code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = DiTPipeline __UpperCAmelCase : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCAmelCase : List[Any] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } __UpperCAmelCase : Optional[int] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCAmelCase : Tuple = False def __snake_case ( self : int ) -> Any: torch.manual_seed(0 ) __snake_case : Dict = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCamelCase , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=lowerCamelCase , ) __snake_case : Optional[int] = AutoencoderKL() __snake_case : str = DDIMScheduler() __snake_case : Union[str, Any] = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def __snake_case ( self : List[str] , lowerCamelCase : Any , lowerCamelCase : List[Any]=0 ) -> List[Any]: if str(lowerCamelCase ).startswith("mps" ): __snake_case : Optional[int] = torch.manual_seed(lowerCamelCase ) else: __snake_case : int = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __snake_case : Tuple = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __snake_case ( self : List[Any] ) -> List[Any]: __snake_case : Dict = "cpu" __snake_case : Optional[int] = self.get_dummy_components() __snake_case : Dict = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __snake_case : Optional[Any] = self.get_dummy_inputs(lowerCamelCase ) __snake_case : Tuple = pipe(**lowerCamelCase ).images __snake_case : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __snake_case : int = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) __snake_case : int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1E-3 ) def __snake_case ( self : Any ) -> Optional[Any]: self._test_inference_batch_single_identical(relax_max_difference=lowerCamelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __snake_case ( self : Optional[Any] ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : Optional[Any] ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : List[Any] ) -> List[Any]: __snake_case : Union[str, Any] = torch.manual_seed(0 ) __snake_case : Any = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) __snake_case : Dict = ["vase", "umbrella", "white shark", "white wolf"] __snake_case : Any = pipe.get_label_ids(lowerCamelCase ) __snake_case : Tuple = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=40 , output_type="np" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): __snake_case : Union[str, Any] = load_numpy( F'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1E-2 def __snake_case ( self : Dict ) -> Optional[int]: __snake_case : List[str] = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) __snake_case : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) __snake_case : List[str] = ["vase", "umbrella"] __snake_case : int = pipe.get_label_ids(lowerCamelCase ) __snake_case : Optional[Any] = torch.manual_seed(0 ) __snake_case : Dict = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=25 , output_type="np" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): __snake_case : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" F'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1E-1
81
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger(__name__) _lowerCAmelCase: Tuple = torch.device('cpu') def _lowercase( ): a__ ='http://images.cocodataset.org/val2017/000000039769.jpg' a__ =Image.open(requests.get(__a , stream=__a ).raw ) return im def _lowercase( __a : Optional[Any] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _lowercase( __a : int , __a : int , __a : Optional[Any] ): a__ =dct.pop(__a ) a__ =val def _lowercase( __a : Optional[Any] ): a__ =[] for k in state_dict.keys(): a__ =k if ".pwconv" in k: a__ =k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: a__ =k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: a__ =k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: a__ =k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: a__ =k_new.split('.' ) if ls[2].isdigit(): a__ ='swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: a__ =k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _lowercase( __a : Union[str, Any] , __a : int , __a : str ): a__ =SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a__ =1000 a__ ='huggingface/label-files' a__ ='imagenet-1k-id2label.json' a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a__ =[3, 3, 6, 4] a__ =[48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a__ =[3, 3, 9, 6] a__ =[48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a__ =[4, 3, 10, 5] a__ =[48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a__ =[4, 4, 12, 6] a__ =[64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): a__ =torch.hub.load_state_dict_from_url(__a , map_location='cpu' , check_hash=__a ) else: a__ =torch.load(__a , map_location='cpu' ) a__ =checkpoint a__ =create_rename_keys(__a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__a , __a , __a ) # load HuggingFace model a__ =SwiftFormerForImageClassification(__a ).eval() hf_model.load_state_dict(__a ) # prepare test inputs a__ =prepare_img() a__ =ViTImageProcessor.from_pretrained('preprocessor_config' ) a__ =processor(images=__a , return_tensors='pt' ) # compare outputs from both models a__ =get_expected_output(__a ) a__ =hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , __a , atol=1e-3 ) Path(__a ).mkdir(exist_ok=__a ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') _lowerCAmelCase: Optional[int] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
20
0
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging lowerCamelCase = ( """https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py""" ) lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def a__ ( ): UpperCAmelCase_ = "https://pypi.org/pypi/diffusers/json" UpperCAmelCase_ = json.loads(request.urlopen(lowerCAmelCase__ ).read() )["releases"].keys() return sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : version.Version(lowerCAmelCase__ ) ) def a__ ( ): # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) UpperCAmelCase_ = Path(lowerCAmelCase__ ) / "__init__.py" if not init_path.exists(): init_path.touch() def a__ ( lowerCAmelCase__ ): init_hf_modules() UpperCAmelCase_ = Path(lowerCAmelCase__ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) UpperCAmelCase_ = dynamic_module_path / "__init__.py" if not init_path.exists(): init_path.touch() def a__ ( lowerCAmelCase__ ): with open(lowerCAmelCase__ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = f.read() # Imports of the form `import .xxx` UpperCAmelCase_ = re.findall("^\s*import\s+\.(\S+)\s*$" , lowerCAmelCase__ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import" , lowerCAmelCase__ , flags=re.MULTILINE ) # Unique-ify return list(set(lowerCAmelCase__ ) ) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = False UpperCAmelCase_ = [module_file] UpperCAmelCase_ = [] # Let's recurse through all relative imports while not no_change: UpperCAmelCase_ = [] for f in files_to_check: new_imports.extend(get_relative_imports(lowerCAmelCase__ ) ) UpperCAmelCase_ = Path(lowerCAmelCase__ ).parent UpperCAmelCase_ = [str(module_path / m ) for m in new_imports] UpperCAmelCase_ = [f for f in new_import_files if f not in all_relative_imports] UpperCAmelCase_ = [f"""{f}.py""" for f in new_import_files] UpperCAmelCase_ = len(lowerCAmelCase__ ) == 0 all_relative_imports.extend(lowerCAmelCase__ ) return all_relative_imports def a__ ( lowerCAmelCase__ ): with open(lowerCAmelCase__ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = f.read() # Imports of the form `import xxx` UpperCAmelCase_ = re.findall("^\s*import\s+(\S+)\s*$" , lowerCAmelCase__ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("^\s*from\s+(\S+)\s+import" , lowerCAmelCase__ , flags=re.MULTILINE ) # Only keep the top-level module UpperCAmelCase_ = [imp.split("." )[0] for imp in imports if not imp.startswith("." )] # Unique-ify and test we got them all UpperCAmelCase_ = list(set(lowerCAmelCase__ ) ) UpperCAmelCase_ = [] for imp in imports: try: importlib.import_module(lowerCAmelCase__ ) except ImportError: missing_packages.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: raise ImportError( "This modeling file requires the following packages that were not found in your environment: " f"""{', '.join(lowerCAmelCase__ )}. Run `pip install {' '.join(lowerCAmelCase__ )}`""" ) return get_relative_imports(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = module_path.replace(os.path.sep , "." ) UpperCAmelCase_ = importlib.import_module(lowerCAmelCase__ ) if class_name is None: return find_pipeline_class(lowerCAmelCase__ ) return getattr(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ): from ..pipelines import DiffusionPipeline UpperCAmelCase_ = dict(inspect.getmembers(lowerCAmelCase__ , inspect.isclass ) ) UpperCAmelCase_ = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , lowerCAmelCase__ ) and cls.__module__.split("." )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" f""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" f""" {loaded_module}.""" ) UpperCAmelCase_ = cls return pipeline_class def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , ): UpperCAmelCase_ = str(lowerCAmelCase__ ) UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): UpperCAmelCase_ = module_file_or_url UpperCAmelCase_ = "local" elif pretrained_model_name_or_path.count("/" ) == 0: UpperCAmelCase_ = get_diffusers_versions() # cut ".dev0" UpperCAmelCase_ = "v" + ".".join(__version__.split("." )[:3] ) # retrieve github version that matches if revision is None: UpperCAmelCase_ = latest_version if latest_version[1:] in available_versions else "main" logger.info(f"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: UpperCAmelCase_ = f"""v{revision}""" elif revision == "main": UpperCAmelCase_ = revision else: raise ValueError( f"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" f""" {', '.join(available_versions + ['main'] )}.""" ) # community pipeline on GitHub UpperCAmelCase_ = COMMUNITY_PIPELINES_URL.format(revision=lowerCAmelCase__ , pipeline=lowerCAmelCase__ ) try: UpperCAmelCase_ = cached_download( lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , proxies=lowerCAmelCase__ , resume_download=lowerCAmelCase__ , local_files_only=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , ) UpperCAmelCase_ = "git" UpperCAmelCase_ = pretrained_model_name_or_path + ".py" except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached UpperCAmelCase_ = hf_hub_download( lowerCAmelCase__ , lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , proxies=lowerCAmelCase__ , resume_download=lowerCAmelCase__ , local_files_only=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , ) UpperCAmelCase_ = os.path.join("local" , "--".join(pretrained_model_name_or_path.split("/" ) ) ) except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment UpperCAmelCase_ = check_imports(lowerCAmelCase__ ) # Now we move the module inside our cached dynamic modules. UpperCAmelCase_ = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(lowerCAmelCase__ ) UpperCAmelCase_ = Path(lowerCAmelCase__ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(lowerCAmelCase__ , submodule_path / module_file ) for module_needed in modules_needed: UpperCAmelCase_ = f"""{module_needed}.py""" shutil.copy(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = use_auth_token elif use_auth_token is True: UpperCAmelCase_ = HfFolder.get_token() else: UpperCAmelCase_ = None UpperCAmelCase_ = model_info(lowerCAmelCase__ , revision=lowerCAmelCase__ , token=lowerCAmelCase__ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. UpperCAmelCase_ = submodule_path / commit_hash UpperCAmelCase_ = full_submodule + os.path.sep + commit_hash create_dynamic_module(lowerCAmelCase__ ) if not (submodule_path / module_file).exists(): shutil.copy(lowerCAmelCase__ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( lowerCAmelCase__ , f"""{module_needed}.py""" , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , resume_download=lowerCAmelCase__ , proxies=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , revision=lowerCAmelCase__ , local_files_only=lowerCAmelCase__ , ) return os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , **lowerCAmelCase__ , ): UpperCAmelCase_ = get_cached_module_file( lowerCAmelCase__ , lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , resume_download=lowerCAmelCase__ , proxies=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , revision=lowerCAmelCase__ , local_files_only=lowerCAmelCase__ , ) return get_class_in_module(lowerCAmelCase__ , final_module.replace(".py" , "" ) )
82
from __future__ import annotations from typing import Any class lowercase_ : def __init__( self , lowercase_) -> None: a__ =num_of_nodes a__ =[] a__ ={} def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: self.m_edges.append([u_node, v_node, weight]) def __UpperCamelCase ( self , lowercase_) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node]) def __UpperCamelCase ( self , lowercase_) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: a__ =self.find_component(lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: if component_size[u_node] <= component_size[v_node]: a__ =v_node component_size[v_node] += component_size[u_node] self.set_component(lowercase_) elif component_size[u_node] >= component_size[v_node]: a__ =self.find_component(lowercase_) component_size[u_node] += component_size[v_node] self.set_component(lowercase_) def __UpperCamelCase ( self) -> None: a__ =[] a__ =0 a__ =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes): self.m_component.update({node: node}) component_size.append(1) a__ =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: a__ , a__ , a__ =edge a__ =self.m_component[u] a__ =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): a__ =[u, v, w] for edge in minimum_weight_edge: if isinstance(lowercase_ , lowercase_): a__ , a__ , a__ =edge a__ =self.m_component[u] a__ =self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowercase_ , lowercase_ , lowercase_) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""") num_of_components -= 1 a__ =[-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""") def _lowercase( ): pass if __name__ == "__main__": import doctest doctest.testmod()
20
0
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : List[str] = CTRLTokenizer snake_case__ : List[str] = False snake_case__ : Any = False def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : str = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _lowerCamelCase : Dict = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : Optional[Any] = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _lowerCamelCase : Any = {'''unk_token''': '''<unk>'''} _lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , **__lowerCAmelCase : Optional[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = '''adapt react readapt apt''' _lowerCamelCase : Dict = '''adapt react readapt apt''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : str = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase : List[Any] = '''adapt react readapt apt''' _lowerCamelCase : Union[str, Any] = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _lowerCamelCase : Union[str, Any] = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : Any = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase )
83
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCAmelCase: Union[str, Any] = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' _lowerCAmelCase: Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' _lowerCAmelCase: List[Any] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): def __UpperCamelCase ( self) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=True , lowercase_=False) -> Any: if rouge_types is None: a__ =['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] a__ =rouge_scorer.RougeScorer(rouge_types=lowercase_ , use_stemmer=lowercase_) if use_aggregator: a__ =scoring.BootstrapAggregator() else: a__ =[] for ref, pred in zip(lowercase_ , lowercase_): a__ =scorer.score(lowercase_ , lowercase_) if use_aggregator: aggregator.add_scores(lowercase_) else: scores.append(lowercase_) if use_aggregator: a__ =aggregator.aggregate() else: a__ ={} for key in scores[0]: a__ =[score[key] for score in scores] return result
20
0
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : List[Any] = """conditional_detr""" _UpperCamelCase : Any = ["""past_key_values"""] _UpperCamelCase : Optional[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case=True , snake_case=None , snake_case=3 , snake_case=300 , snake_case=6 , snake_case=2048 , snake_case=8 , snake_case=6 , snake_case=2048 , snake_case=8 , snake_case=0.0 , snake_case=0.0 , snake_case=True , snake_case="relu" , snake_case=256 , snake_case=0.1 , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1.0 , snake_case=False , snake_case="sine" , snake_case="resnet50" , snake_case=True , snake_case=False , snake_case=2 , snake_case=5 , snake_case=2 , snake_case=1 , snake_case=1 , snake_case=2 , snake_case=5 , snake_case=2 , snake_case=0.25 , **snake_case , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowercase = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case , snake_case ): lowercase = backbone_config.get('model_type' ) lowercase = CONFIG_MAPPING[backbone_model_type] lowercase = config_class.from_dict(snake_case ) lowercase = use_timm_backbone lowercase = backbone_config lowercase = num_channels lowercase = num_queries lowercase = d_model lowercase = encoder_ffn_dim lowercase = encoder_layers lowercase = encoder_attention_heads lowercase = decoder_ffn_dim lowercase = decoder_layers lowercase = decoder_attention_heads lowercase = dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = activation_function lowercase = init_std lowercase = init_xavier_std lowercase = encoder_layerdrop lowercase = decoder_layerdrop lowercase = encoder_layers lowercase = auxiliary_loss lowercase = position_embedding_type lowercase = backbone lowercase = use_pretrained_backbone lowercase = dilation # Hungarian matcher lowercase = class_cost lowercase = bbox_cost lowercase = giou_cost # Loss coefficients lowercase = mask_loss_coefficient lowercase = dice_loss_coefficient lowercase = cls_loss_coefficient lowercase = bbox_loss_coefficient lowercase = giou_loss_coefficient lowercase = focal_alpha super().__init__(is_encoder_decoder=snake_case , **snake_case ) @property def SCREAMING_SNAKE_CASE__ ( self ): return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE__ ( self ): return self.d_model def SCREAMING_SNAKE_CASE__ ( self ): lowercase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowercase = self.backbone_config.to_dict() lowercase = self.__class__.model_type return output class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : List[str] = version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ): return 1E-5 @property def SCREAMING_SNAKE_CASE__ ( self ): return 12
84
from __future__ import annotations _lowerCAmelCase: str = '#' class lowercase_ : def __init__( self) -> None: a__ ={} def __UpperCamelCase ( self , lowercase_) -> None: a__ =self._trie for char in text: if char not in trie: a__ ={} a__ =trie[char] a__ =True def __UpperCamelCase ( self , lowercase_) -> tuple | list: a__ =self._trie for char in prefix: if char in trie: a__ =trie[char] else: return [] return self._elements(lowercase_) def __UpperCamelCase ( self , lowercase_) -> tuple: a__ =[] for c, v in d.items(): a__ =[' '] if c == END else [(c + s) for s in self._elements(lowercase_)] result.extend(lowercase_) return tuple(lowercase_) _lowerCAmelCase: Optional[int] = Trie() _lowerCAmelCase: List[str] = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def _lowercase( __a : str ): a__ =trie.find_word(__a ) return tuple(string + word for word in suffixes ) def _lowercase( ): print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
20
0
SCREAMING_SNAKE_CASE__ : int = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def _a ( lowercase__ : bytes ): '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(lowercase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ''.join(bin(lowercase__ )[2:].zfill(8 ) for byte in data ) SCREAMING_SNAKE_CASE__ : Any = len(lowercase__ ) % 6 != 0 if padding_needed: # The padding that will be added later SCREAMING_SNAKE_CASE__ : List[Any] = b'=' * ((6 - len(lowercase__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(lowercase__ ) % 6) else: SCREAMING_SNAKE_CASE__ : Optional[int] = b'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(lowercase__ ) , 6 ) ).encode() + padding ) def _a ( lowercase__ : str ): '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ) and not isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE__ : List[str] = ( 'argument should be a bytes-like object or ASCII string, ' f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(lowercase__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(lowercase__ , lowercase__ ): try: SCREAMING_SNAKE_CASE__ : str = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) SCREAMING_SNAKE_CASE__ : int = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(lowercase__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one SCREAMING_SNAKE_CASE__ : int = encoded_data[:-padding] SCREAMING_SNAKE_CASE__ : List[str] = ''.join( bin(B64_CHARSET.index(lowercase__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: SCREAMING_SNAKE_CASE__ : List[str] = ''.join( bin(B64_CHARSET.index(lowercase__ ) )[2:].zfill(6 ) for char in encoded_data ) SCREAMING_SNAKE_CASE__ : Optional[int] = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(lowercase__ ) , 8 ) ] return bytes(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
85
_lowerCAmelCase: List[str] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def _lowercase( ): a__ =input('Enter message: ' ) a__ =input('Enter key [alphanumeric]: ' ) a__ =input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): a__ ='encrypt' a__ =encrypt_message(__a , __a ) elif mode.lower().startswith('d' ): a__ ='decrypt' a__ =decrypt_message(__a , __a ) print(f"""\n{mode.title()}ed message:""" ) print(__a ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'encrypt' ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'decrypt' ) def _lowercase( __a : str , __a : str , __a : str ): a__ =[] a__ =0 a__ =key.upper() for symbol in message: a__ =LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__a ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__a ): a__ =0 else: translated.append(__a ) return "".join(__a ) if __name__ == "__main__": main()
20
0
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : List[str] = RobertaTokenizer _lowerCamelCase : Tuple = RobertaTokenizerFast _lowerCamelCase : str = True _lowerCamelCase : Tuple = {'cls_token': '<s>'} def __A ( self : Any ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] A_ = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) A_ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] A_ = {"unk_token": "<unk>"} A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase ) ) def __A ( self : Any , **UpperCAmelCase : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def __A ( self : List[Any] , **UpperCAmelCase : List[str] ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def __A ( self : str , UpperCAmelCase : Optional[int] ): A_ = "lower newer" A_ = "lower newer" return input_text, output_text def __A ( self : Union[str, Any] ): A_ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) A_ = "lower newer" A_ = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] A_ = tokenizer.tokenize(UpperCAmelCase ) # , add_prefix_space=True) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) A_ = tokens + [tokenizer.unk_token] A_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase ) def __A ( self : Union[str, Any] ): A_ = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=UpperCAmelCase ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=UpperCAmelCase ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def __A ( self : int ): A_ = self.tokenizer_class.from_pretrained("roberta-base" ) A_ = tokenizer.encode("sequence builders" , add_special_tokens=UpperCAmelCase ) A_ = tokenizer.encode("multi-sequence build" , add_special_tokens=UpperCAmelCase ) A_ = tokenizer.encode( "sequence builders" , add_special_tokens=UpperCAmelCase , add_prefix_space=UpperCAmelCase ) A_ = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=UpperCAmelCase , add_prefix_space=UpperCAmelCase ) A_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) A_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __A ( self : Tuple ): A_ = self.get_tokenizer() A_ = "Encode this sequence." A_ = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments A_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase , add_prefix_space=UpperCAmelCase ) A_ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) A_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase , add_prefix_space=UpperCAmelCase ) A_ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCAmelCase , UpperCAmelCase ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) A_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) A_ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) # Testing spaces after special tokens A_ = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase )} ) # mask token has a left space A_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) A_ = "Encode <mask> sequence" A_ = "Encode <mask>sequence" A_ = tokenizer.encode(UpperCAmelCase ) A_ = encoded.index(UpperCAmelCase ) A_ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCAmelCase , UpperCAmelCase ) A_ = tokenizer.encode(UpperCAmelCase ) A_ = encoded.index(UpperCAmelCase ) A_ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : Any ): pass def __A ( self : Optional[int] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) A_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) A_ = "A, <mask> AllenNLP sentence." A_ = tokenizer_r.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) A_ = tokenizer_p.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) A_ = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) A_ = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( UpperCAmelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def __A ( self : Union[str, Any] ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): A_ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase ) A_ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) A_ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , UpperCAmelCase ) self.assertEqual(post_processor_state["add_prefix_space"] , UpperCAmelCase ) self.assertEqual(post_processor_state["trim_offsets"] , UpperCAmelCase ) def __A ( self : List[Any] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A_ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` A_ = f'''{text_of_1_token} {text_of_1_token}''' A_ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase ) A_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase ) + 1, len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , ) A_ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase ) A_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase ) + 1, len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , ) A_ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase ) A_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase ), len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , ) A_ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase ) A_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase ), len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , ) A_ = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) A_ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase ) A_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase ) + 1, 1 + len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , ) A_ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase ) A_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase ), 1 + len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , ) A_ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase ) A_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase ), 1 + len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , )
86
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Tuple = { """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
87
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =KandinskyVaaPriorPipeline snake_case =['prompt'] snake_case =['prompt', 'negative_prompt'] snake_case =[ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] snake_case =False @property def __UpperCamelCase ( self) -> Optional[int]: return 32 @property def __UpperCamelCase ( self) -> Tuple: return 32 @property def __UpperCamelCase ( self) -> int: return self.time_input_dim @property def __UpperCamelCase ( self) -> str: return self.time_input_dim * 4 @property def __UpperCamelCase ( self) -> Optional[int]: return 100 @property def __UpperCamelCase ( self) -> Union[str, Any]: a__ =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self) -> Union[str, Any]: torch.manual_seed(0) a__ =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowercase_) @property def __UpperCamelCase ( self) -> Tuple: torch.manual_seed(0) a__ ={ 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } a__ =PriorTransformer(**lowercase_) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 a__ =nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def __UpperCamelCase ( self) -> Any: torch.manual_seed(0) a__ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) a__ =CLIPVisionModelWithProjection(lowercase_) return model @property def __UpperCamelCase ( self) -> Optional[int]: a__ =CLIPImageProcessor( crop_size=224 , do_center_crop=lowercase_ , do_normalize=lowercase_ , do_resize=lowercase_ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor def __UpperCamelCase ( self) -> Any: a__ =self.dummy_prior a__ =self.dummy_image_encoder a__ =self.dummy_text_encoder a__ =self.dummy_tokenizer a__ =self.dummy_image_processor a__ =UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=lowercase_ , clip_sample_range=10.0 , ) a__ ={ 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def __UpperCamelCase ( self , lowercase_ , lowercase_=0) -> Tuple: if str(lowercase_).startswith('mps'): a__ =torch.manual_seed(lowercase_) else: a__ =torch.Generator(device=lowercase_).manual_seed(lowercase_) a__ ={ 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __UpperCamelCase ( self) -> int: a__ ='cpu' a__ =self.get_dummy_components() a__ =self.pipeline_class(**lowercase_) a__ =pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) a__ =pipe(**self.get_dummy_inputs(lowercase_)) a__ =output.image_embeds a__ =pipe( **self.get_dummy_inputs(lowercase_) , return_dict=lowercase_ , )[0] a__ =image[0, -10:] a__ =image_from_tuple[0, -10:] assert image.shape == (1, 32) a__ =np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def __UpperCamelCase ( self) -> List[Any]: a__ =torch_device == 'cpu' a__ =True a__ =False self._test_inference_batch_single_identical( test_max_difference=lowercase_ , relax_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , ) @skip_mps def __UpperCamelCase ( self) -> Optional[int]: a__ =torch_device == 'cpu' a__ =False self._test_attention_slicing_forward_pass( test_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , )
20
0
