =0 a__ =1 a__ =0 a__ =1 a__ =pt_model_class(lowercase_).eval() a__ =model_class(lowercase_ , dtype=jnp.floataa) a__ =convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_) a__ =fx_state with torch.no_grad(): a__ =pt_model(**lowercase_).to_tuple() a__ =fx_model(**lowercase_).to_tuple() self.assertEqual(len(lowercase_) , len(lowercase_) , 'Output lengths differ between Flax and PyTorch') for fx_output, pt_output in zip(lowercase_ , lowercase_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowercase_) a__ =model_class.from_pretrained(lowercase_ , from_pt=lowercase_) a__ =fx_model_loaded(**lowercase_).to_tuple() self.assertEqual( len(lowercase_) , len(lowercase_) , 'Output lengths differ between Flax and PyTorch') for fx_output_loaded, pt_output in zip(lowercase_ , lowercase_): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2) @is_pt_flax_cross_test def __UpperCamelCase ( self) -> Dict: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs a__ =self._prepare_for_class(lowercase_ , lowercase_) a__ ={k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class a__ =model_class.__name__[4:] # Skip the "Flax" at the beginning a__ =getattr(lowercase_ , lowercase_) a__ =pt_model_class(lowercase_).eval() a__ =model_class(lowercase_ , dtype=jnp.floataa) a__ =load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params) a__ , a__ =pt_inputs['input_ids'].shape a__ =np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(lowercase_): a__ =0 a__ =1 a__ =0 a__ =1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): a__ =pt_model(**lowercase_).to_tuple() a__ =fx_model(**lowercase_).to_tuple() self.assertEqual(len(lowercase_) , len(lowercase_) , 'Output lengths differ between Flax and PyTorch') for fx_output, pt_output in zip(lowercase_ , lowercase_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowercase_) a__ =pt_model_class.from_pretrained(lowercase_ , from_flax=lowercase_) with torch.no_grad(): a__ =pt_model_loaded(**lowercase_).to_tuple() self.assertEqual( len(lowercase_) , len(lowercase_) , 'Output lengths differ between Flax and PyTorch') for fx_output, pt_output in zip(lowercase_ , lowercase_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2) @tooslow def __UpperCamelCase ( self) -> Tuple: for model_class_name in self.all_model_classes: a__ =model_class_name.from_pretrained('EleutherAI/gpt-j-6B') a__ =model(np.ones((1, 1))) self.assertIsNotNone(lowercase_)
20
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": _lowerCAmelCase: int = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def _lowercase( __a : Optional[Any] ): if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) _lowerCAmelCase: str = parser.parse_args() _lowerCAmelCase: Tuple = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
20
1
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =DebertaTokenizer snake_case =True snake_case =DebertaTokenizerFast def __UpperCamelCase ( self) -> Tuple: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a__ =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] a__ =dict(zip(lowercase_ , range(len(lowercase_)))) a__ =['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] a__ ={'unk_token': '[UNK]'} a__ =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) a__ =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(lowercase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(lowercase_)) def __UpperCamelCase ( self , **lowercase_) -> int: kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_) def __UpperCamelCase ( self , lowercase_) -> Optional[int]: a__ ='lower newer' a__ ='lower newer' return input_text, output_text def __UpperCamelCase ( self) -> str: a__ =self.get_tokenizer() a__ ='lower newer' a__ =['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] a__ =tokenizer.tokenize(lowercase_) self.assertListEqual(lowercase_ , lowercase_) a__ =tokens + [tokenizer.unk_token] a__ =[0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_) , lowercase_) def __UpperCamelCase ( self) -> List[str]: a__ =self.get_tokenizer() a__ =tokenizer('Hello' , 'World') a__ =[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] , lowercase_) @slow def __UpperCamelCase ( self) -> int: a__ =self.tokenizer_class.from_pretrained('microsoft/deberta-base') a__ =tokenizer.encode('sequence builders' , add_special_tokens=lowercase_) a__ =tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase_) a__ =tokenizer.encode( 'sequence builders' , add_special_tokens=lowercase_ , add_prefix_space=lowercase_) a__ =tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowercase_ , add_prefix_space=lowercase_) a__ =tokenizer.build_inputs_with_special_tokens(lowercase_) a__ =tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __UpperCamelCase ( self) -> str: a__ =[self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class) for tokenizer_class in tokenizer_classes: a__ =tokenizer_class.from_pretrained('microsoft/deberta-base') a__ =[ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] a__ =tokenizer(lowercase_ , padding=lowercase_) a__ =[tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_) for seq in encoding['input_ids']] # fmt: off a__ ={ 'input_ids': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on a__ =[ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data , lowercase_) for expected, decoded in zip(lowercase_ , lowercase_): self.assertEqual(lowercase_ , lowercase_)
20
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _lowerCAmelCase: Tuple = get_logger(__name__) _lowerCAmelCase: List[str] = Path(__file__).parent / 'model_card_template.md' _lowerCAmelCase: Any = uuida().hex _lowerCAmelCase: List[Any] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase: int = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase: Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def _lowercase( __a : Union[Dict, str, None] = None ): a__ =f"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"""; torch/{_torch_version}""" if is_flax_available(): ua += f"""; jax/{_jax_version}""" ua += f"""; flax/{_flax_version}""" if is_onnx_available(): ua += f"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__a , __a ): ua += "; " + "; ".join(f"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__a , __a ): ua += "; " + user_agent return ua def _lowercase( __a : str , __a : Optional[str] = None , __a : Optional[str] = None ): if token is None: a__ =HfFolder.get_token() if organization is None: a__ =whoami(__a )['name'] return f"""{username}/{model_id}""" else: return f"""{organization}/{model_id}""" def _lowercase( __a : Union[str, Any] , __a : Dict ): if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(__a , 'local_rank' ) and args.local_rank not in [-1, 0]: return a__ =args.hub_token if hasattr(__a , 'hub_token' ) else None a__ =get_full_repo_name(__a , token=__a ) a__ =ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__a , model_name=__a , repo_name=__a , dataset_name=args.dataset_name if hasattr(__a , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__a , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__a , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(__a , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__a , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__a , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__a , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__a , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__a , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(__a , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__a , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) a__ =os.path.join(args.output_dir , 'README.md' ) model_card.save(__a ) def _lowercase( __a : Optional[str] , __a : Optional[str] = None ): if resolved_file is None or commit_hash is not None: return commit_hash a__ =str(Path(__a ).as_posix() ) a__ =re.search(r'snapshots/([^/]+)/' , __a ) if search is None: return None a__ =search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__a ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _lowerCAmelCase: List[str] = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) _lowerCAmelCase: List[str] = os.path.join(hf_cache_home, 'diffusers') def _lowercase( __a : Optional[str] = None , __a : Optional[str] = None ): if new_cache_dir is None: a__ =DIFFUSERS_CACHE if old_cache_dir is None: a__ =old_diffusers_cache a__ =Path(__a ).expanduser() a__ =Path(__a ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): a__ =new_cache_dir / old_blob_path.relative_to(__a ) new_blob_path.parent.mkdir(parents=__a , exist_ok=__a ) os.replace(__a , __a ) try: os.symlink(__a , __a ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _lowerCAmelCase: Dict = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): _lowerCAmelCase: int = 0 else: with open(cache_version_file) as f: try: _lowerCAmelCase: List[Any] = int(f.read()) except ValueError: _lowerCAmelCase: Any = 0 if cache_version < 1: _lowerCAmelCase: str = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: _lowerCAmelCase: Optional[Any] = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ 'the directory exists and can be written to.' ) def _lowercase( __a : str , __a : Optional[str] = None ): if variant is not None: a__ =weights_name.split('.' ) a__ =splits[:-1] + [variant] + splits[-1:] a__ ='.'.join(__a ) return weights_name def _lowercase( __a : Union[str, Any] , *, __a : Optional[Any] , __a : Optional[Any] , __a : List[Any] , __a : Tuple , __a : Optional[Any] , __a : Dict , __a : str , __a : int , __a : Tuple , __a : Union[str, Any] , __a : int=None , ): a__ =str(__a ) if os.path.isfile(__a ): return pretrained_model_name_or_path elif os.path.isdir(__a ): if os.path.isfile(os.path.join(__a , __a ) ): # Load from a PyTorch checkpoint a__ =os.path.join(__a , __a ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__a , __a , __a ) ): a__ =os.path.join(__a , __a , __a ) return model_file else: raise EnvironmentError( f"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__a ).base_version ) >= version.parse('0.20.0' ) ): try: a__ =hf_hub_download( __a , filename=_add_variant(__a , __a ) , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) warnings.warn( f"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __a , ) return model_file except: # noqa: E722 warnings.warn( f"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__a , __a )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__a , __a )}' so that the correct variant file can be added.""" , __a , ) try: # 2. Load model file as usual a__ =hf_hub_download( __a , filename=__a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( f"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ 'this model name. Check the model page at ' f"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( f"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( f"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" f""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" f""" directory containing a file named {weights_name} or""" ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( f"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' f"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ f"""containing a file named {weights_name}""" )
20
1
import sys from collections import defaultdict class lowercase_ : def __init__( self) -> List[Any]: a__ =[] def __UpperCamelCase ( self , lowercase_) -> List[str]: return self.node_position[vertex] def __UpperCamelCase ( self , lowercase_ , lowercase_) -> Any: a__ =pos def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> List[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: a__ =2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: a__ =2 * start + 1 else: a__ =2 * start + 2 if heap[smallest_child] < heap[start]: a__ , a__ =heap[smallest_child], positions[smallest_child] a__ , a__ =( heap[start], positions[start], ) a__ , a__ =temp, tempa a__ =self.get_position(positions[smallest_child]) self.set_position( positions[smallest_child] , self.get_position(positions[start])) self.set_position(positions[start] , lowercase_) self.top_to_bottom(lowercase_ , lowercase_ , lowercase_ , lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> str: a__ =position[index] while index != 0: a__ =int((index - 2) / 2) if index % 2 == 0 else int((index - 1) / 2) if val < heap[parent]: a__ =heap[parent] a__ =position[parent] self.set_position(position[parent] , lowercase_) else: a__ =val a__ =temp self.set_position(lowercase_ , lowercase_) break a__ =parent else: a__ =val a__ =temp self.set_position(lowercase_ , 0) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> str: a__ =len(lowercase_) // 2 - 1 for i in range(lowercase_ , -1 , -1): self.top_to_bottom(lowercase_ , lowercase_ , len(lowercase_) , lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> Optional[Any]: a__ =positions[0] a__ =sys.maxsize self.top_to_bottom(lowercase_ , 0 , len(lowercase_) , lowercase_) return temp def _lowercase( __a : Any ): a__ =Heap() a__ =[0] * len(__a ) a__ =[-1] * len(__a ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph a__ =[] # Heap of Distance of vertices from their neighboring vertex a__ =[] for vertex in range(len(__a ) ): distance_tv.append(sys.maxsize ) positions.append(__a ) heap.node_position.append(__a ) a__ =[] a__ =1 a__ =sys.maxsize for neighbor, distance in adjacency_list[0]: a__ =0 a__ =distance heap.heapify(__a , __a ) for _ in range(1 , len(__a ) ): a__ =heap.delete_minimum(__a , __a ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) a__ =1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__a )] ): a__ =distance heap.bottom_to_top( __a , heap.get_position(__a ) , __a , __a ) a__ =vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCAmelCase: str = int(input('Enter number of edges: ').strip()) _lowerCAmelCase: Optional[int] = defaultdict(list) for _ in range(edges_number): _lowerCAmelCase: str = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
20
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger() def _lowercase( __a : int , __a : str , __a : LevitConfig , __a : Path , __a : bool = True ): print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": a__ =timm.create_model('levit_128s' , pretrained=__a ) else: a__ =timm.create_model('levit_128' , pretrained=__a ) if hidden_sizes == 192: a__ =timm.create_model('levit_192' , pretrained=__a ) if hidden_sizes == 256: a__ =timm.create_model('levit_256' , pretrained=__a ) if hidden_sizes == 384: a__ =timm.create_model('levit_384' , pretrained=__a ) from_model.eval() a__ =LevitForImageClassificationWithTeacher(__a ).eval() a__ =OrderedDict() a__ =from_model.state_dict() a__ =list(from_model.state_dict().keys() ) a__ =list(our_model.state_dict().keys() ) print(len(__a ) , len(__a ) ) for i in range(len(__a ) ): a__ =weights[og_keys[i]] our_model.load_state_dict(__a ) a__ =torch.randn((2, 3, 224, 224) ) a__ =from_model(__a ) a__ =our_model(__a ).logits assert torch.allclose(__a , __a ), "The model logits don't match the original one." a__ =name print(__a ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) a__ =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def _lowercase( __a : Path , __a : str = None , __a : bool = True ): a__ ='imagenet-1k-id2label.json' a__ =1000 a__ =(1, num_labels) a__ ='huggingface/label-files' a__ =num_labels a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} a__ =partial(__a , num_labels=__a , idalabel=__a , labelaid=__a ) a__ ={ 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } a__ ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __a , names_to_config[model_name] , __a , __a ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __a , __a , __a , __a ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _lowerCAmelCase: Union[str, Any] = parser.parse_args() _lowerCAmelCase: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
20
1
from __future__ import annotations from collections.abc import Callable _lowerCAmelCase: Dict = list[list[float | int]] def _lowercase( __a : Matrix , __a : Matrix ): a__ =len(__a ) a__ =[[0 for _ in range(size + 1 )] for _ in range(__a )] a__ =42 a__ =42 a__ =42 a__ =42 a__ =42 a__ =42 for row in range(__a ): for col in range(__a ): a__ =matrix[row][col] a__ =vector[row][0] a__ =0 a__ =0 while row < size and col < size: # pivoting a__ =max((abs(augmented[rowa][col] ), rowa) for rowa in range(__a , __a ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: a__ , a__ =augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __a ): a__ =augmented[rowa][col] / augmented[row][col] a__ =0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __a ): for row in range(__a ): a__ =augmented[row][col] / augmented[col][col] for cola in range(__a , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__a ) ] def _lowercase( __a : list[int] ): a__ =len(__a ) a__ =[[0 for _ in range(__a )] for _ in range(__a )] a__ =[[0] for _ in range(__a )] a__ =42 a__ =42 a__ =42 a__ =42 for x_val, y_val in enumerate(__a ): for col in range(__a ): a__ =(x_val + 1) ** (size - col - 1) a__ =y_val a__ =solve(__a , __a ) def interpolated_func(__a : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__a ) ) return interpolated_func def _lowercase( __a : int ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def _lowercase( __a : Callable[[int], int] = question_function , __a : int = 10 ): a__ =[func(__a ) for x_val in range(1 , order + 1 )] a__ =[ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] a__ =0 a__ =42 a__ =42 for poly in polynomials: a__ =1 while func(__a ) == poly(__a ): x_val += 1 ret += poly(__a ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
20
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowerCAmelCase: int = logging.get_logger(__name__) _lowerCAmelCase: Union[str, Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } _lowerCAmelCase: Tuple = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _lowercase( __a : Optional[Any] ): a__ ={} with open(__a , 'r' ) as file: for line_number, line in enumerate(__a ): a__ =line.strip() if line: a__ =line.split() a__ =line_number a__ =words[0] a__ =value return result def _lowercase( __a : Dict , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : str ): for attribute in key.split('.' ): a__ =getattr(__a , __a ) a__ =None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__a ): a__ =PARAM_MAPPING[full_name.split('.' )[-1]] a__ ='param' if weight_type is not None and weight_type != "param": a__ =getattr(__a , __a ).shape elif weight_type is not None and weight_type == "param": a__ =hf_pointer for attribute in hf_param_name.split('.' ): a__ =getattr(__a , __a ) a__ =shape_pointer.shape # let's reduce dimension a__ =value[0] else: a__ =hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a__ =value elif weight_type == "weight_g": a__ =value elif weight_type == "weight_v": a__ =value elif weight_type == "bias": a__ =value elif weight_type == "param": for attribute in hf_param_name.split('.' ): a__ =getattr(__a , __a ) a__ =value else: a__ =value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _lowercase( __a : Optional[int] , __a : int , __a : Optional[int] , __a : Optional[Any] , __a : List[Any] ): a__ =None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__a ): a__ =PARAM_MAPPING[full_name.split('.' )[-1]] a__ ='param' if weight_type is not None and weight_type != "param": a__ ='.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": a__ ='.'.join([key, hf_param_name] ) else: a__ =key a__ =value if 'lm_head' in full_key else value[0] _lowerCAmelCase: Dict = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _lowercase( __a : Dict , __a : int , __a : int=None , __a : List[str]=None ): a__ =False for key, mapped_key in MAPPING.items(): a__ ='wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: a__ =True if "*" in mapped_key: a__ =name.split(__a )[0].split('.' )[-2] a__ =mapped_key.replace('*' , __a ) if "weight_g" in name: a__ ='weight_g' elif "weight_v" in name: a__ ='weight_v' elif "bias" in name: a__ ='bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj a__ ='weight' else: a__ =None if hf_dict is not None: rename_dict(__a , __a , __a , __a , __a ) else: set_recursively(__a , __a , __a , __a , __a ) return is_used return is_used def _lowercase( __a : Union[str, Any] , __a : List[str] , __a : Dict ): a__ =[] a__ =fairseq_model.state_dict() a__ =hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): a__ =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == 'group' , ) a__ =True else: a__ =load_wavaveca_layer(__a , __a , __a ) if not is_used: unused_weights.append(__a ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _lowercase( __a : List[Any] , __a : Optional[Any] , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] ): a__ =full_name.split('conv_layers.' )[-1] a__ =name.split('.' ) a__ =int(items[0] ) a__ =int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def _lowercase( __a : str , __a : str , __a : Any=None , __a : str=None , __a : Any=True , __a : Union[str, Any]=False ): if config_path is not None: a__ =WavaVecaConfig.from_pretrained(__a ) else: a__ =WavaVecaConfig() if is_seq_class: a__ =read_txt_into_dict(__a ) a__ =idalabel a__ =WavaVecaForSequenceClassification(__a ) a__ =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) feature_extractor.save_pretrained(__a ) elif is_finetuned: if dict_path: a__ =Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a__ =target_dict.pad_index a__ =target_dict.bos_index a__ =target_dict.eos_index a__ =len(target_dict.symbols ) a__ =os.path.join(__a , 'vocab.json' ) if not os.path.isdir(__a ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__a ) ) return os.makedirs(__a , exist_ok=__a ) a__ =target_dict.indices # fairseq has the <pad> and <s> switched a__ =0 a__ =1 with open(__a , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(__a , __a ) a__ =WavaVecaCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=__a , ) a__ =True if config.feat_extract_norm == 'layer' else False a__ =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) a__ =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) a__ =WavaVecaForCTC(__a ) else: a__ =WavaVecaForPreTraining(__a ) if is_finetuned or is_seq_class: a__ , a__ , a__ =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: a__ =argparse.Namespace(task='audio_pretraining' ) a__ =fairseq.tasks.setup_task(__a ) a__ , a__ , a__ =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__a ) a__ =model[0].eval() recursively_load_weights(__a , __a , not is_finetuned ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) _lowerCAmelCase: Tuple = parser.parse_args() _lowerCAmelCase: Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
20
1
def _lowercase( __a : int ): return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
20
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowercase_ (unittest.TestCase ): @slow def __UpperCamelCase ( self) -> Optional[int]: a__ =AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowercase_).to(lowercase_) a__ =AutoTokenizer.from_pretrained('google/mt5-small') a__ =tokenizer('Hello there' , return_tensors='pt').input_ids a__ =tokenizer('Hi I am' , return_tensors='pt').input_ids a__ =model(input_ids.to(lowercase_) , labels=labels.to(lowercase_)).loss a__ =-(labels.shape[-1] * loss.item()) a__ =-84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
20
1
import argparse from collections import defaultdict def _lowercase( __a : Union[str, Any] , __a : Dict , __a : Union[str, Any] , __a : Optional[int] , __a : Optional[int] ): a__ =f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__a , 'r' ) as f: a__ =f.readlines() a__ =f"""class {class_name}(""" a__ =f"""{4 * ' '}def {test_name}(""" a__ =f"""{8 * ' '}{correct_line.split()[0]}""" a__ =f"""{16 * ' '}{correct_line.split()[0]}""" a__ =False a__ =False a__ =False a__ =False a__ =0 a__ =0 a__ =[] for line in lines: if line.startswith(__a ): a__ =True elif in_class and line.startswith(__a ): a__ =True elif in_class and in_func and (line.startswith(__a ) or line.startswith(__a )): a__ =len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: a__ =True if in_class and in_func and in_line: if ")" not in line: continue else: a__ =True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * ' '}{correct_line}""" ) a__ =a__ =a__ =a__ =False else: new_lines.append(__a ) with open(__a , 'w' ) as f: for line in new_lines: f.write(__a ) def _lowercase( __a : int , __a : Union[str, Any]=None ): if fail is not None: with open(__a , 'r' ) as f: a__ ={l.strip() for l in f.readlines()} else: a__ =None with open(__a , 'r' ) as f: a__ =f.readlines() a__ =defaultdict(__a ) for line in correct_lines: a__ , a__ , a__ , a__ =line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__a , __a , __a , __a , __a ) if __name__ == "__main__": _lowerCAmelCase: Tuple = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) _lowerCAmelCase: int = parser.parse_args() main(args.correct_filename, args.fail_filename)
20
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self) -> int: a__ =tempfile.mkdtemp() a__ =BlipImageProcessor() a__ =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel') a__ =BlipProcessor(lowercase_ , lowercase_) processor.save_pretrained(self.tmpdirname) def __UpperCamelCase ( self , **lowercase_) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).tokenizer def __UpperCamelCase ( self , **lowercase_) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).image_processor def __UpperCamelCase ( self) -> Optional[int]: shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self) -> str: a__ =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] a__ =[Image.fromarray(np.moveaxis(lowercase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self) -> str: a__ =BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) a__ =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') a__ =self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0) a__ =BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowercase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowercase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowercase_) def __UpperCamelCase ( self) -> int: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ =self.prepare_image_inputs() a__ =image_processor(lowercase_ , return_tensors='np') a__ =processor(images=lowercase_ , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self) -> List[str]: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =processor(text=lowercase_) a__ =tokenizer(lowercase_ , return_token_type_ids=lowercase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self) -> int: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =self.prepare_image_inputs() a__ =processor(text=lowercase_ , images=lowercase_) self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask']) # test if it raises when no input is passed with pytest.raises(lowercase_): processor() def __UpperCamelCase ( self) -> Tuple: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a__ =processor.batch_decode(lowercase_) a__ =tokenizer.batch_decode(lowercase_) self.assertListEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =self.prepare_image_inputs() a__ =processor(text=lowercase_ , images=lowercase_) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask'])
20
1
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging _lowerCAmelCase: Any = logging.get_logger(__name__) _lowerCAmelCase: Tuple = {'vocab_file': 'spiece.model'} _lowerCAmelCase: List[Any] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', } } # TODO(PVP) - this should be removed in Transformers v5 _lowerCAmelCase: str = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } _lowerCAmelCase: Optional[Any] = '▁' class lowercase_ (lowercase__ ): snake_case =VOCAB_FILES_NAMES snake_case =PRETRAINED_VOCAB_FILES_MAP snake_case =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case =['input_ids', 'attention_mask'] def __init__( self , lowercase_ , lowercase_="</s>" , lowercase_="<unk>" , lowercase_="<pad>" , lowercase_=100 , lowercase_=None , lowercase_ = None , lowercase_=True , **lowercase_ , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: a__ =[F"""<extra_id_{i}>""" for i in range(lowercase_)] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens a__ =len(set(filter(lambda lowercase_: bool('extra_id' in str(lowercase_)) , lowercase_))) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens') if legacy: logger.warning_once( F"""You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to""" ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565') a__ =legacy a__ ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , extra_ids=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , legacy=lowercase_ , **lowercase_ , ) a__ =vocab_file a__ =extra_ids a__ =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowercase_) @staticmethod def __UpperCamelCase ( lowercase_ , lowercase_ , lowercase_) -> Any: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: a__ =TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , lowercase_ , ) return max_model_length @property def __UpperCamelCase ( self) -> int: return self.sp_model.get_piece_size() + self._extra_ids def __UpperCamelCase ( self) -> Optional[Any]: a__ ={self.convert_ids_to_tokens(lowercase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __UpperCamelCase ( self , lowercase_ , lowercase_ = None , lowercase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowercase_)) + [1] return ([0] * len(lowercase_)) + [1] + ([0] * len(lowercase_)) + [1] def __UpperCamelCase ( self) -> Union[str, Any]: return list( set(filter(lambda lowercase_: bool(re.search(R'<extra_id_\d+>' , lowercase_)) is not None , self.additional_special_tokens))) def __UpperCamelCase ( self) -> List[Any]: return [self._convert_token_to_id(lowercase_) for token in self.get_sentinel_tokens()] def __UpperCamelCase ( self , lowercase_) -> List[int]: if len(lowercase_) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" ' eos tokens being added.') return token_ids else: return token_ids + [self.eos_token_id] def __UpperCamelCase ( self , lowercase_ , lowercase_ = None) -> List[int]: a__ =[self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos) * [0] return len(token_ids_a + eos + token_ids_a + eos) * [0] def __UpperCamelCase ( self , lowercase_ , lowercase_ = None) -> List[int]: a__ =self._add_eos_if_not_present(lowercase_) if token_ids_a is None: return token_ids_a else: a__ =self._add_eos_if_not_present(lowercase_) return token_ids_a + token_ids_a def __getstate__( self) -> int: a__ =self.__dict__.copy() a__ =None return state def __setstate__( self , lowercase_) -> str: a__ =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): a__ ={} a__ =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __UpperCamelCase ( self , lowercase_ , **lowercase_) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: a__ =SPIECE_UNDERLINE + text.replace(lowercase_ , ' ') return super().tokenize(lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , **lowercase_) -> Tuple: if not self.legacy: a__ =text.startswith(lowercase_) if is_first: a__ =text[1:] a__ =self.sp_model.encode(lowercase_ , out_type=lowercase_) if not self.legacy and not is_first and not text.startswith(' ') and tokens[0].startswith(lowercase_): a__ =([tokens[0][1:]] if len(tokens[0]) > 1 else []) + tokens[1:] return tokens def __UpperCamelCase ( self , lowercase_) -> Dict: if token.startswith('<extra_id_'): a__ =re.match(R'<extra_id_(\d+)>' , lowercase_) a__ =int(match.group(1)) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(lowercase_) def __UpperCamelCase ( self , lowercase_) -> Dict: if index < self.sp_model.get_piece_size(): a__ =self.sp_model.IdToPiece(lowercase_) else: a__ =F"""<extra_id_{self.vocab_size - 1 - index}>""" return token def __UpperCamelCase ( self , lowercase_) -> Optional[Any]: a__ =[] a__ ='' a__ =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase_) + token a__ =True a__ =[] else: current_sub_tokens.append(lowercase_) a__ =False out_string += self.sp_model.decode(lowercase_) return out_string.strip() def __UpperCamelCase ( self , lowercase_ , lowercase_ = None) -> Tuple[str]: if not os.path.isdir(lowercase_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return a__ =os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowercase_) elif not os.path.isfile(self.vocab_file): with open(lowercase_ , 'wb') as fi: a__ =self.sp_model.serialized_model_proto() fi.write(lowercase_) return (out_vocab_file,)
20
def _lowercase( __a : list[int] ): a__ =len(__a ) for i in range(__a ): for j in range(i + 1 , __a ): if numbers[j] < numbers[i]: a__ , a__ =numbers[j], numbers[i] return numbers if __name__ == "__main__": _lowerCAmelCase: Tuple = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase: int = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
20
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCAmelCase: Optional[Any] = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: List[str] = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _lowerCAmelCase: List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
20
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowercase_ : def __init__( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="resnet50" , lowercase_=3 , lowercase_=32 , lowercase_=3 , lowercase_=True , lowercase_=True , ) -> Union[str, Any]: a__ =parent a__ =out_indices if out_indices is not None else [4] a__ =stage_names a__ =out_features a__ =backbone a__ =batch_size a__ =image_size a__ =num_channels a__ =use_pretrained_backbone a__ =is_training def __UpperCamelCase ( self) -> Optional[Any]: a__ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ =self.get_config() return config, pixel_values def __UpperCamelCase ( self) -> Tuple: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> str: a__ =TimmBackbone(config=lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): a__ =model(lowercase_) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __UpperCamelCase ( self) -> str: a__ =self.prepare_config_and_inputs() a__ , a__ =config_and_inputs a__ ={'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class lowercase_ (lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): snake_case =(TimmBackbone,) if is_torch_available() else () snake_case ={'feature-extraction': TimmBackbone} if is_torch_available() else {} snake_case =False snake_case =False snake_case =False snake_case =False def __UpperCamelCase ( self) -> Optional[Any]: a__ =TimmBackboneModelTester(self) a__ =ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_) def __UpperCamelCase ( self) -> Dict: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self) -> str: a__ ='resnet18' a__ ='microsoft/resnet-18' a__ =AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_) a__ =AutoBackbone.from_pretrained(lowercase_) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(len(timm_model.stage_names) , len(transformers_model.stage_names)) self.assertEqual(timm_model.channels , transformers_model.channels) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,)) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names) - 1]) a__ =AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_ , out_indices=[1, 2, 3]) a__ =AutoBackbone.from_pretrained(lowercase_ , out_indices=[1, 2, 3]) self.assertEqual(timm_model.out_indices , transformers_model.out_indices) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(timm_model.channels , transformers_model.channels) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> Dict: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> List[Any]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.') def __UpperCamelCase ( self) -> str: pass @unittest.skip('Safetensors is not supported by timm.') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self) -> Optional[Any]: pass def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) a__ =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ =[*signature.parameters.keys()] a__ =['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_) def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =True a__ =self.has_attentions # no need to test all models as different heads yield the same functionality a__ =self.all_model_classes[0] a__ =model_class(lowercase_) model.to(lowercase_) a__ =self._prepare_for_class(lowercase_ , lowercase_) a__ =model(**lowercase_) a__ =outputs[0][-1] # Encoder-/Decoder-only models a__ =outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a__ =outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowercase_) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) def __UpperCamelCase ( self) -> List[str]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_) self.assertEqual(len(result.feature_maps) , len(config.out_indices)) self.assertEqual(len(model.channels) , len(config.out_indices)) # Check output of last stage is taken if out_features=None, out_indices=None a__ =copy.deepcopy(lowercase_) a__ =None a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_) self.assertEqual(len(result.feature_maps) , 1) self.assertEqual(len(model.channels) , 1) # Check backbone can be initialized with fresh weights a__ =copy.deepcopy(lowercase_) a__ =False a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_)
20
1
from __future__ import annotations import queue class lowercase_ : def __init__( self , lowercase_) -> Dict: a__ =data a__ =None a__ =None def _lowercase( ): print('\n********Press N to stop entering at any point of time********\n' ) a__ =input('Enter the value of the root node: ' ).strip().lower() a__ =queue.Queue() a__ =TreeNode(int(__a ) ) q.put(__a ) while not q.empty(): a__ =q.get() a__ =f"""Enter the left node of {node_found.data}: """ a__ =input(__a ).strip().lower() or 'n' if check == "n": return tree_node a__ =TreeNode(int(__a ) ) a__ =left_node q.put(__a ) a__ =f"""Enter the right node of {node_found.data}: """ a__ =input(__a ).strip().lower() or 'n' if check == "n": return tree_node a__ =TreeNode(int(__a ) ) a__ =right_node q.put(__a ) raise def _lowercase( __a : TreeNode ): if not isinstance(__a , __a ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def _lowercase( __a : TreeNode ): if not isinstance(__a , __a ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def _lowercase( __a : TreeNode ): if not isinstance(__a , __a ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def _lowercase( __a : TreeNode ): if not isinstance(__a , __a ) or not node: return a__ =queue.Queue() q.put(__a ) while not q.empty(): a__ =q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def _lowercase( __a : TreeNode ): if not isinstance(__a , __a ) or not node: return a__ =queue.Queue() q.put(__a ) while not q.empty(): a__ =[] while not q.empty(): a__ =q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__a ) def _lowercase( __a : TreeNode ): if not isinstance(__a , __a ) or not node: return a__ =[] a__ =node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(__a ) a__ =n.left # end of while means current node doesn't have left child a__ =stack.pop() # start to traverse its right child a__ =n.right def _lowercase( __a : TreeNode ): if not isinstance(__a , __a ) or not node: return a__ =[] a__ =node while n or stack: while n: stack.append(__a ) a__ =n.left a__ =stack.pop() print(n.data , end=',' ) a__ =n.right def _lowercase( __a : TreeNode ): if not isinstance(__a , __a ) or not node: return a__ , a__ =[], [] a__ =node stacka.append(__a ) while stacka: # to find the reversed order of post order, store it in stack2 a__ =stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__a ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def _lowercase( __a : str = "" , __a : Optional[Any]=50 , __a : str="*" ): if not s: return "\n" + width * char a__ , a__ =divmod(width - len(__a ) - 2 , 2 ) return f"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) _lowerCAmelCase: TreeNode = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCAmelCase: Optional[Any] = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: List[str] = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _lowerCAmelCase: List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
20
1
def _lowercase( __a : list ): if not isinstance(__a , __a ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(__a ) == 0: raise ValueError('Input list must be a non empty list' ) if len(__a ) == 1: return True a__ =series[1] - series[0] for index in range(len(__a ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def _lowercase( __a : list ): if not isinstance(__a , __a ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(__a ) == 0: raise ValueError('Input list must be a non empty list' ) a__ =0 for val in series: answer += val return answer / len(__a ) if __name__ == "__main__": import doctest doctest.testmod()
20
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase: str = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class lowercase_ (lowercase__ ): snake_case ='big_bird' def __init__( self , lowercase_=50358 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu_new" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=4096 , lowercase_=2 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=66 , lowercase_="block_sparse" , lowercase_=True , lowercase_=False , lowercase_=64 , lowercase_=3 , lowercase_=None , **lowercase_ , ) -> Any: super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , sep_token_id=lowercase_ , **lowercase_ , ) a__ =vocab_size a__ =max_position_embeddings a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =initializer_range a__ =type_vocab_size a__ =layer_norm_eps a__ =use_cache a__ =rescale_embeddings a__ =attention_type a__ =use_bias a__ =block_size a__ =num_random_blocks a__ =classifier_dropout class lowercase_ (lowercase__ ): @property def __UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a__ ={0: 'batch', 1: 'choice', 2: 'sequence'} else: a__ ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
20
1
from collections import Counter from timeit import timeit def _lowercase( __a : str = "" , ): return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def _lowercase( __a : str = "" ): if len(__a ) == 0: return True a__ =input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string a__ ={} for character in lower_case_input_str: a__ =character_freq_dict.get(__a , 0 ) + 1 a__ =0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _lowercase( __a : str = "" ): print('\nFor string = ' , __a , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(__a ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(__a ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": _lowerCAmelCase: Any = input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) _lowerCAmelCase: Optional[Any] = can_string_be_rearranged_as_palindrome_counter(check_str) print(F"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
20
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger(__name__) _lowerCAmelCase: Tuple = torch.device('cpu') def _lowercase( ): a__ ='http://images.cocodataset.org/val2017/000000039769.jpg' a__ =Image.open(requests.get(__a , stream=__a ).raw ) return im def _lowercase( __a : Optional[Any] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _lowercase( __a : int , __a : int , __a : Optional[Any] ): a__ =dct.pop(__a ) a__ =val def _lowercase( __a : Optional[Any] ): a__ =[] for k in state_dict.keys(): a__ =k if ".pwconv" in k: a__ =k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: a__ =k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: a__ =k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: a__ =k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: a__ =k_new.split('.' ) if ls[2].isdigit(): a__ ='swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: a__ =k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _lowercase( __a : Union[str, Any] , __a : int , __a : str ): a__ =SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a__ =1000 a__ ='huggingface/label-files' a__ ='imagenet-1k-id2label.json' a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a__ =[3, 3, 6, 4] a__ =[48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a__ =[3, 3, 9, 6] a__ =[48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a__ =[4, 3, 10, 5] a__ =[48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a__ =[4, 4, 12, 6] a__ =[64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): a__ =torch.hub.load_state_dict_from_url(__a , map_location='cpu' , check_hash=__a ) else: a__ =torch.load(__a , map_location='cpu' ) a__ =checkpoint a__ =create_rename_keys(__a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__a , __a , __a ) # load HuggingFace model a__ =SwiftFormerForImageClassification(__a ).eval() hf_model.load_state_dict(__a ) # prepare test inputs a__ =prepare_img() a__ =ViTImageProcessor.from_pretrained('preprocessor_config' ) a__ =processor(images=__a , return_tensors='pt' ) # compare outputs from both models a__ =get_expected_output(__a ) a__ =hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , __a , atol=1e-3 ) Path(__a ).mkdir(exist_ok=__a ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') _lowerCAmelCase: Optional[int] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
20
1