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = """▁""" UpperCAmelCase = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCAmelCase = { """vocab_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json""", }, """spm_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_config_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json""", }, } UpperCAmelCase = { """facebook/m2m100_418M""": 1024, } # fmt: off UpperCAmelCase = { """m2m100""": ["""af""", """am""", """ar""", """ast""", """az""", """ba""", """be""", """bg""", """bn""", """br""", """bs""", """ca""", """ceb""", """cs""", """cy""", """da""", """de""", """el""", """en""", """es""", """et""", """fa""", """ff""", """fi""", """fr""", """fy""", """ga""", """gd""", """gl""", """gu""", """ha""", """he""", """hi""", """hr""", """ht""", """hu""", """hy""", """id""", """ig""", """ilo""", """is""", """it""", """ja""", """jv""", """ka""", """kk""", """km""", """kn""", """ko""", """lb""", """lg""", """ln""", """lo""", """lt""", """lv""", """mg""", """mk""", """ml""", """mn""", """mr""", """ms""", """my""", """ne""", """nl""", """no""", """ns""", """oc""", """or""", """pa""", """pl""", """ps""", """pt""", """ro""", """ru""", """sd""", """si""", """sk""", """sl""", """so""", """sq""", """sr""", """ss""", """su""", """sv""", """sw""", """ta""", """th""", """tl""", """tn""", """tr""", """uk""", """ur""", """uz""", """vi""", """wo""", """xh""", """yi""", """yo""", """zh""", """zu"""], """wmt21""": ["""en""", """ha""", """is""", """ja""", """cs""", """ru""", """zh""", """de"""] } class lowercase__ ( A_ ): __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = ['''input_ids''', '''attention_mask'''] __UpperCAmelCase = [] __UpperCAmelCase = [] def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="<s>" , SCREAMING_SNAKE_CASE="</s>" , SCREAMING_SNAKE_CASE="</s>" , SCREAMING_SNAKE_CASE="<pad>" , SCREAMING_SNAKE_CASE="<unk>" , SCREAMING_SNAKE_CASE="m2m100" , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE=8 , **SCREAMING_SNAKE_CASE , ) -> None: _lowerCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCamelCase : List[Any] = language_codes _lowerCamelCase : List[Any] = FAIRSEQ_LANGUAGE_CODES[language_codes] _lowerCamelCase : str = {lang_code: F'__{lang_code}__' for lang_code in fairseq_language_code} _lowerCamelCase : Optional[Any] = kwargs.get("""additional_special_tokens""" , []) kwargs["additional_special_tokens"] += [ self.get_lang_token(SCREAMING_SNAKE_CASE) for lang_code in fairseq_language_code if self.get_lang_token(SCREAMING_SNAKE_CASE) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=SCREAMING_SNAKE_CASE , tgt_lang=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , language_codes=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) _lowerCamelCase : Union[str, Any] = vocab_file _lowerCamelCase : str = load_json(SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = {v: k for k, v in self.encoder.items()} _lowerCamelCase : Optional[int] = spm_file _lowerCamelCase : Union[str, Any] = load_spm(SCREAMING_SNAKE_CASE , self.sp_model_kwargs) _lowerCamelCase : Optional[int] = len(self.encoder) _lowerCamelCase : Dict = { self.get_lang_token(SCREAMING_SNAKE_CASE): self.encoder_size + i for i, lang_code in enumerate(SCREAMING_SNAKE_CASE) } _lowerCamelCase : List[Any] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(SCREAMING_SNAKE_CASE)} _lowerCamelCase : str = {v: k for k, v in self.lang_token_to_id.items()} _lowerCamelCase : List[str] = src_lang if src_lang is not None else """en""" _lowerCamelCase : List[str] = tgt_lang _lowerCamelCase : List[str] = self.get_lang_id(self._src_lang) self.set_src_lang_special_tokens(self._src_lang) _lowerCamelCase : Dict = num_madeup_words @property def UpperCamelCase_ ( self) -> int: return len(self.encoder) + len(self.lang_token_to_id) @property def UpperCamelCase_ ( self) -> str: return self._src_lang @src_lang.setter def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> None: _lowerCamelCase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> List[str]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(SCREAMING_SNAKE_CASE , self.encoder[self.unk_token]) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(SCREAMING_SNAKE_CASE , self.unk_token) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> Dict: _lowerCamelCase : Tuple = [] _lowerCamelCase : Optional[int] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE) + token _lowerCamelCase : Tuple = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE) out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE) return out_string.strip() def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = [1] * len(self.prefix_tokens) _lowerCamelCase : Dict = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE)) + suffix_ones return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE)) + ([0] * len(SCREAMING_SNAKE_CASE)) + suffix_ones def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase_ ( self) -> Dict: _lowerCamelCase : Dict = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Dict: _lowerCamelCase : str = self.__dict__.copy() _lowerCamelCase : List[Any] = None return state def __setstate__( self , SCREAMING_SNAKE_CASE) -> None: _lowerCamelCase : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs"""): _lowerCamelCase : int = {} _lowerCamelCase : Any = load_spm(self.spm_file , self.sp_model_kwargs) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None) -> Tuple[str]: _lowerCamelCase : Optional[int] = Path(SCREAMING_SNAKE_CASE) if not save_dir.is_dir(): raise OSError(F'{save_directory} should be a directory') _lowerCamelCase : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) _lowerCamelCase : Optional[Any] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , SCREAMING_SNAKE_CASE) if os.path.abspath(self.spm_file) != os.path.abspath(SCREAMING_SNAKE_CASE) and os.path.isfile(self.spm_file): copyfile(self.spm_file , SCREAMING_SNAKE_CASE) elif not os.path.isfile(self.spm_file): with open(SCREAMING_SNAKE_CASE , """wb""") as fi: _lowerCamelCase : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE) return (str(SCREAMING_SNAKE_CASE), str(SCREAMING_SNAKE_CASE)) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = "en" , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "ro" , **SCREAMING_SNAKE_CASE , ) -> BatchEncoding: _lowerCamelCase : List[Any] = src_lang _lowerCamelCase : Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang) return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""") _lowerCamelCase : List[str] = src_lang _lowerCamelCase : str = self(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = self.get_lang_id(SCREAMING_SNAKE_CASE) _lowerCamelCase : str = tgt_lang_id return inputs def UpperCamelCase_ ( self) -> Any: self.set_src_lang_special_tokens(self.src_lang) def UpperCamelCase_ ( self) -> Tuple: self.set_tgt_lang_special_tokens(self.tgt_lang) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> None: _lowerCamelCase : List[Any] = self.get_lang_token(SCREAMING_SNAKE_CASE) _lowerCamelCase : List[str] = self.lang_token_to_id[lang_token] _lowerCamelCase : str = [self.cur_lang_id] _lowerCamelCase : int = [self.eos_token_id] def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> None: _lowerCamelCase : int = self.get_lang_token(SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[Any] = self.lang_token_to_id[lang_token] _lowerCamelCase : List[Any] = [self.cur_lang_id] _lowerCamelCase : Tuple = [self.eos_token_id] def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> str: return self.lang_code_to_token[lang] def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> int: _lowerCamelCase : int = self.get_lang_token(SCREAMING_SNAKE_CASE) return self.lang_token_to_id[lang_token] def _snake_case ( __snake_case : str , __snake_case : Dict[str, Any] ): """simple docstring""" _lowerCamelCase : List[str] = sentencepiece.SentencePieceProcessor(**__snake_case ) spm.Load(str(__snake_case ) ) return spm def _snake_case ( __snake_case : str ): """simple docstring""" with open(__snake_case , """r""" ) as f: return json.load(__snake_case ) def _snake_case ( __snake_case : List[str] , __snake_case : str ): """simple docstring""" with open(__snake_case , """w""" ) as f: json.dump(__snake_case , __snake_case , indent=2 )
88
from manim import * class lowercase_ (lowercase__ ): def __UpperCamelCase ( self) -> List[Any]: a__ =Rectangle(height=0.5 , width=0.5) a__ =Rectangle(height=0.46 , width=0.46).set_stroke(width=0) a__ =[mem.copy() for i in range(6)] a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(lowercase_ , lowercase_).arrange(lowercase_ , buff=0) a__ =Text('CPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) cpu.move_to([-2.5, -0.5, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(4)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('GPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) gpu.move_to([-1, -1, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Model' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) model.move_to([3, -1.0, 0]) self.add(lowercase_) a__ =[] for i, rect in enumerate(lowercase_): rect.set_stroke(lowercase_) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) a__ =Rectangle(height=0.46 / 4 , width=0.46 / 3).set_stroke(width=0.0).set_fill(lowercase_ , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=lowercase_) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0) self.add(lowercase_) cpu_targs.append(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Loaded Checkpoint' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4) checkpoint.move_to([3, 0.5, 0]) a__ =Square(side_length=2.2) key.move_to([-5, 2, 0]) a__ =MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(lowercase_ , lowercase_) a__ =MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left()) a__ =MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(lowercase_) , Write(lowercase_)) self.play(Write(lowercase_ , run_time=1) , Create(lowercase_ , run_time=1)) a__ =[] a__ =[] for i, rect in enumerate(lowercase_): a__ =fill.copy().set_fill(lowercase_ , opacity=0.7) target.move_to(lowercase_) first_animations.append(GrowFromCenter(lowercase_ , run_time=1)) a__ =target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.target.move_to(cpu_right_col_base[i - 5]) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5)) self.play(*lowercase_) self.play(*lowercase_) self.wait()
20
0
import argparse import os import torch from transformers.utils import WEIGHTS_NAME SCREAMING_SNAKE_CASE : List[str] = ["small", "medium", "large"] SCREAMING_SNAKE_CASE : Any = "lm_head.decoder.weight" SCREAMING_SNAKE_CASE : Optional[Any] = "lm_head.weight" def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> int: _lowercase : Union[str, Any] = torch.load(lowerCamelCase_ ) _lowercase : List[str] = d.pop(lowerCamelCase_ ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) torch.save(lowerCamelCase_ , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) SCREAMING_SNAKE_CASE : str = parser.parse_args() for MODEL in DIALOGPT_MODELS: SCREAMING_SNAKE_CASE : Dict = os.path.join(args.dialogpt_path, F"{MODEL}_ft.pkl") SCREAMING_SNAKE_CASE : Union[str, Any] = F"./DialoGPT-{MODEL}" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
89
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _lowerCAmelCase: Any = sys.version_info >= (3, 10) def _lowercase( __a : int=None , __a : Any=None ): return field(default_factory=lambda: default , metadata=__a ) @dataclass class lowercase_ : snake_case =42 snake_case =42 snake_case =42 snake_case =42 @dataclass class lowercase_ : snake_case =42 snake_case =field(default='toto' , metadata={'help': 'help message'} ) @dataclass class lowercase_ : snake_case =False snake_case =True snake_case =None class lowercase_ (lowercase__ ): snake_case ='titi' snake_case ='toto' class lowercase_ (lowercase__ ): snake_case ='titi' snake_case ='toto' snake_case =42 @dataclass class lowercase_ : snake_case ="toto" def __UpperCamelCase ( self) -> List[str]: a__ =BasicEnum(self.foo) @dataclass class lowercase_ : snake_case ="toto" def __UpperCamelCase ( self) -> List[str]: a__ =MixedTypeEnum(self.foo) @dataclass class lowercase_ : snake_case =None snake_case =field(default=lowercase__ , metadata={'help': 'help message'} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) @dataclass class lowercase_ : snake_case =list_field(default=[] ) snake_case =list_field(default=[1, 2, 3] ) snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] ) snake_case =list_field(default=[0.1, 0.2, 0.3] ) @dataclass class lowercase_ : snake_case =field() snake_case =field() snake_case =field() def __UpperCamelCase ( self) -> List[Any]: a__ =BasicEnum(self.required_enum) @dataclass class lowercase_ : snake_case =42 snake_case =field() snake_case =None snake_case =field(default='toto' , metadata={'help': 'help message'} ) snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class lowercase_ : snake_case =False snake_case =True snake_case =None @dataclass class lowercase_ : snake_case =None snake_case =field(default=lowercase__ , metadata={'help': 'help message'} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self , lowercase_ , lowercase_) -> int: self.assertEqual(len(a._actions) , len(b._actions)) for x, y in zip(a._actions , b._actions): a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'} a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , lowercase_) and yy.get('choices' , lowercase_): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](lowercase_) , yy['type'](lowercase_)) del xx["type"], yy["type"] self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_) expected.add_argument('--bar' , type=lowercase_ , required=lowercase_) expected.add_argument('--baz' , type=lowercase_ , required=lowercase_) expected.add_argument('--flag' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') self.argparsersEqual(lowercase_ , lowercase_) a__ =['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((a__) , ) =parser.parse_args_into_dataclasses(lowercase_ , look_for_args_file=lowercase_) self.assertFalse(example.flag) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=lowercase_) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message') self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Optional[Any]: a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') expected.add_argument('--baz' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=lowercase_ , dest='baz') expected.add_argument('--opt' , type=lowercase_ , default=lowercase_) a__ =[WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_) for dataclass_type in dataclass_types: a__ =HfArgumentParser(lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', '--no_baz']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', '--baz']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(args.foo , 'toto') a__ =parser.parse_args_into_dataclasses([])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto) a__ =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') a__ =parser.parse_args_into_dataclasses(['--foo', 'titi'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi) a__ =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) a__ =parser.parse_args_into_dataclasses(['--foo', '42'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo) def __UpperCamelCase ( self) -> List[Any]: @dataclass class lowercase_ : snake_case ="toto" a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(args.foo , 'toto') a__ =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') a__ =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) def __UpperCamelCase ( self) -> Optional[int]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=lowercase_) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=lowercase_) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual( lowercase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3]) , ) a__ =parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split()) self.assertEqual(lowercase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7])) def __UpperCamelCase ( self) -> Dict: a__ =argparse.ArgumentParser() expected.add_argument('--foo' , default=lowercase_ , type=lowercase_) expected.add_argument('--bar' , default=lowercase_ , type=lowercase_ , help='help message') expected.add_argument('--baz' , default=lowercase_ , type=lowercase_) expected.add_argument('--ces' , nargs='+' , default=[] , type=lowercase_) expected.add_argument('--des' , nargs='+' , default=[] , type=lowercase_) a__ =[OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_) for dataclass_type in dataclass_types: a__ =HfArgumentParser(lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , bar=lowercase_ , baz=lowercase_ , ces=[] , des=[])) a__ =parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split()) self.assertEqual(lowercase_ , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3])) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=lowercase_ , required=lowercase_) expected.add_argument('--required_str' , type=lowercase_ , required=lowercase_) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , ) self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , ) expected.add_argument('--opt' , type=lowercase_ , default=lowercase_) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message') expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_) self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } a__ =parser.parse_dict(lowercase_)[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(lowercase_ , parser.parse_dict , lowercase_ , allow_extra_keys=lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: a__ =os.path.join(lowercase_ , 'temp_json') os.mkdir(lowercase_) with open(temp_local_path + '.json' , 'w+') as f: json.dump(lowercase_ , lowercase_) a__ =parser.parse_yaml_file(Path(temp_local_path + '.json'))[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Any: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: a__ =os.path.join(lowercase_ , 'temp_yaml') os.mkdir(lowercase_) with open(temp_local_path + '.yaml' , 'w+') as f: yaml.dump(lowercase_ , lowercase_) a__ =parser.parse_yaml_file(Path(temp_local_path + '.yaml'))[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) self.assertIsNotNone(lowercase_)
20
0
'''simple docstring''' def _snake_case ( A ) -> float: return 10 - x * x def _snake_case ( A , A ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(A ) * equation(A ) >= 0: raise ValueError('''Wrong space!''' ) lowerCAmelCase__ = a while (b - a) >= 0.01: # Find middle point lowerCAmelCase__ = (a + b) / 2 # Check if middle point is root if equation(A ) == 0.0: break # Decide the side to repeat the steps if equation(A ) * equation(A ) < 0: lowerCAmelCase__ = c else: lowerCAmelCase__ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
90
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase: List[Any] = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class lowercase_ (lowercase__ ): snake_case ='autoformer' snake_case ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , lowercase_ = None , lowercase_ = None , lowercase_ = "student_t" , lowercase_ = "nll" , lowercase_ = 1 , lowercase_ = [1, 2, 3, 4, 5, 6, 7] , lowercase_ = True , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 64 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 32 , lowercase_ = 32 , lowercase_ = "gelu" , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 100 , lowercase_ = 0.02 , lowercase_ = True , lowercase_=True , lowercase_ = 10 , lowercase_ = 25 , lowercase_ = 3 , **lowercase_ , ) -> Union[str, Any]: # time series specific configuration a__ =prediction_length a__ =context_length if context_length is not None else prediction_length a__ =distribution_output a__ =loss a__ =input_size a__ =num_time_features a__ =lags_sequence a__ =scaling a__ =num_dynamic_real_features a__ =num_static_real_features a__ =num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`') a__ =cardinality else: a__ =[0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`') a__ =embedding_dimension else: a__ =[min(50 , (cat + 1) // 2) for cat in self.cardinality] a__ =num_parallel_samples # Transformer architecture configuration a__ =input_size * len(self.lags_sequence) + self._number_of_features a__ =d_model a__ =encoder_attention_heads a__ =decoder_attention_heads a__ =encoder_ffn_dim a__ =decoder_ffn_dim a__ =encoder_layers a__ =decoder_layers a__ =dropout a__ =attention_dropout a__ =activation_dropout a__ =encoder_layerdrop a__ =decoder_layerdrop a__ =activation_function a__ =init_std a__ =use_cache # Autoformer a__ =label_length a__ =moving_average a__ =autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def __UpperCamelCase ( self) -> int: return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
20
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool _lowercase = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = '''facebook/nllb-200-distilled-600M''' _lowerCamelCase: List[Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) _lowerCamelCase: Any = '''translator''' _lowerCamelCase: List[str] = AutoTokenizer _lowerCamelCase: int = AutoModelForSeqaSeqLM _lowerCamelCase: List[str] = LANGUAGE_CODES _lowerCamelCase: List[Any] = ['''text''', '''text''', '''text'''] _lowerCamelCase: Optional[Any] = ['''text'''] def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : str ,A_ : Union[str, Any] ,A_ : Dict ) -> Tuple: if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) A = self.lang_to_code[src_lang] A = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( A_ ,return_tensors='pt' ,src_lang=A_ ,tgt_lang=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Dict ) -> int: return self.model.generate(**A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ) -> List[Any]: return self.post_processor.decode(outputs[0].tolist() ,skip_special_tokens=A_ )
91
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowerCAmelCase: List[Any] = logging.get_logger(__name__) class lowercase_ (lowercase__ ): snake_case =['pixel_values'] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = None , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: super().__init__(**lowercase_) a__ =size if size is not None else {'shortest_edge': 256} a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) a__ =crop_size if crop_size is not None else {'height': 224, 'width': 224} a__ =get_size_dict(lowercase_ , param_name='crop_size') a__ =do_resize a__ =size a__ =resample a__ =do_center_crop a__ =crop_size a__ =do_rescale a__ =rescale_factor a__ =do_normalize a__ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a__ =image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") a__ =get_resize_output_image_size(lowercase_ , size=size['shortest_edge'] , default_to_square=lowercase_) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: a__ =get_size_dict(lowercase_) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""") return center_crop(lowercase_ , size=(size['height'], size['width']) , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_) -> np.ndarray: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> Tuple: a__ =do_resize if do_resize is not None else self.do_resize a__ =size if size is not None else self.size a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) a__ =resample if resample is not None else self.resample a__ =do_center_crop if do_center_crop is not None else self.do_center_crop a__ =crop_size if crop_size is not None else self.crop_size a__ =get_size_dict(lowercase_ , param_name='crop_size') a__ =do_rescale if do_rescale is not None else self.do_rescale a__ =rescale_factor if rescale_factor is not None else self.rescale_factor a__ =do_normalize if do_normalize is not None else self.do_normalize a__ =image_mean if image_mean is not None else self.image_mean a__ =image_std if image_std is not None else self.image_std a__ =make_list_of_images(lowercase_) if not valid_images(lowercase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a__ =[to_numpy_array(lowercase_) for image in images] if do_resize: a__ =[self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_) for image in images] if do_center_crop: a__ =[self.center_crop(image=lowercase_ , size=lowercase_) for image in images] if do_rescale: a__ =[self.rescale(image=lowercase_ , scale=lowercase_) for image in images] if do_normalize: a__ =[self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_) for image in images] a__ =[to_channel_dimension_format(lowercase_ , lowercase_) for image in images] a__ ={'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None) -> str: a__ =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_) != len(lowercase_): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(lowercase_): a__ =target_sizes.numpy() a__ =[] for idx in range(len(lowercase_)): a__ =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_) a__ =resized_logits[0].argmax(dim=0) semantic_segmentation.append(lowercase_) else: a__ =logits.argmax(dim=1) a__ =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
20
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer UpperCamelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase_ = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } UpperCamelCase_ = { """unc-nlp/lxmert-base-uncased""": 512, } UpperCamelCase_ = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = LxmertTokenizer def __init__( self : str , UpperCAmelCase__ : str=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : int="[UNK]" , UpperCAmelCase__ : Tuple="[SEP]" , UpperCAmelCase__ : str="[PAD]" , UpperCAmelCase__ : Optional[Any]="[CLS]" , UpperCAmelCase__ : Tuple="[MASK]" , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : int=None , **UpperCAmelCase__ : Optional[Any] , ): '''simple docstring''' super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , tokenize_chinese_chars=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowercase : Union[str, Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCAmelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCAmelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCAmelCase__ ) != tokenize_chinese_chars ): lowercase : Union[str, Any] =getattr(UpperCAmelCase__ , normalizer_state.pop('''type''' ) ) lowercase : int =do_lower_case lowercase : Tuple =strip_accents lowercase : Any =tokenize_chinese_chars lowercase : Union[str, Any] =normalizer_class(**UpperCAmelCase__ ) lowercase : int =do_lower_case def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : int=None ): '''simple docstring''' lowercase : Union[str, Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase_ ( self : Dict , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase : List[Any] =[self.sep_token_id] lowercase : List[str] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ): '''simple docstring''' lowercase : List[Any] =self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ )
92
from importlib import import_module from .logging import get_logger _lowerCAmelCase: str = get_logger(__name__) class lowercase_ : def __init__( self , lowercase_ , lowercase_=None) -> Tuple: a__ =attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__'): setattr(self , lowercase_ , getattr(lowercase_ , lowercase_)) a__ =module._original_module if isinstance(lowercase_ , _PatchedModuleObj) else module class lowercase_ : snake_case =[] def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None) -> List[str]: a__ =obj a__ =target a__ =new a__ =target.split('.')[0] a__ ={} a__ =attrs or [] def __enter__( self) -> Optional[int]: *a__ , a__ =self.target.split('.') # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowercase_)): try: a__ =import_module('.'.join(submodules[: i + 1])) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): a__ =getattr(self.obj , lowercase_) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowercase_ , _PatchedModuleObj) and obj_attr._original_module is submodule) ): a__ =obj_attr # patch at top level setattr(self.obj , lowercase_ , _PatchedModuleObj(lowercase_ , attrs=self.attrs)) a__ =getattr(self.obj , lowercase_) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowercase_ , lowercase_ , _PatchedModuleObj(getattr(lowercase_ , lowercase_ , lowercase_) , attrs=self.attrs)) a__ =getattr(lowercase_ , lowercase_) # finally set the target attribute setattr(lowercase_ , lowercase_ , self.new) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: a__ =getattr(import_module('.'.join(lowercase_)) , lowercase_) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowercase_) is attr_value: a__ =getattr(self.obj , lowercase_) setattr(self.obj , lowercase_ , self.new) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" a__ =globals()['__builtins__'][target_attr] setattr(self.obj , lowercase_ , self.new) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""") def __exit__( self , *lowercase_) -> str: for attr in list(self.original): setattr(self.obj , lowercase_ , self.original.pop(lowercase_)) def __UpperCamelCase ( self) -> Any: self.__enter__() self._active_patches.append(self) def __UpperCamelCase ( self) -> Union[str, Any]: try: self._active_patches.remove(self) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
20
0
"""simple docstring""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __A = logging.get_logger(__name__) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Tuple: """simple docstring""" return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" lowerCAmelCase__ :Dict = to_pil_image(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ , lowerCAmelCase__ :Tuple = pil_image.size lowerCAmelCase__ :Dict = pytesseract.image_to_data(_SCREAMING_SNAKE_CASE , lang=_SCREAMING_SNAKE_CASE , output_type='dict' , config=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Dict = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates lowerCAmelCase__ :List[str] = [idx for idx, word in enumerate(_SCREAMING_SNAKE_CASE ) if not word.strip()] lowerCAmelCase__ :Optional[Any] = [word for idx, word in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowerCAmelCase__ :List[str] = [coord for idx, coord in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowerCAmelCase__ :str = [coord for idx, coord in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowerCAmelCase__ :List[str] = [coord for idx, coord in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowerCAmelCase__ :int = [coord for idx, coord in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCAmelCase__ :List[Any] = [] for x, y, w, h in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Any = [x, y, x + w, y + h] actual_boxes.append(_SCREAMING_SNAKE_CASE ) # finally, normalize the bounding boxes lowerCAmelCase__ :str = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ), "Not as many words as there are bounding boxes" return words, normalized_boxes class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Optional[int] = ["""pixel_values"""] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 2_5_5 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = "" , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = size if size is not None else {'height': 2_2_4, 'width': 2_2_4} lowerCAmelCase__ :Union[str, Any] = get_size_dict(__UpperCAmelCase ) lowerCAmelCase__ :int = do_resize lowerCAmelCase__ :Union[str, Any] = size lowerCAmelCase__ :List[str] = resample lowerCAmelCase__ :int = do_rescale lowerCAmelCase__ :int = rescale_value lowerCAmelCase__ :List[Any] = do_normalize lowerCAmelCase__ :Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ :List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD lowerCAmelCase__ :Tuple = apply_ocr lowerCAmelCase__ :List[str] = ocr_lang lowerCAmelCase__ :Any = tesseract_config def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :int = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) lowerCAmelCase__ :Tuple = (size['height'], size['width']) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :int = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ :Tuple = size if size is not None else self.size lowerCAmelCase__ :str = get_size_dict(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = resample if resample is not None else self.resample lowerCAmelCase__ :int = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ :str = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ :str = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ :str = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ :List[Any] = image_std if image_std is not None else self.image_std lowerCAmelCase__ :List[str] = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCAmelCase__ :Union[str, Any] = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCAmelCase__ :Union[str, Any] = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCAmelCase__ :str = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('If do_normalize is True, image_mean and image_std must be specified.' ) # All transformations expect numpy arrays. lowerCAmelCase__ :Optional[Any] = [to_numpy_array(__UpperCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , 'pytesseract' ) lowerCAmelCase__ :Union[str, Any] = [] lowerCAmelCase__ :Dict = [] for image in images: lowerCAmelCase__ , lowerCAmelCase__ :Dict = apply_tesseract(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) words_batch.append(__UpperCAmelCase ) boxes_batch.append(__UpperCAmelCase ) if do_resize: lowerCAmelCase__ :Optional[int] = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_rescale: lowerCAmelCase__ :List[Any] = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: lowerCAmelCase__ :List[Any] = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] lowerCAmelCase__ :Tuple = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] lowerCAmelCase__ :List[str] = BatchFeature(data={'pixel_values': images} , tensor_type=__UpperCAmelCase ) if apply_ocr: lowerCAmelCase__ :int = words_batch lowerCAmelCase__ :Tuple = boxes_batch return data