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _lowerCAmelCase: List[str] = datasets.utils.logging.get_logger(__name__) @dataclass class lowercase_ (datasets.BuilderConfig ): snake_case =None snake_case ="utf-8" snake_case =None snake_case =None snake_case =True # deprecated snake_case =None # deprecated snake_case =10 << 20 # 10MB snake_case =None class lowercase_ (datasets.ArrowBasedBuilder ): snake_case =JsonConfig def __UpperCamelCase ( self) -> List[str]: if self.config.block_size is not None: logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead') a__ =self.config.block_size if self.config.use_threads is not True: logger.warning( 'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.') if self.config.newlines_in_values is not None: raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported') return datasets.DatasetInfo(features=self.config.features) def __UpperCamelCase ( self , lowercase_) -> int: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""") a__ =dl_manager.download_and_extract(self.config.data_files) if isinstance(lowercase_ , (str, list, tuple)): a__ =data_files if isinstance(lowercase_ , lowercase_): a__ =[files] a__ =[dl_manager.iter_files(lowercase_) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files})] a__ =[] for split_name, files in data_files.items(): if isinstance(lowercase_ , lowercase_): a__ =[files] a__ =[dl_manager.iter_files(lowercase_) for file in files] splits.append(datasets.SplitGenerator(name=lowercase_ , gen_kwargs={'files': files})) return splits def __UpperCamelCase ( self , lowercase_) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): a__ =self.config.features.arrow_schema.field(lowercase_).type a__ =pa_table.append_column(lowercase_ , pa.array([None] * len(lowercase_) , type=lowercase_)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example a__ =table_cast(lowercase_ , self.config.features.arrow_schema) return pa_table def __UpperCamelCase ( self , lowercase_) -> Optional[int]: for file_idx, file in enumerate(itertools.chain.from_iterable(lowercase_)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(lowercase_ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: a__ =json.load(lowercase_) # We keep only the field we are interested in a__ =dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(lowercase_ , (list, tuple)): a__ =set().union(*[row.keys() for row in dataset]) a__ ={col: [row.get(lowercase_) for row in dataset] for col in keys} else: a__ =dataset a__ =pa.Table.from_pydict(lowercase_) yield file_idx, self._cast_table(lowercase_) # If the file has one json object per line else: with open(lowercase_ , 'rb') as f: a__ =0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small a__ =max(self.config.chunksize // 32 , 16 << 10) a__ =( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: a__ =f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(lowercase_) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": a__ =batch.decode(self.config.encoding , errors=lowercase_).encode('utf-8') try: while True: try: a__ =paj.read_json( io.BytesIO(lowercase_) , read_options=paj.ReadOptions(block_size=lowercase_)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(lowercase_ , pa.ArrowInvalid) and "straddling" not in str(lowercase_) or block_size > len(lowercase_) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(lowercase_)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""") block_size *= 2 except pa.ArrowInvalid as e: try: with open( lowercase_ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: a__ =json.load(lowercase_) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(lowercase_)}: {e}""") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(lowercase_ , lowercase_): # list is the only sequence type supported in JSON try: a__ =set().union(*[row.keys() for row in dataset]) a__ ={col: [row.get(lowercase_) for row in dataset] for col in keys} a__ =pa.Table.from_pydict(lowercase_) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(lowercase_)}: {e}""") raise ValueError(F"""Not able to read records in the JSON file at {file}.""") from None yield file_idx, self._cast_table(lowercase_) break else: logger.error(F"""Failed to read file '{file}' with error {type(lowercase_)}: {e}""") raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowercase_) batch_idx += 1
20
from __future__ import annotations from typing import Any class lowercase_ : def __init__( self , lowercase_) -> None: a__ =num_of_nodes a__ =[] a__ ={} def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: self.m_edges.append([u_node, v_node, weight]) def __UpperCamelCase ( self , lowercase_) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node]) def __UpperCamelCase ( self , lowercase_) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: a__ =self.find_component(lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: if component_size[u_node] <= component_size[v_node]: a__ =v_node component_size[v_node] += component_size[u_node] self.set_component(lowercase_) elif component_size[u_node] >= component_size[v_node]: a__ =self.find_component(lowercase_) component_size[u_node] += component_size[v_node] self.set_component(lowercase_) def __UpperCamelCase ( self) -> None: a__ =[] a__ =0 a__ =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes): self.m_component.update({node: node}) component_size.append(1) a__ =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: a__ , a__ , a__ =edge a__ =self.m_component[u] a__ =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): a__ =[u, v, w] for edge in minimum_weight_edge: if isinstance(lowercase_ , lowercase_): a__ , a__ , a__ =edge a__ =self.m_component[u] a__ =self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowercase_ , lowercase_ , lowercase_) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""") num_of_components -= 1 a__ =[-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""") def _lowercase( ): pass if __name__ == "__main__": import doctest doctest.testmod()
20
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class lowercase_ (lowercase__ ): snake_case =42 @flax_register_to_config class lowercase_ (nn.Module , lowercase__ , lowercase__ ): snake_case =32 snake_case =4 snake_case =4 snake_case =( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) snake_case =("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") snake_case =False snake_case =(320, 640, 1280, 1280) snake_case =2 snake_case =8 snake_case =None snake_case =1280 snake_case =0.0 snake_case =False snake_case =jnp.floataa snake_case =True snake_case =0 snake_case =False def __UpperCamelCase ( self , lowercase_) -> FrozenDict: # init input tensors a__ =(1, self.in_channels, self.sample_size, self.sample_size) a__ =jnp.zeros(lowercase_ , dtype=jnp.floataa) a__ =jnp.ones((1,) , dtype=jnp.intaa) a__ =jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa) a__ , a__ =jax.random.split(lowercase_) a__ ={'params': params_rng, 'dropout': dropout_rng} return self.init(lowercase_ , lowercase_ , lowercase_ , lowercase_)["params"] def __UpperCamelCase ( self) -> Union[str, Any]: a__ =self.block_out_channels a__ =block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( 'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.') # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. a__ =self.num_attention_heads or self.attention_head_dim # input a__ =nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time a__ =FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift) a__ =FlaxTimestepEmbedding(lowercase_ , dtype=self.dtype) a__ =self.only_cross_attention if isinstance(lowercase_ , lowercase_): a__ =(only_cross_attention,) * len(self.down_block_types) if isinstance(lowercase_ , lowercase_): a__ =(num_attention_heads,) * len(self.down_block_types) # down a__ =[] a__ =block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types): a__ =output_channel a__ =block_out_channels[i] a__ =i == len(lowercase_) - 1 if down_block_type == "CrossAttnDownBlock2D": a__ =FlaxCrossAttnDownBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: a__ =FlaxDownBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowercase_) a__ =down_blocks # mid a__ =FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up a__ =[] a__ =list(reversed(lowercase_)) a__ =list(reversed(lowercase_)) a__ =list(reversed(lowercase_)) a__ =reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types): a__ =output_channel a__ =reversed_block_out_channels[i] a__ =reversed_block_out_channels[min(i + 1 , len(lowercase_) - 1)] a__ =i == len(lowercase_) - 1 if up_block_type == "CrossAttnUpBlock2D": a__ =FlaxCrossAttnUpBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , prev_output_channel=lowercase_ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: a__ =FlaxUpBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , prev_output_channel=lowercase_ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(lowercase_) a__ =output_channel a__ =up_blocks # out a__ =nn.GroupNorm(num_groups=32 , epsilon=1e-5) a__ =nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_ = True , lowercase_ = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(lowercase_ , jnp.ndarray): a__ =jnp.array([timesteps] , dtype=jnp.intaa) elif isinstance(lowercase_ , jnp.ndarray) and len(timesteps.shape) == 0: a__ =timesteps.astype(dtype=jnp.floataa) a__ =jnp.expand_dims(lowercase_ , 0) a__ =self.time_proj(lowercase_) a__ =self.time_embedding(lowercase_) # 2. pre-process a__ =jnp.transpose(lowercase_ , (0, 2, 3, 1)) a__ =self.conv_in(lowercase_) # 3. down a__ =(sample,) for down_block in self.down_blocks: if isinstance(lowercase_ , lowercase_): a__ , a__ =down_block(lowercase_ , lowercase_ , lowercase_ , deterministic=not train) else: a__ , a__ =down_block(lowercase_ , lowercase_ , deterministic=not train) down_block_res_samples += res_samples if down_block_additional_residuals is not None: a__ =() for down_block_res_sample, down_block_additional_residual in zip( lowercase_ , lowercase_): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) a__ =new_down_block_res_samples # 4. mid a__ =self.mid_block(lowercase_ , lowercase_ , lowercase_ , deterministic=not train) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: a__ =down_block_res_samples[-(self.layers_per_block + 1) :] a__ =down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(lowercase_ , lowercase_): a__ =up_block( lowercase_ , temb=lowercase_ , encoder_hidden_states=lowercase_ , res_hidden_states_tuple=lowercase_ , deterministic=not train , ) else: a__ =up_block(lowercase_ , temb=lowercase_ , res_hidden_states_tuple=lowercase_ , deterministic=not train) # 6. post-process a__ =self.conv_norm_out(lowercase_) a__ =nn.silu(lowercase_) a__ =self.conv_out(lowercase_) a__ =jnp.transpose(lowercase_ , (0, 3, 1, 2)) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=lowercase_)
20
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCAmelCase: Union[str, Any] = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' _lowerCAmelCase: Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' _lowerCAmelCase: List[Any] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): def __UpperCamelCase ( self) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=True , lowercase_=False) -> Any: if rouge_types is None: a__ =['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] a__ =rouge_scorer.RougeScorer(rouge_types=lowercase_ , use_stemmer=lowercase_) if use_aggregator: a__ =scoring.BootstrapAggregator() else: a__ =[] for ref, pred in zip(lowercase_ , lowercase_): a__ =scorer.score(lowercase_ , lowercase_) if use_aggregator: aggregator.add_scores(lowercase_) else: scores.append(lowercase_) if use_aggregator: a__ =aggregator.aggregate() else: a__ ={} for key in scores[0]: a__ =[score[key] for score in scores] return result
20
1
def _lowercase( __a : int ): a__ =(1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _lowercase( __a : int = 5000 ): a__ =[(i * (3 * i - 1)) // 2 for i in range(1 , __a )] for i, pentagonal_i in enumerate(__a ): for j in range(__a , len(__a ) ): a__ =pentagonal_nums[j] a__ =pentagonal_i + pentagonal_j a__ =pentagonal_j - pentagonal_i if is_pentagonal(__a ) and is_pentagonal(__a ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
20
from __future__ import annotations _lowerCAmelCase: str = '#' class lowercase_ : def __init__( self) -> None: a__ ={} def __UpperCamelCase ( self , lowercase_) -> None: a__ =self._trie for char in text: if char not in trie: a__ ={} a__ =trie[char] a__ =True def __UpperCamelCase ( self , lowercase_) -> tuple | list: a__ =self._trie for char in prefix: if char in trie: a__ =trie[char] else: return [] return self._elements(lowercase_) def __UpperCamelCase ( self , lowercase_) -> tuple: a__ =[] for c, v in d.items(): a__ =[' '] if c == END else [(c + s) for s in self._elements(lowercase_)] result.extend(lowercase_) return tuple(lowercase_) _lowerCAmelCase: Optional[int] = Trie() _lowerCAmelCase: List[str] = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def _lowercase( __a : str ): a__ =trie.find_word(__a ) return tuple(string + word for word in suffixes ) def _lowercase( ): print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
20
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class lowercase_ (unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=18 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=32 , lowercase_=True , ) -> str: a__ =parent a__ =batch_size a__ =num_channels a__ =image_size a__ =min_resolution a__ =max_resolution a__ =do_resize a__ =size_divisor a__ =do_rescale def __UpperCamelCase ( self) -> Dict: return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =GLPNImageProcessor if is_vision_available() else None def __UpperCamelCase ( self) -> str: a__ =GLPNImageProcessingTester(self) @property def __UpperCamelCase ( self) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self) -> List[Any]: a__ =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase_ , 'do_resize')) self.assertTrue(hasattr(lowercase_ , 'size_divisor')) self.assertTrue(hasattr(lowercase_ , 'resample')) self.assertTrue(hasattr(lowercase_ , 'do_rescale')) def __UpperCamelCase ( self) -> Optional[int]: pass def __UpperCamelCase ( self) -> Optional[int]: # Initialize image_processing a__ =self.image_processing_class(**self.image_processor_dict) # create random PIL images a__ =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image) # Test not batched input (GLPNImageProcessor doesn't support batching) a__ =image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0) def __UpperCamelCase ( self) -> int: # Initialize image_processing a__ =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors a__ =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray) # Test not batched input (GLPNImageProcessor doesn't support batching) a__ =image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0) def __UpperCamelCase ( self) -> Optional[Any]: # Initialize image_processing a__ =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors a__ =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor) # Test not batched input (GLPNImageProcessor doesn't support batching) a__ =image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0)
20
_lowerCAmelCase: List[str] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def _lowercase( ): a__ =input('Enter message: ' ) a__ =input('Enter key [alphanumeric]: ' ) a__ =input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): a__ ='encrypt' a__ =encrypt_message(__a , __a ) elif mode.lower().startswith('d' ): a__ ='decrypt' a__ =decrypt_message(__a , __a ) print(f"""\n{mode.title()}ed message:""" ) print(__a ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'encrypt' ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'decrypt' ) def _lowercase( __a : str , __a : str , __a : str ): a__ =[] a__ =0 a__ =key.upper() for symbol in message: a__ =LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__a ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__a ): a__ =0 else: translated.append(__a ) return "".join(__a ) if __name__ == "__main__": main()
20
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase: Optional[int] = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: Optional[Any] = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: Optional[int] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: Optional[int] = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: Optional[Any] = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _lowerCAmelCase: Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
20
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
1
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": _lowerCAmelCase: int = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def _lowercase( __a : Optional[Any] ): if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) _lowerCAmelCase: str = parser.parse_args() _lowerCAmelCase: Tuple = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
20
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =KandinskyVaaPriorPipeline snake_case =['prompt'] snake_case =['prompt', 'negative_prompt'] snake_case =[ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] snake_case =False @property def __UpperCamelCase ( self) -> Optional[int]: return 32 @property def __UpperCamelCase ( self) -> Tuple: return 32 @property def __UpperCamelCase ( self) -> int: return self.time_input_dim @property def __UpperCamelCase ( self) -> str: return self.time_input_dim * 4 @property def __UpperCamelCase ( self) -> Optional[int]: return 100 @property def __UpperCamelCase ( self) -> Union[str, Any]: a__ =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self) -> Union[str, Any]: torch.manual_seed(0) a__ =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowercase_) @property def __UpperCamelCase ( self) -> Tuple: torch.manual_seed(0) a__ ={ 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } a__ =PriorTransformer(**lowercase_) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 a__ =nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def __UpperCamelCase ( self) -> Any: torch.manual_seed(0) a__ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) a__ =CLIPVisionModelWithProjection(lowercase_) return model @property def __UpperCamelCase ( self) -> Optional[int]: a__ =CLIPImageProcessor( crop_size=224 , do_center_crop=lowercase_ , do_normalize=lowercase_ , do_resize=lowercase_ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor def __UpperCamelCase ( self) -> Any: a__ =self.dummy_prior a__ =self.dummy_image_encoder a__ =self.dummy_text_encoder a__ =self.dummy_tokenizer a__ =self.dummy_image_processor a__ =UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=lowercase_ , clip_sample_range=10.0 , ) a__ ={ 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def __UpperCamelCase ( self , lowercase_ , lowercase_=0) -> Tuple: if str(lowercase_).startswith('mps'): a__ =torch.manual_seed(lowercase_) else: a__ =torch.Generator(device=lowercase_).manual_seed(lowercase_) a__ ={ 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __UpperCamelCase ( self) -> int: a__ ='cpu' a__ =self.get_dummy_components() a__ =self.pipeline_class(**lowercase_) a__ =pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) a__ =pipe(**self.get_dummy_inputs(lowercase_)) a__ =output.image_embeds a__ =pipe( **self.get_dummy_inputs(lowercase_) , return_dict=lowercase_ , )[0] a__ =image[0, -10:] a__ =image_from_tuple[0, -10:] assert image.shape == (1, 32) a__ =np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def __UpperCamelCase ( self) -> List[Any]: a__ =torch_device == 'cpu' a__ =True a__ =False self._test_inference_batch_single_identical( test_max_difference=lowercase_ , relax_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , ) @skip_mps def __UpperCamelCase ( self) -> Optional[int]: a__ =torch_device == 'cpu' a__ =False self._test_attention_slicing_forward_pass( test_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , )
20
1
from collections.abc import Callable import numpy as np def _lowercase( __a : Callable , __a : float , __a : float , __a : float , __a : float ): a__ =int(np.ceil((x_end - xa) / step_size ) ) a__ =np.zeros((n + 1,) ) a__ =ya a__ =xa for k in range(__a ): a__ =y[k] + step_size * ode_func(__a , y[k] ) a__ =y[k] + ( (step_size / 2) * (ode_func(__a , y[k] ) + ode_func(x + step_size , __a )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
20
from manim import * class lowercase_ (lowercase__ ): def __UpperCamelCase ( self) -> List[Any]: a__ =Rectangle(height=0.5 , width=0.5) a__ =Rectangle(height=0.46 , width=0.46).set_stroke(width=0) a__ =[mem.copy() for i in range(6)] a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(lowercase_ , lowercase_).arrange(lowercase_ , buff=0) a__ =Text('CPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) cpu.move_to([-2.5, -0.5, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(4)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('GPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) gpu.move_to([-1, -1, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Model' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) model.move_to([3, -1.0, 0]) self.add(lowercase_) a__ =[] for i, rect in enumerate(lowercase_): rect.set_stroke(lowercase_) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) a__ =Rectangle(height=0.46 / 4 , width=0.46 / 3).set_stroke(width=0.0).set_fill(lowercase_ , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=lowercase_) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0) self.add(lowercase_) cpu_targs.append(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Loaded Checkpoint' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4) checkpoint.move_to([3, 0.5, 0]) a__ =Square(side_length=2.2) key.move_to([-5, 2, 0]) a__ =MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(lowercase_ , lowercase_) a__ =MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left()) a__ =MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(lowercase_) , Write(lowercase_)) self.play(Write(lowercase_ , run_time=1) , Create(lowercase_ , run_time=1)) a__ =[] a__ =[] for i, rect in enumerate(lowercase_): a__ =fill.copy().set_fill(lowercase_ , opacity=0.7) target.move_to(lowercase_) first_animations.append(GrowFromCenter(lowercase_ , run_time=1)) a__ =target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.target.move_to(cpu_right_col_base[i - 5]) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5)) self.play(*lowercase_) self.play(*lowercase_) self.wait()
20
1