93
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": _lowerCAmelCase: int = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def _lowercase( __a : Optional[Any] ): if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) _lowerCAmelCase: str = parser.parse_args() _lowerCAmelCase: Tuple = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
20
0
'''simple docstring''' def lowercase_ ( __A : int ) -> int: """simple docstring""" assert ( isinstance(__A , __A ) and number_of_steps > 0 ), F'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 lowercase , lowercase : int =1, 1 for _ in range(number_of_steps - 1 ): lowercase , lowercase : Optional[int] =current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
94
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _lowerCAmelCase: Tuple = get_logger(__name__) _lowerCAmelCase: List[str] = Path(__file__).parent / 'model_card_template.md' _lowerCAmelCase: Any = uuida().hex _lowerCAmelCase: List[Any] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase: int = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase: Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def _lowercase( __a : Union[Dict, str, None] = None ): a__ =f"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"""; torch/{_torch_version}""" if is_flax_available(): ua += f"""; jax/{_jax_version}""" ua += f"""; flax/{_flax_version}""" if is_onnx_available(): ua += f"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__a , __a ): ua += "; " + "; ".join(f"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__a , __a ): ua += "; " + user_agent return ua def _lowercase( __a : str , __a : Optional[str] = None , __a : Optional[str] = None ): if token is None: a__ =HfFolder.get_token() if organization is None: a__ =whoami(__a )['name'] return f"""{username}/{model_id}""" else: return f"""{organization}/{model_id}""" def _lowercase( __a : Union[str, Any] , __a : Dict ): if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(__a , 'local_rank' ) and args.local_rank not in [-1, 0]: return a__ =args.hub_token if hasattr(__a , 'hub_token' ) else None a__ =get_full_repo_name(__a , token=__a ) a__ =ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__a , model_name=__a , repo_name=__a , dataset_name=args.dataset_name if hasattr(__a , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__a , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__a , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(__a , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__a , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__a , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__a , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__a , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__a , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(__a , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__a , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) a__ =os.path.join(args.output_dir , 'README.md' ) model_card.save(__a ) def _lowercase( __a : Optional[str] , __a : Optional[str] = None ): if resolved_file is None or commit_hash is not None: return commit_hash a__ =str(Path(__a ).as_posix() ) a__ =re.search(r'snapshots/([^/]+)/' , __a ) if search is None: return None a__ =search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__a ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _lowerCAmelCase: List[str] = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) _lowerCAmelCase: List[str] = os.path.join(hf_cache_home, 'diffusers') def _lowercase( __a : Optional[str] = None , __a : Optional[str] = None ): if new_cache_dir is None: a__ =DIFFUSERS_CACHE if old_cache_dir is None: a__ =old_diffusers_cache a__ =Path(__a ).expanduser() a__ =Path(__a ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): a__ =new_cache_dir / old_blob_path.relative_to(__a ) new_blob_path.parent.mkdir(parents=__a , exist_ok=__a ) os.replace(__a , __a ) try: os.symlink(__a , __a ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _lowerCAmelCase: Dict = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): _lowerCAmelCase: int = 0 else: with open(cache_version_file) as f: try: _lowerCAmelCase: List[Any] = int(f.read()) except ValueError: _lowerCAmelCase: Any = 0 if cache_version < 1: _lowerCAmelCase: str = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: _lowerCAmelCase: Optional[Any] = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ 'the directory exists and can be written to.' ) def _lowercase( __a : str , __a : Optional[str] = None ): if variant is not None: a__ =weights_name.split('.' ) a__ =splits[:-1] + [variant] + splits[-1:] a__ ='.'.join(__a ) return weights_name def _lowercase( __a : Union[str, Any] , *, __a : Optional[Any] , __a : Optional[Any] , __a : List[Any] , __a : Tuple , __a : Optional[Any] , __a : Dict , __a : str , __a : int , __a : Tuple , __a : Union[str, Any] , __a : int=None , ): a__ =str(__a ) if os.path.isfile(__a ): return pretrained_model_name_or_path elif os.path.isdir(__a ): if os.path.isfile(os.path.join(__a , __a ) ): # Load from a PyTorch checkpoint a__ =os.path.join(__a , __a ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__a , __a , __a ) ): a__ =os.path.join(__a , __a , __a ) return model_file else: raise EnvironmentError( f"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__a ).base_version ) >= version.parse('0.20.0' ) ): try: a__ =hf_hub_download( __a , filename=_add_variant(__a , __a ) , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) warnings.warn( f"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __a , ) return model_file except: # noqa: E722 warnings.warn( f"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__a , __a )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__a , __a )}' so that the correct variant file can be added.""" , __a , ) try: # 2. Load model file as usual a__ =hf_hub_download( __a , filename=__a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( f"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ 'this model name. Check the model page at ' f"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( f"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( f"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" f""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" f""" directory containing a file named {weights_name} or""" ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( f"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' f"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ f"""containing a file named {weights_name}""" )
20
0
"""simple docstring""" class UpperCamelCase_ : def __init__( self : List[Any] , lowerCAmelCase_ : list[int] ) -> None: UpperCAmelCase_ : str = len(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = [0] * len_array if len_array > 0: UpperCAmelCase_ : str = array[0] for i in range(1 , lowerCAmelCase_ ): UpperCAmelCase_ : int = self.prefix_sum[i - 1] + array[i] def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : int ) -> bool: UpperCAmelCase_ : int = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCAmelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
95
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger() def _lowercase( __a : int , __a : str , __a : LevitConfig , __a : Path , __a : bool = True ): print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": a__ =timm.create_model('levit_128s' , pretrained=__a ) else: a__ =timm.create_model('levit_128' , pretrained=__a ) if hidden_sizes == 192: a__ =timm.create_model('levit_192' , pretrained=__a ) if hidden_sizes == 256: a__ =timm.create_model('levit_256' , pretrained=__a ) if hidden_sizes == 384: a__ =timm.create_model('levit_384' , pretrained=__a ) from_model.eval() a__ =LevitForImageClassificationWithTeacher(__a ).eval() a__ =OrderedDict() a__ =from_model.state_dict() a__ =list(from_model.state_dict().keys() ) a__ =list(our_model.state_dict().keys() ) print(len(__a ) , len(__a ) ) for i in range(len(__a ) ): a__ =weights[og_keys[i]] our_model.load_state_dict(__a ) a__ =torch.randn((2, 3, 224, 224) ) a__ =from_model(__a ) a__ =our_model(__a ).logits assert torch.allclose(__a , __a ), "The model logits don't match the original one." a__ =name print(__a ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) a__ =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def _lowercase( __a : Path , __a : str = None , __a : bool = True ): a__ ='imagenet-1k-id2label.json' a__ =1000 a__ =(1, num_labels) a__ ='huggingface/label-files' a__ =num_labels a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} a__ =partial(__a , num_labels=__a , idalabel=__a , labelaid=__a ) a__ ={ 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } a__ ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __a , names_to_config[model_name] , __a , __a ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __a , __a , __a , __a ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _lowerCAmelCase: Union[str, Any] = parser.parse_args() _lowerCAmelCase: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
20
0
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __lowerCamelCase = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __lowerCamelCase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __lowerCamelCase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def a ( __UpperCAmelCase : str , __UpperCAmelCase : str ) -> tuple[str, float]: __magic_name__: Any = len([g for position, g in enumerate(__UpperCAmelCase ) if g == main_target[position]] ) return (item, float(__UpperCAmelCase )) def a ( __UpperCAmelCase : str , __UpperCAmelCase : str ) -> tuple[str, str]: __magic_name__: Tuple = random.randint(0 , len(__UpperCAmelCase ) - 1 ) __magic_name__: Optional[Any] = parent_a[:random_slice] + parent_a[random_slice:] __magic_name__: Optional[Any] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def a ( __UpperCAmelCase : str , __UpperCAmelCase : list[str] ) -> str: __magic_name__: Union[str, Any] = list(__UpperCAmelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __magic_name__: Any = random.choice(__UpperCAmelCase ) return "".join(__UpperCAmelCase ) def a ( __UpperCAmelCase : tuple[str, float] , __UpperCAmelCase : list[tuple[str, float]] , __UpperCAmelCase : list[str] , ) -> list[str]: __magic_name__: Union[str, Any] = [] # Generate more children proportionally to the fitness score. __magic_name__: List[str] = int(parent_a[1] * 1_0_0 ) + 1 __magic_name__: Union[str, Any] = 1_0 if child_n >= 1_0 else child_n for _ in range(__UpperCAmelCase ): __magic_name__: Union[str, Any] = population_score[random.randint(0 , __UpperCAmelCase )][0] __magic_name__, __magic_name__: List[str] = crossover(parent_a[0] , __UpperCAmelCase ) # Append new string to the population list. pop.append(mutate(__UpperCAmelCase , __UpperCAmelCase ) ) pop.append(mutate(__UpperCAmelCase , __UpperCAmelCase ) ) return pop def a ( __UpperCAmelCase : str , __UpperCAmelCase : list[str] , __UpperCAmelCase : bool = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: __magic_name__: Any = f'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(__UpperCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. __magic_name__: Dict = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __magic_name__: List[str] = f'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(__UpperCAmelCase ) # Generate random starting population. __magic_name__: Optional[Any] = [] for _ in range(__UpperCAmelCase ): population.append("""""".join([random.choice(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. __magic_name__, __magic_name__: Optional[int] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__UpperCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __magic_name__: Tuple = [evaluate(__UpperCAmelCase , __UpperCAmelCase ) for item in population] # Check if there is a matching evolution. __magic_name__: List[Any] = sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x[1] , reverse=__UpperCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 1_0 == 0: print( f'\nGeneration: {generation}' f'\nTotal Population:{total_population}' f'\nBest score: {population_score[0][1]}' f'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __magic_name__: int = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__UpperCAmelCase ) # Normalize population score to be between 0 and 1. __magic_name__: Dict = [ (item, score / len(__UpperCAmelCase )) for item, score in population_score ] # This is selection for i in range(__UpperCAmelCase ): population.extend(select(population_score[int(__UpperCAmelCase )] , __UpperCAmelCase , __UpperCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__UpperCAmelCase ) > N_POPULATION: break if __name__ == "__main__": __lowerCamelCase = ( 'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!' ) __lowerCamelCase = list( ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm' 'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\' ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
96
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowerCAmelCase: int = logging.get_logger(__name__) _lowerCAmelCase: Union[str, Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } _lowerCAmelCase: Tuple = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _lowercase( __a : Optional[Any] ): a__ ={} with open(__a , 'r' ) as file: for line_number, line in enumerate(__a ): a__ =line.strip() if line: a__ =line.split() a__ =line_number a__ =words[0] a__ =value return result def _lowercase( __a : Dict , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : str ): for attribute in key.split('.' ): a__ =getattr(__a , __a ) a__ =None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__a ): a__ =PARAM_MAPPING[full_name.split('.' )[-1]] a__ ='param' if weight_type is not None and weight_type != "param": a__ =getattr(__a , __a ).shape elif weight_type is not None and weight_type == "param": a__ =hf_pointer for attribute in hf_param_name.split('.' ): a__ =getattr(__a , __a ) a__ =shape_pointer.shape # let's reduce dimension a__ =value[0] else: a__ =hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a__ =value elif weight_type == "weight_g": a__ =value elif weight_type == "weight_v": a__ =value elif weight_type == "bias": a__ =value elif weight_type == "param": for attribute in hf_param_name.split('.' ): a__ =getattr(__a , __a ) a__ =value else: a__ =value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _lowercase( __a : Optional[int] , __a : int , __a : Optional[int] , __a : Optional[Any] , __a : List[Any] ): a__ =None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__a ): a__ =PARAM_MAPPING[full_name.split('.' )[-1]] a__ ='param' if weight_type is not None and weight_type != "param": a__ ='.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": a__ ='.'.join([key, hf_param_name] ) else: a__ =key a__ =value if 'lm_head' in full_key else value[0] _lowerCAmelCase: Dict = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _lowercase( __a : Dict , __a : int , __a : int=None , __a : List[str]=None ): a__ =False for key, mapped_key in MAPPING.items(): a__ ='wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: a__ =True if "*" in mapped_key: a__ =name.split(__a )[0].split('.' )[-2] a__ =mapped_key.replace('*' , __a ) if "weight_g" in name: a__ ='weight_g' elif "weight_v" in name: a__ ='weight_v' elif "bias" in name: a__ ='bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj a__ ='weight' else: a__ =None if hf_dict is not None: rename_dict(__a , __a , __a , __a , __a ) else: set_recursively(__a , __a , __a , __a , __a ) return is_used return is_used def _lowercase( __a : Union[str, Any] , __a : List[str] , __a : Dict ): a__ =[] a__ =fairseq_model.state_dict() a__ =hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): a__ =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == 'group' , ) a__ =True else: a__ =load_wavaveca_layer(__a , __a , __a ) if not is_used: unused_weights.append(__a ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _lowercase( __a : List[Any] , __a : Optional[Any] , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] ): a__ =full_name.split('conv_layers.' )[-1] a__ =name.split('.' ) a__ =int(items[0] ) a__ =int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def _lowercase( __a : str , __a : str , __a : Any=None , __a : str=None , __a : Any=True , __a : Union[str, Any]=False ): if config_path is not None: a__ =WavaVecaConfig.from_pretrained(__a ) else: a__ =WavaVecaConfig() if is_seq_class: a__ =read_txt_into_dict(__a ) a__ =idalabel a__ =WavaVecaForSequenceClassification(__a ) a__ =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) feature_extractor.save_pretrained(__a ) elif is_finetuned: if dict_path: a__ =Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a__ =target_dict.pad_index a__ =target_dict.bos_index a__ =target_dict.eos_index a__ =len(target_dict.symbols ) a__ =os.path.join(__a , 'vocab.json' ) if not os.path.isdir(__a ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__a ) ) return os.makedirs(__a , exist_ok=__a ) a__ =target_dict.indices # fairseq has the <pad> and <s> switched a__ =0 a__ =1 with open(__a , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(__a , __a ) a__ =WavaVecaCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=__a , ) a__ =True if config.feat_extract_norm == 'layer' else False a__ =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) a__ =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) a__ =WavaVecaForCTC(__a ) else: a__ =WavaVecaForPreTraining(__a ) if is_finetuned or is_seq_class: a__ , a__ , a__ =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: a__ =argparse.Namespace(task='audio_pretraining' ) a__ =fairseq.tasks.setup_task(__a ) a__ , a__ , a__ =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__a ) a__ =model[0].eval() recursively_load_weights(__a , __a , not is_finetuned ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) _lowerCAmelCase: Tuple = parser.parse_args() _lowerCAmelCase: Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
20
0
class lowercase__: """simple docstring""" def __init__( self : Union[str, Any] ) -> int: lowercase_ = {} def _lowercase ( self : Union[str, Any] ) -> None: print(self.vertex ) for i in self.vertex: print(SCREAMING_SNAKE_CASE_ , ''' -> ''' , ''' -> '''.join([str(SCREAMING_SNAKE_CASE_ ) for j in self.vertex[i]] ) ) def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(SCREAMING_SNAKE_CASE_ ) else: # else make a new vertex lowercase_ = [to_vertex] def _lowercase ( self : str ) -> None: # visited array for storing already visited nodes lowercase_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list ) -> None: # mark start vertex as visited lowercase_ = True print(SCREAMING_SNAKE_CASE_ , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __a = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
97
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowercase_ (unittest.TestCase ): @slow def __UpperCamelCase ( self) -> Optional[int]: a__ =AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowercase_).to(lowercase_) a__ =AutoTokenizer.from_pretrained('google/mt5-small') a__ =tokenizer('Hello there' , return_tensors='pt').input_ids a__ =tokenizer('Hi I am' , return_tensors='pt').input_ids a__ =model(input_ids.to(lowercase_) , labels=labels.to(lowercase_)).loss a__ =-(labels.shape[-1] * loss.item()) a__ =-84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
20
0
'''simple docstring''' import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): lowercase__ : Any = True from torch.cuda.amp import autocast lowercase__ : List[str] = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) _snake_case : Optional[bool] = field( default=__magic_name__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) _snake_case : Optional[bool] = field( default=__magic_name__ , metadata={'help': 'Whether to log verbose messages or not.'} , ) _snake_case : Optional[float] = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'} ) _snake_case : Optional[float] = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'} ) _snake_case : Optional[float] = field( default=0.99_99_95 , metadata={'help': 'Decay of gumbel temperature during training.'} ) def a__ ( lowercase : ModelArguments, lowercase : TrainingArguments ) -> int: """simple docstring""" logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) _UpperCamelCase = logging.WARNING if model_args.verbose_logging: _UpperCamelCase = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _UpperCamelCase = logging.INFO logger.setLevel(lowercase ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : str = field( default=__magic_name__ , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _snake_case : Optional[str] = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _snake_case : Optional[str] = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) _snake_case : Optional[str] = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) _snake_case : bool = field( default=__magic_name__ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) _snake_case : Optional[int] = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) _snake_case : Optional[int] = field( default=__magic_name__ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) _snake_case : Optional[float] = field( default=20.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'} ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : WavaVecaForPreTraining _snake_case : WavaVecaFeatureExtractor _snake_case : Union[bool, str] = "longest" _snake_case : Optional[int] = None _snake_case : Optional[int] = None def __call__( self : List[Any] , lowerCAmelCase__ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: '''simple docstring''' _UpperCamelCase = self.feature_extractor.pad( lowerCAmelCase__ , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) _UpperCamelCase = self.model._get_feat_extract_output_lengths(batch['''input_values'''].shape[-1] ) _UpperCamelCase = batch['''input_values'''].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _UpperCamelCase = self.model._get_feat_extract_output_lengths(batch['''attention_mask'''].sum(-1 ) ).to( torch.long ) _UpperCamelCase = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['''input_values'''].device ) # these two operations makes sure that all values # before the output lengths indices are attended to _UpperCamelCase = 1 _UpperCamelCase = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices _UpperCamelCase = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=lowerCAmelCase__ , min_masks=2 , ) return batch class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : str , *lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str]=1 , lowerCAmelCase__ : List[str]=0 , lowerCAmelCase__ : str=1.0 , **lowerCAmelCase__ : List[Any] ) -> Tuple: '''simple docstring''' super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = 0 _UpperCamelCase = max_gumbel_temp _UpperCamelCase = min_gumbel_temp _UpperCamelCase = gumbel_temp_decay def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : nn.Module , lowerCAmelCase__ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: '''simple docstring''' model.train() _UpperCamelCase = self._prepare_inputs(lowerCAmelCase__ ) if self.use_amp: with autocast(): _UpperCamelCase = self.compute_loss(lowerCAmelCase__ , lowerCAmelCase__ ) else: _UpperCamelCase = self.compute_loss(lowerCAmelCase__ , lowerCAmelCase__ ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase = loss.sum() / (inputs['''mask_time_indices''']).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCAmelCase__ ).backward() elif self.use_apex: with amp.scale_loss(lowerCAmelCase__ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCAmelCase__ ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def a__ ( ) -> List[Any]: """simple docstring""" _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() configure_logger(lowercase, lowercase ) # Downloading and loading a dataset from the hub. _UpperCamelCase = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _UpperCamelCase = DatasetDict() _UpperCamelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""", cache_dir=model_args.cache_dir, ) _UpperCamelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""", cache_dir=model_args.cache_dir, ) else: # make sure only "validation" and "train" keys remain" _UpperCamelCase = DatasetDict() _UpperCamelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split='''validation''', cache_dir=model_args.cache_dir, ) _UpperCamelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""{data_args.train_split_name}""", cache_dir=model_args.cache_dir, ) # only normalized-inputs-training is supported _UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, do_normalize=lowercase ) def prepare_dataset(lowercase : Optional[Any] ): # check that all files have the correct sampling rate _UpperCamelCase , _UpperCamelCase = librosa.load(batch[data_args.speech_file_column], sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _UpperCamelCase = datasets.map( lowercase, num_proc=data_args.preprocessing_num_workers, remove_columns=datasets['''train'''].column_names ) # filter audio files that are too long _UpperCamelCase = vectorized_datasets.filter( lambda lowercase : len(data['''speech'''] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(lowercase : int ): return feature_extractor(batch['''speech'''], sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _UpperCamelCase = vectorized_datasets.map( lowercase, batched=lowercase, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, remove_columns=vectorized_datasets['''train'''].column_names, ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _UpperCamelCase = WavaVecaConfig.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, gradient_checkpointing=training_args.gradient_checkpointing, ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( '''PreTraining is only supported for ``config.do_stable_layer_norm=True`` and''' ''' ``config.feat_extract_norm=\'layer\'''' ) _UpperCamelCase = WavaVecaForPreTraining(lowercase ) _UpperCamelCase = DataCollatorForWavaVecaPretraining(model=lowercase, feature_extractor=lowercase ) _UpperCamelCase = WavaVecaPreTrainer( model=lowercase, data_collator=lowercase, args=lowercase, train_dataset=vectorized_datasets['''train'''], eval_dataset=vectorized_datasets['''validation'''], tokenizer=lowercase, max_gumbel_temp=model_args.max_gumbel_temperature, min_gumbel_temp=model_args.min_gumbel_temperature, gumbel_temp_decay=model_args.gumbel_temperature_decay, ) trainer.train() if __name__ == "__main__": main()
98
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self) -> int: a__ =tempfile.mkdtemp() a__ =BlipImageProcessor() a__ =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel') a__ =BlipProcessor(lowercase_ , lowercase_) processor.save_pretrained(self.tmpdirname) def __UpperCamelCase ( self , **lowercase_) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).tokenizer def __UpperCamelCase ( self , **lowercase_) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).image_processor def __UpperCamelCase ( self) -> Optional[int]: shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self) -> str: a__ =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] a__ =[Image.fromarray(np.moveaxis(lowercase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self) -> str: a__ =BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) a__ =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') a__ =self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0) a__ =BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowercase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowercase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowercase_) def __UpperCamelCase ( self) -> int: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ =self.prepare_image_inputs() a__ =image_processor(lowercase_ , return_tensors='np') a__ =processor(images=lowercase_ , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self) -> List[str]: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =processor(text=lowercase_) a__ =tokenizer(lowercase_ , return_token_type_ids=lowercase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self) -> int: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =self.prepare_image_inputs() a__ =processor(text=lowercase_ , images=lowercase_) self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask']) # test if it raises when no input is passed with pytest.raises(lowercase_): processor() def __UpperCamelCase ( self) -> Tuple: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a__ =processor.batch_decode(lowercase_) a__ =tokenizer.batch_decode(lowercase_) self.assertListEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =self.prepare_image_inputs() a__ =processor(text=lowercase_ , images=lowercase_) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask'])
20
0
import pprint import requests SCREAMING_SNAKE_CASE = 'https://zenquotes.io/api' def a (): return requests.get(API_ENDPOINT_URL + """/today""" ).json() def a (): return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": SCREAMING_SNAKE_CASE = random_quotes() pprint.pprint(response)
99
def _lowercase( __a : list[int] ): a__ =len(__a ) for i in range(__a ): for j in range(i + 1 , __a ): if numbers[j] < numbers[i]: a__ , a__ =numbers[j], numbers[i] return numbers if __name__ == "__main__": _lowerCAmelCase: Tuple = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase: int = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
20
0
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> float: SCREAMING_SNAKE_CASE__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(lowerCAmelCase_ )] ) SCREAMING_SNAKE_CASE__ = np.array(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , lowerCAmelCase_ ) ) , x.transpose() ) , lowerCAmelCase_ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> float: SCREAMING_SNAKE_CASE__ = (1, 2, 1) SCREAMING_SNAKE_CASE__ = (1, 1, 0, 7) SCREAMING_SNAKE_CASE__ = SARIMAX( lowerCAmelCase_ , exog=lowerCAmelCase_ , order=lowerCAmelCase_ , seasonal_order=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model.fit(disp=lowerCAmelCase_ , maxiter=6_0_0 , method='''nm''' ) SCREAMING_SNAKE_CASE__ = model_fit.predict(1 , len(lowerCAmelCase_ ) , exog=[test_match] ) return result[0] def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> float: SCREAMING_SNAKE_CASE__ = SVR(kernel='''rbf''' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = regressor.predict(lowerCAmelCase_ ) return y_pred[0] def __snake_case ( lowerCAmelCase_ ) -> float: train_user.sort() SCREAMING_SNAKE_CASE__ = np.percentile(lowerCAmelCase_ , 2_5 ) SCREAMING_SNAKE_CASE__ = np.percentile(lowerCAmelCase_ , 7_5 ) SCREAMING_SNAKE_CASE__ = qa - qa SCREAMING_SNAKE_CASE__ = qa - (iqr * 0.1) return low_lim def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> bool: SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 for i in list_vote: if i > actual_result: SCREAMING_SNAKE_CASE__ = not_safe + 1 else: if abs(abs(lowerCAmelCase_ ) - abs(lowerCAmelCase_ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) _A : Tuple = [[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]] _A : str = pd.DataFrame( data_input, columns=["""total_user""", """total_even""", """days"""] ) _A : Optional[int] = Normalizer().fit_transform(data_input_df.values) # split data _A : Union[str, Any] = normalize_df[:, 2].tolist() _A : Optional[int] = normalize_df[:, 0].tolist() _A : Any = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) _A : Optional[int] = normalize_df[:, [1, 2]].tolist() _A : Dict = x[: len(x) - 1] _A : Any = x[len(x) - 1 :] # for linear regression & sarimax _A : Any = total_date[: len(total_date) - 1] _A : int = total_user[: len(total_user) - 1] _A : List[str] = total_match[: len(total_match) - 1] _A : Any = total_date[len(total_date) - 1 :] _A : str = total_user[len(total_user) - 1 :] _A : Dict = total_match[len(total_match) - 1 :] # voting system with forecasting _A : Optional[int] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data _A : List[Any] = """""" if data_safety_checker(res_vote, tst_user) else """not """ print("""Today's data is {not_str}safe.""")
100
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowercase_ : def __init__( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="resnet50" , lowercase_=3 , lowercase_=32 , lowercase_=3 , lowercase_=True , lowercase_=True , ) -> Union[str, Any]: a__ =parent a__ =out_indices if out_indices is not None else [4] a__ =stage_names a__ =out_features a__ =backbone a__ =batch_size a__ =image_size a__ =num_channels a__ =use_pretrained_backbone a__ =is_training def __UpperCamelCase ( self) -> Optional[Any]: a__ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ =self.get_config() return config, pixel_values def __UpperCamelCase ( self) -> Tuple: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> str: a__ =TimmBackbone(config=lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): a__ =model(lowercase_) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __UpperCamelCase ( self) -> str: a__ =self.prepare_config_and_inputs() a__ , a__ =config_and_inputs a__ ={'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class lowercase_ (lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): snake_case =(TimmBackbone,) if is_torch_available() else () snake_case ={'feature-extraction': TimmBackbone} if is_torch_available() else {} snake_case =False snake_case =False snake_case =False snake_case =False def __UpperCamelCase ( self) -> Optional[Any]: a__ =TimmBackboneModelTester(self) a__ =ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_) def __UpperCamelCase ( self) -> Dict: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self) -> str: a__ ='resnet18' a__ ='microsoft/resnet-18' a__ =AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_) a__ =AutoBackbone.from_pretrained(lowercase_) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(len(timm_model.stage_names) , len(transformers_model.stage_names)) self.assertEqual(timm_model.channels , transformers_model.channels) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,)) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names) - 1]) a__ =AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_ , out_indices=[1, 2, 3]) a__ =AutoBackbone.from_pretrained(lowercase_ , out_indices=[1, 2, 3]) self.assertEqual(timm_model.out_indices , transformers_model.out_indices) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(timm_model.channels , transformers_model.channels) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> Dict: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> List[Any]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.') def __UpperCamelCase ( self) -> str: pass @unittest.skip('Safetensors is not supported by timm.') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self) -> Optional[Any]: pass def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) a__ =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ =[*signature.parameters.keys()] a__ =['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_) def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =True a__ =self.has_attentions # no need to test all models as different heads yield the same functionality a__ =self.all_model_classes[0] a__ =model_class(lowercase_) model.to(lowercase_) a__ =self._prepare_for_class(lowercase_ , lowercase_) a__ =model(**lowercase_) a__ =outputs[0][-1] # Encoder-/Decoder-only models a__ =outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a__ =outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowercase_) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) def __UpperCamelCase ( self) -> List[str]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_) self.assertEqual(len(result.feature_maps) , len(config.out_indices)) self.assertEqual(len(model.channels) , len(config.out_indices)) # Check output of last stage is taken if out_features=None, out_indices=None a__ =copy.deepcopy(lowercase_) a__ =None a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_) self.assertEqual(len(result.feature_maps) , 1) self.assertEqual(len(model.channels) , 1) # Check backbone can be initialized with fresh weights a__ =copy.deepcopy(lowercase_) a__ =False a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_)
20
0
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class __lowercase (datasets.BuilderConfig ): """simple docstring""" _UpperCAmelCase = None class __lowercase (datasets.ArrowBasedBuilder ): """simple docstring""" _UpperCAmelCase = PandasConfig def UpperCamelCase__ ( self ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) SCREAMING_SNAKE_CASE_ : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): SCREAMING_SNAKE_CASE_ : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE_ : Optional[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] SCREAMING_SNAKE_CASE_ : Dict = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE_ : Optional[int] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={'files': files} ) ) return splits def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE_ : List[str] = table_cast(lowerCAmelCase__ , self.config.features.arrow_schema ) return pa_table def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" for i, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): with open(lowerCAmelCase__ , 'rb' ) as f: SCREAMING_SNAKE_CASE_ : Union[str, Any] = pa.Table.from_pandas(pd.read_pickle(lowerCAmelCase__ ) ) yield i, self._cast_table(lowerCAmelCase__ )
101
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCAmelCase: Optional[Any] = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: List[str] = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _lowerCAmelCase: List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
20
0
"""simple docstring""" __magic_name__ : dict[tuple[int, int, int], int] = {} def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on UpperCamelCase : Any = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one UpperCamelCase : Dict = _calculate(days - 1 , SCREAMING_SNAKE_CASE , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 UpperCamelCase : int = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter UpperCamelCase : Dict = _calculate(days - 1 , SCREAMING_SNAKE_CASE , 0 ) UpperCamelCase : Optional[int] = state_late + state_absent + state_ontime UpperCamelCase : Any = prizestrings return prizestrings def UpperCamelCase (SCREAMING_SNAKE_CASE = 30 ): return _calculate(SCREAMING_SNAKE_CASE , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
102
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase: str = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class lowercase_ (lowercase__ ): snake_case ='big_bird' def __init__( self , lowercase_=50358 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu_new" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=4096 , lowercase_=2 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=66 , lowercase_="block_sparse" , lowercase_=True , lowercase_=False , lowercase_=64 , lowercase_=3 , lowercase_=None , **lowercase_ , ) -> Any: super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , sep_token_id=lowercase_ , **lowercase_ , ) a__ =vocab_size a__ =max_position_embeddings a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =initializer_range a__ =type_vocab_size a__ =layer_norm_eps a__ =use_cache a__ =rescale_embeddings a__ =attention_type a__ =use_bias a__ =block_size a__ =num_random_blocks a__ =classifier_dropout class lowercase_ (lowercase__ ): @property def __UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a__ ={0: 'batch', 1: 'choice', 2: 'sequence'} else: a__ ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
20
0
"""simple docstring""" from __future__ import annotations import time snake_case = list[tuple[int, int]] snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCAmelCase : def __init__( self : Any , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Node | None ): """simple docstring""" _snake_case = pos_x _snake_case = pos_y _snake_case = (pos_y, pos_x) _snake_case = goal_x _snake_case = goal_y _snake_case = parent class UpperCAmelCase : def __init__( self : List[str] , __lowerCamelCase : tuple[int, int] , __lowerCamelCase : tuple[int, int] ): """simple docstring""" _snake_case = Node(start[1] , start[0] , goal[1] , goal[0] , __lowerCamelCase ) _snake_case = Node(goal[1] , goal[0] , goal[1] , goal[0] , __lowerCamelCase ) _snake_case = [self.start] _snake_case = False def __UpperCAmelCase ( self : int ): """simple docstring""" while self.node_queue: _snake_case = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _snake_case = True return self.retrace_path(__lowerCamelCase ) _snake_case = self.get_successors(__lowerCamelCase ) for node in successors: self.node_queue.append(__lowerCamelCase ) if not self.reached: return [self.start.pos] return None def __UpperCAmelCase ( self : str , __lowerCamelCase : Node ): """simple docstring""" _snake_case = [] for action in delta: _snake_case = parent.pos_x + action[1] _snake_case = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__lowerCamelCase , __lowerCamelCase , self.target.pos_y , self.target.pos_x , __lowerCamelCase ) ) return successors def __UpperCAmelCase ( self : str , __lowerCamelCase : Node | None ): """simple docstring""" _snake_case = node _snake_case = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _snake_case = current_node.parent path.reverse() return path class UpperCAmelCase : def __init__( self : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] ): """simple docstring""" _snake_case = BreadthFirstSearch(__lowerCamelCase , __lowerCamelCase ) _snake_case = BreadthFirstSearch(__lowerCamelCase , __lowerCamelCase ) _snake_case = False def __UpperCAmelCase ( self : List[str] ): """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _snake_case = self.fwd_bfs.node_queue.pop(0 ) _snake_case = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _snake_case = True return self.retrace_bidirectional_path( __lowerCamelCase , __lowerCamelCase ) _snake_case = current_bwd_node _snake_case = current_fwd_node _snake_case = { self.fwd_bfs: self.fwd_bfs.get_successors(__lowerCamelCase ), self.bwd_bfs: self.bwd_bfs.get_successors(__lowerCamelCase ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__lowerCamelCase ) if not self.reached: return [self.fwd_bfs.start.pos] return None def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Node , __lowerCamelCase : Node ): """simple docstring""" _snake_case = self.fwd_bfs.retrace_path(__lowerCamelCase ) _snake_case = self.bwd_bfs.retrace_path(__lowerCamelCase ) bwd_path.pop() bwd_path.reverse() _snake_case = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() snake_case = (0, 0) snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) snake_case = time.time() snake_case = BreadthFirstSearch(init, goal) snake_case = bfs.search() snake_case = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) snake_case = time.time() snake_case = BidirectionalBreadthFirstSearch(init, goal) snake_case = bd_bfs.search() snake_case = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
103
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger(__name__) _lowerCAmelCase: Tuple = torch.device('cpu') def _lowercase( ): a__ ='http://images.cocodataset.org/val2017/000000039769.jpg' a__ =Image.open(requests.get(__a , stream=__a ).raw ) return im def _lowercase( __a : Optional[Any] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _lowercase( __a : int , __a : int , __a : Optional[Any] ): a__ =dct.pop(__a ) a__ =val def _lowercase( __a : Optional[Any] ): a__ =[] for k in state_dict.keys(): a__ =k if ".pwconv" in k: a__ =k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: a__ =k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: a__ =k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: a__ =k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: a__ =k_new.split('.' ) if ls[2].isdigit(): a__ ='swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: a__ =k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _lowercase( __a : Union[str, Any] , __a : int , __a : str ): a__ =SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a__ =1000 a__ ='huggingface/label-files' a__ ='imagenet-1k-id2label.json' a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a__ =[3, 3, 6, 4] a__ =[48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a__ =[3, 3, 9, 6] a__ =[48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a__ =[4, 3, 10, 5] a__ =[48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a__ =[4, 4, 12, 6] a__ =[64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): a__ =torch.hub.load_state_dict_from_url(__a , map_location='cpu' , check_hash=__a ) else: a__ =torch.load(__a , map_location='cpu' ) a__ =checkpoint a__ =create_rename_keys(__a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__a , __a , __a ) # load HuggingFace model a__ =SwiftFormerForImageClassification(__a ).eval() hf_model.load_state_dict(__a ) # prepare test inputs a__ =prepare_img() a__ =ViTImageProcessor.from_pretrained('preprocessor_config' ) a__ =processor(images=__a , return_tensors='pt' ) # compare outputs from both models a__ =get_expected_output(__a ) a__ =hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , __a , atol=1e-3 ) Path(__a ).mkdir(exist_ok=__a ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') _lowerCAmelCase: Optional[int] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
20
0
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase_ : int ) -> bool: """simple docstring""" if not isinstance(UpperCAmelCase_, UpperCAmelCase_ ): A__ = F"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCAmelCase_ ) if number < 0: return False A__ = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
104
from __future__ import annotations from typing import Any class lowercase_ : def __init__( self , lowercase_) -> None: a__ =num_of_nodes a__ =[] a__ ={} def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: self.m_edges.append([u_node, v_node, weight]) def __UpperCamelCase ( self , lowercase_) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node]) def __UpperCamelCase ( self , lowercase_) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: a__ =self.find_component(lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: if component_size[u_node] <= component_size[v_node]: a__ =v_node component_size[v_node] += component_size[u_node] self.set_component(lowercase_) elif component_size[u_node] >= component_size[v_node]: a__ =self.find_component(lowercase_) component_size[u_node] += component_size[v_node] self.set_component(lowercase_) def __UpperCamelCase ( self) -> None: a__ =[] a__ =0 a__ =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes): self.m_component.update({node: node}) component_size.append(1) a__ =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: a__ , a__ , a__ =edge a__ =self.m_component[u] a__ =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): a__ =[u, v, w] for edge in minimum_weight_edge: if isinstance(lowercase_ , lowercase_): a__ , a__ , a__ =edge a__ =self.m_component[u] a__ =self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowercase_ , lowercase_ , lowercase_) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""") num_of_components -= 1 a__ =[-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""") def _lowercase( ): pass if __name__ == "__main__": import doctest doctest.testmod()
20
0
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : List[Any] = XLMTokenizer __a : int = False def snake_case ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE_ : Any = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] SCREAMING_SNAKE_CASE_ : str = dict(zip(snake_case__ ,range(len(snake_case__ ) ) ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ) as fp: fp.write(json.dumps(snake_case__ ) ) with open(self.merges_file ,'w' ) as fp: fp.write('\n'.join(snake_case__ ) ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = 'lower newer' SCREAMING_SNAKE_CASE_ : Dict = 'lower newer' return input_text, output_text def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = XLMTokenizer(self.vocab_file ,self.merges_file ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'lower' SCREAMING_SNAKE_CASE_ : Optional[Any] = ['low', 'er</w>'] SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokens + ['<unk>'] SCREAMING_SNAKE_CASE_ : List[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) ,snake_case__ ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = XLMTokenizer.from_pretrained('xlm-mlm-en-2048' ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.encode('sequence builders' ,add_special_tokens=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.encode('multi-sequence build' ,add_special_tokens=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.build_inputs_with_special_tokens(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.build_inputs_with_special_tokens(snake_case__ ,snake_case__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
105
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCAmelCase: Union[str, Any] = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' _lowerCAmelCase: Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' _lowerCAmelCase: List[Any] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): def __UpperCamelCase ( self) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=True , lowercase_=False) -> Any: if rouge_types is None: a__ =['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] a__ =rouge_scorer.RougeScorer(rouge_types=lowercase_ , use_stemmer=lowercase_) if use_aggregator: a__ =scoring.BootstrapAggregator() else: a__ =[] for ref, pred in zip(lowercase_ , lowercase_): a__ =scorer.score(lowercase_ , lowercase_) if use_aggregator: aggregator.add_scores(lowercase_) else: scores.append(lowercase_) if use_aggregator: a__ =aggregator.aggregate() else: a__ ={} for key in scores[0]: a__ =[score[key] for score in scores] return result
20
0
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( _lowerCamelCase , unittest.TestCase ): A_ : str = KandinskyVaaPriorPipeline A_ : Optional[int] = ['prompt'] A_ : Optional[Any] = ['prompt', 'negative_prompt'] A_ : List[Any] = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] A_ : int = False @property def __UpperCamelCase ( self : Tuple ) -> Any: return 32 @property def __UpperCamelCase ( self : int ) -> List[str]: return 32 @property def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: return self.time_input_dim @property def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: return self.time_input_dim * 4 @property def __UpperCamelCase ( self : Dict ) -> Optional[Any]: return 100 @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict: A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(__UpperCamelCase ) @property def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: torch.manual_seed(0 ) A = { 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } A = PriorTransformer(**__UpperCamelCase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def __UpperCamelCase ( self : Tuple ) -> int: torch.manual_seed(0 ) A = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A = CLIPVisionModelWithProjection(__UpperCamelCase ) return model @property def __UpperCamelCase ( self : Any ) -> Tuple: A = CLIPImageProcessor( crop_size=224 , do_center_crop=__UpperCamelCase , do_normalize=__UpperCamelCase , do_resize=__UpperCamelCase , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=224 , ) return image_processor def __UpperCamelCase ( self : List[Any] ) -> List[Any]: A = self.dummy_prior A = self.dummy_image_encoder A = self.dummy_text_encoder A = self.dummy_tokenizer A = self.dummy_image_processor A = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_000 , clip_sample=__UpperCamelCase , clip_sample_range=1_0.0 , ) A = { 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def __UpperCamelCase ( self : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple=0 ) -> Optional[int]: if str(__UpperCamelCase ).startswith('mps' ): A = torch.manual_seed(__UpperCamelCase ) else: A = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) A = { 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __UpperCamelCase ( self : List[str] ) -> Optional[int]: A = 'cpu' A = self.get_dummy_components() A = self.pipeline_class(**__UpperCamelCase ) A = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = pipe(**self.get_dummy_inputs(__UpperCamelCase ) ) A = output.image_embeds A = pipe( **self.get_dummy_inputs(__UpperCamelCase ) , return_dict=__UpperCamelCase , )[0] A = image[0, -10:] A = image_from_tuple[0, -10:] assert image.shape == (1, 32) A = np.array( [-0.0_5_3_2, 1.7_1_2_0, 0.3_6_5_6, -1.0_8_5_2, -0.8_9_4_6, -1.1_7_5_6, 0.4_3_4_8, 0.2_4_8_2, 0.5_1_4_6, -0.1_1_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __UpperCamelCase ( self : Optional[int] ) -> List[str]: A = torch_device == 'cpu' A = True A = False self._test_inference_batch_single_identical( test_max_difference=__UpperCamelCase , relax_max_difference=__UpperCamelCase , test_mean_pixel_difference=__UpperCamelCase , ) @skip_mps def __UpperCamelCase ( self : Dict ) -> str: A = torch_device == 'cpu' A = False self._test_attention_slicing_forward_pass( test_max_difference=__UpperCamelCase , test_mean_pixel_difference=__UpperCamelCase , )
106
from __future__ import annotations _lowerCAmelCase: str = '#' class lowercase_ : def __init__( self) -> None: a__ ={} def __UpperCamelCase ( self , lowercase_) -> None: a__ =self._trie for char in text: if char not in trie: a__ ={} a__ =trie[char] a__ =True def __UpperCamelCase ( self , lowercase_) -> tuple | list: a__ =self._trie for char in prefix: if char in trie: a__ =trie[char] else: return [] return self._elements(lowercase_) def __UpperCamelCase ( self , lowercase_) -> tuple: a__ =[] for c, v in d.items(): a__ =[' '] if c == END else [(c + s) for s in self._elements(lowercase_)] result.extend(lowercase_) return tuple(lowercase_) _lowerCAmelCase: Optional[int] = Trie() _lowerCAmelCase: List[str] = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def _lowercase( __a : str ): a__ =trie.find_word(__a ) return tuple(string + word for word in suffixes ) def _lowercase( ): print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
20
0
'''simple docstring''' import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): _UpperCAmelCase : List[str] = True from torch.cuda.amp import autocast _UpperCAmelCase : Union[str, Any] = logging.getLogger(__name__) @dataclass class lowercase_ : """simple docstring""" __lowerCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={"help": "Whether to log verbose messages or not."} , ) __lowerCAmelCase = field( default=2.0 , metadata={"help": "Maximum temperature for gumbel softmax."} ) __lowerCAmelCase = field( default=0.5 , metadata={"help": "Minimum temperature for gumbel softmax."} ) __lowerCAmelCase = field( default=0.9_9_9_9_9_5 , metadata={"help": "Decay of gumbel temperature during training."} ) def _SCREAMING_SNAKE_CASE ( __snake_case : ModelArguments , __snake_case : TrainingArguments ): logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) _A = logging.WARNING if model_args.verbose_logging: _A = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _A = logging.INFO logger.setLevel(__snake_case ) @dataclass class lowercase_ : """simple docstring""" __lowerCAmelCase = field( default=_UpperCamelCase , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) __lowerCAmelCase = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) __lowerCAmelCase = field( default="validation" , metadata={ "help": ( "The name of the validation data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) __lowerCAmelCase = field( default="file" , metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"} , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __lowerCAmelCase = field( default=1 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) __lowerCAmelCase = field( default=2_0.0 , metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} ) @dataclass class lowercase_ : """simple docstring""" __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = "longest" __lowerCAmelCase = None __lowerCAmelCase = None def __call__( self : int, UpperCamelCase__ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: # reformat list to dict and set to pytorch format _A = self.feature_extractor.pad( UpperCamelCase__, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors='pt', ) _A = self.model._get_feat_extract_output_lengths(batch['input_values'].shape[-1] ) _A = batch['input_values'].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _A = self.model._get_feat_extract_output_lengths(batch['attention_mask'].sum(-1 ) ).to( torch.long ) _A = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch['input_values'].device ) # these two operations makes sure that all values # before the output lengths indices are attended to _A = 1 _A = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices _A = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=UpperCamelCase__, min_masks=2, ) return batch class lowercase_ ( _UpperCamelCase ): """simple docstring""" def __init__( self : Union[str, Any], *UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Union[str, Any]=1, UpperCamelCase__ : List[str]=0, UpperCamelCase__ : int=1.0, **UpperCamelCase__ : Dict ) -> str: super().__init__(*UpperCamelCase__, **UpperCamelCase__ ) _A = 0 _A = max_gumbel_temp _A = min_gumbel_temp _A = gumbel_temp_decay def __UpperCAmelCase ( self : Optional[Any], UpperCamelCase__ : nn.Module, UpperCamelCase__ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: model.train() _A = self._prepare_inputs(UpperCamelCase__ ) if self.use_amp: with autocast(): _A = self.compute_loss(UpperCamelCase__, UpperCamelCase__ ) else: _A = self.compute_loss(UpperCamelCase__, UpperCamelCase__ ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _A = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _A = loss.sum() / (inputs['mask_time_indices']).sum() else: raise ValueError(f'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: _A = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(UpperCamelCase__ ).backward() elif self.use_apex: with amp.scale_loss(UpperCamelCase__, self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(UpperCamelCase__ ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp ) ) return loss.detach() def _SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _A , _A , _A = parser.parse_args_into_dataclasses() configure_logger(__snake_case , __snake_case ) # Downloading and loading a dataset from the hub. _A = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _A = DatasetDict() _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}[:{data_args.validation_split_percentage}%]' , cache_dir=model_args.cache_dir , ) _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}[{data_args.validation_split_percentage}%:]' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _A = DatasetDict() _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='validation' , cache_dir=model_args.cache_dir , ) _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _A = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=__snake_case ) def prepare_dataset(__snake_case : str ): # check that all files have the correct sampling rate _A , _A = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _A = datasets.map( __snake_case , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['train'].column_names ) # filter audio files that are too long _A = vectorized_datasets.filter( lambda __snake_case : len(data['speech'] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(__snake_case : str ): return feature_extractor(batch['speech'] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _A = vectorized_datasets.map( __snake_case , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['train'].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _A = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( 'PreTraining is only supported for ``config.do_stable_layer_norm=True`` and' ' ``config.feat_extract_norm=\'layer\'' ) _A = WavaVecaForPreTraining(__snake_case ) _A = DataCollatorForWavaVecaPretraining(model=__snake_case , feature_extractor=__snake_case ) _A = WavaVecaPreTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , train_dataset=vectorized_datasets['train'] , eval_dataset=vectorized_datasets['validation'] , tokenizer=__snake_case , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
107