from collections.abc import Iterable from typing import Any class lowercase_ : def __init__( self , lowercase_ = None) -> Dict: a__ =value a__ =None # Added in order to delete a node easier a__ =None a__ =None def __repr__( self) -> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value) return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1) class lowercase_ : def __init__( self , lowercase_ = None) -> int: a__ =root def __str__( self) -> str: return str(self.root) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> None: if new_children is not None: # reset its kids a__ =node.parent if node.parent is not None: # reset its parent if self.is_right(lowercase_): # If it is the right children a__ =new_children else: a__ =new_children else: a__ =new_children def __UpperCamelCase ( self , lowercase_) -> bool: if node.parent and node.parent.right: return node == node.parent.right return False def __UpperCamelCase ( self) -> bool: return self.root is None def __UpperCamelCase ( self , lowercase_) -> None: a__ =Node(lowercase_) # create a new Node if self.empty(): # if Tree is empty a__ =new_node # set its root else: # Tree is not empty a__ =self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: a__ =new_node # We insert the new node in a leaf break else: a__ =parent_node.left else: if parent_node.right is None: a__ =new_node break else: a__ =parent_node.right a__ =parent_node def __UpperCamelCase ( self , *lowercase_) -> None: for value in values: self.__insert(lowercase_) def __UpperCamelCase ( self , lowercase_) -> Node | None: if self.empty(): raise IndexError('Warning: Tree is empty! please use another.') else: a__ =self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: a__ =node.left if value < node.value else node.right return node def __UpperCamelCase ( self , lowercase_ = None) -> Node | None: if node is None: if self.root is None: return None a__ =self.root if not self.empty(): while node.right is not None: a__ =node.right return node def __UpperCamelCase ( self , lowercase_ = None) -> Node | None: if node is None: a__ =self.root if self.root is None: return None if not self.empty(): a__ =self.root while node.left is not None: a__ =node.left return node def __UpperCamelCase ( self , lowercase_) -> None: a__ =self.search(lowercase_) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowercase_ , lowercase_) elif node.left is None: # Has only right children self.__reassign_nodes(lowercase_ , node.right) elif node.right is None: # Has only left children self.__reassign_nodes(lowercase_ , node.left) else: a__ =self.get_max( node.left) # Gets the max value of the left branch self.remove(tmp_node.value) # type: ignore a__ =( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def __UpperCamelCase ( self , lowercase_) -> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left) yield from self.preorder_traverse(node.right) def __UpperCamelCase ( self , lowercase_=None) -> Any: if traversal_function is None: return self.preorder_traverse(self.root) else: return traversal_function(self.root) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> None: if node: self.inorder(lowercase_ , node.left) arr.append(node.value) self.inorder(lowercase_ , node.right) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> int: a__ =[] self.inorder(lowercase_ , lowercase_) # append all values to list using inorder traversal return arr[k - 1] def _lowercase( __a : Node | None ): a__ =[] if curr_node is not None: a__ =postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _lowercase( ): a__ =(8, 3, 6, 1, 10, 14, 13, 4, 7) a__ =BinarySearchTree() for i in testlist: t.insert(__a ) # Prints all the elements of the list in order traversal print(__a ) if t.search(6 ) is not None: print('The value 6 exists' ) else: print('The value 6 doesn\'t exist' ) if t.search(-1 ) is not None: print('The value -1 exists' ) else: print('The value -1 doesn\'t exist' ) if not t.empty(): print('Max Value: ' , t.get_max().value ) # type: ignore print('Min Value: ' , t.get_min().value ) # type: ignore for i in testlist: t.remove(__a ) print(__a ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
20
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _lowerCAmelCase: Any = sys.version_info >= (3, 10) def _lowercase( __a : int=None , __a : Any=None ): return field(default_factory=lambda: default , metadata=__a ) @dataclass class lowercase_ : snake_case =42 snake_case =42 snake_case =42 snake_case =42 @dataclass class lowercase_ : snake_case =42 snake_case =field(default='toto' , metadata={'help': 'help message'} ) @dataclass class lowercase_ : snake_case =False snake_case =True snake_case =None class lowercase_ (lowercase__ ): snake_case ='titi' snake_case ='toto' class lowercase_ (lowercase__ ): snake_case ='titi' snake_case ='toto' snake_case =42 @dataclass class lowercase_ : snake_case ="toto" def __UpperCamelCase ( self) -> List[str]: a__ =BasicEnum(self.foo) @dataclass class lowercase_ : snake_case ="toto" def __UpperCamelCase ( self) -> List[str]: a__ =MixedTypeEnum(self.foo) @dataclass class lowercase_ : snake_case =None snake_case =field(default=lowercase__ , metadata={'help': 'help message'} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) @dataclass class lowercase_ : snake_case =list_field(default=[] ) snake_case =list_field(default=[1, 2, 3] ) snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] ) snake_case =list_field(default=[0.1, 0.2, 0.3] ) @dataclass class lowercase_ : snake_case =field() snake_case =field() snake_case =field() def __UpperCamelCase ( self) -> List[Any]: a__ =BasicEnum(self.required_enum) @dataclass class lowercase_ : snake_case =42 snake_case =field() snake_case =None snake_case =field(default='toto' , metadata={'help': 'help message'} ) snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class lowercase_ : snake_case =False snake_case =True snake_case =None @dataclass class lowercase_ : snake_case =None snake_case =field(default=lowercase__ , metadata={'help': 'help message'} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self , lowercase_ , lowercase_) -> int: self.assertEqual(len(a._actions) , len(b._actions)) for x, y in zip(a._actions , b._actions): a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'} a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , lowercase_) and yy.get('choices' , lowercase_): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](lowercase_) , yy['type'](lowercase_)) del xx["type"], yy["type"] self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_) expected.add_argument('--bar' , type=lowercase_ , required=lowercase_) expected.add_argument('--baz' , type=lowercase_ , required=lowercase_) expected.add_argument('--flag' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') self.argparsersEqual(lowercase_ , lowercase_) a__ =['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((a__) , ) =parser.parse_args_into_dataclasses(lowercase_ , look_for_args_file=lowercase_) self.assertFalse(example.flag) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=lowercase_) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message') self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Optional[Any]: a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') expected.add_argument('--baz' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=lowercase_ , dest='baz') expected.add_argument('--opt' , type=lowercase_ , default=lowercase_) a__ =[WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_) for dataclass_type in dataclass_types: a__ =HfArgumentParser(lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', '--no_baz']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', '--baz']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(args.foo , 'toto') a__ =parser.parse_args_into_dataclasses([])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto) a__ =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') a__ =parser.parse_args_into_dataclasses(['--foo', 'titi'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi) a__ =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) a__ =parser.parse_args_into_dataclasses(['--foo', '42'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo) def __UpperCamelCase ( self) -> List[Any]: @dataclass class lowercase_ : snake_case ="toto" a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(args.foo , 'toto') a__ =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') a__ =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) def __UpperCamelCase ( self) -> Optional[int]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=lowercase_) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=lowercase_) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual( lowercase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3]) , ) a__ =parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split()) self.assertEqual(lowercase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7])) def __UpperCamelCase ( self) -> Dict: a__ =argparse.ArgumentParser() expected.add_argument('--foo' , default=lowercase_ , type=lowercase_) expected.add_argument('--bar' , default=lowercase_ , type=lowercase_ , help='help message') expected.add_argument('--baz' , default=lowercase_ , type=lowercase_) expected.add_argument('--ces' , nargs='+' , default=[] , type=lowercase_) expected.add_argument('--des' , nargs='+' , default=[] , type=lowercase_) a__ =[OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_) for dataclass_type in dataclass_types: a__ =HfArgumentParser(lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , bar=lowercase_ , baz=lowercase_ , ces=[] , des=[])) a__ =parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split()) self.assertEqual(lowercase_ , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3])) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=lowercase_ , required=lowercase_) expected.add_argument('--required_str' , type=lowercase_ , required=lowercase_) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , ) self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , ) expected.add_argument('--opt' , type=lowercase_ , default=lowercase_) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message') expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_) self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } a__ =parser.parse_dict(lowercase_)[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(lowercase_ , parser.parse_dict , lowercase_ , allow_extra_keys=lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: a__ =os.path.join(lowercase_ , 'temp_json') os.mkdir(lowercase_) with open(temp_local_path + '.json' , 'w+') as f: json.dump(lowercase_ , lowercase_) a__ =parser.parse_yaml_file(Path(temp_local_path + '.json'))[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Any: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: a__ =os.path.join(lowercase_ , 'temp_yaml') os.mkdir(lowercase_) with open(temp_local_path + '.yaml' , 'w+') as f: yaml.dump(lowercase_ , lowercase_) a__ =parser.parse_yaml_file(Path(temp_local_path + '.yaml'))[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) self.assertIsNotNone(lowercase_)
20
1
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def _lowercase( __a : ndarray ): return np.dot(__a , __a ) class lowercase_ : def __init__( self , *, lowercase_ = np.inf , lowercase_ = "linear" , lowercase_ = 0.0 , ) -> None: a__ =regularization a__ =gamma if kernel == "linear": a__ =self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') a__ =self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: a__ =F"""Unknown kernel: {kernel}""" raise ValueError(lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> float: return np.dot(lowercase_ , lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> float: return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> None: a__ =observations a__ =classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((a__) , ) =np.shape(lowercase_) def to_minimize(lowercase_) -> float: a__ =0 ((a__) , ) =np.shape(lowercase_) for i in range(lowercase_): for j in range(lowercase_): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(lowercase_) a__ =LinearConstraint(lowercase_ , 0 , 0) a__ =Bounds(0 , self.regularization) a__ =minimize( lowercase_ , np.ones(lowercase_) , bounds=lowercase_ , constraints=[ly_contraint]).x a__ =l_star # calculating mean offset of separation plane to points a__ =0 for i in range(lowercase_): for j in range(lowercase_): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) a__ =s / n def __UpperCamelCase ( self , lowercase_) -> int: a__ =sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , lowercase_) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
20
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase: List[Any] = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class lowercase_ (lowercase__ ): snake_case ='autoformer' snake_case ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , lowercase_ = None , lowercase_ = None , lowercase_ = "student_t" , lowercase_ = "nll" , lowercase_ = 1 , lowercase_ = [1, 2, 3, 4, 5, 6, 7] , lowercase_ = True , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 64 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 32 , lowercase_ = 32 , lowercase_ = "gelu" , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 100 , lowercase_ = 0.02 , lowercase_ = True , lowercase_=True , lowercase_ = 10 , lowercase_ = 25 , lowercase_ = 3 , **lowercase_ , ) -> Union[str, Any]: # time series specific configuration a__ =prediction_length a__ =context_length if context_length is not None else prediction_length a__ =distribution_output a__ =loss a__ =input_size a__ =num_time_features a__ =lags_sequence a__ =scaling a__ =num_dynamic_real_features a__ =num_static_real_features a__ =num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`') a__ =cardinality else: a__ =[0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`') a__ =embedding_dimension else: a__ =[min(50 , (cat + 1) // 2) for cat in self.cardinality] a__ =num_parallel_samples # Transformer architecture configuration a__ =input_size * len(self.lags_sequence) + self._number_of_features a__ =d_model a__ =encoder_attention_heads a__ =decoder_attention_heads a__ =encoder_ffn_dim a__ =decoder_ffn_dim a__ =encoder_layers a__ =decoder_layers a__ =dropout a__ =attention_dropout a__ =activation_dropout a__ =encoder_layerdrop a__ =decoder_layerdrop a__ =activation_function a__ =init_std a__ =use_cache # Autoformer a__ =label_length a__ =moving_average a__ =autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def __UpperCamelCase ( self) -> int: return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
20
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase: Union[str, Any] = { 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: Any = ['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: Tuple = [ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: Optional[int] = [ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: int = [ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys _lowerCAmelCase: Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
20
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowerCAmelCase: List[Any] = logging.get_logger(__name__) class lowercase_ (lowercase__ ): snake_case =['pixel_values'] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = None , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: super().__init__(**lowercase_) a__ =size if size is not None else {'shortest_edge': 256} a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) a__ =crop_size if crop_size is not None else {'height': 224, 'width': 224} a__ =get_size_dict(lowercase_ , param_name='crop_size') a__ =do_resize a__ =size a__ =resample a__ =do_center_crop a__ =crop_size a__ =do_rescale a__ =rescale_factor a__ =do_normalize a__ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a__ =image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") a__ =get_resize_output_image_size(lowercase_ , size=size['shortest_edge'] , default_to_square=lowercase_) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: a__ =get_size_dict(lowercase_) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""") return center_crop(lowercase_ , size=(size['height'], size['width']) , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_) -> np.ndarray: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> Tuple: a__ =do_resize if do_resize is not None else self.do_resize a__ =size if size is not None else self.size a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) a__ =resample if resample is not None else self.resample a__ =do_center_crop if do_center_crop is not None else self.do_center_crop a__ =crop_size if crop_size is not None else self.crop_size a__ =get_size_dict(lowercase_ , param_name='crop_size') a__ =do_rescale if do_rescale is not None else self.do_rescale a__ =rescale_factor if rescale_factor is not None else self.rescale_factor a__ =do_normalize if do_normalize is not None else self.do_normalize a__ =image_mean if image_mean is not None else self.image_mean a__ =image_std if image_std is not None else self.image_std a__ =make_list_of_images(lowercase_) if not valid_images(lowercase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a__ =[to_numpy_array(lowercase_) for image in images] if do_resize: a__ =[self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_) for image in images] if do_center_crop: a__ =[self.center_crop(image=lowercase_ , size=lowercase_) for image in images] if do_rescale: a__ =[self.rescale(image=lowercase_ , scale=lowercase_) for image in images] if do_normalize: a__ =[self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_) for image in images] a__ =[to_channel_dimension_format(lowercase_ , lowercase_) for image in images] a__ ={'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None) -> str: a__ =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_) != len(lowercase_): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(lowercase_): a__ =target_sizes.numpy() a__ =[] for idx in range(len(lowercase_)): a__ =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_) a__ =resized_logits[0].argmax(dim=0) semantic_segmentation.append(lowercase_) else: a__ =logits.argmax(dim=1) a__ =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
20
1
def _lowercase( __a : int = 5000_0000 ): a__ =set() a__ =int((limit - 24) ** (1 / 2) ) a__ =set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , __a ) ) ) for primea in primes: a__ =primea * primea for primea in primes: a__ =primea * primea * primea if square + cube >= limit - 16: break for primea in primes: a__ =primea * primea * primea * primea a__ =square + cube + tetr if total >= limit: break ret.add(__a ) return len(__a ) if __name__ == "__main__": print(F"""{solution() = }""")
20
from importlib import import_module from .logging import get_logger _lowerCAmelCase: str = get_logger(__name__) class lowercase_ : def __init__( self , lowercase_ , lowercase_=None) -> Tuple: a__ =attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__'): setattr(self , lowercase_ , getattr(lowercase_ , lowercase_)) a__ =module._original_module if isinstance(lowercase_ , _PatchedModuleObj) else module class lowercase_ : snake_case =[] def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None) -> List[str]: a__ =obj a__ =target a__ =new a__ =target.split('.')[0] a__ ={} a__ =attrs or [] def __enter__( self) -> Optional[int]: *a__ , a__ =self.target.split('.') # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowercase_)): try: a__ =import_module('.'.join(submodules[: i + 1])) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): a__ =getattr(self.obj , lowercase_) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowercase_ , _PatchedModuleObj) and obj_attr._original_module is submodule) ): a__ =obj_attr # patch at top level setattr(self.obj , lowercase_ , _PatchedModuleObj(lowercase_ , attrs=self.attrs)) a__ =getattr(self.obj , lowercase_) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowercase_ , lowercase_ , _PatchedModuleObj(getattr(lowercase_ , lowercase_ , lowercase_) , attrs=self.attrs)) a__ =getattr(lowercase_ , lowercase_) # finally set the target attribute setattr(lowercase_ , lowercase_ , self.new) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: a__ =getattr(import_module('.'.join(lowercase_)) , lowercase_) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowercase_) is attr_value: a__ =getattr(self.obj , lowercase_) setattr(self.obj , lowercase_ , self.new) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" a__ =globals()['__builtins__'][target_attr] setattr(self.obj , lowercase_ , self.new) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""") def __exit__( self , *lowercase_) -> str: for attr in list(self.original): setattr(self.obj , lowercase_ , self.original.pop(lowercase_)) def __UpperCamelCase ( self) -> Any: self.__enter__() self._active_patches.append(self) def __UpperCamelCase ( self) -> Union[str, Any]: try: self._active_patches.remove(self) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
20