_lowerCAmelCase: List[str] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def _lowercase( ): a__ =input('Enter message: ' ) a__ =input('Enter key [alphanumeric]: ' ) a__ =input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): a__ ='encrypt' a__ =encrypt_message(__a , __a ) elif mode.lower().startswith('d' ): a__ ='decrypt' a__ =decrypt_message(__a , __a ) print(f"""\n{mode.title()}ed message:""" ) print(__a ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'encrypt' ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'decrypt' ) def _lowercase( __a : str , __a : str , __a : str ): a__ =[] a__ =0 a__ =key.upper() for symbol in message: a__ =LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__a ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__a ): a__ =0 else: translated.append(__a ) return "".join(__a ) if __name__ == "__main__": main()
20
0
def _SCREAMING_SNAKE_CASE ( __snake_case ) -> bool: if not isinstance(__snake_case , __snake_case ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) _UpperCAmelCase = str(__snake_case ) _UpperCAmelCase = """""".join(sorted(__snake_case ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _SCREAMING_SNAKE_CASE ( __snake_case = 9_9 ) -> int: if not 0 < percent < 1_0_0: raise ValueError("""solution() only accepts values from 0 to 100""" ) _UpperCAmelCase = 0 _UpperCAmelCase = 1 while True: if check_bouncy(__snake_case ): bouncy_num += 1 if (bouncy_num / num) * 1_0_0 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"{solution(99)}")
108
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
0
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' return x + 2 class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """x = 3""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase ,{} ,state=lowerCamelCase ) assert result == 3 self.assertDictEqual(lowerCamelCase ,{"""x""": 3} ) __SCREAMING_SNAKE_CASE = """x = y""" __SCREAMING_SNAKE_CASE = {"""y""": 5} __SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase ,{} ,state=lowerCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase ,{"""x""": 5, """y""": 5} ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """y = add_two(x)""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase ,{"""add_two""": add_two} ,state=lowerCamelCase ) assert result == 5 self.assertDictEqual(lowerCamelCase ,{"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: __SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase ,{} ,state=lowerCamelCase ) assert result is None assert "tried to execute add_two" in out.out def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """x = 3""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase ,{} ,state=lowerCamelCase ) assert result == 3 self.assertDictEqual(lowerCamelCase ,{"""x""": 3} ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """test_dict = {'x': x, 'y': add_two(x)}""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase ,{"""add_two""": add_two} ,state=lowerCamelCase ) self.assertDictEqual(lowerCamelCase ,{"""x""": 3, """y""": 5} ) self.assertDictEqual(lowerCamelCase ,{"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """x = 3\ny = 5""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase ,{} ,state=lowerCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase ,{"""x""": 3, """y""": 5} ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """text = f'This is x: {x}.'""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase ,{} ,state=lowerCamelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(lowerCamelCase ,{"""x""": 3, """text""": """This is x: 3."""} ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """if x <= 3:\n y = 2\nelse:\n y = 5""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase ,{} ,state=lowerCamelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(lowerCamelCase ,{"""x""": 3, """y""": 2} ) __SCREAMING_SNAKE_CASE = {"""x""": 8} __SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase ,{} ,state=lowerCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase ,{"""x""": 8, """y""": 5} ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """test_list = [x, add_two(x)]""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase ,{"""add_two""": add_two} ,state=lowerCamelCase ) self.assertListEqual(lowerCamelCase ,[3, 5] ) self.assertDictEqual(lowerCamelCase ,{"""x""": 3, """test_list""": [3, 5]} ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """y = x""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase ,{} ,state=lowerCamelCase ) assert result == 3 self.assertDictEqual(lowerCamelCase ,{"""x""": 3, """y""": 3} ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """test_list = [x, add_two(x)]\ntest_list[1]""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase ,{"""add_two""": add_two} ,state=lowerCamelCase ) assert result == 5 self.assertDictEqual(lowerCamelCase ,{"""x""": 3, """test_list""": [3, 5]} ) __SCREAMING_SNAKE_CASE = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase ,{"""add_two""": add_two} ,state=lowerCamelCase ) assert result == 5 self.assertDictEqual(lowerCamelCase ,{"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """x = 0\nfor i in range(3):\n x = i""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase ,{"""range""": range} ,state=lowerCamelCase ) assert result == 2 self.assertDictEqual(lowerCamelCase ,{"""x""": 2, """i""": 2} )
109
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =KandinskyVaaPriorPipeline snake_case =['prompt'] snake_case =['prompt', 'negative_prompt'] snake_case =[ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] snake_case =False @property def __UpperCamelCase ( self) -> Optional[int]: return 32 @property def __UpperCamelCase ( self) -> Tuple: return 32 @property def __UpperCamelCase ( self) -> int: return self.time_input_dim @property def __UpperCamelCase ( self) -> str: return self.time_input_dim * 4 @property def __UpperCamelCase ( self) -> Optional[int]: return 100 @property def __UpperCamelCase ( self) -> Union[str, Any]: a__ =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self) -> Union[str, Any]: torch.manual_seed(0) a__ =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowercase_) @property def __UpperCamelCase ( self) -> Tuple: torch.manual_seed(0) a__ ={ 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } a__ =PriorTransformer(**lowercase_) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 a__ =nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def __UpperCamelCase ( self) -> Any: torch.manual_seed(0) a__ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) a__ =CLIPVisionModelWithProjection(lowercase_) return model @property def __UpperCamelCase ( self) -> Optional[int]: a__ =CLIPImageProcessor( crop_size=224 , do_center_crop=lowercase_ , do_normalize=lowercase_ , do_resize=lowercase_ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor def __UpperCamelCase ( self) -> Any: a__ =self.dummy_prior a__ =self.dummy_image_encoder a__ =self.dummy_text_encoder a__ =self.dummy_tokenizer a__ =self.dummy_image_processor a__ =UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=lowercase_ , clip_sample_range=10.0 , ) a__ ={ 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def __UpperCamelCase ( self , lowercase_ , lowercase_=0) -> Tuple: if str(lowercase_).startswith('mps'): a__ =torch.manual_seed(lowercase_) else: a__ =torch.Generator(device=lowercase_).manual_seed(lowercase_) a__ ={ 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __UpperCamelCase ( self) -> int: a__ ='cpu' a__ =self.get_dummy_components() a__ =self.pipeline_class(**lowercase_) a__ =pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) a__ =pipe(**self.get_dummy_inputs(lowercase_)) a__ =output.image_embeds a__ =pipe( **self.get_dummy_inputs(lowercase_) , return_dict=lowercase_ , )[0] a__ =image[0, -10:] a__ =image_from_tuple[0, -10:] assert image.shape == (1, 32) a__ =np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def __UpperCamelCase ( self) -> List[Any]: a__ =torch_device == 'cpu' a__ =True a__ =False self._test_inference_batch_single_identical( test_max_difference=lowercase_ , relax_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , ) @skip_mps def __UpperCamelCase ( self) -> Optional[int]: a__ =torch_device == 'cpu' a__ =False self._test_attention_slicing_forward_pass( test_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , )
20
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' def lowerCamelCase ( _snake_case ,_snake_case=100 ,_snake_case=" " ): UpperCAmelCase__ : Optional[int] = text.split(_snake_case ) return [character.join(text[i : i + n] ).strip() for i in range(0 ,len(_snake_case ) ,_snake_case )] def lowerCamelCase ( _snake_case ): UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = [], [] for title, text in zip(documents['title'] ,documents['text'] ): if text is not None: for passage in split_text(_snake_case ): titles.append(title if title is not None else '' ) texts.append(_snake_case ) return {"title": titles, "text": texts} def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case ): UpperCAmelCase__ : List[Any] = ctx_tokenizer( documents['title'] ,documents['text'] ,truncation=_snake_case ,padding='longest' ,return_tensors='pt' )['input_ids'] UpperCAmelCase__ : str = ctx_encoder(input_ids.to(device=_snake_case ) ,return_dict=_snake_case ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case ,): ###################################### logger.info('Step 1 - Create the dataset' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way UpperCAmelCase__ : Optional[int] = load_dataset( 'csv' ,data_files=[rag_example_args.csv_path] ,split='train' ,delimiter='\t' ,column_names=['title', 'text'] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words UpperCAmelCase__ : Tuple = dataset.map(_snake_case ,batched=_snake_case ,num_proc=processing_args.num_proc ) # And compute the embeddings UpperCAmelCase__ : Optional[int] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_snake_case ) UpperCAmelCase__ : int = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) UpperCAmelCase__ : int = Features( {'text': Value('string' ), 'title': Value('string' ), 'embeddings': Sequence(Value('float32' ) )} ) # optional, save as float32 instead of float64 to save space UpperCAmelCase__ : str = dataset.map( partial(_snake_case ,ctx_encoder=_snake_case ,ctx_tokenizer=_snake_case ) ,batched=_snake_case ,batch_size=processing_args.batch_size ,features=_snake_case ,) # And finally save your dataset UpperCAmelCase__ : Any = os.path.join(rag_example_args.output_dir ,'my_knowledge_dataset' ) dataset.save_to_disk(_snake_case ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('Step 2 - Index the dataset' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search UpperCAmelCase__ : Optional[int] = faiss.IndexHNSWFlat(index_hnsw_args.d ,index_hnsw_args.m ,faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('embeddings' ,custom_index=_snake_case ) # And save the index UpperCAmelCase__ : str = os.path.join(rag_example_args.output_dir ,'my_knowledge_dataset_hnsw_index.faiss' ) dataset.get_index('embeddings' ).save(_snake_case ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class a : UpperCamelCase : str = field( default=str(Path(lowercase ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) , metadata={"""help""": """Path to a tab-separated csv file with columns 'title' and 'text'"""} , ) UpperCamelCase : Optional[str] = field( default=lowercase , metadata={"""help""": """Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."""} , ) UpperCamelCase : str = field( default="""facebook/rag-sequence-nq""" , metadata={"""help""": """The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"""} , ) UpperCamelCase : str = field( default="""facebook/dpr-ctx_encoder-multiset-base""" , metadata={ """help""": ( """The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or""" """ 'facebook/dpr-ctx_encoder-multiset-base'""" ) } , ) UpperCamelCase : Optional[str] = field( default=str(Path(lowercase ).parent / """test_run""" / """dummy-kb""" ) , metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} , ) @dataclass class a : UpperCamelCase : Optional[int] = field( default=lowercase , metadata={ """help""": """The number of processes to use to split the documents into passages. Default is single process.""" } , ) UpperCamelCase : int = field( default=1_6 , metadata={ """help""": """The batch size to use when computing the passages embeddings using the DPR context encoder.""" } , ) @dataclass class a : UpperCamelCase : int = field( default=7_6_8 , metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} , ) UpperCamelCase : int = field( default=1_2_8 , metadata={ """help""": ( """The number of bi-directional links created for every new element during the HNSW index construction.""" ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
110
from manim import * class lowercase_ (lowercase__ ): def __UpperCamelCase ( self) -> List[Any]: a__ =Rectangle(height=0.5 , width=0.5) a__ =Rectangle(height=0.46 , width=0.46).set_stroke(width=0) a__ =[mem.copy() for i in range(6)] a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(lowercase_ , lowercase_).arrange(lowercase_ , buff=0) a__ =Text('CPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) cpu.move_to([-2.5, -0.5, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(4)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('GPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) gpu.move_to([-1, -1, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Model' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) model.move_to([3, -1.0, 0]) self.add(lowercase_) a__ =[] for i, rect in enumerate(lowercase_): rect.set_stroke(lowercase_) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) a__ =Rectangle(height=0.46 / 4 , width=0.46 / 3).set_stroke(width=0.0).set_fill(lowercase_ , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=lowercase_) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0) self.add(lowercase_) cpu_targs.append(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Loaded Checkpoint' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4) checkpoint.move_to([3, 0.5, 0]) a__ =Square(side_length=2.2) key.move_to([-5, 2, 0]) a__ =MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(lowercase_ , lowercase_) a__ =MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left()) a__ =MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(lowercase_) , Write(lowercase_)) self.play(Write(lowercase_ , run_time=1) , Create(lowercase_ , run_time=1)) a__ =[] a__ =[] for i, rect in enumerate(lowercase_): a__ =fill.copy().set_fill(lowercase_ , opacity=0.7) target.move_to(lowercase_) first_animations.append(GrowFromCenter(lowercase_ , run_time=1)) a__ =target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.target.move_to(cpu_right_col_base[i - 5]) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5)) self.play(*lowercase_) self.play(*lowercase_) self.wait()
20
0
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = [0 for i in range(len(__a ) )] # initialize interval's left pointer and right pointer _snake_case, _snake_case = 0, 0 for i in range(1 , len(__a ) ): # case when current index is inside the interval if i <= right_pointer: _snake_case = min(right_pointer - i + 1 , z_result[i - left_pointer] ) _snake_case = min_edge while go_next(__a , __a , __a ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: _snake_case, _snake_case = i, i + z_result[i] - 1 return z_result def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return i + z_result[i] < len(__a ) and s[z_result[i]] == s[i + z_result[i]] def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string _snake_case = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(__a ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
585
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _lowerCAmelCase: Any = sys.version_info >= (3, 10) def _lowercase( __a : int=None , __a : Any=None ): return field(default_factory=lambda: default , metadata=__a ) @dataclass class lowercase_ : snake_case =42 snake_case =42 snake_case =42 snake_case =42 @dataclass class lowercase_ : snake_case =42 snake_case =field(default='toto' , metadata={'help': 'help message'} ) @dataclass class lowercase_ : snake_case =False snake_case =True snake_case =None class lowercase_ (lowercase__ ): snake_case ='titi' snake_case ='toto' class lowercase_ (lowercase__ ): snake_case ='titi' snake_case ='toto' snake_case =42 @dataclass class lowercase_ : snake_case ="toto" def __UpperCamelCase ( self) -> List[str]: a__ =BasicEnum(self.foo) @dataclass class lowercase_ : snake_case ="toto" def __UpperCamelCase ( self) -> List[str]: a__ =MixedTypeEnum(self.foo) @dataclass class lowercase_ : snake_case =None snake_case =field(default=lowercase__ , metadata={'help': 'help message'} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) @dataclass class lowercase_ : snake_case =list_field(default=[] ) snake_case =list_field(default=[1, 2, 3] ) snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] ) snake_case =list_field(default=[0.1, 0.2, 0.3] ) @dataclass class lowercase_ : snake_case =field() snake_case =field() snake_case =field() def __UpperCamelCase ( self) -> List[Any]: a__ =BasicEnum(self.required_enum) @dataclass class lowercase_ : snake_case =42 snake_case =field() snake_case =None snake_case =field(default='toto' , metadata={'help': 'help message'} ) snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class lowercase_ : snake_case =False snake_case =True snake_case =None @dataclass class lowercase_ : snake_case =None snake_case =field(default=lowercase__ , metadata={'help': 'help message'} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self , lowercase_ , lowercase_) -> int: self.assertEqual(len(a._actions) , len(b._actions)) for x, y in zip(a._actions , b._actions): a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'} a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , lowercase_) and yy.get('choices' , lowercase_): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](lowercase_) , yy['type'](lowercase_)) del xx["type"], yy["type"] self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_) expected.add_argument('--bar' , type=lowercase_ , required=lowercase_) expected.add_argument('--baz' , type=lowercase_ , required=lowercase_) expected.add_argument('--flag' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') self.argparsersEqual(lowercase_ , lowercase_) a__ =['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((a__) , ) =parser.parse_args_into_dataclasses(lowercase_ , look_for_args_file=lowercase_) self.assertFalse(example.flag) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=lowercase_) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message') self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Optional[Any]: a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') expected.add_argument('--baz' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=lowercase_ , dest='baz') expected.add_argument('--opt' , type=lowercase_ , default=lowercase_) a__ =[WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_) for dataclass_type in dataclass_types: a__ =HfArgumentParser(lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', '--no_baz']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', '--baz']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(args.foo , 'toto') a__ =parser.parse_args_into_dataclasses([])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto) a__ =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') a__ =parser.parse_args_into_dataclasses(['--foo', 'titi'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi) a__ =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) a__ =parser.parse_args_into_dataclasses(['--foo', '42'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo) def __UpperCamelCase ( self) -> List[Any]: @dataclass class lowercase_ : snake_case ="toto" a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(args.foo , 'toto') a__ =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') a__ =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) def __UpperCamelCase ( self) -> Optional[int]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=lowercase_) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=lowercase_) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual( lowercase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3]) , ) a__ =parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split()) self.assertEqual(lowercase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7])) def __UpperCamelCase ( self) -> Dict: a__ =argparse.ArgumentParser() expected.add_argument('--foo' , default=lowercase_ , type=lowercase_) expected.add_argument('--bar' , default=lowercase_ , type=lowercase_ , help='help message') expected.add_argument('--baz' , default=lowercase_ , type=lowercase_) expected.add_argument('--ces' , nargs='+' , default=[] , type=lowercase_) expected.add_argument('--des' , nargs='+' , default=[] , type=lowercase_) a__ =[OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_) for dataclass_type in dataclass_types: a__ =HfArgumentParser(lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , bar=lowercase_ , baz=lowercase_ , ces=[] , des=[])) a__ =parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split()) self.assertEqual(lowercase_ , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3])) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=lowercase_ , required=lowercase_) expected.add_argument('--required_str' , type=lowercase_ , required=lowercase_) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , ) self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , ) expected.add_argument('--opt' , type=lowercase_ , default=lowercase_) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message') expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_) self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } a__ =parser.parse_dict(lowercase_)[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(lowercase_ , parser.parse_dict , lowercase_ , allow_extra_keys=lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: a__ =os.path.join(lowercase_ , 'temp_json') os.mkdir(lowercase_) with open(temp_local_path + '.json' , 'w+') as f: json.dump(lowercase_ , lowercase_) a__ =parser.parse_yaml_file(Path(temp_local_path + '.json'))[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Any: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: a__ =os.path.join(lowercase_ , 'temp_yaml') os.mkdir(lowercase_) with open(temp_local_path + '.yaml' , 'w+') as f: yaml.dump(lowercase_ , lowercase_) a__ =parser.parse_yaml_file(Path(temp_local_path + '.yaml'))[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) self.assertIsNotNone(lowercase_)
20
0
"""simple docstring""" import math def UpperCamelCase ( _A ) -> List[Any]: lowercase : Any = 0 lowercase : Any = 0 while num > 0: lowercase : Tuple = num % 8 lowercase : List[str] = octal + (remainder * math.floor(math.pow(10 , __a ) )) counter += 1 lowercase : str = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F"""0o{int(__a )}""" def UpperCamelCase ( ) -> Tuple: print("""\n2 in octal is:""" ) print(decimal_to_octal(2 ) ) # = 2 print("""\n8 in octal is:""" ) print(decimal_to_octal(8 ) ) # = 10 print("""\n65 in octal is:""" ) print(decimal_to_octal(65 ) ) # = 101 print("""\n216 in octal is:""" ) print(decimal_to_octal(216 ) ) # = 330 print("""\n512 in octal is:""" ) print(decimal_to_octal(512 ) ) # = 1000 print("""\n""" ) if __name__ == "__main__": main()
264
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase: List[Any] = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class lowercase_ (lowercase__ ): snake_case ='autoformer' snake_case ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , lowercase_ = None , lowercase_ = None , lowercase_ = "student_t" , lowercase_ = "nll" , lowercase_ = 1 , lowercase_ = [1, 2, 3, 4, 5, 6, 7] , lowercase_ = True , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 64 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 32 , lowercase_ = 32 , lowercase_ = "gelu" , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 100 , lowercase_ = 0.02 , lowercase_ = True , lowercase_=True , lowercase_ = 10 , lowercase_ = 25 , lowercase_ = 3 , **lowercase_ , ) -> Union[str, Any]: # time series specific configuration a__ =prediction_length a__ =context_length if context_length is not None else prediction_length a__ =distribution_output a__ =loss a__ =input_size a__ =num_time_features a__ =lags_sequence a__ =scaling a__ =num_dynamic_real_features a__ =num_static_real_features a__ =num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`') a__ =cardinality else: a__ =[0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`') a__ =embedding_dimension else: a__ =[min(50 , (cat + 1) // 2) for cat in self.cardinality] a__ =num_parallel_samples # Transformer architecture configuration a__ =input_size * len(self.lags_sequence) + self._number_of_features a__ =d_model a__ =encoder_attention_heads a__ =decoder_attention_heads a__ =encoder_ffn_dim a__ =decoder_ffn_dim a__ =encoder_layers a__ =decoder_layers a__ =dropout a__ =attention_dropout a__ =activation_dropout a__ =encoder_layerdrop a__ =decoder_layerdrop a__ =activation_function a__ =init_std a__ =use_cache # Autoformer a__ =label_length a__ =moving_average a__ =autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def __UpperCamelCase ( self) -> int: return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
20
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowercase_ : int = logging.get_logger(__name__) lowercase_ : Union[str, Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } lowercase_ : Tuple = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] ): lowercase = {} with open(__a , """r""" ) as file: for line_number, line in enumerate(__a ): lowercase = line.strip() if line: lowercase = line.split() lowercase = line_number lowercase = words[0] lowercase = value return result def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : str ): for attribute in key.split(""".""" ): lowercase = getattr(__a , __a ) lowercase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__a ): lowercase = PARAM_MAPPING[full_name.split(""".""" )[-1]] lowercase = """param""" if weight_type is not None and weight_type != "param": lowercase = getattr(__a , __a ).shape elif weight_type is not None and weight_type == "param": lowercase = hf_pointer for attribute in hf_param_name.split(""".""" ): lowercase = getattr(__a , __a ) lowercase = shape_pointer.shape # let's reduce dimension lowercase = value[0] else: lowercase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase = value elif weight_type == "weight_g": lowercase = value elif weight_type == "weight_v": lowercase = value elif weight_type == "bias": lowercase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): lowercase = getattr(__a , __a ) lowercase = value else: lowercase = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : List[Any] ): lowercase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__a ): lowercase = PARAM_MAPPING[full_name.split(""".""" )[-1]] lowercase = """param""" if weight_type is not None and weight_type != "param": lowercase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": lowercase = """.""".join([key, hf_param_name] ) else: lowercase = key lowercase = value if """lm_head""" in full_key else value[0] lowercase_ : Dict = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : int , lowercase_ : int=None , lowercase_ : List[str]=None ): lowercase = False for key, mapped_key in MAPPING.items(): lowercase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase = True if "*" in mapped_key: lowercase = name.split(__a )[0].split(""".""" )[-2] lowercase = mapped_key.replace("""*""" , __a ) if "weight_g" in name: lowercase = """weight_g""" elif "weight_v" in name: lowercase = """weight_v""" elif "bias" in name: lowercase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase = """weight""" else: lowercase = None if hf_dict is not None: rename_dict(__a , __a , __a , __a , __a ) else: set_recursively(__a , __a , __a , __a , __a ) return is_used return is_used def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Dict ): lowercase = [] lowercase = fairseq_model.state_dict() lowercase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): lowercase = False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == """group""" , ) lowercase = True else: lowercase = load_wavaveca_layer(__a , __a , __a ) if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : List[str] ): lowercase = full_name.split("""conv_layers.""" )[-1] lowercase = name.split(""".""" ) lowercase = int(items[0] ) lowercase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) lowercase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str , lowercase_ : Any=None , lowercase_ : str=None , lowercase_ : Any=True , lowercase_ : Union[str, Any]=False ): if config_path is not None: lowercase = WavaVecaConfig.from_pretrained(__a ) else: lowercase = WavaVecaConfig() if is_seq_class: lowercase = read_txt_into_dict(__a ) lowercase = idalabel lowercase = WavaVecaForSequenceClassification(__a ) lowercase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) feature_extractor.save_pretrained(__a ) elif is_finetuned: if dict_path: lowercase = Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase = target_dict.pad_index lowercase = target_dict.bos_index lowercase = target_dict.eos_index lowercase = len(target_dict.symbols ) lowercase = os.path.join(__a , """vocab.json""" ) if not os.path.isdir(__a ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__a ) ) return os.makedirs(__a , exist_ok=__a ) lowercase = target_dict.indices # fairseq has the <pad> and <s> switched lowercase = 0 lowercase = 1 with open(__a , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__a , __a ) lowercase = WavaVecaCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__a , ) lowercase = True if config.feat_extract_norm == """layer""" else False lowercase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) lowercase = WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) lowercase = WavaVecaForCTC(__a ) else: lowercase = WavaVecaForPreTraining(__a ) if is_finetuned or is_seq_class: lowercase , lowercase , lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: lowercase = argparse.Namespace(task="""audio_pretraining""" ) lowercase = fairseq.tasks.setup_task(__a ) lowercase , lowercase , lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__a ) lowercase = model[0].eval() recursively_load_weights(__a , __a , not is_finetuned ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) parser.add_argument( '''--is_seq_class''', action='''store_true''', help='''Whether the model to convert is a fine-tuned sequence classification model or not''', ) lowercase_ : Tuple = parser.parse_args() lowercase_ : Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