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase_ (lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): snake_case =StableDiffusionInstructPixaPixPipeline snake_case =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} snake_case =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS snake_case =IMAGE_TO_IMAGE_IMAGE_PARAMS snake_case =IMAGE_TO_IMAGE_IMAGE_PARAMS def __UpperCamelCase ( self) -> Any: torch.manual_seed(0) a__ =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) a__ =PNDMScheduler(skip_prk_steps=lowercase_) torch.manual_seed(0) a__ =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0) a__ =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) a__ =CLIPTextModel(lowercase_) a__ =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') a__ ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __UpperCamelCase ( self , lowercase_ , lowercase_=0) -> Optional[Any]: a__ =floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_)).to(lowercase_) a__ =image.cpu().permute(0 , 2 , 3 , 1)[0] a__ =Image.fromarray(np.uinta(lowercase_)).convert('RGB') if str(lowercase_).startswith('mps'): a__ =torch.manual_seed(lowercase_) else: a__ =torch.Generator(device=lowercase_).manual_seed(lowercase_) a__ ={ 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def __UpperCamelCase ( self) -> Dict: a__ ='cpu' # ensure determinism for the device-dependent torch.Generator a__ =self.get_dummy_components() a__ =StableDiffusionInstructPixaPixPipeline(**lowercase_) a__ =sd_pipe.to(lowercase_) sd_pipe.set_progress_bar_config(disable=lowercase_) a__ =self.get_dummy_inputs(lowercase_) a__ =sd_pipe(**lowercase_).images a__ =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a__ =np.array([0.75_26, 0.37_50, 0.45_47, 0.61_17, 0.58_66, 0.50_16, 0.43_27, 0.56_42, 0.48_15]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def __UpperCamelCase ( self) -> Optional[int]: a__ ='cpu' # ensure determinism for the device-dependent torch.Generator a__ =self.get_dummy_components() a__ =StableDiffusionInstructPixaPixPipeline(**lowercase_) a__ =sd_pipe.to(lowercase_) sd_pipe.set_progress_bar_config(disable=lowercase_) a__ =self.get_dummy_inputs(lowercase_) a__ ='french fries' a__ =sd_pipe(**lowercase_ , negative_prompt=lowercase_) a__ =output.images a__ =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a__ =np.array([0.75_11, 0.36_42, 0.45_53, 0.62_36, 0.57_97, 0.50_13, 0.43_43, 0.56_11, 0.48_31]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def __UpperCamelCase ( self) -> str: a__ ='cpu' # ensure determinism for the device-dependent torch.Generator a__ =self.get_dummy_components() a__ =StableDiffusionInstructPixaPixPipeline(**lowercase_) a__ =sd_pipe.to(lowercase_) sd_pipe.set_progress_bar_config(disable=lowercase_) a__ =self.get_dummy_inputs(lowercase_) a__ =[inputs['prompt']] * 2 a__ =np.array(inputs['image']).astype(np.floataa) / 2_55.0 a__ =torch.from_numpy(lowercase_).unsqueeze(0).to(lowercase_) a__ =image / 2 + 0.5 a__ =image.permute(0 , 3 , 1 , 2) a__ =image.repeat(2 , 1 , 1 , 1) a__ =sd_pipe(**lowercase_).images a__ =image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) a__ =np.array([0.58_12, 0.57_48, 0.52_22, 0.59_08, 0.56_95, 0.71_74, 0.68_04, 0.55_23, 0.55_79]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def __UpperCamelCase ( self) -> Union[str, Any]: a__ ='cpu' # ensure determinism for the device-dependent torch.Generator a__ =self.get_dummy_components() a__ =EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear') a__ =StableDiffusionInstructPixaPixPipeline(**lowercase_) a__ =sd_pipe.to(lowercase_) sd_pipe.set_progress_bar_config(disable=lowercase_) a__ =self.get_dummy_inputs(lowercase_) a__ =sd_pipe(**lowercase_).images a__ =image[0, -3:, -3:, -1] a__ =[round(lowercase_ , 4) for x in image_slice.flatten().tolist()] print(','.join([str(lowercase_) for x in slice])) assert image.shape == (1, 32, 32, 3) a__ =np.array([0.74_17, 0.38_42, 0.47_32, 0.57_76, 0.58_91, 0.51_39, 0.40_52, 0.56_73, 0.49_86]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def __UpperCamelCase ( self) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) def __UpperCamelCase ( self) -> Optional[int]: a__ =self.get_dummy_components() a__ =StableDiffusionInstructPixaPixPipeline(**lowercase_) a__ =VaeImageProcessor(do_resize=lowercase_ , do_normalize=lowercase_) a__ =pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) a__ =pipe(**self.get_dummy_inputs_by_type(lowercase_ , input_image_type='pt'))[0] a__ =components['vae'] a__ =self.get_dummy_inputs_by_type(lowercase_ , input_image_type='pt') for image_param in self.image_latents_params: if image_param in inputs.keys(): a__ =vae.encode(inputs[image_param]).latent_dist.mode() a__ =pipe(**lowercase_)[0] a__ =np.abs(out - out_latents_inputs).max() self.assertLess(lowercase_ , 1e-4 , 'passing latents as image input generate different result from passing image') @slow @require_torch_gpu class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self , lowercase_=0) -> Dict: a__ =torch.manual_seed(lowercase_) a__ =load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg') a__ ={ 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def __UpperCamelCase ( self) -> str: a__ =StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowercase_) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) pipe.enable_attention_slicing() a__ =self.get_inputs() a__ =pipe(**lowercase_).images a__ =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) a__ =np.array([0.59_02, 0.60_15, 0.60_27, 0.59_83, 0.60_92, 0.60_61, 0.57_65, 0.57_85, 0.55_55]) assert np.abs(expected_slice - image_slice).max() < 1e-3 def __UpperCamelCase ( self) -> str: a__ =StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowercase_) a__ =LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) pipe.enable_attention_slicing() a__ =self.get_inputs() a__ =pipe(**lowercase_).images a__ =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) a__ =np.array([0.65_78, 0.68_17, 0.69_72, 0.67_61, 0.68_56, 0.69_16, 0.64_28, 0.65_16, 0.63_01]) assert np.abs(expected_slice - image_slice).max() < 1e-3 def __UpperCamelCase ( self) -> Optional[Any]: a__ =StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowercase_) a__ =DDIMScheduler.from_config(pipe.scheduler.config) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) pipe.enable_attention_slicing() a__ =self.get_inputs() a__ =pipe(**lowercase_).images a__ =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) a__ =np.array([0.38_28, 0.38_34, 0.38_18, 0.37_92, 0.38_65, 0.37_52, 0.37_92, 0.38_47, 0.37_53]) assert np.abs(expected_slice - image_slice).max() < 1e-3 def __UpperCamelCase ( self) -> Tuple: a__ =0 def callback_fn(lowercase_ , lowercase_ , lowercase_) -> None: a__ =True nonlocal number_of_steps number_of_steps += 1 if step == 1: a__ =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) a__ =latents[0, -3:, -3:, -1] a__ =np.array([-0.24_63, -0.46_44, -0.97_56, 1.51_76, 1.44_14, 0.78_66, 0.98_97, 0.85_21, 0.79_83]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 elif step == 2: a__ =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) a__ =latents[0, -3:, -3:, -1] a__ =np.array([-0.26_44, -0.46_26, -0.96_53, 1.51_76, 1.45_51, 0.76_86, 0.98_05, 0.84_52, 0.81_15]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 a__ =False a__ =StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowercase_ , torch_dtype=torch.floataa) a__ =pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) pipe.enable_attention_slicing() a__ =self.get_inputs() pipe(**lowercase_ , callback=lowercase_ , callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == 3 def __UpperCamelCase ( self) -> Optional[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() a__ =StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowercase_ , torch_dtype=torch.floataa) a__ =pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() a__ =self.get_inputs() a__ =pipe(**lowercase_) a__ =torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __UpperCamelCase ( self) -> Optional[Any]: a__ =self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 a__ =inputs['image'].resize((504, 504)) a__ ='timbrooks/instruct-pix2pix' a__ =StableDiffusionInstructPixaPixPipeline.from_pretrained( lowercase_ , safety_checker=lowercase_ , ) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) pipe.enable_attention_slicing() a__ =pipe(**lowercase_) a__ =output.images[0] a__ =image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) a__ =np.array([0.27_26, 0.25_29, 0.26_64, 0.26_55, 0.26_41, 0.26_42, 0.25_91, 0.26_49, 0.25_90]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
20
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": _lowerCAmelCase: int = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def _lowercase( __a : Optional[Any] ): if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) _lowerCAmelCase: str = parser.parse_args() _lowerCAmelCase: Tuple = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
20
1
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowercase( __a : NDArray[floataa] , __a : NDArray[floataa] , __a : list[int] , __a : int , ): a__ , a__ =coefficient_matrix.shape a__ , a__ =constant_matrix.shape if rowsa != colsa: a__ =f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(__a ) if colsa != 1: a__ =f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(__a ) if rowsa != rowsa: a__ =( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(__a ) if len(__a ) != rowsa: a__ =( 'Number of initial values must be equal to number of rows in coefficient ' f"""matrix but received {len(__a )} and {rowsa}""" ) raise ValueError(__a ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) a__ =np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) a__ , a__ =table.shape strictly_diagonally_dominant(__a ) # Iterates the whole matrix for given number of times for _ in range(__a ): a__ =[] for row in range(__a ): a__ =0 for col in range(__a ): if col == row: a__ =table[row][col] elif col == cols - 1: a__ =table[row][col] else: temp += (-1) * table[row][col] * init_val[col] a__ =(temp + val) / denom new_val.append(__a ) a__ =new_val return [float(__a ) for i in new_val] def _lowercase( __a : NDArray[floataa] ): a__ , a__ =table.shape a__ =True for i in range(0 , __a ): a__ =0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
20
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _lowerCAmelCase: Tuple = get_logger(__name__) _lowerCAmelCase: List[str] = Path(__file__).parent / 'model_card_template.md' _lowerCAmelCase: Any = uuida().hex _lowerCAmelCase: List[Any] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase: int = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase: Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def _lowercase( __a : Union[Dict, str, None] = None ): a__ =f"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"""; torch/{_torch_version}""" if is_flax_available(): ua += f"""; jax/{_jax_version}""" ua += f"""; flax/{_flax_version}""" if is_onnx_available(): ua += f"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__a , __a ): ua += "; " + "; ".join(f"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__a , __a ): ua += "; " + user_agent return ua def _lowercase( __a : str , __a : Optional[str] = None , __a : Optional[str] = None ): if token is None: a__ =HfFolder.get_token() if organization is None: a__ =whoami(__a )['name'] return f"""{username}/{model_id}""" else: return f"""{organization}/{model_id}""" def _lowercase( __a : Union[str, Any] , __a : Dict ): if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(__a , 'local_rank' ) and args.local_rank not in [-1, 0]: return a__ =args.hub_token if hasattr(__a , 'hub_token' ) else None a__ =get_full_repo_name(__a , token=__a ) a__ =ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__a , model_name=__a , repo_name=__a , dataset_name=args.dataset_name if hasattr(__a , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__a , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__a , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(__a , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__a , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__a , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__a , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__a , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__a , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(__a , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__a , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) a__ =os.path.join(args.output_dir , 'README.md' ) model_card.save(__a ) def _lowercase( __a : Optional[str] , __a : Optional[str] = None ): if resolved_file is None or commit_hash is not None: return commit_hash a__ =str(Path(__a ).as_posix() ) a__ =re.search(r'snapshots/([^/]+)/' , __a ) if search is None: return None a__ =search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__a ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _lowerCAmelCase: List[str] = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) _lowerCAmelCase: List[str] = os.path.join(hf_cache_home, 'diffusers') def _lowercase( __a : Optional[str] = None , __a : Optional[str] = None ): if new_cache_dir is None: a__ =DIFFUSERS_CACHE if old_cache_dir is None: a__ =old_diffusers_cache a__ =Path(__a ).expanduser() a__ =Path(__a ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): a__ =new_cache_dir / old_blob_path.relative_to(__a ) new_blob_path.parent.mkdir(parents=__a , exist_ok=__a ) os.replace(__a , __a ) try: os.symlink(__a , __a ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _lowerCAmelCase: Dict = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): _lowerCAmelCase: int = 0 else: with open(cache_version_file) as f: try: _lowerCAmelCase: List[Any] = int(f.read()) except ValueError: _lowerCAmelCase: Any = 0 if cache_version < 1: _lowerCAmelCase: str = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: _lowerCAmelCase: Optional[Any] = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ 'the directory exists and can be written to.' ) def _lowercase( __a : str , __a : Optional[str] = None ): if variant is not None: a__ =weights_name.split('.' ) a__ =splits[:-1] + [variant] + splits[-1:] a__ ='.'.join(__a ) return weights_name def _lowercase( __a : Union[str, Any] , *, __a : Optional[Any] , __a : Optional[Any] , __a : List[Any] , __a : Tuple , __a : Optional[Any] , __a : Dict , __a : str , __a : int , __a : Tuple , __a : Union[str, Any] , __a : int=None , ): a__ =str(__a ) if os.path.isfile(__a ): return pretrained_model_name_or_path elif os.path.isdir(__a ): if os.path.isfile(os.path.join(__a , __a ) ): # Load from a PyTorch checkpoint a__ =os.path.join(__a , __a ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__a , __a , __a ) ): a__ =os.path.join(__a , __a , __a ) return model_file else: raise EnvironmentError( f"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__a ).base_version ) >= version.parse('0.20.0' ) ): try: a__ =hf_hub_download( __a , filename=_add_variant(__a , __a ) , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) warnings.warn( f"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __a , ) return model_file except: # noqa: E722 warnings.warn( f"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__a , __a )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__a , __a )}' so that the correct variant file can be added.""" , __a , ) try: # 2. Load model file as usual a__ =hf_hub_download( __a , filename=__a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( f"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ 'this model name. Check the model page at ' f"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( f"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( f"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" f""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" f""" directory containing a file named {weights_name} or""" ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( f"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' f"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ f"""containing a file named {weights_name}""" )
20
1
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =KandinskyVaaPriorPipeline snake_case =['prompt'] snake_case =['prompt', 'negative_prompt'] snake_case =[ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] snake_case =False @property def __UpperCamelCase ( self) -> Optional[int]: return 32 @property def __UpperCamelCase ( self) -> Tuple: return 32 @property def __UpperCamelCase ( self) -> int: return self.time_input_dim @property def __UpperCamelCase ( self) -> str: return self.time_input_dim * 4 @property def __UpperCamelCase ( self) -> Optional[int]: return 100 @property def __UpperCamelCase ( self) -> Union[str, Any]: a__ =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self) -> Union[str, Any]: torch.manual_seed(0) a__ =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowercase_) @property def __UpperCamelCase ( self) -> Tuple: torch.manual_seed(0) a__ ={ 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } a__ =PriorTransformer(**lowercase_) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 a__ =nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def __UpperCamelCase ( self) -> Any: torch.manual_seed(0) a__ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) a__ =CLIPVisionModelWithProjection(lowercase_) return model @property def __UpperCamelCase ( self) -> Optional[int]: a__ =CLIPImageProcessor( crop_size=224 , do_center_crop=lowercase_ , do_normalize=lowercase_ , do_resize=lowercase_ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor def __UpperCamelCase ( self) -> Any: a__ =self.dummy_prior a__ =self.dummy_image_encoder a__ =self.dummy_text_encoder a__ =self.dummy_tokenizer a__ =self.dummy_image_processor a__ =UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=lowercase_ , clip_sample_range=10.0 , ) a__ ={ 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def __UpperCamelCase ( self , lowercase_ , lowercase_=0) -> Tuple: if str(lowercase_).startswith('mps'): a__ =torch.manual_seed(lowercase_) else: a__ =torch.Generator(device=lowercase_).manual_seed(lowercase_) a__ ={ 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __UpperCamelCase ( self) -> int: a__ ='cpu' a__ =self.get_dummy_components() a__ =self.pipeline_class(**lowercase_) a__ =pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) a__ =pipe(**self.get_dummy_inputs(lowercase_)) a__ =output.image_embeds a__ =pipe( **self.get_dummy_inputs(lowercase_) , return_dict=lowercase_ , )[0] a__ =image[0, -10:] a__ =image_from_tuple[0, -10:] assert image.shape == (1, 32) a__ =np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def __UpperCamelCase ( self) -> List[Any]: a__ =torch_device == 'cpu' a__ =True a__ =False self._test_inference_batch_single_identical( test_max_difference=lowercase_ , relax_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , ) @skip_mps def __UpperCamelCase ( self) -> Optional[int]: a__ =torch_device == 'cpu' a__ =False self._test_attention_slicing_forward_pass( test_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , )
20
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger() def _lowercase( __a : int , __a : str , __a : LevitConfig , __a : Path , __a : bool = True ): print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": a__ =timm.create_model('levit_128s' , pretrained=__a ) else: a__ =timm.create_model('levit_128' , pretrained=__a ) if hidden_sizes == 192: a__ =timm.create_model('levit_192' , pretrained=__a ) if hidden_sizes == 256: a__ =timm.create_model('levit_256' , pretrained=__a ) if hidden_sizes == 384: a__ =timm.create_model('levit_384' , pretrained=__a ) from_model.eval() a__ =LevitForImageClassificationWithTeacher(__a ).eval() a__ =OrderedDict() a__ =from_model.state_dict() a__ =list(from_model.state_dict().keys() ) a__ =list(our_model.state_dict().keys() ) print(len(__a ) , len(__a ) ) for i in range(len(__a ) ): a__ =weights[og_keys[i]] our_model.load_state_dict(__a ) a__ =torch.randn((2, 3, 224, 224) ) a__ =from_model(__a ) a__ =our_model(__a ).logits assert torch.allclose(__a , __a ), "The model logits don't match the original one." a__ =name print(__a ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) a__ =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def _lowercase( __a : Path , __a : str = None , __a : bool = True ): a__ ='imagenet-1k-id2label.json' a__ =1000 a__ =(1, num_labels) a__ ='huggingface/label-files' a__ =num_labels a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} a__ =partial(__a , num_labels=__a , idalabel=__a , labelaid=__a ) a__ ={ 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } a__ ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __a , names_to_config[model_name] , __a , __a ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __a , __a , __a , __a ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _lowerCAmelCase: Union[str, Any] = parser.parse_args() _lowerCAmelCase: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
20
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: str = logging.get_logger(__name__) def _lowercase( __a : List[str] , __a : List[str]=False ): a__ =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a__ =[(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def _lowercase( __a : List[Any] , __a : List[Any] , __a : Union[str, Any]=False ): for i in range(config.num_hidden_layers ): if base_model: a__ ='' else: a__ ='vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a__ =state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) a__ =state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict a__ =in_proj_weight[ : config.hidden_size, : ] a__ =in_proj_bias[: config.hidden_size] a__ =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a__ =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a__ =in_proj_weight[ -config.hidden_size :, : ] a__ =in_proj_bias[-config.hidden_size :] def _lowercase( __a : Optional[Any] ): a__ =['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__a , __a ) def _lowercase( __a : List[Any] , __a : List[Any] , __a : List[str] ): a__ =dct.pop(__a ) a__ =val def _lowercase( ): a__ ='http://images.cocodataset.org/val2017/000000039769.jpg' a__ =Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def _lowercase( __a : Optional[int] , __a : List[Any] ): a__ =ViTConfig() a__ =False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": a__ =True a__ =int(vit_name[-12:-10] ) a__ =int(vit_name[-9:-6] ) else: a__ =1000 a__ ='huggingface/label-files' a__ ='imagenet-1k-id2label.json' a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} a__ =int(vit_name[-6:-4] ) a__ =int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('tiny' ): a__ =192 a__ =768 a__ =12 a__ =3 elif vit_name[9:].startswith('small' ): a__ =384 a__ =1536 a__ =12 a__ =6 else: pass else: if vit_name[4:].startswith('small' ): a__ =768 a__ =2304 a__ =8 a__ =8 elif vit_name[4:].startswith('base' ): pass elif vit_name[4:].startswith('large' ): a__ =1024 a__ =4096 a__ =24 a__ =16 elif vit_name[4:].startswith('huge' ): a__ =1280 a__ =5120 a__ =32 a__ =16 # load original model from timm a__ =timm.create_model(__a , pretrained=__a ) timm_model.eval() # load state_dict of original model, remove and rename some keys a__ =timm_model.state_dict() if base_model: remove_classification_head_(__a ) a__ =create_rename_keys(__a , __a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) read_in_q_k_v(__a , __a , __a ) # load HuggingFace model if vit_name[-5:] == "in21k": a__ =ViTModel(__a ).eval() else: a__ =ViTForImageClassification(__a ).eval() model.load_state_dict(__a ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: a__ =DeiTImageProcessor(size=config.image_size ) else: a__ =ViTImageProcessor(size=config.image_size ) a__ =image_processor(images=prepare_img() , return_tensors='pt' ) a__ =encoding['pixel_values'] a__ =model(__a ) if base_model: a__ =timm_model.forward_features(__a ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__a , outputs.pooler_output , atol=1e-3 ) else: a__ =timm_model(__a ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__a , outputs.logits , atol=1e-3 ) Path(__a ).mkdir(exist_ok=__a ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase: Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
20