588
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowerCAmelCase: List[Any] = logging.get_logger(__name__) class lowercase_ (lowercase__ ): snake_case =['pixel_values'] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = None , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: super().__init__(**lowercase_) a__ =size if size is not None else {'shortest_edge': 256} a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) a__ =crop_size if crop_size is not None else {'height': 224, 'width': 224} a__ =get_size_dict(lowercase_ , param_name='crop_size') a__ =do_resize a__ =size a__ =resample a__ =do_center_crop a__ =crop_size a__ =do_rescale a__ =rescale_factor a__ =do_normalize a__ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a__ =image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") a__ =get_resize_output_image_size(lowercase_ , size=size['shortest_edge'] , default_to_square=lowercase_) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: a__ =get_size_dict(lowercase_) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""") return center_crop(lowercase_ , size=(size['height'], size['width']) , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_) -> np.ndarray: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> Tuple: a__ =do_resize if do_resize is not None else self.do_resize a__ =size if size is not None else self.size a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) a__ =resample if resample is not None else self.resample a__ =do_center_crop if do_center_crop is not None else self.do_center_crop a__ =crop_size if crop_size is not None else self.crop_size a__ =get_size_dict(lowercase_ , param_name='crop_size') a__ =do_rescale if do_rescale is not None else self.do_rescale a__ =rescale_factor if rescale_factor is not None else self.rescale_factor a__ =do_normalize if do_normalize is not None else self.do_normalize a__ =image_mean if image_mean is not None else self.image_mean a__ =image_std if image_std is not None else self.image_std a__ =make_list_of_images(lowercase_) if not valid_images(lowercase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a__ =[to_numpy_array(lowercase_) for image in images] if do_resize: a__ =[self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_) for image in images] if do_center_crop: a__ =[self.center_crop(image=lowercase_ , size=lowercase_) for image in images] if do_rescale: a__ =[self.rescale(image=lowercase_ , scale=lowercase_) for image in images] if do_normalize: a__ =[self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_) for image in images] a__ =[to_channel_dimension_format(lowercase_ , lowercase_) for image in images] a__ ={'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None) -> str: a__ =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_) != len(lowercase_): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(lowercase_): a__ =target_sizes.numpy() a__ =[] for idx in range(len(lowercase_)): a__ =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_) a__ =resized_logits[0].argmax(dim=0) semantic_segmentation.append(lowercase_) else: a__ =logits.argmax(dim=1) a__ =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
20
0
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowercase ( unittest.TestCase ): def __init__( self : str ,A : Optional[int] ,A : int=13 ,A : List[Any]=7 ,A : Optional[int]=True ,A : Optional[int]=True ,A : Union[str, Any]=True ,A : Any=True ,A : Optional[int]=99 ,A : Optional[Any]=32 ,A : int=5 ,A : str=4 ,A : str=37 ,A : Tuple="gelu" ,A : Tuple=0.1 ,A : Dict=0.1 ,A : Dict=512 ,A : str=16 ,A : List[Any]=2 ,A : Tuple=0.0_2 ,A : Union[str, Any]=4 ,): '''simple docstring''' UpperCAmelCase__ : str = parent UpperCAmelCase__ : Optional[int] = batch_size UpperCAmelCase__ : List[Any] = seq_length UpperCAmelCase__ : int = is_training UpperCAmelCase__ : List[Any] = use_attention_mask UpperCAmelCase__ : str = use_token_type_ids UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : str = vocab_size UpperCAmelCase__ : str = hidden_size UpperCAmelCase__ : List[Any] = num_hidden_layers UpperCAmelCase__ : Optional[Any] = num_attention_heads UpperCAmelCase__ : Dict = intermediate_size UpperCAmelCase__ : Tuple = hidden_act UpperCAmelCase__ : Tuple = hidden_dropout_prob UpperCAmelCase__ : Dict = attention_probs_dropout_prob UpperCAmelCase__ : Dict = max_position_embeddings UpperCAmelCase__ : Optional[int] = type_vocab_size UpperCAmelCase__ : Any = type_sequence_label_size UpperCAmelCase__ : Tuple = initializer_range UpperCAmelCase__ : Optional[Any] = num_choices def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase__ : int = None if self.use_attention_mask: UpperCAmelCase__ : int = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Any = None if self.use_token_type_ids: UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase__ : Dict = RobertaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase_ ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = config_and_inputs UpperCAmelCase__ : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = config_and_inputs UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowercase ( lowercase__ , unittest.TestCase ): snake_case_ = True snake_case_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ : Tuple = FlaxRobertaModelTester(self ) @slow def __lowercase ( self : Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase__ : Tuple = model_class_name.from_pretrained("""roberta-base""" ,from_pt=lowercase_ ) UpperCAmelCase__ : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase_ )
65
from importlib import import_module from .logging import get_logger _lowerCAmelCase: str = get_logger(__name__) class lowercase_ : def __init__( self , lowercase_ , lowercase_=None) -> Tuple: a__ =attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__'): setattr(self , lowercase_ , getattr(lowercase_ , lowercase_)) a__ =module._original_module if isinstance(lowercase_ , _PatchedModuleObj) else module class lowercase_ : snake_case =[] def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None) -> List[str]: a__ =obj a__ =target a__ =new a__ =target.split('.')[0] a__ ={} a__ =attrs or [] def __enter__( self) -> Optional[int]: *a__ , a__ =self.target.split('.') # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowercase_)): try: a__ =import_module('.'.join(submodules[: i + 1])) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): a__ =getattr(self.obj , lowercase_) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowercase_ , _PatchedModuleObj) and obj_attr._original_module is submodule) ): a__ =obj_attr # patch at top level setattr(self.obj , lowercase_ , _PatchedModuleObj(lowercase_ , attrs=self.attrs)) a__ =getattr(self.obj , lowercase_) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowercase_ , lowercase_ , _PatchedModuleObj(getattr(lowercase_ , lowercase_ , lowercase_) , attrs=self.attrs)) a__ =getattr(lowercase_ , lowercase_) # finally set the target attribute setattr(lowercase_ , lowercase_ , self.new) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: a__ =getattr(import_module('.'.join(lowercase_)) , lowercase_) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowercase_) is attr_value: a__ =getattr(self.obj , lowercase_) setattr(self.obj , lowercase_ , self.new) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" a__ =globals()['__builtins__'][target_attr] setattr(self.obj , lowercase_ , self.new) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""") def __exit__( self , *lowercase_) -> str: for attr in list(self.original): setattr(self.obj , lowercase_ , self.original.pop(lowercase_)) def __UpperCamelCase ( self) -> Any: self.__enter__() self._active_patches.append(self) def __UpperCamelCase ( self) -> Union[str, Any]: try: self._active_patches.remove(self) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
20
0
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ ( ): '''simple docstring''' _snake_case = 2 while True: if is_prime(__a ): yield num num += 1 def snake_case_ ( SCREAMING_SNAKE_CASE__ = 2_00_00_00 ): '''simple docstring''' return sum(takewhile(lambda SCREAMING_SNAKE_CASE__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'{solution() = }')
672
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": _lowerCAmelCase: int = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def _lowercase( __a : Optional[Any] ): if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) _lowerCAmelCase: str = parser.parse_args() _lowerCAmelCase: Tuple = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
20
0
def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = (boundary[1] - boundary[0]) / steps A_ = boundary[0] A_ = boundary[1] A_ = make_points(__a , __a , __a ) A_ = 0.0 y += (h / 2.0) * f(__a ) for i in x_i: # print(i) y += h * f(__a ) y += (h / 2.0) * f(__a ) return y def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = a + h while x < (b - h): yield x A_ = x + h def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): # enter your function here '''simple docstring''' A_ = (x - 0) * (x - 0) return y def _lowerCamelCase ( ): '''simple docstring''' A_ = 0.0 # Lower bound of integration A_ = 1.0 # Upper bound of integration A_ = 10.0 # define number of steps or resolution A_ = [a, b] # define boundary of integration A_ = method_a(__a , __a ) print(f"y = {y}" ) if __name__ == "__main__": main()
203
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _lowerCAmelCase: Tuple = get_logger(__name__) _lowerCAmelCase: List[str] = Path(__file__).parent / 'model_card_template.md' _lowerCAmelCase: Any = uuida().hex _lowerCAmelCase: List[Any] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase: int = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase: Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def _lowercase( __a : Union[Dict, str, None] = None ): a__ =f"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"""; torch/{_torch_version}""" if is_flax_available(): ua += f"""; jax/{_jax_version}""" ua += f"""; flax/{_flax_version}""" if is_onnx_available(): ua += f"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__a , __a ): ua += "; " + "; ".join(f"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__a , __a ): ua += "; " + user_agent return ua def _lowercase( __a : str , __a : Optional[str] = None , __a : Optional[str] = None ): if token is None: a__ =HfFolder.get_token() if organization is None: a__ =whoami(__a )['name'] return f"""{username}/{model_id}""" else: return f"""{organization}/{model_id}""" def _lowercase( __a : Union[str, Any] , __a : Dict ): if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(__a , 'local_rank' ) and args.local_rank not in [-1, 0]: return a__ =args.hub_token if hasattr(__a , 'hub_token' ) else None a__ =get_full_repo_name(__a , token=__a ) a__ =ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__a , model_name=__a , repo_name=__a , dataset_name=args.dataset_name if hasattr(__a , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__a , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__a , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(__a , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__a , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__a , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__a , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__a , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__a , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(__a , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__a , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) a__ =os.path.join(args.output_dir , 'README.md' ) model_card.save(__a ) def _lowercase( __a : Optional[str] , __a : Optional[str] = None ): if resolved_file is None or commit_hash is not None: return commit_hash a__ =str(Path(__a ).as_posix() ) a__ =re.search(r'snapshots/([^/]+)/' , __a ) if search is None: return None a__ =search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__a ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _lowerCAmelCase: List[str] = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) _lowerCAmelCase: List[str] = os.path.join(hf_cache_home, 'diffusers') def _lowercase( __a : Optional[str] = None , __a : Optional[str] = None ): if new_cache_dir is None: a__ =DIFFUSERS_CACHE if old_cache_dir is None: a__ =old_diffusers_cache a__ =Path(__a ).expanduser() a__ =Path(__a ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): a__ =new_cache_dir / old_blob_path.relative_to(__a ) new_blob_path.parent.mkdir(parents=__a , exist_ok=__a ) os.replace(__a , __a ) try: os.symlink(__a , __a ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _lowerCAmelCase: Dict = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): _lowerCAmelCase: int = 0 else: with open(cache_version_file) as f: try: _lowerCAmelCase: List[Any] = int(f.read()) except ValueError: _lowerCAmelCase: Any = 0 if cache_version < 1: _lowerCAmelCase: str = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: _lowerCAmelCase: Optional[Any] = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ 'the directory exists and can be written to.' ) def _lowercase( __a : str , __a : Optional[str] = None ): if variant is not None: a__ =weights_name.split('.' ) a__ =splits[:-1] + [variant] + splits[-1:] a__ ='.'.join(__a ) return weights_name def _lowercase( __a : Union[str, Any] , *, __a : Optional[Any] , __a : Optional[Any] , __a : List[Any] , __a : Tuple , __a : Optional[Any] , __a : Dict , __a : str , __a : int , __a : Tuple , __a : Union[str, Any] , __a : int=None , ): a__ =str(__a ) if os.path.isfile(__a ): return pretrained_model_name_or_path elif os.path.isdir(__a ): if os.path.isfile(os.path.join(__a , __a ) ): # Load from a PyTorch checkpoint a__ =os.path.join(__a , __a ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__a , __a , __a ) ): a__ =os.path.join(__a , __a , __a ) return model_file else: raise EnvironmentError( f"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__a ).base_version ) >= version.parse('0.20.0' ) ): try: a__ =hf_hub_download( __a , filename=_add_variant(__a , __a ) , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) warnings.warn( f"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __a , ) return model_file except: # noqa: E722 warnings.warn( f"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__a , __a )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__a , __a )}' so that the correct variant file can be added.""" , __a , ) try: # 2. Load model file as usual a__ =hf_hub_download( __a , filename=__a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( f"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ 'this model name. Check the model page at ' f"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( f"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( f"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" f""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" f""" directory containing a file named {weights_name} or""" ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( f"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' f"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ f"""containing a file named {weights_name}""" )
20
0
'''simple docstring''' def _snake_case ( _SCREAMING_SNAKE_CASE : list ) -> List[str]: """simple docstring""" if not isinstance(__a , __a ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(__a ) == 0: raise ValueError("""Input list must be a non empty list""" ) if len(__a ) == 1: return True lowerCAmelCase = series[1] - series[0] for index in range(len(__a ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def _snake_case ( _SCREAMING_SNAKE_CASE : list ) -> List[str]: """simple docstring""" if not isinstance(__a , __a ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(__a ) == 0: raise ValueError("""Input list must be a non empty list""" ) lowerCAmelCase = 0 for val in series: answer += val return answer / len(__a ) if __name__ == "__main__": import doctest doctest.testmod()
433
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger() def _lowercase( __a : int , __a : str , __a : LevitConfig , __a : Path , __a : bool = True ): print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": a__ =timm.create_model('levit_128s' , pretrained=__a ) else: a__ =timm.create_model('levit_128' , pretrained=__a ) if hidden_sizes == 192: a__ =timm.create_model('levit_192' , pretrained=__a ) if hidden_sizes == 256: a__ =timm.create_model('levit_256' , pretrained=__a ) if hidden_sizes == 384: a__ =timm.create_model('levit_384' , pretrained=__a ) from_model.eval() a__ =LevitForImageClassificationWithTeacher(__a ).eval() a__ =OrderedDict() a__ =from_model.state_dict() a__ =list(from_model.state_dict().keys() ) a__ =list(our_model.state_dict().keys() ) print(len(__a ) , len(__a ) ) for i in range(len(__a ) ): a__ =weights[og_keys[i]] our_model.load_state_dict(__a ) a__ =torch.randn((2, 3, 224, 224) ) a__ =from_model(__a ) a__ =our_model(__a ).logits assert torch.allclose(__a , __a ), "The model logits don't match the original one." a__ =name print(__a ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) a__ =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def _lowercase( __a : Path , __a : str = None , __a : bool = True ): a__ ='imagenet-1k-id2label.json' a__ =1000 a__ =(1, num_labels) a__ ='huggingface/label-files' a__ =num_labels a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} a__ =partial(__a , num_labels=__a , idalabel=__a , labelaid=__a ) a__ ={ 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } a__ ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __a , names_to_config[model_name] , __a , __a ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __a , __a , __a , __a ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _lowerCAmelCase: Union[str, Any] = parser.parse_args() _lowerCAmelCase: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
20
0
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class __snake_case ( lowercase__ ): def __init__( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[int] = params lowercase : Optional[Any] = np.array(lowercase_ ) lowercase : str = np.array([len(lowercase_ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self ,snake_case ): '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self ): '''simple docstring''' return len(self.lengths ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.params.max_model_input_size lowercase : Optional[int] = self.lengths > max_len logger.info(f"Splitting {sum(lowercase_ )} too long sequences." ) def divide_chunks(snake_case ,snake_case ): return [l[i : i + n] for i in range(0 ,len(lowercase_ ) ,lowercase_ )] lowercase : Optional[int] = [] lowercase : Dict = [] if self.params.mlm: lowercase , lowercase : Union[str, Any] = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: lowercase , lowercase : Any = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids ,self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: lowercase : Optional[Any] = [] for sub_s in divide_chunks(seq_ ,max_len - 2 ): if sub_s[0] != cls_id: lowercase : List[str] = np.insert(lowercase_ ,0 ,lowercase_ ) if sub_s[-1] != sep_id: lowercase : int = np.insert(lowercase_ ,len(lowercase_ ) ,lowercase_ ) assert len(lowercase_ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(lowercase_ ) new_tok_ids.extend(lowercase_ ) new_lengths.extend([len(lowercase_ ) for l in sub_seqs] ) lowercase : Optional[int] = np.array(lowercase_ ) lowercase : int = np.array(lowercase_ ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = len(self ) lowercase : List[Any] = self.lengths > 11 lowercase : List[str] = self.token_ids[indices] lowercase : Any = self.lengths[indices] lowercase : str = len(self ) logger.info(f"Remove {init_size - new_size} too short (<=11 tokens) sequences." ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: lowercase : List[Any] = self.params.special_tok_ids["""unk_token"""] lowercase : Tuple = len(self ) lowercase : Optional[int] = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) lowercase : Dict = (unk_occs / self.lengths) < 0.5 lowercase : int = self.token_ids[indices] lowercase : Optional[int] = self.lengths[indices] lowercase : int = len(self ) logger.info(f"Remove {init_size - new_size} sequences with a high level of unknown tokens (50%)." ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if not self.params.is_master: return logger.info(f"{len(self )} sequences" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Any = [t[0] for t in batch] lowercase : str = [t[1] for t in batch] assert len(lowercase_ ) == len(lowercase_ ) # Max for paddings lowercase : Dict = max(lowercase_ ) # Pad token ids if self.params.mlm: lowercase : Optional[int] = self.params.special_tok_ids["""pad_token"""] else: lowercase : str = self.params.special_tok_ids["""unk_token"""] lowercase : Any = [list(t.astype(lowercase_ ) ) + [pad_idx] * (max_seq_len_ - len(lowercase_ )) for t in token_ids] assert len(tk_ ) == len(lowercase_ ) assert all(len(lowercase_ ) == max_seq_len_ for t in tk_ ) lowercase : Tuple = torch.tensor(tk_ ) # (bs, max_seq_len_) lowercase : int = torch.tensor(lowercase_ ) # (bs) return tk_t, lg_t
336
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowerCAmelCase: int = logging.get_logger(__name__) _lowerCAmelCase: Union[str, Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } _lowerCAmelCase: Tuple = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _lowercase( __a : Optional[Any] ): a__ ={} with open(__a , 'r' ) as file: for line_number, line in enumerate(__a ): a__ =line.strip() if line: a__ =line.split() a__ =line_number a__ =words[0] a__ =value return result def _lowercase( __a : Dict , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : str ): for attribute in key.split('.' ): a__ =getattr(__a , __a ) a__ =None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__a ): a__ =PARAM_MAPPING[full_name.split('.' )[-1]] a__ ='param' if weight_type is not None and weight_type != "param": a__ =getattr(__a , __a ).shape elif weight_type is not None and weight_type == "param": a__ =hf_pointer for attribute in hf_param_name.split('.' ): a__ =getattr(__a , __a ) a__ =shape_pointer.shape # let's reduce dimension a__ =value[0] else: a__ =hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a__ =value elif weight_type == "weight_g": a__ =value elif weight_type == "weight_v": a__ =value elif weight_type == "bias": a__ =value elif weight_type == "param": for attribute in hf_param_name.split('.' ): a__ =getattr(__a , __a ) a__ =value else: a__ =value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _lowercase( __a : Optional[int] , __a : int , __a : Optional[int] , __a : Optional[Any] , __a : List[Any] ): a__ =None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__a ): a__ =PARAM_MAPPING[full_name.split('.' )[-1]] a__ ='param' if weight_type is not None and weight_type != "param": a__ ='.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": a__ ='.'.join([key, hf_param_name] ) else: a__ =key a__ =value if 'lm_head' in full_key else value[0] _lowerCAmelCase: Dict = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _lowercase( __a : Dict , __a : int , __a : int=None , __a : List[str]=None ): a__ =False for key, mapped_key in MAPPING.items(): a__ ='wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: a__ =True if "*" in mapped_key: a__ =name.split(__a )[0].split('.' )[-2] a__ =mapped_key.replace('*' , __a ) if "weight_g" in name: a__ ='weight_g' elif "weight_v" in name: a__ ='weight_v' elif "bias" in name: a__ ='bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj a__ ='weight' else: a__ =None if hf_dict is not None: rename_dict(__a , __a , __a , __a , __a ) else: set_recursively(__a , __a , __a , __a , __a ) return is_used return is_used def _lowercase( __a : Union[str, Any] , __a : List[str] , __a : Dict ): a__ =[] a__ =fairseq_model.state_dict() a__ =hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): a__ =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == 'group' , ) a__ =True else: a__ =load_wavaveca_layer(__a , __a , __a ) if not is_used: unused_weights.append(__a ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _lowercase( __a : List[Any] , __a : Optional[Any] , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] ): a__ =full_name.split('conv_layers.' )[-1] a__ =name.split('.' ) a__ =int(items[0] ) a__ =int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def _lowercase( __a : str , __a : str , __a : Any=None , __a : str=None , __a : Any=True , __a : Union[str, Any]=False ): if config_path is not None: a__ =WavaVecaConfig.from_pretrained(__a ) else: a__ =WavaVecaConfig() if is_seq_class: a__ =read_txt_into_dict(__a ) a__ =idalabel a__ =WavaVecaForSequenceClassification(__a ) a__ =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) feature_extractor.save_pretrained(__a ) elif is_finetuned: if dict_path: a__ =Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a__ =target_dict.pad_index a__ =target_dict.bos_index a__ =target_dict.eos_index a__ =len(target_dict.symbols ) a__ =os.path.join(__a , 'vocab.json' ) if not os.path.isdir(__a ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__a ) ) return os.makedirs(__a , exist_ok=__a ) a__ =target_dict.indices # fairseq has the <pad> and <s> switched a__ =0 a__ =1 with open(__a , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(__a , __a ) a__ =WavaVecaCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=__a , ) a__ =True if config.feat_extract_norm == 'layer' else False a__ =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) a__ =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) a__ =WavaVecaForCTC(__a ) else: a__ =WavaVecaForPreTraining(__a ) if is_finetuned or is_seq_class: a__ , a__ , a__ =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: a__ =argparse.Namespace(task='audio_pretraining' ) a__ =fairseq.tasks.setup_task(__a ) a__ , a__ , a__ =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__a ) a__ =model[0].eval() recursively_load_weights(__a , __a , not is_finetuned ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) _lowerCAmelCase: Tuple = parser.parse_args() _lowerCAmelCase: Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
20