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowerCAmelCase: int = logging.get_logger(__name__) _lowerCAmelCase: Union[str, Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } _lowerCAmelCase: Tuple = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _lowercase( __a : Optional[Any] ): a__ ={} with open(__a , 'r' ) as file: for line_number, line in enumerate(__a ): a__ =line.strip() if line: a__ =line.split() a__ =line_number a__ =words[0] a__ =value return result def _lowercase( __a : Dict , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : str ): for attribute in key.split('.' ): a__ =getattr(__a , __a ) a__ =None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__a ): a__ =PARAM_MAPPING[full_name.split('.' )[-1]] a__ ='param' if weight_type is not None and weight_type != "param": a__ =getattr(__a , __a ).shape elif weight_type is not None and weight_type == "param": a__ =hf_pointer for attribute in hf_param_name.split('.' ): a__ =getattr(__a , __a ) a__ =shape_pointer.shape # let's reduce dimension a__ =value[0] else: a__ =hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a__ =value elif weight_type == "weight_g": a__ =value elif weight_type == "weight_v": a__ =value elif weight_type == "bias": a__ =value elif weight_type == "param": for attribute in hf_param_name.split('.' ): a__ =getattr(__a , __a ) a__ =value else: a__ =value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _lowercase( __a : Optional[int] , __a : int , __a : Optional[int] , __a : Optional[Any] , __a : List[Any] ): a__ =None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__a ): a__ =PARAM_MAPPING[full_name.split('.' )[-1]] a__ ='param' if weight_type is not None and weight_type != "param": a__ ='.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": a__ ='.'.join([key, hf_param_name] ) else: a__ =key a__ =value if 'lm_head' in full_key else value[0] _lowerCAmelCase: Dict = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _lowercase( __a : Dict , __a : int , __a : int=None , __a : List[str]=None ): a__ =False for key, mapped_key in MAPPING.items(): a__ ='wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: a__ =True if "*" in mapped_key: a__ =name.split(__a )[0].split('.' )[-2] a__ =mapped_key.replace('*' , __a ) if "weight_g" in name: a__ ='weight_g' elif "weight_v" in name: a__ ='weight_v' elif "bias" in name: a__ ='bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj a__ ='weight' else: a__ =None if hf_dict is not None: rename_dict(__a , __a , __a , __a , __a ) else: set_recursively(__a , __a , __a , __a , __a ) return is_used return is_used def _lowercase( __a : Union[str, Any] , __a : List[str] , __a : Dict ): a__ =[] a__ =fairseq_model.state_dict() a__ =hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): a__ =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == 'group' , ) a__ =True else: a__ =load_wavaveca_layer(__a , __a , __a ) if not is_used: unused_weights.append(__a ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _lowercase( __a : List[Any] , __a : Optional[Any] , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] ): a__ =full_name.split('conv_layers.' )[-1] a__ =name.split('.' ) a__ =int(items[0] ) a__ =int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def _lowercase( __a : str , __a : str , __a : Any=None , __a : str=None , __a : Any=True , __a : Union[str, Any]=False ): if config_path is not None: a__ =WavaVecaConfig.from_pretrained(__a ) else: a__ =WavaVecaConfig() if is_seq_class: a__ =read_txt_into_dict(__a ) a__ =idalabel a__ =WavaVecaForSequenceClassification(__a ) a__ =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) feature_extractor.save_pretrained(__a ) elif is_finetuned: if dict_path: a__ =Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a__ =target_dict.pad_index a__ =target_dict.bos_index a__ =target_dict.eos_index a__ =len(target_dict.symbols ) a__ =os.path.join(__a , 'vocab.json' ) if not os.path.isdir(__a ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__a ) ) return os.makedirs(__a , exist_ok=__a ) a__ =target_dict.indices # fairseq has the <pad> and <s> switched a__ =0 a__ =1 with open(__a , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(__a , __a ) a__ =WavaVecaCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=__a , ) a__ =True if config.feat_extract_norm == 'layer' else False a__ =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) a__ =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) a__ =WavaVecaForCTC(__a ) else: a__ =WavaVecaForPreTraining(__a ) if is_finetuned or is_seq_class: a__ , a__ , a__ =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: a__ =argparse.Namespace(task='audio_pretraining' ) a__ =fairseq.tasks.setup_task(__a ) a__ , a__ , a__ =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__a ) a__ =model[0].eval() recursively_load_weights(__a , __a , not is_finetuned ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) _lowerCAmelCase: Tuple = parser.parse_args() _lowerCAmelCase: Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
20
1
from maths.prime_check import is_prime def _lowercase( __a : int ): if not isinstance(__a , __a ): a__ =f"""Input value of [number={number}] must be an integer""" raise TypeError(__a ) if is_prime(__a ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
20
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowercase_ (unittest.TestCase ): @slow def __UpperCamelCase ( self) -> Optional[int]: a__ =AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowercase_).to(lowercase_) a__ =AutoTokenizer.from_pretrained('google/mt5-small') a__ =tokenizer('Hello there' , return_tensors='pt').input_ids a__ =tokenizer('Hi I am' , return_tensors='pt').input_ids a__ =model(input_ids.to(lowercase_) , labels=labels.to(lowercase_)).loss a__ =-(labels.shape[-1] * loss.item()) a__ =-84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
20
1
_lowerCAmelCase: Tuple = 'Alexander Joslin' import operator as op from .stack import Stack def _lowercase( __a : str ): a__ ={'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} a__ =Stack() a__ =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__a ) ) elif i in operators: # RULE 2 operator_stack.push(__a ) elif i == ")": # RULE 4 a__ =operator_stack.peek() operator_stack.pop() a__ =operand_stack.peek() operand_stack.pop() a__ =operand_stack.peek() operand_stack.pop() a__ =operators[opr](__a , __a ) operand_stack.push(__a ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": _lowerCAmelCase: Dict = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
20
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self) -> int: a__ =tempfile.mkdtemp() a__ =BlipImageProcessor() a__ =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel') a__ =BlipProcessor(lowercase_ , lowercase_) processor.save_pretrained(self.tmpdirname) def __UpperCamelCase ( self , **lowercase_) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).tokenizer def __UpperCamelCase ( self , **lowercase_) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).image_processor def __UpperCamelCase ( self) -> Optional[int]: shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self) -> str: a__ =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] a__ =[Image.fromarray(np.moveaxis(lowercase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self) -> str: a__ =BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) a__ =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') a__ =self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0) a__ =BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowercase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowercase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowercase_) def __UpperCamelCase ( self) -> int: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ =self.prepare_image_inputs() a__ =image_processor(lowercase_ , return_tensors='np') a__ =processor(images=lowercase_ , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self) -> List[str]: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =processor(text=lowercase_) a__ =tokenizer(lowercase_ , return_token_type_ids=lowercase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self) -> int: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =self.prepare_image_inputs() a__ =processor(text=lowercase_ , images=lowercase_) self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask']) # test if it raises when no input is passed with pytest.raises(lowercase_): processor() def __UpperCamelCase ( self) -> Tuple: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a__ =processor.batch_decode(lowercase_) a__ =tokenizer.batch_decode(lowercase_) self.assertListEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =self.prepare_image_inputs() a__ =processor(text=lowercase_ , images=lowercase_) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask'])
20
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase: Tuple = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase_ (lowercase__ ): snake_case ='yolos' def __init__( self , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=[512, 864] , lowercase_=16 , lowercase_=3 , lowercase_=True , lowercase_=100 , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> List[str]: super().__init__(**lowercase_) a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =initializer_range a__ =layer_norm_eps a__ =image_size a__ =patch_size a__ =num_channels a__ =qkv_bias a__ =num_detection_tokens a__ =use_mid_position_embeddings a__ =auxiliary_loss # Hungarian matcher a__ =class_cost a__ =bbox_cost a__ =giou_cost # Loss coefficients a__ =bbox_loss_coefficient a__ =giou_loss_coefficient a__ =eos_coefficient class lowercase_ (lowercase__ ): snake_case =version.parse('1.11' ) @property def __UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self) -> float: return 1e-4 @property def __UpperCamelCase ( self) -> int: return 12
20
def _lowercase( __a : list[int] ): a__ =len(__a ) for i in range(__a ): for j in range(i + 1 , __a ): if numbers[j] < numbers[i]: a__ , a__ =numbers[j], numbers[i] return numbers if __name__ == "__main__": _lowerCAmelCase: Tuple = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase: int = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
20
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
20
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowercase_ : def __init__( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="resnet50" , lowercase_=3 , lowercase_=32 , lowercase_=3 , lowercase_=True , lowercase_=True , ) -> Union[str, Any]: a__ =parent a__ =out_indices if out_indices is not None else [4] a__ =stage_names a__ =out_features a__ =backbone a__ =batch_size a__ =image_size a__ =num_channels a__ =use_pretrained_backbone a__ =is_training def __UpperCamelCase ( self) -> Optional[Any]: a__ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ =self.get_config() return config, pixel_values def __UpperCamelCase ( self) -> Tuple: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> str: a__ =TimmBackbone(config=lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): a__ =model(lowercase_) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __UpperCamelCase ( self) -> str: a__ =self.prepare_config_and_inputs() a__ , a__ =config_and_inputs a__ ={'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class lowercase_ (lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): snake_case =(TimmBackbone,) if is_torch_available() else () snake_case ={'feature-extraction': TimmBackbone} if is_torch_available() else {} snake_case =False snake_case =False snake_case =False snake_case =False def __UpperCamelCase ( self) -> Optional[Any]: a__ =TimmBackboneModelTester(self) a__ =ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_) def __UpperCamelCase ( self) -> Dict: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self) -> str: a__ ='resnet18' a__ ='microsoft/resnet-18' a__ =AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_) a__ =AutoBackbone.from_pretrained(lowercase_) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(len(timm_model.stage_names) , len(transformers_model.stage_names)) self.assertEqual(timm_model.channels , transformers_model.channels) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,)) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names) - 1]) a__ =AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_ , out_indices=[1, 2, 3]) a__ =AutoBackbone.from_pretrained(lowercase_ , out_indices=[1, 2, 3]) self.assertEqual(timm_model.out_indices , transformers_model.out_indices) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(timm_model.channels , transformers_model.channels) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> Dict: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> List[Any]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.') def __UpperCamelCase ( self) -> str: pass @unittest.skip('Safetensors is not supported by timm.') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self) -> Optional[Any]: pass def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) a__ =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ =[*signature.parameters.keys()] a__ =['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_) def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =True a__ =self.has_attentions # no need to test all models as different heads yield the same functionality a__ =self.all_model_classes[0] a__ =model_class(lowercase_) model.to(lowercase_) a__ =self._prepare_for_class(lowercase_ , lowercase_) a__ =model(**lowercase_) a__ =outputs[0][-1] # Encoder-/Decoder-only models a__ =outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a__ =outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowercase_) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) def __UpperCamelCase ( self) -> List[str]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_) self.assertEqual(len(result.feature_maps) , len(config.out_indices)) self.assertEqual(len(model.channels) , len(config.out_indices)) # Check output of last stage is taken if out_features=None, out_indices=None a__ =copy.deepcopy(lowercase_) a__ =None a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_) self.assertEqual(len(result.feature_maps) , 1) self.assertEqual(len(model.channels) , 1) # Check backbone can be initialized with fresh weights a__ =copy.deepcopy(lowercase_) a__ =False a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_)
20
1
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self) -> Tuple: debug_launcher(test_script.main) def __UpperCamelCase ( self) -> int: debug_launcher(test_ops.main)
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCAmelCase: Optional[Any] = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: List[str] = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _lowerCAmelCase: List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
20
1
def _lowercase( __a : int ): if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) a__ =[0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 a__ =1 if upper_limit > 0: a__ =1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(__a ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: _lowerCAmelCase: str = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(F"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
20
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase: str = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class lowercase_ (lowercase__ ): snake_case ='big_bird' def __init__( self , lowercase_=50358 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu_new" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=4096 , lowercase_=2 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=66 , lowercase_="block_sparse" , lowercase_=True , lowercase_=False , lowercase_=64 , lowercase_=3 , lowercase_=None , **lowercase_ , ) -> Any: super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , sep_token_id=lowercase_ , **lowercase_ , ) a__ =vocab_size a__ =max_position_embeddings a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =initializer_range a__ =type_vocab_size a__ =layer_norm_eps a__ =use_cache a__ =rescale_embeddings a__ =attention_type a__ =use_bias a__ =block_size a__ =num_random_blocks a__ =classifier_dropout class lowercase_ (lowercase__ ): @property def __UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a__ ={0: 'batch', 1: 'choice', 2: 'sequence'} else: a__ ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
20
1
import os import sys import unittest _lowerCAmelCase: int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _lowerCAmelCase: int = os.path.join(git_repo_path, 'src', 'transformers') _lowerCAmelCase: int = '\n{0} = None\n' _lowerCAmelCase: List[Any] = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' _lowerCAmelCase: Union[str, Any] = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self) -> str: a__ =find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")') self.assertIsNone(lowercase_) a__ =find_backend(' if not is_tokenizers_available():') self.assertEqual(lowercase_ , 'tokenizers') a__ =find_backend(' if not is_tensorflow_text_available():') self.assertEqual(lowercase_ , 'tensorflow_text') a__ =find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):') self.assertEqual(lowercase_ , 'sentencepiece_and_tokenizers') a__ =find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):') self.assertEqual(lowercase_ , 'sentencepiece_and_tensorflow_text') a__ =find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):') self.assertEqual(lowercase_ , 'sentencepiece_and_tokenizers_and_vision') def __UpperCamelCase ( self) -> Optional[Any]: a__ =read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , lowercase_) self.assertIn('tensorflow_text' , lowercase_) self.assertIn('sentencepiece_and_tokenizers' , lowercase_) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch']) self.assertIn('TFBertModel' , objects['tf']) self.assertIn('FlaxBertModel' , objects['flax']) self.assertIn('BertModel' , objects['torch']) self.assertIn('TFBertTokenizer' , objects['tensorflow_text']) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers']) def __UpperCamelCase ( self) -> List[str]: a__ =create_dummy_object('CONSTANT' , '\'torch\'') self.assertEqual(lowercase_ , '\nCONSTANT = None\n') a__ =create_dummy_object('function' , '\'torch\'') self.assertEqual( lowercase_ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n') a__ ='\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' a__ =create_dummy_object('FakeClass' , '\'torch\'') self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> str: a__ ='# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' a__ =create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']}) self.assertEqual(dummy_files['torch'] , lowercase_)
20
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger(__name__) _lowerCAmelCase: Tuple = torch.device('cpu') def _lowercase( ): a__ ='http://images.cocodataset.org/val2017/000000039769.jpg' a__ =Image.open(requests.get(__a , stream=__a ).raw ) return im def _lowercase( __a : Optional[Any] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _lowercase( __a : int , __a : int , __a : Optional[Any] ): a__ =dct.pop(__a ) a__ =val def _lowercase( __a : Optional[Any] ): a__ =[] for k in state_dict.keys(): a__ =k if ".pwconv" in k: a__ =k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: a__ =k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: a__ =k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: a__ =k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: a__ =k_new.split('.' ) if ls[2].isdigit(): a__ ='swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: a__ =k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _lowercase( __a : Union[str, Any] , __a : int , __a : str ): a__ =SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a__ =1000 a__ ='huggingface/label-files' a__ ='imagenet-1k-id2label.json' a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a__ =[3, 3, 6, 4] a__ =[48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a__ =[3, 3, 9, 6] a__ =[48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a__ =[4, 3, 10, 5] a__ =[48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a__ =[4, 4, 12, 6] a__ =[64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): a__ =torch.hub.load_state_dict_from_url(__a , map_location='cpu' , check_hash=__a ) else: a__ =torch.load(__a , map_location='cpu' ) a__ =checkpoint a__ =create_rename_keys(__a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__a , __a , __a ) # load HuggingFace model a__ =SwiftFormerForImageClassification(__a ).eval() hf_model.load_state_dict(__a ) # prepare test inputs a__ =prepare_img() a__ =ViTImageProcessor.from_pretrained('preprocessor_config' ) a__ =processor(images=__a , return_tensors='pt' ) # compare outputs from both models a__ =get_expected_output(__a ) a__ =hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , __a , atol=1e-3 ) Path(__a ).mkdir(exist_ok=__a ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') _lowerCAmelCase: Optional[int] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
20
1
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase: List[Any] = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =SpeechTaTokenizer snake_case =False snake_case =True def __UpperCamelCase ( self) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing a__ =SpeechTaTokenizer(lowercase_) a__ =AddedToken('<mask>' , lstrip=lowercase_ , rstrip=lowercase_) a__ =mask_token tokenizer.add_special_tokens({'mask_token': mask_token}) tokenizer.add_tokens(['<ctc_blank>']) tokenizer.save_pretrained(self.tmpdirname) def __UpperCamelCase ( self , lowercase_) -> str: a__ ='this is a test' a__ ='this is a test' return input_text, output_text def __UpperCamelCase ( self , lowercase_ , lowercase_=False , lowercase_=20 , lowercase_=5) -> str: a__ , a__ =self.get_input_output_texts(lowercase_) a__ =tokenizer.encode(lowercase_ , add_special_tokens=lowercase_) a__ =tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_) return text, ids def __UpperCamelCase ( self) -> str: a__ ='<pad>' a__ =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_) , lowercase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_) , lowercase_) def __UpperCamelCase ( self) -> str: a__ =list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-4] , 'œ') self.assertEqual(vocab_keys[-2] , '<mask>') self.assertEqual(vocab_keys[-1] , '<ctc_blank>') self.assertEqual(len(lowercase_) , 81) def __UpperCamelCase ( self) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 79) def __UpperCamelCase ( self) -> str: a__ =self.get_tokenizers(do_lower_case=lowercase_) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): a__ =tokenizer.vocab_size a__ =len(lowercase_) self.assertNotEqual(lowercase_ , 0) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) a__ =['aaaaa bbbbbb', 'cccccccccdddddddd'] a__ =tokenizer.add_tokens(lowercase_) a__ =tokenizer.vocab_size a__ =len(lowercase_) self.assertNotEqual(lowercase_ , 0) self.assertEqual(lowercase_ , lowercase_) self.assertEqual(lowercase_ , len(lowercase_)) self.assertEqual(lowercase_ , all_size + len(lowercase_)) a__ =tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=lowercase_) self.assertGreaterEqual(len(lowercase_) , 4) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) a__ ={'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} a__ =tokenizer.add_special_tokens(lowercase_) a__ =tokenizer.vocab_size a__ =len(lowercase_) self.assertNotEqual(lowercase_ , 0) self.assertEqual(lowercase_ , lowercase_) self.assertEqual(lowercase_ , len(lowercase_)) self.assertEqual(lowercase_ , all_size_a + len(lowercase_)) a__ =tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=lowercase_) self.assertGreaterEqual(len(lowercase_) , 6) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[0] , tokens[1]) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokens[-4]) self.assertEqual(tokens[0] , tokenizer.eos_token_id) self.assertEqual(tokens[-3] , tokenizer.pad_token_id) def __UpperCamelCase ( self) -> Union[str, Any]: pass def __UpperCamelCase ( self) -> Optional[Any]: pass def __UpperCamelCase ( self) -> Union[str, Any]: a__ =self.get_tokenizer() a__ =tokenizer.tokenize('This is a test') # fmt: off self.assertListEqual(lowercase_ , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't']) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) a__ =tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( lowercase_ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.']) a__ =tokenizer.convert_tokens_to_ids(lowercase_) # fmt: off self.assertListEqual(lowercase_ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26]) # fmt: on a__ =tokenizer.convert_ids_to_tokens(lowercase_) self.assertListEqual( lowercase_ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.']) @slow def __UpperCamelCase ( self) -> Optional[int]: # Use custom sequence because this tokenizer does not handle numbers. a__ =[ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off a__ ={ 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=lowercase_ , )
20
from __future__ import annotations from typing import Any class lowercase_ : def __init__( self , lowercase_) -> None: a__ =num_of_nodes a__ =[] a__ ={} def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: self.m_edges.append([u_node, v_node, weight]) def __UpperCamelCase ( self , lowercase_) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node]) def __UpperCamelCase ( self , lowercase_) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: a__ =self.find_component(lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: if component_size[u_node] <= component_size[v_node]: a__ =v_node component_size[v_node] += component_size[u_node] self.set_component(lowercase_) elif component_size[u_node] >= component_size[v_node]: a__ =self.find_component(lowercase_) component_size[u_node] += component_size[v_node] self.set_component(lowercase_) def __UpperCamelCase ( self) -> None: a__ =[] a__ =0 a__ =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes): self.m_component.update({node: node}) component_size.append(1) a__ =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: a__ , a__ , a__ =edge a__ =self.m_component[u] a__ =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): a__ =[u, v, w] for edge in minimum_weight_edge: if isinstance(lowercase_ , lowercase_): a__ , a__ , a__ =edge a__ =self.m_component[u] a__ =self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowercase_ , lowercase_ , lowercase_) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""") num_of_components -= 1 a__ =[-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""") def _lowercase( ): pass if __name__ == "__main__": import doctest doctest.testmod()
20
1
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger() def _lowercase( __a : int , __a : str , __a : LevitConfig , __a : Path , __a : bool = True ): print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": a__ =timm.create_model('levit_128s' , pretrained=__a ) else: a__ =timm.create_model('levit_128' , pretrained=__a ) if hidden_sizes == 192: a__ =timm.create_model('levit_192' , pretrained=__a ) if hidden_sizes == 256: a__ =timm.create_model('levit_256' , pretrained=__a ) if hidden_sizes == 384: a__ =timm.create_model('levit_384' , pretrained=__a ) from_model.eval() a__ =LevitForImageClassificationWithTeacher(__a ).eval() a__ =OrderedDict() a__ =from_model.state_dict() a__ =list(from_model.state_dict().keys() ) a__ =list(our_model.state_dict().keys() ) print(len(__a ) , len(__a ) ) for i in range(len(__a ) ): a__ =weights[og_keys[i]] our_model.load_state_dict(__a ) a__ =torch.randn((2, 3, 224, 224) ) a__ =from_model(__a ) a__ =our_model(__a ).logits assert torch.allclose(__a , __a ), "The model logits don't match the original one." a__ =name print(__a ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) a__ =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def _lowercase( __a : Path , __a : str = None , __a : bool = True ): a__ ='imagenet-1k-id2label.json' a__ =1000 a__ =(1, num_labels) a__ ='huggingface/label-files' a__ =num_labels a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} a__ =partial(__a , num_labels=__a , idalabel=__a , labelaid=__a ) a__ ={ 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } a__ ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __a , names_to_config[model_name] , __a , __a ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __a , __a , __a , __a ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _lowerCAmelCase: Union[str, Any] = parser.parse_args() _lowerCAmelCase: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
20
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCAmelCase: Union[str, Any] = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' _lowerCAmelCase: Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' _lowerCAmelCase: List[Any] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): def __UpperCamelCase ( self) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=True , lowercase_=False) -> Any: if rouge_types is None: a__ =['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] a__ =rouge_scorer.RougeScorer(rouge_types=lowercase_ , use_stemmer=lowercase_) if use_aggregator: a__ =scoring.BootstrapAggregator() else: a__ =[] for ref, pred in zip(lowercase_ , lowercase_): a__ =scorer.score(lowercase_ , lowercase_) if use_aggregator: aggregator.add_scores(lowercase_) else: scores.append(lowercase_) if use_aggregator: a__ =aggregator.aggregate() else: a__ ={} for key in scores[0]: a__ =[score[key] for score in scores] return result
20
1
def _lowercase( __a : int = 200_0000 ): a__ =[0 for i in range(n + 1 )] a__ =1 a__ =1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , __a ): a__ =1 a__ =0 for i in range(__a ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
20
from __future__ import annotations _lowerCAmelCase: str = '#' class lowercase_ : def __init__( self) -> None: a__ ={} def __UpperCamelCase ( self , lowercase_) -> None: a__ =self._trie for char in text: if char not in trie: a__ ={} a__ =trie[char] a__ =True def __UpperCamelCase ( self , lowercase_) -> tuple | list: a__ =self._trie for char in prefix: if char in trie: a__ =trie[char] else: return [] return self._elements(lowercase_) def __UpperCamelCase ( self , lowercase_) -> tuple: a__ =[] for c, v in d.items(): a__ =[' '] if c == END else [(c + s) for s in self._elements(lowercase_)] result.extend(lowercase_) return tuple(lowercase_) _lowerCAmelCase: Optional[int] = Trie() _lowerCAmelCase: List[str] = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def _lowercase( __a : str ): a__ =trie.find_word(__a ) return tuple(string + word for word in suffixes ) def _lowercase( ): print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
20
1
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class lowercase_ : snake_case =None def __UpperCamelCase ( self) -> Optional[int]: a__ =self.feature_extraction_class(**self.feat_extract_dict) a__ =json.loads(feat_extract.to_json_string()) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , lowercase_) def __UpperCamelCase ( self) -> List[str]: a__ =self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: a__ =os.path.join(lowercase_ , 'feat_extract.json') feat_extract_first.to_json_file(lowercase_) a__ =self.feature_extraction_class.from_json_file(lowercase_) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict()) def __UpperCamelCase ( self) -> Tuple: a__ =self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: a__ =feat_extract_first.save_pretrained(lowercase_)[0] check_json_file_has_correct_format(lowercase_) a__ =self.feature_extraction_class.from_pretrained(lowercase_) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict()) def __UpperCamelCase ( self) -> List[Any]: a__ =self.feature_extraction_class() self.assertIsNotNone(lowercase_)
20
_lowerCAmelCase: List[str] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def _lowercase( ): a__ =input('Enter message: ' ) a__ =input('Enter key [alphanumeric]: ' ) a__ =input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): a__ ='encrypt' a__ =encrypt_message(__a , __a ) elif mode.lower().startswith('d' ): a__ ='decrypt' a__ =decrypt_message(__a , __a ) print(f"""\n{mode.title()}ed message:""" ) print(__a ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'encrypt' ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'decrypt' ) def _lowercase( __a : str , __a : str , __a : str ): a__ =[] a__ =0 a__ =key.upper() for symbol in message: a__ =LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__a ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__a ): a__ =0 else: translated.append(__a ) return "".join(__a ) if __name__ == "__main__": main()
20
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class lowercase_ : def __init__( self , lowercase_ , lowercase_=2 , lowercase_=True , lowercase_=False , lowercase_=10 , lowercase_=3 , lowercase_=32 * 4 , lowercase_=32 * 6 , lowercase_=4 , lowercase_=32 , ) -> Union[str, Any]: a__ =parent a__ =batch_size a__ =is_training a__ =use_auxiliary_loss a__ =num_queries a__ =num_channels a__ =min_size a__ =max_size a__ =num_labels a__ =mask_feature_size def __UpperCamelCase ( self) -> int: a__ =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( lowercase_) a__ =torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowercase_) a__ =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowercase_) > 0.5 ).float() a__ =(torch.rand((self.batch_size, self.num_labels) , device=lowercase_) > 0.5).long() a__ =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __UpperCamelCase ( self) -> str: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def __UpperCamelCase ( self) -> Tuple: a__ , a__ , a__ , a__ , a__ =self.prepare_config_and_inputs() a__ ={'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def __UpperCamelCase ( self , lowercase_ , lowercase_) -> str: a__ =output.encoder_hidden_states a__ =output.pixel_decoder_hidden_states a__ =output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowercase_) , len(config.backbone_config.depths)) self.parent.assertTrue(len(lowercase_) , len(config.backbone_config.depths)) self.parent.assertTrue(len(lowercase_) , config.decoder_config.decoder_layers) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=False) -> List[str]: with torch.no_grad(): a__ =MaskFormerModel(config=lowercase_) model.to(lowercase_) model.eval() a__ =model(pixel_values=lowercase_ , pixel_mask=lowercase_) a__ =model(lowercase_ , output_hidden_states=lowercase_) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(lowercase_ , lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Union[str, Any]: a__ =MaskFormerForInstanceSegmentation(config=lowercase_) model.to(lowercase_) model.eval() def comm_check_on_output(lowercase_): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): a__ =model(pixel_values=lowercase_ , pixel_mask=lowercase_) a__ =model(lowercase_) comm_check_on_output(lowercase_) a__ =model( pixel_values=lowercase_ , pixel_mask=lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_) comm_check_on_output(lowercase_) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape , torch.Size([1])) @require_torch class lowercase_ (lowercase__ , lowercase__ , unittest.TestCase ): snake_case =(MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () snake_case =( {'feature-extraction': MaskFormerModel, 'image-segmentation': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) snake_case =False snake_case =False snake_case =False snake_case =False def __UpperCamelCase ( self) -> Union[str, Any]: a__ =MaskFormerModelTester(self) a__ =ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_) def __UpperCamelCase ( self) -> List[str]: self.config_tester.run_common_tests() def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowercase_ , **lowercase_ , output_hidden_states=lowercase_) def __UpperCamelCase ( self) -> Any: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*lowercase_) @unittest.skip(reason='MaskFormer does not use inputs_embeds') def __UpperCamelCase ( self) -> Optional[Any]: pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method') def __UpperCamelCase ( self) -> Dict: pass @unittest.skip(reason='MaskFormer is not a generative model') def __UpperCamelCase ( self) -> Dict: pass @unittest.skip(reason='MaskFormer does not use token embeddings') def __UpperCamelCase ( self) -> Any: pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self) -> Tuple: pass def __UpperCamelCase ( self) -> List[Any]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) a__ =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ =[*signature.parameters.keys()] a__ =['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_) @slow def __UpperCamelCase ( self) -> Any: for model_name in ["facebook/maskformer-swin-small-coco"]: a__ =MaskFormerModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def __UpperCamelCase ( self) -> int: a__ =(self.model_tester.min_size,) * 2 a__ ={ 'pixel_values': torch.randn((2, 3, *size) , device=lowercase_), 'mask_labels': torch.randn((2, 10, *size) , device=lowercase_), 'class_labels': torch.zeros(2 , 10 , device=lowercase_).long(), } a__ =MaskFormerForInstanceSegmentation(MaskFormerConfig()).to(lowercase_) a__ =model(**lowercase_) self.assertTrue(outputs.loss is not None) def __UpperCamelCase ( self) -> List[Any]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowercase_ , **lowercase_ , output_hidden_states=lowercase_) def __UpperCamelCase ( self) -> int: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_).to(lowercase_) a__ =model(**lowercase_ , output_attentions=lowercase_) self.assertTrue(outputs.attentions is not None) def __UpperCamelCase ( self) -> List[str]: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss a__ =self.all_model_classes[1] a__ , a__ , a__ , a__ , a__ =self.model_tester.prepare_config_and_inputs() a__ =model_class(lowercase_) model.to(lowercase_) model.train() a__ =model(lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_).loss loss.backward() def __UpperCamelCase ( self) -> Union[str, Any]: # only MaskFormerForInstanceSegmentation has the loss a__ =self.all_model_classes[1] a__ , a__ , a__ , a__ , a__ =self.model_tester.prepare_config_and_inputs() a__ =True a__ =True a__ =model_class(lowercase_) model.to(lowercase_) model.train() a__ =model(lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_) a__ =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() a__ =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't a__ =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() a__ =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowercase_) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) _lowerCAmelCase: Optional[int] = 1e-4 def _lowercase( ): a__ =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowercase_ (unittest.TestCase ): @cached_property def __UpperCamelCase ( self) -> Tuple: return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco') if is_vision_available() else None ) def __UpperCamelCase ( self) -> Optional[Any]: a__ =MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco').to(lowercase_) a__ =self.default_image_processor a__ =prepare_img() a__ =image_processor(lowercase_ , return_tensors='pt').to(lowercase_) a__ =inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(lowercase_ , (1, 3, 800, 1088)) with torch.no_grad(): a__ =model(**lowercase_) a__ =torch.tensor( [[-0.04_82, 0.92_28, 0.49_51], [-0.25_47, 0.80_17, 0.85_27], [-0.00_69, 0.33_85, -0.00_89]]).to(lowercase_) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowercase_ , atol=lowercase_)) a__ =torch.tensor( [[-0.84_22, -0.84_34, -0.97_18], [-1.01_44, -0.55_65, -0.41_95], [-1.00_38, -0.44_84, -0.19_61]]).to(lowercase_) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowercase_ , atol=lowercase_)) a__ =torch.tensor( [[0.28_52, -0.01_59, 0.97_35], [0.62_54, 0.18_58, 0.85_29], [-0.06_80, -0.41_16, 1.84_13]]).to(lowercase_) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowercase_ , atol=lowercase_)) def __UpperCamelCase ( self) -> Dict: a__ =( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco') .to(lowercase_) .eval() ) a__ =self.default_image_processor a__ =prepare_img() a__ =image_processor(lowercase_ , return_tensors='pt').to(lowercase_) a__ =inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(lowercase_ , (1, 3, 800, 1088)) with torch.no_grad(): a__ =model(**lowercase_) # masks_queries_logits a__ =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) a__ =[ [-1.3_73_71_24, -1.7_72_49_37, -1.9_36_42_33], [-1.5_97_72_81, -1.9_86_79_39, -2.1_52_36_95], [-1.5_79_53_98, -1.9_26_98_32, -2.09_39_42], ] a__ =torch.tensor(lowercase_).to(lowercase_) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowercase_ , atol=lowercase_)) # class_queries_logits a__ =outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1)) a__ =torch.tensor( [ [1.6512e00, -5.2572e00, -3.3519e00], [3.6169e-02, -5.9025e00, -2.9313e00], [1.0766e-04, -7.7630e00, -5.1263e00], ]).to(lowercase_) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase_ , atol=lowercase_)) def __UpperCamelCase ( self) -> List[str]: a__ =( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff') .to(lowercase_) .eval() ) a__ =self.default_image_processor a__ =prepare_img() a__ =image_processor(lowercase_ , return_tensors='pt').to(lowercase_) a__ =inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(lowercase_ , (1, 3, 800, 1088)) with torch.no_grad(): a__ =model(**lowercase_) # masks_queries_logits a__ =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) a__ =[[-0.90_46, -2.63_66, -4.60_62], [-3.41_79, -5.78_90, -8.80_57], [-4.91_79, -7.65_60, -10.77_11]] a__ =torch.tensor(lowercase_).to(lowercase_) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowercase_ , atol=lowercase_)) # class_queries_logits a__ =outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1)) a__ =torch.tensor( [[4.71_88, -3.25_85, -2.88_57], [6.68_71, -2.91_81, -1.24_87], [7.24_49, -2.27_64, -2.18_74]]).to(lowercase_) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase_ , atol=lowercase_)) def __UpperCamelCase ( self) -> str: a__ =( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco') .to(lowercase_) .eval() ) a__ =self.default_image_processor a__ =image_processor( [np.zeros((3, 800, 1333)), np.zeros((3, 800, 1333))] , segmentation_maps=[np.zeros((384, 384)).astype(np.floataa), np.zeros((384, 384)).astype(np.floataa)] , return_tensors='pt' , ) a__ =inputs['pixel_values'].to(lowercase_) a__ =[el.to(lowercase_) for el in inputs['mask_labels']] a__ =[el.to(lowercase_) for el in inputs['class_labels']] with torch.no_grad(): a__ =model(**lowercase_) self.assertTrue(outputs.loss is not None)
20
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
1
def _lowercase( __a : int ): if num < 0: return False a__ =num a__ =0 while num > 0: a__ =rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
20
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =KandinskyVaaPriorPipeline snake_case =['prompt'] snake_case =['prompt', 'negative_prompt'] snake_case =[ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] snake_case =False @property def __UpperCamelCase ( self) -> Optional[int]: return 32 @property def __UpperCamelCase ( self) -> Tuple: return 32 @property def __UpperCamelCase ( self) -> int: return self.time_input_dim @property def __UpperCamelCase ( self) -> str: return self.time_input_dim * 4 @property def __UpperCamelCase ( self) -> Optional[int]: return 100 @property def __UpperCamelCase ( self) -> Union[str, Any]: a__ =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self) -> Union[str, Any]: torch.manual_seed(0) a__ =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowercase_) @property def __UpperCamelCase ( self) -> Tuple: torch.manual_seed(0) a__ ={ 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } a__ =PriorTransformer(**lowercase_) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 a__ =nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def __UpperCamelCase ( self) -> Any: torch.manual_seed(0) a__ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) a__ =CLIPVisionModelWithProjection(lowercase_) return model @property def __UpperCamelCase ( self) -> Optional[int]: a__ =CLIPImageProcessor( crop_size=224 , do_center_crop=lowercase_ , do_normalize=lowercase_ , do_resize=lowercase_ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor def __UpperCamelCase ( self) -> Any: a__ =self.dummy_prior a__ =self.dummy_image_encoder a__ =self.dummy_text_encoder a__ =self.dummy_tokenizer a__ =self.dummy_image_processor a__ =UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=lowercase_ , clip_sample_range=10.0 , ) a__ ={ 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def __UpperCamelCase ( self , lowercase_ , lowercase_=0) -> Tuple: if str(lowercase_).startswith('mps'): a__ =torch.manual_seed(lowercase_) else: a__ =torch.Generator(device=lowercase_).manual_seed(lowercase_) a__ ={ 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __UpperCamelCase ( self) -> int: a__ ='cpu' a__ =self.get_dummy_components() a__ =self.pipeline_class(**lowercase_) a__ =pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) a__ =pipe(**self.get_dummy_inputs(lowercase_)) a__ =output.image_embeds a__ =pipe( **self.get_dummy_inputs(lowercase_) , return_dict=lowercase_ , )[0] a__ =image[0, -10:] a__ =image_from_tuple[0, -10:] assert image.shape == (1, 32) a__ =np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def __UpperCamelCase ( self) -> List[Any]: a__ =torch_device == 'cpu' a__ =True a__ =False self._test_inference_batch_single_identical( test_max_difference=lowercase_ , relax_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , ) @skip_mps def __UpperCamelCase ( self) -> Optional[int]: a__ =torch_device == 'cpu' a__ =False self._test_attention_slicing_forward_pass( test_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , )
20
1