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCAmelCase : Dict = list[list[float | int]] def _A ( A ,A ) -> str: lowercase : str = len(__a ) lowercase : Any = [[0 for _ in range(size + 1 )] for _ in range(__a )] lowercase : Optional[int] = 4_2 lowercase : Dict = 4_2 lowercase : Optional[Any] = 4_2 lowercase : List[Any] = 4_2 lowercase : Any = 4_2 lowercase : Tuple = 4_2 for row in range(__a ): for col in range(__a ): lowercase : Dict = matrix[row][col] lowercase : int = vector[row][0] lowercase : str = 0 lowercase : Union[str, Any] = 0 while row < size and col < size: # pivoting lowercase : int = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__a ,__a ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: lowercase , lowercase : Dict = augmented[pivot_row], augmented[row] for rowa in range(row + 1 ,__a ): lowercase : str = augmented[rowa][col] / augmented[row][col] lowercase : Tuple = 0 for cola in range(col + 1 ,size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 ,__a ): for row in range(__a ): lowercase : Optional[int] = augmented[row][col] / augmented[col][col] for cola in range(__a ,size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] ,1_0 )] for row in range(__a ) ] def _A ( A ) -> Dict: lowercase : Union[str, Any] = len(__a ) lowercase : List[str] = [[0 for _ in range(__a )] for _ in range(__a )] lowercase : List[str] = [[0] for _ in range(__a )] lowercase : Any = 4_2 lowercase : Tuple = 4_2 lowercase : str = 4_2 lowercase : Dict = 4_2 for x_val, y_val in enumerate(__a ): for col in range(__a ): lowercase : Dict = (x_val + 1) ** (size - col - 1) lowercase : Tuple = y_val lowercase : List[Any] = solve(__a ,__a ) def interpolated_func(A ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__a ) ) return interpolated_func def _A ( A ) -> Optional[Any]: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**1_0 ) def _A ( A = question_function ,A = 1_0 ) -> Tuple: lowercase : str = [func(__a ) for x_val in range(1 ,order + 1 )] lowercase : Tuple = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 ,order + 1 ) ] lowercase : Tuple = 0 lowercase : int = 4_2 lowercase : Optional[Any] = 4_2 for poly in polynomials: lowercase : Optional[int] = 1 while func(__a ) == poly(__a ): x_val += 1 ret += poly(__a ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
372
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowercase_ (unittest.TestCase ): @slow def __UpperCamelCase ( self) -> Optional[int]: a__ =AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowercase_).to(lowercase_) a__ =AutoTokenizer.from_pretrained('google/mt5-small') a__ =tokenizer('Hello there' , return_tensors='pt').input_ids a__ =tokenizer('Hi I am' , return_tensors='pt').input_ids a__ =model(input_ids.to(lowercase_) , labels=labels.to(lowercase_)).loss a__ =-(labels.shape[-1] * loss.item()) a__ =-84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
20
0
'''simple docstring''' def snake_case_ ( SCREAMING_SNAKE_CASE__ = 100_0000 ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __a ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
533
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self) -> int: a__ =tempfile.mkdtemp() a__ =BlipImageProcessor() a__ =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel') a__ =BlipProcessor(lowercase_ , lowercase_) processor.save_pretrained(self.tmpdirname) def __UpperCamelCase ( self , **lowercase_) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).tokenizer def __UpperCamelCase ( self , **lowercase_) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).image_processor def __UpperCamelCase ( self) -> Optional[int]: shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self) -> str: a__ =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] a__ =[Image.fromarray(np.moveaxis(lowercase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self) -> str: a__ =BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) a__ =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') a__ =self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0) a__ =BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowercase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowercase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowercase_) def __UpperCamelCase ( self) -> int: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ =self.prepare_image_inputs() a__ =image_processor(lowercase_ , return_tensors='np') a__ =processor(images=lowercase_ , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self) -> List[str]: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =processor(text=lowercase_) a__ =tokenizer(lowercase_ , return_token_type_ids=lowercase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self) -> int: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =self.prepare_image_inputs() a__ =processor(text=lowercase_ , images=lowercase_) self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask']) # test if it raises when no input is passed with pytest.raises(lowercase_): processor() def __UpperCamelCase ( self) -> Tuple: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a__ =processor.batch_decode(lowercase_) a__ =tokenizer.batch_decode(lowercase_) self.assertListEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =self.prepare_image_inputs() a__ =processor(text=lowercase_ , images=lowercase_) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask'])
20
0
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase : List[Any] = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( lowercase__ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = SpeechTaTokenizer _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = True def A ( self : List[Any] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase = SpeechTaTokenizer(lowercase_ ) UpperCamelCase = AddedToken('<mask>' , lstrip=lowercase_ , rstrip=lowercase_ ) UpperCamelCase = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Optional[Any] , UpperCamelCase__ : Optional[int] ): """simple docstring""" UpperCamelCase = 'this is a test' UpperCamelCase = 'this is a test' return input_text, output_text def A ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : Tuple=2_0 , UpperCamelCase__ : List[str]=5 ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.get_input_output_texts(lowercase_ ) UpperCamelCase = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCamelCase = tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_ ) return text, ids def A ( self : Dict ): """simple docstring""" UpperCamelCase = '<pad>' UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def A ( self : int ): """simple docstring""" UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(lowercase_ ) , 8_1 ) def A ( self : Optional[Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 7_9 ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.get_tokenizers(do_lower_case=lowercase_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCamelCase = tokenizer.vocab_size UpperCamelCase = len(lowercase_ ) self.assertNotEqual(lowercase_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) UpperCamelCase = ['aaaaa bbbbbb', 'cccccccccdddddddd'] UpperCamelCase = tokenizer.add_tokens(lowercase_ ) UpperCamelCase = tokenizer.vocab_size UpperCamelCase = len(lowercase_ ) self.assertNotEqual(lowercase_ , 0 ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , len(lowercase_ ) ) self.assertEqual(lowercase_ , all_size + len(lowercase_ ) ) UpperCamelCase = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=lowercase_ ) self.assertGreaterEqual(len(lowercase_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) UpperCamelCase = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} UpperCamelCase = tokenizer.add_special_tokens(lowercase_ ) UpperCamelCase = tokenizer.vocab_size UpperCamelCase = len(lowercase_ ) self.assertNotEqual(lowercase_ , 0 ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , len(lowercase_ ) ) self.assertEqual(lowercase_ , all_size_a + len(lowercase_ ) ) UpperCamelCase = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=lowercase_ ) self.assertGreaterEqual(len(lowercase_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def A ( self : Optional[Any] ): """simple docstring""" pass def A ( self : List[str] ): """simple docstring""" pass def A ( self : Dict ): """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(lowercase_ , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [4, 3_2, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 7, 4, 6, 5, 1_2, 6] , ) UpperCamelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) UpperCamelCase = tokenizer.convert_tokens_to_ids(lowercase_ ) # fmt: off self.assertListEqual(lowercase_ , [4, 3_0, 4, 2_0, 7, 1_2, 4, 2_5, 8, 1_3, 9, 4, 1_0, 9, 4, 3, 2_3, 4, 7, 9, 1_4, 4, 6, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 1_9, 7, 1_5, 1_2, 7_3, 2_6] ) # fmt: on UpperCamelCase = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def A ( self : str ): """simple docstring""" UpperCamelCase = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off UpperCamelCase = { 'input_ids': [ [4, 3_2, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 6_4, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_5, 2_2, 4, 2_8, 9, 8, 2_0, 9, 4, 7, 1_2, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 6, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 7, 9, 1_4, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 3_9, 2_5, 5, 1_3, 6, 6_3, 4, 2_4, 1_3, 8, 2_7, 1_0, 1_4, 5, 1_2, 4, 2_1, 5, 9, 5, 1_3, 7, 1_5, 3_9, 2_4, 1_6, 1_3, 2_4, 8, 1_2, 5, 4, 7, 1_3, 1_7, 1_1, 1_0, 6, 5, 1_7, 6, 1_6, 1_3, 5, 1_2, 4, 6_4, 4_0, 4_7, 5_4, 3_2, 2_3, 4, 5_3, 4_9, 3_2, 2_3, 4, 5_4, 8, 4_0, 4_7, 5_4, 3_2, 7, 2_3, 4, 6_9, 5_2, 4_3, 2_3, 4, 5_1, 1_0, 1_2, 6, 1_0, 1_5, 4_0, 5, 1_3, 6, 2_3, 4, 6_9, 5_2, 4_8, 5, 6, 2_6, 2_6, 2_6, 6_3, 4, 1_9, 8, 1_3, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 6_1, 9, 1_4, 5, 1_3, 1_2, 6, 7, 9, 1_4, 1_0, 9, 2_1, 4, 6_4, 4_8, 5_2, 6_1, 6_3, 4, 7, 9, 1_4, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 5_3, 5, 9, 5, 1_3, 7, 6, 1_0, 8, 9, 4, 6_4, 4_8, 5_2, 5_3, 6_3, 4, 2_0, 1_0, 6, 1_1, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 1_0, 1_3, 6, 2_2, 3_9, 6, 2_0, 8, 4, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 4, 1_8, 8, 1_4, 5, 1_5, 1_2, 4, 1_0, 9, 4, 8, 9, 5, 4, 1_1, 1_6, 9, 1_4, 1_3, 5, 1_4, 4, 2_4, 1_5, 1_6, 1_2, 4, 1_5, 7, 9, 2_1, 1_6, 7, 2_1, 5, 1_2, 4, 7, 9, 1_4, 4, 1_4, 5, 5, 2_4, 4, 1_0, 9, 6, 5, 1_3, 8, 2_4, 5, 1_3, 7, 2_5, 1_0, 1_5, 1_0, 6, 2_2, 4, 2_5, 5, 6, 2_0, 5, 5, 9, 4, 5_8, 7, 3_7, 2_3, 4, 4_9, 2_2, 3_2, 8, 1_3, 1_7, 1_1, 4, 7, 9, 1_4, 4, 3_2, 5, 9, 1_2, 8, 1_3, 5_5, 1_5, 8, 2_0, 2_6, 2], [4, 4_0, 4_7, 5_4, 3_2, 4, 1_0, 1_2, 4, 1_4, 5, 1_2, 1_0, 2_1, 9, 5, 1_4, 4, 6, 8, 4, 2_4, 1_3, 5, 3_9, 6, 1_3, 7, 1_0, 9, 4, 1_4, 5, 5, 2_4, 4, 2_5, 1_0, 1_4, 1_0, 1_3, 5, 1_7, 6, 1_0, 8, 9, 7, 1_5, 4, 1_3, 5, 2_4, 1_3, 5, 1_2, 5, 9, 6, 7, 6, 1_0, 8, 9, 1_2, 4, 1_9, 1_3, 8, 1_8, 4, 1_6, 9, 1_5, 7, 2_5, 5, 1_5, 5, 1_4, 4, 6, 5, 3_7, 6, 4, 2_5, 2_2, 4, 4_6, 8, 1_0, 9, 6, 1_5, 2_2, 4, 1_7, 8, 9, 1_4, 1_0, 6, 1_0, 8, 9, 1_0, 9, 2_1, 4, 8, 9, 4, 2_5, 8, 6, 1_1, 4, 1_5, 5, 1_9, 6, 4, 7, 9, 1_4, 4, 1_3, 1_0, 2_1, 1_1, 6, 4, 1_7, 8, 9, 6, 5, 3_7, 6, 4, 1_0, 9, 4, 7, 1_5, 1_5, 4, 1_5, 7, 2_2, 5, 1_3, 1_2, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 3_2, 1_1, 5, 4, 4_5, 1_6, 1_0, 1_7, 2_8, 4, 2_5, 1_3, 8, 2_0, 9, 4, 1_9, 8, 3_7, 4, 4_6, 1_6, 1_8, 2_4, 1_2, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 5, 4, 1_5, 7, 5_7, 2_2, 4, 1_4, 8, 2_1, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=lowercase_ , )
430
def _lowercase( __a : list[int] ): a__ =len(__a ) for i in range(__a ): for j in range(i + 1 , __a ): if numbers[j] < numbers[i]: a__ , a__ =numbers[j], numbers[i] return numbers if __name__ == "__main__": _lowerCAmelCase: Tuple = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase: int = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
20
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(__a ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix _snake_case = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements _snake_case = [[0.0, 0.0], [0.0, 0.0]] _snake_case, _snake_case = matrix[1][1], matrix[0][0] _snake_case, _snake_case = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(__a ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(__a ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule _snake_case = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix _snake_case = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] _snake_case = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) _snake_case = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) _snake_case = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) _snake_case = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) _snake_case = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) _snake_case = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) _snake_case = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) _snake_case = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) _snake_case = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) _snake_case = array(__a ) for i in range(3 ): for j in range(3 ): _snake_case = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix _snake_case = array(__a ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(__a ) # Calculate the inverse of the matrix return [[float(d(__a ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
585
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowercase_ : def __init__( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="resnet50" , lowercase_=3 , lowercase_=32 , lowercase_=3 , lowercase_=True , lowercase_=True , ) -> Union[str, Any]: a__ =parent a__ =out_indices if out_indices is not None else [4] a__ =stage_names a__ =out_features a__ =backbone a__ =batch_size a__ =image_size a__ =num_channels a__ =use_pretrained_backbone a__ =is_training def __UpperCamelCase ( self) -> Optional[Any]: a__ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ =self.get_config() return config, pixel_values def __UpperCamelCase ( self) -> Tuple: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> str: a__ =TimmBackbone(config=lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): a__ =model(lowercase_) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __UpperCamelCase ( self) -> str: a__ =self.prepare_config_and_inputs() a__ , a__ =config_and_inputs a__ ={'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class lowercase_ (lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): snake_case =(TimmBackbone,) if is_torch_available() else () snake_case ={'feature-extraction': TimmBackbone} if is_torch_available() else {} snake_case =False snake_case =False snake_case =False snake_case =False def __UpperCamelCase ( self) -> Optional[Any]: a__ =TimmBackboneModelTester(self) a__ =ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_) def __UpperCamelCase ( self) -> Dict: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self) -> str: a__ ='resnet18' a__ ='microsoft/resnet-18' a__ =AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_) a__ =AutoBackbone.from_pretrained(lowercase_) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(len(timm_model.stage_names) , len(transformers_model.stage_names)) self.assertEqual(timm_model.channels , transformers_model.channels) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,)) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names) - 1]) a__ =AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_ , out_indices=[1, 2, 3]) a__ =AutoBackbone.from_pretrained(lowercase_ , out_indices=[1, 2, 3]) self.assertEqual(timm_model.out_indices , transformers_model.out_indices) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(timm_model.channels , transformers_model.channels) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> Dict: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> List[Any]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.') def __UpperCamelCase ( self) -> str: pass @unittest.skip('Safetensors is not supported by timm.') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self) -> Optional[Any]: pass def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) a__ =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ =[*signature.parameters.keys()] a__ =['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_) def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =True a__ =self.has_attentions # no need to test all models as different heads yield the same functionality a__ =self.all_model_classes[0] a__ =model_class(lowercase_) model.to(lowercase_) a__ =self._prepare_for_class(lowercase_ , lowercase_) a__ =model(**lowercase_) a__ =outputs[0][-1] # Encoder-/Decoder-only models a__ =outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a__ =outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowercase_) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) def __UpperCamelCase ( self) -> List[str]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_) self.assertEqual(len(result.feature_maps) , len(config.out_indices)) self.assertEqual(len(model.channels) , len(config.out_indices)) # Check output of last stage is taken if out_features=None, out_indices=None a__ =copy.deepcopy(lowercase_) a__ =None a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_) self.assertEqual(len(result.feature_maps) , 1) self.assertEqual(len(model.channels) , 1) # Check backbone can be initialized with fresh weights a__ =copy.deepcopy(lowercase_) a__ =False a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_)
20
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase : @staticmethod def __snake_case ( *__magic_name__ :Union[str, Any] , **__magic_name__ :List[Any] ) ->Any: pass @is_pipeline_test @require_vision @require_timm @require_torch class UpperCamelCase (unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_OBJECT_DETECTION_MAPPING def __snake_case ( self :Dict , __magic_name__ :Tuple , __magic_name__ :str , __magic_name__ :List[str] ) ->Tuple: lowercase : Any = ObjectDetectionPipeline(model=lowercase_ , image_processor=lowercase_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __snake_case ( self :Tuple , __magic_name__ :Dict , __magic_name__ :Optional[int] ) ->Optional[int]: lowercase : Union[str, Any] = object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 ) self.assertGreater(len(lowercase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowercase_ , { """score""": ANY(lowercase_ ), """label""": ANY(lowercase_ ), """box""": {"""xmin""": ANY(lowercase_ ), """ymin""": ANY(lowercase_ ), """xmax""": ANY(lowercase_ ), """ymax""": ANY(lowercase_ )}, } , ) import datasets lowercase : int = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) lowercase : List[Any] = [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] lowercase : Union[str, Any] = object_detector(lowercase_ , threshold=0.0 ) self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for outputs in batch_outputs: self.assertGreater(len(lowercase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowercase_ , { """score""": ANY(lowercase_ ), """label""": ANY(lowercase_ ), """box""": {"""xmin""": ANY(lowercase_ ), """ymin""": ANY(lowercase_ ), """xmax""": ANY(lowercase_ ), """ymax""": ANY(lowercase_ )}, } , ) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def __snake_case ( self :Any ) ->str: pass @require_torch def __snake_case ( self :Optional[int] ) ->Dict: lowercase : Optional[Any] = """hf-internal-testing/tiny-detr-mobilenetsv3""" lowercase : List[str] = AutoModelForObjectDetection.from_pretrained(lowercase_ ) lowercase : List[str] = AutoFeatureExtractor.from_pretrained(lowercase_ ) lowercase : Any = ObjectDetectionPipeline(model=lowercase_ , feature_extractor=lowercase_ ) lowercase : List[Any] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ] , ) lowercase : Tuple = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], ] , ) @require_torch @slow def __snake_case ( self :str ) ->Optional[Any]: lowercase : Dict = """facebook/detr-resnet-50""" lowercase : Any = AutoModelForObjectDetection.from_pretrained(lowercase_ ) lowercase : int = AutoFeatureExtractor.from_pretrained(lowercase_ ) lowercase : str = ObjectDetectionPipeline(model=lowercase_ , feature_extractor=lowercase_ ) lowercase : Tuple = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) lowercase : List[Any] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] , ) @require_torch @slow def __snake_case ( self :Optional[int] ) ->List[Any]: lowercase : Union[str, Any] = """facebook/detr-resnet-50""" lowercase : Dict = pipeline("""object-detection""" , model=lowercase_ ) lowercase : Dict = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) lowercase : List[str] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] , ) @require_torch @slow def __snake_case ( self :Any ) ->Tuple: lowercase : Union[str, Any] = 0.9985 lowercase : List[Any] = """facebook/detr-resnet-50""" lowercase : Dict = pipeline("""object-detection""" , model=lowercase_ ) lowercase : str = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=lowercase_ ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) @require_torch @require_pytesseract @slow def __snake_case ( self :int ) ->Union[str, Any]: lowercase : Optional[Any] = """Narsil/layoutlmv3-finetuned-funsd""" lowercase : List[Any] = 0.9993 lowercase : str = pipeline("""object-detection""" , model=lowercase_ , threshold=lowercase_ ) lowercase : List[str] = object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"""score""": 0.9993, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, {"""score""": 0.9993, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, ] , )
264
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCAmelCase: Optional[Any] = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: List[str] = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _lowerCAmelCase: List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
20
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowercase_ : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] ): if isinstance(__a , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__a , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__a ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class __UpperCamelCase (lowercase__ ): __A = ['''pixel_values'''] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BILINEAR , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: '''simple docstring''' super().__init__(**lowercase_ ) lowercase = size if size is not None else {"""shortest_edge""": 256} lowercase = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowercase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase = get_size_dict(lowercase_ , param_name="""crop_size""" ) lowercase = do_resize lowercase = size lowercase = do_center_crop lowercase = crop_size lowercase = resample lowercase = do_rescale lowercase = rescale_factor lowercase = offset lowercase = do_normalize lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BILINEAR , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: '''simple docstring''' lowercase = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" in size: lowercase = get_resize_output_image_size(lowercase_ , size["""shortest_edge"""] , default_to_square=lowercase_ ) elif "height" in size and "width" in size: lowercase = (size["""height"""], size["""width"""]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: '''simple docstring''' lowercase = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(lowercase_ , size=(size["""height"""], size["""width"""]) , data_format=lowercase_ , **lowercase_ ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> List[str]: '''simple docstring''' lowercase = image.astype(np.floataa ) if offset: lowercase = image - (scale / 2) return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. lowercase = to_numpy_array(lowercase_ ) if do_resize: lowercase = self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) if do_center_crop: lowercase = self.center_crop(lowercase_ , size=lowercase_ ) if do_rescale: lowercase = self.rescale(image=lowercase_ , scale=lowercase_ , offset=lowercase_ ) if do_normalize: lowercase = self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) lowercase = to_channel_dimension_format(lowercase_ , lowercase_ ) return image def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ) -> PIL.Image.Image: '''simple docstring''' lowercase = do_resize if do_resize is not None else self.do_resize lowercase = resample if resample is not None else self.resample lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase = do_rescale if do_rescale is not None else self.do_rescale lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase = offset if offset is not None else self.offset lowercase = do_normalize if do_normalize is not None else self.do_normalize lowercase = image_mean if image_mean is not None else self.image_mean lowercase = image_std if image_std is not None else self.image_std lowercase = size if size is not None else self.size lowercase = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowercase = crop_size if crop_size is not None else self.crop_size lowercase = get_size_dict(lowercase_ , param_name="""crop_size""" ) if not valid_images(lowercase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) lowercase = make_batched(lowercase_ ) lowercase = [ [ self._preprocess_image( image=lowercase_ , do_resize=lowercase_ , size=lowercase_ , resample=lowercase_ , do_center_crop=lowercase_ , crop_size=lowercase_ , do_rescale=lowercase_ , rescale_factor=lowercase_ , offset=lowercase_ , do_normalize=lowercase_ , image_mean=lowercase_ , image_std=lowercase_ , data_format=lowercase_ , ) for img in video ] for video in videos ] lowercase = {"""pixel_values""": videos} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
588
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase: str = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class lowercase_ (lowercase__ ): snake_case ='big_bird' def __init__( self , lowercase_=50358 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu_new" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=4096 , lowercase_=2 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=66 , lowercase_="block_sparse" , lowercase_=True , lowercase_=False , lowercase_=64 , lowercase_=3 , lowercase_=None , **lowercase_ , ) -> Any: super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , sep_token_id=lowercase_ , **lowercase_ , ) a__ =vocab_size a__ =max_position_embeddings a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =initializer_range a__ =type_vocab_size a__ =layer_norm_eps a__ =use_cache a__ =rescale_embeddings a__ =attention_type a__ =use_bias a__ =block_size a__ =num_random_blocks a__ =classifier_dropout class lowercase_ (lowercase__ ): @property def __UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a__ ={0: 'batch', 1: 'choice', 2: 'sequence'} else: a__ ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
20
0
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' return np.dot(__a , __a ) class __lowercase : def __init__( self : Union[str, Any] ,*, A : List[Any] = np.inf ,A : Dict = "linear" ,A : Union[str, Any] = 0.0 ,): '''simple docstring''' UpperCAmelCase__ : Any = regularization UpperCAmelCase__ : Tuple = gamma if kernel == "linear": UpperCAmelCase__ : int = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("""rbf kernel requires gamma""" ) if not isinstance(self.gamma ,(float, int) ): raise ValueError("""gamma must be float or int""" ) if not self.gamma > 0: raise ValueError("""gamma must be > 0""" ) UpperCAmelCase__ : int = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCAmelCase__ : Union[str, Any] = f"Unknown kernel: {kernel}" raise ValueError(lowercase_ ) def __lowercase ( self : Union[str, Any] ,A : int ,A : int ): '''simple docstring''' return np.dot(lowercase_ ,lowercase_ ) def __lowercase ( self : Optional[Any] ,A : Tuple ,A : Any ): '''simple docstring''' return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def __lowercase ( self : Union[str, Any] ,A : Any ,A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = observations UpperCAmelCase__ : Any = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCAmelCase__ ) , ) : Tuple = np.shape(lowercase_ ) def to_minimize(A : int ) -> float: UpperCAmelCase__ : Dict = 0 ((UpperCAmelCase__ ) , ) : Any = np.shape(lowercase_ ) for i in range(lowercase_ ): for j in range(lowercase_ ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] ,observations[j] ) ) return 1 / 2 * s - sum(lowercase_ ) UpperCAmelCase__ : str = LinearConstraint(lowercase_ ,0 ,0 ) UpperCAmelCase__ : List[Any] = Bounds(0 ,self.regularization ) UpperCAmelCase__ : Tuple = minimize( lowercase_ ,np.ones(lowercase_ ) ,bounds=lowercase_ ,constraints=[ly_contraint] ).x UpperCAmelCase__ : int = l_star # calculating mean offset of separation plane to points UpperCAmelCase__ : int = 0 for i in range(lowercase_ ): for j in range(lowercase_ ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] ,observations[j] ) UpperCAmelCase__ : str = s / n def __lowercase ( self : List[Any] ,A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] ,lowercase_ ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