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowerCAmelCase: Optional[int] = logging.getLogger(__name__) def _lowercase( __a : torch.nn.Module , __a : BnbQuantizationConfig , __a : Union[str, os.PathLike] = None , __a : Optional[Dict[str, Union[int, str, torch.device]]] = None , __a : Optional[List[str]] = None , __a : Optional[Dict[Union[int, str], Union[int, str]]] = None , __a : Optional[Union[str, os.PathLike]] = None , __a : bool = False , ): a__ =bnb_quantization_config.load_in_abit a__ =bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) a__ =[] # custom device map if isinstance(__a , __a ) and len(device_map.keys() ) > 1: a__ =[key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: a__ =get_keys_to_not_convert(__a ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__a ) a__ =bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: a__ =[] a__ =bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__a ) # compatibility with peft a__ =load_in_abit a__ =load_in_abit a__ =get_parameter_device(__a ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) a__ =replace_with_bnb_layers(__a , __a , modules_to_not_convert=__a ) # convert param to the right dtype a__ =bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: a__ =name.replace('.weight' , '' ).replace('.bias' , '' ) a__ =getattr(__a , __a , __a ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__a ): param.to(__a ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( f"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( f"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): a__ =replace_with_bnb_layers( __a , __a , modules_to_not_convert=__a ) a__ =get_quantized_model_device_map( __a , __a , __a , max_memory=__a , no_split_module_classes=__a , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): a__ =True a__ =any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( __a , __a , __a , dtype=bnb_quantization_config.torch_dtype , offload_folder=__a , offload_state_dict=__a , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__a , device_map=__a , offload_dir=__a ) def _lowercase( __a : List[Any] , __a : Tuple , __a : Optional[int]=None , __a : Tuple=None , __a : Optional[Any]=None ): if device_map is None: if torch.cuda.is_available(): a__ ={'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(__a , __a ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) a__ ={} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) a__ ={} a__ =special_dtypes a__ =no_split_module_classes a__ =bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": a__ =get_balanced_memory( __a , low_zero=(device_map == 'balanced_low_0') , max_memory=__a , **__a , ) a__ =max_memory a__ =infer_auto_device_map(__a , **__a ) if isinstance(__a , __a ): # check if don't have any quantized module on the cpu a__ =bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules a__ ={ key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def _lowercase( __a : List[str] , __a : int , __a : Optional[Any]=None , __a : List[str]=None ): if modules_to_not_convert is None: a__ =[] a__ , a__ =_replace_with_bnb_layers( __a , __a , __a , __a ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def _lowercase( __a : Dict , __a : List[str] , __a : int=None , __a : Union[str, Any]=None , ): a__ =False for name, module in model.named_children(): if current_key_name is None: a__ =[] current_key_name.append(__a ) if isinstance(__a , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` a__ ='.'.join(__a ) a__ =True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: a__ =False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: a__ =bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__a , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: a__ =bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) a__ =module.weight.data if module.bias is not None: a__ =module.bias.data bnb_module.requires_grad_(__a ) setattr(__a , __a , __a ) a__ =True if len(list(module.children() ) ) > 0: a__ , a__ =_replace_with_bnb_layers( __a , __a , __a , __a ) a__ =has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _lowercase( __a : Optional[int] ): # Create a copy of the model with init_empty_weights(): a__ =deepcopy(__a ) # this has 0 cost since it is done inside `init_empty_weights` context manager` a__ =find_tied_parameters(__a ) # For compatibility with Accelerate < 0.18 if isinstance(__a , __a ): a__ =sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: a__ =sum(__a , [] ) a__ =len(__a ) > 0 # Check if it is a base model a__ =False if hasattr(__a , 'base_model_prefix' ): a__ =not hasattr(__a , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head a__ =list(model.named_children() ) a__ =[list_modules[-1][0]] # add last module together with tied weights a__ =set(__a ) - set(__a ) a__ =list(set(__a ) ) + list(__a ) # remove ".weight" from the keys a__ =['.weight', '.bias'] a__ =[] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: a__ =name.replace(__a , '' ) filtered_module_names.append(__a ) return filtered_module_names def _lowercase( __a : List[str] ): for m in model.modules(): if isinstance(__a , bnb.nn.Linearabit ): return True return False def _lowercase( __a : nn.Module ): return next(parameter.parameters() ).device def _lowercase( __a : Optional[Any] , __a : Any , __a : Tuple , __a : Any , __a : Optional[Any] , __a : int , __a : List[Any] ): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(__a , __a , 0 , dtype=__a , value=__a ) a__ =param_name a__ =model if "." in tensor_name: a__ =tensor_name.split('.' ) for split in splits[:-1]: a__ =getattr(__a , __a ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) a__ =new_module a__ =splits[-1] # offload weights a__ =False offload_weight(module._parameters[tensor_name] , __a , __a , index=__a ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , __a , index=__a , ) else: offload_weight(__a , __a , __a , index=__a ) offload_weight(__a , param_name.replace('weight' , 'SCB' ) , __a , index=__a ) set_module_tensor_to_device(__a , __a , 'meta' , dtype=__a , value=torch.empty(*param.size() ) )
20
from manim import * class lowercase_ (lowercase__ ): def __UpperCamelCase ( self) -> List[Any]: a__ =Rectangle(height=0.5 , width=0.5) a__ =Rectangle(height=0.46 , width=0.46).set_stroke(width=0) a__ =[mem.copy() for i in range(6)] a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(lowercase_ , lowercase_).arrange(lowercase_ , buff=0) a__ =Text('CPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) cpu.move_to([-2.5, -0.5, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(4)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('GPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) gpu.move_to([-1, -1, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Model' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) model.move_to([3, -1.0, 0]) self.add(lowercase_) a__ =[] for i, rect in enumerate(lowercase_): rect.set_stroke(lowercase_) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) a__ =Rectangle(height=0.46 / 4 , width=0.46 / 3).set_stroke(width=0.0).set_fill(lowercase_ , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=lowercase_) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0) self.add(lowercase_) cpu_targs.append(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Loaded Checkpoint' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4) checkpoint.move_to([3, 0.5, 0]) a__ =Square(side_length=2.2) key.move_to([-5, 2, 0]) a__ =MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(lowercase_ , lowercase_) a__ =MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left()) a__ =MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(lowercase_) , Write(lowercase_)) self.play(Write(lowercase_ , run_time=1) , Create(lowercase_ , run_time=1)) a__ =[] a__ =[] for i, rect in enumerate(lowercase_): a__ =fill.copy().set_fill(lowercase_ , opacity=0.7) target.move_to(lowercase_) first_animations.append(GrowFromCenter(lowercase_ , run_time=1)) a__ =target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.target.move_to(cpu_right_col_base[i - 5]) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5)) self.play(*lowercase_) self.play(*lowercase_) self.wait()
20
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class lowercase_ : def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=False , lowercase_=True , lowercase_=False , lowercase_=False , lowercase_=19 , lowercase_=32 , lowercase_=5 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=16 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> int: a__ =parent a__ =batch_size a__ =seq_length a__ =is_training a__ =use_input_mask a__ =use_token_type_ids a__ =use_labels a__ =vocab_size a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =max_position_embeddings a__ =type_vocab_size a__ =type_sequence_label_size a__ =initializer_range a__ =num_labels a__ =num_choices a__ =scope def __UpperCamelCase ( self) -> Union[str, Any]: a__ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a__ =None if self.use_input_mask: a__ =random_attention_mask([self.batch_size, self.seq_length]) a__ =None a__ =None a__ =None if self.use_labels: a__ =ids_tensor([self.batch_size] , self.type_sequence_label_size) a__ =ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a__ =ids_tensor([self.batch_size] , self.num_choices) a__ =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self) -> Dict: a__ =EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=lowercase_ , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , ) return config def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> int: a__ =EsmForProteinFolding(config=lowercase_).float() model.to(lowercase_) model.eval() a__ =model(lowercase_ , attention_mask=lowercase_) a__ =model(lowercase_) a__ =model(lowercase_) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3)) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2)) def __UpperCamelCase ( self) -> str: a__ =self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) =config_and_inputs a__ ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase_ (lowercase__ , lowercase__ , unittest.TestCase ): snake_case =False snake_case =(EsmForProteinFolding,) if is_torch_available() else () snake_case =() snake_case ={} if is_torch_available() else {} snake_case =False def __UpperCamelCase ( self) -> Dict: a__ =EsmFoldModelTester(self) a__ =ConfigTester(self , config_class=lowercase_ , hidden_size=37) def __UpperCamelCase ( self) -> List[Any]: self.config_tester.run_common_tests() def __UpperCamelCase ( self) -> Optional[Any]: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) @unittest.skip('Does not support attention outputs') def __UpperCamelCase ( self) -> Tuple: pass @unittest.skip def __UpperCamelCase ( self) -> List[Any]: pass @unittest.skip('Esm does not support embedding resizing') def __UpperCamelCase ( self) -> Tuple: pass @unittest.skip('Esm does not support embedding resizing') def __UpperCamelCase ( self) -> str: pass @unittest.skip('ESMFold does not support passing input embeds!') def __UpperCamelCase ( self) -> Dict: pass @unittest.skip('ESMFold does not support head pruning.') def __UpperCamelCase ( self) -> List[Any]: pass @unittest.skip('ESMFold does not support head pruning.') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('ESMFold does not support head pruning.') def __UpperCamelCase ( self) -> Dict: pass @unittest.skip('ESMFold does not support head pruning.') def __UpperCamelCase ( self) -> int: pass @unittest.skip('ESMFold does not support head pruning.') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('ESMFold does not output hidden states in the normal way.') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('ESMfold does not output hidden states in the normal way.') def __UpperCamelCase ( self) -> Dict: pass @unittest.skip('ESMFold only has one output format.') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality') def __UpperCamelCase ( self) -> int: pass @unittest.skip('ESMFold does not support input chunking.') def __UpperCamelCase ( self) -> Optional[Any]: pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.') def __UpperCamelCase ( self) -> str: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.') def __UpperCamelCase ( self) -> Optional[Any]: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.') def __UpperCamelCase ( self) -> int: pass @unittest.skip('ESMFold doesn\'t support data parallel.') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self) -> List[str]: pass @require_torch class lowercase_ (lowercase__ ): @slow def __UpperCamelCase ( self) -> Dict: a__ =EsmForProteinFolding.from_pretrained('facebook/esmfold_v1').float() model.eval() a__ =torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]]) a__ =model(lowercase_)['positions'] a__ =torch.tensor([2.58_28, 0.79_93, -10.93_34] , dtype=torch.floataa) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , lowercase_ , atol=1e-4))
20
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _lowerCAmelCase: Any = sys.version_info >= (3, 10) def _lowercase( __a : int=None , __a : Any=None ): return field(default_factory=lambda: default , metadata=__a ) @dataclass class lowercase_ : snake_case =42 snake_case =42 snake_case =42 snake_case =42 @dataclass class lowercase_ : snake_case =42 snake_case =field(default='toto' , metadata={'help': 'help message'} ) @dataclass class lowercase_ : snake_case =False snake_case =True snake_case =None class lowercase_ (lowercase__ ): snake_case ='titi' snake_case ='toto' class lowercase_ (lowercase__ ): snake_case ='titi' snake_case ='toto' snake_case =42 @dataclass class lowercase_ : snake_case ="toto" def __UpperCamelCase ( self) -> List[str]: a__ =BasicEnum(self.foo) @dataclass class lowercase_ : snake_case ="toto" def __UpperCamelCase ( self) -> List[str]: a__ =MixedTypeEnum(self.foo) @dataclass class lowercase_ : snake_case =None snake_case =field(default=lowercase__ , metadata={'help': 'help message'} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) @dataclass class lowercase_ : snake_case =list_field(default=[] ) snake_case =list_field(default=[1, 2, 3] ) snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] ) snake_case =list_field(default=[0.1, 0.2, 0.3] ) @dataclass class lowercase_ : snake_case =field() snake_case =field() snake_case =field() def __UpperCamelCase ( self) -> List[Any]: a__ =BasicEnum(self.required_enum) @dataclass class lowercase_ : snake_case =42 snake_case =field() snake_case =None snake_case =field(default='toto' , metadata={'help': 'help message'} ) snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class lowercase_ : snake_case =False snake_case =True snake_case =None @dataclass class lowercase_ : snake_case =None snake_case =field(default=lowercase__ , metadata={'help': 'help message'} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self , lowercase_ , lowercase_) -> int: self.assertEqual(len(a._actions) , len(b._actions)) for x, y in zip(a._actions , b._actions): a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'} a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , lowercase_) and yy.get('choices' , lowercase_): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](lowercase_) , yy['type'](lowercase_)) del xx["type"], yy["type"] self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_) expected.add_argument('--bar' , type=lowercase_ , required=lowercase_) expected.add_argument('--baz' , type=lowercase_ , required=lowercase_) expected.add_argument('--flag' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') self.argparsersEqual(lowercase_ , lowercase_) a__ =['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((a__) , ) =parser.parse_args_into_dataclasses(lowercase_ , look_for_args_file=lowercase_) self.assertFalse(example.flag) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=lowercase_) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message') self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Optional[Any]: a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') expected.add_argument('--baz' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=lowercase_ , dest='baz') expected.add_argument('--opt' , type=lowercase_ , default=lowercase_) a__ =[WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_) for dataclass_type in dataclass_types: a__ =HfArgumentParser(lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', '--no_baz']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', '--baz']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(args.foo , 'toto') a__ =parser.parse_args_into_dataclasses([])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto) a__ =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') a__ =parser.parse_args_into_dataclasses(['--foo', 'titi'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi) a__ =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) a__ =parser.parse_args_into_dataclasses(['--foo', '42'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo) def __UpperCamelCase ( self) -> List[Any]: @dataclass class lowercase_ : snake_case ="toto" a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(args.foo , 'toto') a__ =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') a__ =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) def __UpperCamelCase ( self) -> Optional[int]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=lowercase_) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=lowercase_) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual( lowercase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3]) , ) a__ =parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split()) self.assertEqual(lowercase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7])) def __UpperCamelCase ( self) -> Dict: a__ =argparse.ArgumentParser() expected.add_argument('--foo' , default=lowercase_ , type=lowercase_) expected.add_argument('--bar' , default=lowercase_ , type=lowercase_ , help='help message') expected.add_argument('--baz' , default=lowercase_ , type=lowercase_) expected.add_argument('--ces' , nargs='+' , default=[] , type=lowercase_) expected.add_argument('--des' , nargs='+' , default=[] , type=lowercase_) a__ =[OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_) for dataclass_type in dataclass_types: a__ =HfArgumentParser(lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , bar=lowercase_ , baz=lowercase_ , ces=[] , des=[])) a__ =parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split()) self.assertEqual(lowercase_ , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3])) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=lowercase_ , required=lowercase_) expected.add_argument('--required_str' , type=lowercase_ , required=lowercase_) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , ) self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , ) expected.add_argument('--opt' , type=lowercase_ , default=lowercase_) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message') expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_) self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } a__ =parser.parse_dict(lowercase_)[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(lowercase_ , parser.parse_dict , lowercase_ , allow_extra_keys=lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: a__ =os.path.join(lowercase_ , 'temp_json') os.mkdir(lowercase_) with open(temp_local_path + '.json' , 'w+') as f: json.dump(lowercase_ , lowercase_) a__ =parser.parse_yaml_file(Path(temp_local_path + '.json'))[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Any: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: a__ =os.path.join(lowercase_ , 'temp_yaml') os.mkdir(lowercase_) with open(temp_local_path + '.yaml' , 'w+') as f: yaml.dump(lowercase_ , lowercase_) a__ =parser.parse_yaml_file(Path(temp_local_path + '.yaml'))[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) self.assertIsNotNone(lowercase_)
20
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _lowerCAmelCase: int = logging.get_logger(__name__) @dataclass class lowercase_ (lowercase__ ): snake_case =[ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self , **lowercase_) -> Dict: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: a__ =deprecated_arg[3:] setattr(self , lowercase_ , not kwargs.pop(lowercase_)) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""") a__ =kwargs.pop('torchscript' , self.torchscript) a__ =kwargs.pop('torch_xla_tpu_print_metrics' , self.torch_xla_tpu_print_metrics) a__ =kwargs.pop('fp16_opt_level' , self.fpaa_opt_level) super().__init__(**lowercase_) snake_case =field(default=lowercase__ , metadata={'help': 'Trace the models using torchscript'} ) snake_case =field(default=lowercase__ , metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) snake_case =field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def __UpperCamelCase ( self) -> Tuple["torch.device", int]: requires_backends(self , ['torch']) logger.info('PyTorch: setting up devices') if not self.cuda: a__ =torch.device('cpu') a__ =0 elif is_torch_tpu_available(): a__ =xm.xla_device() a__ =0 else: a__ =torch.device('cuda' if torch.cuda.is_available() else 'cpu') a__ =torch.cuda.device_count() return device, n_gpu @property def __UpperCamelCase ( self) -> List[Any]: return is_torch_tpu_available() and self.tpu @property def __UpperCamelCase ( self) -> int: requires_backends(self , ['torch']) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def __UpperCamelCase ( self) -> "torch.device": requires_backends(self , ['torch']) return self._setup_devices[0] @property def __UpperCamelCase ( self) -> List[str]: requires_backends(self , ['torch']) return self._setup_devices[1] @property def __UpperCamelCase ( self) -> List[str]: return self.n_gpu > 0
20
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase: List[Any] = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class lowercase_ (lowercase__ ): snake_case ='autoformer' snake_case ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , lowercase_ = None , lowercase_ = None , lowercase_ = "student_t" , lowercase_ = "nll" , lowercase_ = 1 , lowercase_ = [1, 2, 3, 4, 5, 6, 7] , lowercase_ = True , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 64 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 32 , lowercase_ = 32 , lowercase_ = "gelu" , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 100 , lowercase_ = 0.02 , lowercase_ = True , lowercase_=True , lowercase_ = 10 , lowercase_ = 25 , lowercase_ = 3 , **lowercase_ , ) -> Union[str, Any]: # time series specific configuration a__ =prediction_length a__ =context_length if context_length is not None else prediction_length a__ =distribution_output a__ =loss a__ =input_size a__ =num_time_features a__ =lags_sequence a__ =scaling a__ =num_dynamic_real_features a__ =num_static_real_features a__ =num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`') a__ =cardinality else: a__ =[0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`') a__ =embedding_dimension else: a__ =[min(50 , (cat + 1) // 2) for cat in self.cardinality] a__ =num_parallel_samples # Transformer architecture configuration a__ =input_size * len(self.lags_sequence) + self._number_of_features a__ =d_model a__ =encoder_attention_heads a__ =decoder_attention_heads a__ =encoder_ffn_dim a__ =decoder_ffn_dim a__ =encoder_layers a__ =decoder_layers a__ =dropout a__ =attention_dropout a__ =activation_dropout a__ =encoder_layerdrop a__ =decoder_layerdrop a__ =activation_function a__ =init_std a__ =use_cache # Autoformer a__ =label_length a__ =moving_average a__ =autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def __UpperCamelCase ( self) -> int: return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
20
1