65
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger(__name__) _lowerCAmelCase: Tuple = torch.device('cpu') def _lowercase( ): a__ ='http://images.cocodataset.org/val2017/000000039769.jpg' a__ =Image.open(requests.get(__a , stream=__a ).raw ) return im def _lowercase( __a : Optional[Any] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _lowercase( __a : int , __a : int , __a : Optional[Any] ): a__ =dct.pop(__a ) a__ =val def _lowercase( __a : Optional[Any] ): a__ =[] for k in state_dict.keys(): a__ =k if ".pwconv" in k: a__ =k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: a__ =k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: a__ =k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: a__ =k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: a__ =k_new.split('.' ) if ls[2].isdigit(): a__ ='swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: a__ =k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _lowercase( __a : Union[str, Any] , __a : int , __a : str ): a__ =SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a__ =1000 a__ ='huggingface/label-files' a__ ='imagenet-1k-id2label.json' a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a__ =[3, 3, 6, 4] a__ =[48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a__ =[3, 3, 9, 6] a__ =[48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a__ =[4, 3, 10, 5] a__ =[48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a__ =[4, 4, 12, 6] a__ =[64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): a__ =torch.hub.load_state_dict_from_url(__a , map_location='cpu' , check_hash=__a ) else: a__ =torch.load(__a , map_location='cpu' ) a__ =checkpoint a__ =create_rename_keys(__a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__a , __a , __a ) # load HuggingFace model a__ =SwiftFormerForImageClassification(__a ).eval() hf_model.load_state_dict(__a ) # prepare test inputs a__ =prepare_img() a__ =ViTImageProcessor.from_pretrained('preprocessor_config' ) a__ =processor(images=__a , return_tensors='pt' ) # compare outputs from both models a__ =get_expected_output(__a ) a__ =hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , __a , atol=1e-3 ) Path(__a ).mkdir(exist_ok=__a ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') _lowerCAmelCase: Optional[int] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
20
0
'''simple docstring''' def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if num < 0: return False _snake_case = num _snake_case = 0 while num > 0: _snake_case = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
672
from __future__ import annotations from typing import Any class lowercase_ : def __init__( self , lowercase_) -> None: a__ =num_of_nodes a__ =[] a__ ={} def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: self.m_edges.append([u_node, v_node, weight]) def __UpperCamelCase ( self , lowercase_) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node]) def __UpperCamelCase ( self , lowercase_) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: a__ =self.find_component(lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: if component_size[u_node] <= component_size[v_node]: a__ =v_node component_size[v_node] += component_size[u_node] self.set_component(lowercase_) elif component_size[u_node] >= component_size[v_node]: a__ =self.find_component(lowercase_) component_size[u_node] += component_size[v_node] self.set_component(lowercase_) def __UpperCamelCase ( self) -> None: a__ =[] a__ =0 a__ =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes): self.m_component.update({node: node}) component_size.append(1) a__ =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: a__ , a__ , a__ =edge a__ =self.m_component[u] a__ =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): a__ =[u, v, w] for edge in minimum_weight_edge: if isinstance(lowercase_ , lowercase_): a__ , a__ , a__ =edge a__ =self.m_component[u] a__ =self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowercase_ , lowercase_ , lowercase_) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""") num_of_components -= 1 a__ =[-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""") def _lowercase( ): pass if __name__ == "__main__": import doctest doctest.testmod()
20
0
import math import unittest def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' assert isinstance(__a , __a ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class _lowercase ( unittest.TestCase ): def UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(1_1 ) ) self.assertTrue(is_prime(1_3 ) ) self.assertTrue(is_prime(1_7 ) ) self.assertTrue(is_prime(1_9 ) ) self.assertTrue(is_prime(2_3 ) ) self.assertTrue(is_prime(2_9 ) ) def UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" with self.assertRaises(lowercase_ ): is_prime(-1_9 ) self.assertFalse( is_prime(0 ) , '''Zero doesn\'t have any positive factors, primes must have exactly two.''' , ) self.assertFalse( is_prime(1 ) , '''One only has 1 positive factor, primes must have exactly two.''' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
203
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCAmelCase: Union[str, Any] = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' _lowerCAmelCase: Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' _lowerCAmelCase: List[Any] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): def __UpperCamelCase ( self) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=True , lowercase_=False) -> Any: if rouge_types is None: a__ =['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] a__ =rouge_scorer.RougeScorer(rouge_types=lowercase_ , use_stemmer=lowercase_) if use_aggregator: a__ =scoring.BootstrapAggregator() else: a__ =[] for ref, pred in zip(lowercase_ , lowercase_): a__ =scorer.score(lowercase_ , lowercase_) if use_aggregator: aggregator.add_scores(lowercase_) else: scores.append(lowercase_) if use_aggregator: a__ =aggregator.aggregate() else: a__ ={} for key in scores[0]: a__ =[score[key] for score in scores] return result
20
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer UpperCAmelCase = ['bert-base-uncased', 'bert-base-cased'] UpperCAmelCase = 'hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class __snake_case( tf.keras.Model ): '''simple docstring''' def __init__( self , A_ ) -> List[str]: super().__init__() lowerCAmelCase = tokenizer lowerCAmelCase = AutoConfig.from_pretrained(lowercase_ ) lowerCAmelCase = TFAutoModel.from_config(lowercase_ ) def __snake_case ( self , A_ ) -> Optional[int]: lowerCAmelCase = self.tokenizer(lowercase_ ) lowerCAmelCase = self.bert(**lowercase_ ) return out["pooler_output"] @require_tf @require_tensorflow_text class __snake_case( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ) -> Dict: super().setUp() lowerCAmelCase = [ BertTokenizer.from_pretrained(lowercase_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false lowerCAmelCase = [TFBertTokenizer.from_pretrained(lowercase_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(lowercase_ , use_fast_bert_tokenizer=lowercase_ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowerCAmelCase = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we\'re going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] lowerCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def __snake_case ( self ) -> List[str]: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): lowerCAmelCase = tokenizer(lowercase_ , return_tensors="""tf""" , padding="""longest""" ) lowerCAmelCase = tf_tokenizer(lowercase_ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def __snake_case ( self ) -> Union[str, Any]: for tf_tokenizer in self.tf_tokenizers: lowerCAmelCase = tf_tokenizer(self.paired_sentences ) lowerCAmelCase = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def __snake_case ( self ) -> Union[str, Any]: for tf_tokenizer in self.tf_tokenizers: lowerCAmelCase = tf.function(lowercase_ ) for test_inputs in (self.test_sentences, self.paired_sentences): lowerCAmelCase = tf.constant(lowercase_ ) lowerCAmelCase = compiled_tokenizer(lowercase_ ) lowerCAmelCase = tf_tokenizer(lowercase_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def __snake_case ( self ) -> Union[str, Any]: for tf_tokenizer in self.tf_tokenizers: lowerCAmelCase = ModelToSave(tokenizer=lowercase_ ) lowerCAmelCase = tf.convert_to_tensor(self.test_sentences ) lowerCAmelCase = model(lowercase_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowerCAmelCase = Path(lowercase_ ) / """saved.model""" model.save(lowercase_ ) lowerCAmelCase = tf.keras.models.load_model(lowercase_ ) lowerCAmelCase = loaded_model(lowercase_ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
433
from __future__ import annotations _lowerCAmelCase: str = '#' class lowercase_ : def __init__( self) -> None: a__ ={} def __UpperCamelCase ( self , lowercase_) -> None: a__ =self._trie for char in text: if char not in trie: a__ ={} a__ =trie[char] a__ =True def __UpperCamelCase ( self , lowercase_) -> tuple | list: a__ =self._trie for char in prefix: if char in trie: a__ =trie[char] else: return [] return self._elements(lowercase_) def __UpperCamelCase ( self , lowercase_) -> tuple: a__ =[] for c, v in d.items(): a__ =[' '] if c == END else [(c + s) for s in self._elements(lowercase_)] result.extend(lowercase_) return tuple(lowercase_) _lowerCAmelCase: Optional[int] = Trie() _lowerCAmelCase: List[str] = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def _lowercase( __a : str ): a__ =trie.find_word(__a ) return tuple(string + word for word in suffixes ) def _lowercase( ): print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
20
0
from __future__ import annotations lowercase : Union[str, Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class __snake_case : def __init__( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Tuple = graph # mapping node to its parent in resulting breadth first tree lowercase : Any = {} lowercase : List[str] = source_vertex def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = {self.source_vertex} lowercase : Any = None lowercase : Optional[Any] = [self.source_vertex] # first in first out queue while queue: lowercase : Optional[int] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(lowercase_ ) lowercase : List[Any] = vertex queue.append(lowercase_ ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex lowercase : int = self.parent.get(lowercase_ ) if target_vertex_parent is None: lowercase : Optional[int] = ( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(lowercase_ ) return self.shortest_path(lowercase_ ) + f"->{target_vertex}" if __name__ == "__main__": lowercase : Tuple = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
336
_lowerCAmelCase: List[str] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def _lowercase( ): a__ =input('Enter message: ' ) a__ =input('Enter key [alphanumeric]: ' ) a__ =input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): a__ ='encrypt' a__ =encrypt_message(__a , __a ) elif mode.lower().startswith('d' ): a__ ='decrypt' a__ =decrypt_message(__a , __a ) print(f"""\n{mode.title()}ed message:""" ) print(__a ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'encrypt' ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'decrypt' ) def _lowercase( __a : str , __a : str , __a : str ): a__ =[] a__ =0 a__ =key.upper() for symbol in message: a__ =LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__a ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__a ): a__ =0 else: translated.append(__a ) return "".join(__a ) if __name__ == "__main__": main()
20
0
'''simple docstring''' import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowerCAmelCase : List[Any] = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowerCAmelCase : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def _A ( A ) -> Any: if "://" in dataset_path: lowercase : int = dataset_path.split("://" )[1] return dataset_path def _A ( A ) -> int: if fs is not None and fs.protocol != "file": return True else: return False def _A ( A ,A ,A ) -> Optional[int]: lowercase : Dict = not is_remote_filesystem(__a ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__a ) ,fs._strip_protocol(__a ) ) else: fs.mv(__a ,__a ,recursive=__a ) def _A ( ) -> int: if hasattr(fsspec.asyn ,"reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: lowercase : Union[str, Any] = None lowercase : List[Any] = None lowercase : List[Any] = threading.Lock()
372
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
0
'''simple docstring''' import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : List[str] = logging.get_logger() def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = True ): """simple docstring""" print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": _SCREAMING_SNAKE_CASE : List[str] = timm.create_model("""levit_128s""" , pretrained=__a ) else: _SCREAMING_SNAKE_CASE : str = timm.create_model("""levit_128""" , pretrained=__a ) if hidden_sizes == 192: _SCREAMING_SNAKE_CASE : int = timm.create_model("""levit_192""" , pretrained=__a ) if hidden_sizes == 256: _SCREAMING_SNAKE_CASE : Optional[Any] = timm.create_model("""levit_256""" , pretrained=__a ) if hidden_sizes == 384: _SCREAMING_SNAKE_CASE : List[str] = timm.create_model("""levit_384""" , pretrained=__a ) from_model.eval() _SCREAMING_SNAKE_CASE : List[str] = LevitForImageClassificationWithTeacher(__a ).eval() _SCREAMING_SNAKE_CASE : Optional[int] = OrderedDict() _SCREAMING_SNAKE_CASE : Union[str, Any] = from_model.state_dict() _SCREAMING_SNAKE_CASE : Any = list(from_model.state_dict().keys() ) _SCREAMING_SNAKE_CASE : List[Any] = list(our_model.state_dict().keys() ) print(len(__a ) , len(__a ) ) for i in range(len(__a ) ): _SCREAMING_SNAKE_CASE : int = weights[og_keys[i]] our_model.load_state_dict(__a ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn((2, 3, 224, 224) ) _SCREAMING_SNAKE_CASE : int = from_model(__a ) _SCREAMING_SNAKE_CASE : List[str] = our_model(__a ).logits assert torch.allclose(__a , __a ), "The model logits don't match the original one." _SCREAMING_SNAKE_CASE : List[Any] = name print(__a ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) _SCREAMING_SNAKE_CASE : List[str] = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = """imagenet-1k-id2label.json""" _SCREAMING_SNAKE_CASE : Optional[int] = 1000 _SCREAMING_SNAKE_CASE : List[Any] = (1, num_labels) _SCREAMING_SNAKE_CASE : Dict = """huggingface/label-files""" _SCREAMING_SNAKE_CASE : Any = num_labels _SCREAMING_SNAKE_CASE : Dict = json.load(open(hf_hub_download(__a , __a , repo_type="""dataset""" ) , """r""" ) ) _SCREAMING_SNAKE_CASE : List[Any] = {int(__a ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE : Union[str, Any] = idalabel _SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE : str = partial(__a , num_labels=__a , idalabel=__a , labelaid=__a ) _SCREAMING_SNAKE_CASE : str = { """levit-128S""": 128, """levit-128""": 128, """levit-192""": 192, """levit-256""": 256, """levit-384""": 384, } _SCREAMING_SNAKE_CASE : Dict = { """levit-128S""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-128""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-192""": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-256""": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-384""": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __a , names_to_config[model_name] , __a , __a ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __a , __a , __a , __a ) return config, expected_shape if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() UpperCAmelCase_ : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
533
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =KandinskyVaaPriorPipeline snake_case =['prompt'] snake_case =['prompt', 'negative_prompt'] snake_case =[ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] snake_case =False @property def __UpperCamelCase ( self) -> Optional[int]: return 32 @property def __UpperCamelCase ( self) -> Tuple: return 32 @property def __UpperCamelCase ( self) -> int: return self.time_input_dim @property def __UpperCamelCase ( self) -> str: return self.time_input_dim * 4 @property def __UpperCamelCase ( self) -> Optional[int]: return 100 @property def __UpperCamelCase ( self) -> Union[str, Any]: a__ =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self) -> Union[str, Any]: torch.manual_seed(0) a__ =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowercase_) @property def __UpperCamelCase ( self) -> Tuple: torch.manual_seed(0) a__ ={ 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } a__ =PriorTransformer(**lowercase_) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 a__ =nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def __UpperCamelCase ( self) -> Any: torch.manual_seed(0) a__ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) a__ =CLIPVisionModelWithProjection(lowercase_) return model @property def __UpperCamelCase ( self) -> Optional[int]: a__ =CLIPImageProcessor( crop_size=224 , do_center_crop=lowercase_ , do_normalize=lowercase_ , do_resize=lowercase_ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor def __UpperCamelCase ( self) -> Any: a__ =self.dummy_prior a__ =self.dummy_image_encoder a__ =self.dummy_text_encoder a__ =self.dummy_tokenizer a__ =self.dummy_image_processor a__ =UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=lowercase_ , clip_sample_range=10.0 , ) a__ ={ 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def __UpperCamelCase ( self , lowercase_ , lowercase_=0) -> Tuple: if str(lowercase_).startswith('mps'): a__ =torch.manual_seed(lowercase_) else: a__ =torch.Generator(device=lowercase_).manual_seed(lowercase_) a__ ={ 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __UpperCamelCase ( self) -> int: a__ ='cpu' a__ =self.get_dummy_components() a__ =self.pipeline_class(**lowercase_) a__ =pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) a__ =pipe(**self.get_dummy_inputs(lowercase_)) a__ =output.image_embeds a__ =pipe( **self.get_dummy_inputs(lowercase_) , return_dict=lowercase_ , )[0] a__ =image[0, -10:] a__ =image_from_tuple[0, -10:] assert image.shape == (1, 32) a__ =np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def __UpperCamelCase ( self) -> List[Any]: a__ =torch_device == 'cpu' a__ =True a__ =False self._test_inference_batch_single_identical( test_max_difference=lowercase_ , relax_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , ) @skip_mps def __UpperCamelCase ( self) -> Optional[int]: a__ =torch_device == 'cpu' a__ =False self._test_attention_slicing_forward_pass( test_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , )
20
0
'''simple docstring''' import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) _lowerCamelCase : Optional[int] = logging.getLogger(__name__) def __lowerCamelCase ( A__ , A__ ) -> List[str]: """simple docstring""" UpperCamelCase = np.argmax(__a , axis=1 ) return np.sum(outputs == labels ) def __lowerCamelCase ( A__ ) -> List[str]: """simple docstring""" with open(__a , encoding='utf_8' ) as f: UpperCamelCase = csv.reader(__a ) UpperCamelCase = [] next(__a ) # skip the first line for line in tqdm(__a ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def __lowerCamelCase ( A__ , A__ , A__ , A__ , A__ , A__ ) -> Any: """simple docstring""" UpperCamelCase = [] for dataset in encoded_datasets: UpperCamelCase = len(__a ) UpperCamelCase = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) UpperCamelCase = np.zeros((n_batch, 2) , dtype=np.intaa ) UpperCamelCase = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) UpperCamelCase = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(__a ): UpperCamelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] UpperCamelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] UpperCamelCase = with_conta UpperCamelCase = with_conta UpperCamelCase = len(__a ) - 1 UpperCamelCase = len(__a ) - 1 UpperCamelCase = with_conta UpperCamelCase = with_conta UpperCamelCase = mc_label UpperCamelCase = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(__a ) for t in all_inputs ) ) return tensor_datasets def __lowerCamelCase ( ) -> Dict: """simple docstring""" UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--model_name' , type=__a , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=__a , type=__a , required=__a , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=__a , default='' ) parser.add_argument('--eval_dataset' , type=__a , default='' ) parser.add_argument('--seed' , type=__a , default=42 ) parser.add_argument('--num_train_epochs' , type=__a , default=3 ) parser.add_argument('--train_batch_size' , type=__a , default=8 ) parser.add_argument('--eval_batch_size' , type=__a , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=__a , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=__a , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=__a , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=__a , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=__a , default=6.2_5e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=__a , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=__a , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=__a , default=0.01 ) parser.add_argument('--lm_coef' , type=__a , default=0.9 ) parser.add_argument('--n_valid' , type=__a , default=374 ) parser.add_argument('--server_ip' , type=__a , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__a , default='' , help='Can be used for distant debugging.' ) UpperCamelCase = parser.parse_args() print(__a ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__a ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) UpperCamelCase = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) UpperCamelCase = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(__a , __a ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset UpperCamelCase = ['_start_', '_delimiter_', '_classify_'] UpperCamelCase = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(__a ) UpperCamelCase = tokenizer.convert_tokens_to_ids(__a ) UpperCamelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(__a ) ) model.to(__a ) # Load and encode the datasets def tokenize_and_encode(A__ ): if isinstance(__a , __a ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(__a ) ) elif isinstance(__a , __a ): return obj return [tokenize_and_encode(__a ) for o in obj] logger.info('Encoding dataset...' ) UpperCamelCase = load_rocstories_dataset(args.train_dataset ) UpperCamelCase = load_rocstories_dataset(args.eval_dataset ) UpperCamelCase = (train_dataset, eval_dataset) UpperCamelCase = tokenize_and_encode(__a ) # Compute the max input length for the Transformer UpperCamelCase = model.config.n_positions // 2 - 2 UpperCamelCase = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) UpperCamelCase = min(__a , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders UpperCamelCase = pre_process_datasets(__a , __a , __a , *__a ) UpperCamelCase , UpperCamelCase = tensor_datasets[0], tensor_datasets[1] UpperCamelCase = TensorDataset(*__a ) UpperCamelCase = RandomSampler(__a ) UpperCamelCase = DataLoader(__a , sampler=__a , batch_size=args.train_batch_size ) UpperCamelCase = TensorDataset(*__a ) UpperCamelCase = SequentialSampler(__a ) UpperCamelCase = DataLoader(__a , sampler=__a , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: UpperCamelCase = args.max_steps UpperCamelCase = args.max_steps // (len(__a ) // args.gradient_accumulation_steps) + 1 else: UpperCamelCase = len(__a ) // args.gradient_accumulation_steps * args.num_train_epochs UpperCamelCase = list(model.named_parameters() ) UpperCamelCase = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] UpperCamelCase = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] UpperCamelCase = AdamW(__a , lr=args.learning_rate , eps=args.adam_epsilon ) UpperCamelCase = get_linear_schedule_with_warmup( __a , num_warmup_steps=args.warmup_steps , num_training_steps=__a ) if args.do_train: UpperCamelCase , UpperCamelCase , UpperCamelCase = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = tqdm(__a , desc='Training' ) for step, batch in enumerate(__a ): UpperCamelCase = tuple(t.to(__a ) for t in batch ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = batch UpperCamelCase = model(__a , mc_token_ids=__a , lm_labels=__a , mc_labels=__a ) UpperCamelCase = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() UpperCamelCase = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 UpperCamelCase = 'Training loss: {:.2e} lr: {:.2e}'.format(__a , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer UpperCamelCase = model.module if hasattr(__a , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` UpperCamelCase = os.path.join(args.output_dir , __a ) UpperCamelCase = os.path.join(args.output_dir , __a ) torch.save(model_to_save.state_dict() , __a ) model_to_save.config.to_json_file(__a ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned UpperCamelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) UpperCamelCase = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(__a ) if args.do_eval: model.eval() UpperCamelCase , UpperCamelCase = 0, 0 UpperCamelCase , UpperCamelCase = 0, 0 for batch in tqdm(__a , desc='Evaluating' ): UpperCamelCase = tuple(t.to(__a ) for t in batch ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = batch with torch.no_grad(): UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = model( __a , mc_token_ids=__a , lm_labels=__a , mc_labels=__a ) UpperCamelCase = mc_logits.detach().cpu().numpy() UpperCamelCase = mc_labels.to('cpu' ).numpy() UpperCamelCase = accuracy(__a , __a ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 UpperCamelCase = eval_loss / nb_eval_steps UpperCamelCase = eval_accuracy / nb_eval_examples UpperCamelCase = tr_loss / nb_tr_steps if args.do_train else None UpperCamelCase = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} UpperCamelCase = os.path.join(args.output_dir , 'eval_results.txt' ) with open(__a , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , __a , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
430
from manim import * class lowercase_ (lowercase__ ): def __UpperCamelCase ( self) -> List[Any]: a__ =Rectangle(height=0.5 , width=0.5) a__ =Rectangle(height=0.46 , width=0.46).set_stroke(width=0) a__ =[mem.copy() for i in range(6)] a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(lowercase_ , lowercase_).arrange(lowercase_ , buff=0) a__ =Text('CPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) cpu.move_to([-2.5, -0.5, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(4)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('GPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) gpu.move_to([-1, -1, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Model' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) model.move_to([3, -1.0, 0]) self.add(lowercase_) a__ =[] for i, rect in enumerate(lowercase_): rect.set_stroke(lowercase_) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) a__ =Rectangle(height=0.46 / 4 , width=0.46 / 3).set_stroke(width=0.0).set_fill(lowercase_ , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=lowercase_) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0) self.add(lowercase_) cpu_targs.append(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Loaded Checkpoint' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4) checkpoint.move_to([3, 0.5, 0]) a__ =Square(side_length=2.2) key.move_to([-5, 2, 0]) a__ =MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(lowercase_ , lowercase_) a__ =MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left()) a__ =MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(lowercase_) , Write(lowercase_)) self.play(Write(lowercase_ , run_time=1) , Create(lowercase_ , run_time=1)) a__ =[] a__ =[] for i, rect in enumerate(lowercase_): a__ =fill.copy().set_fill(lowercase_ , opacity=0.7) target.move_to(lowercase_) first_animations.append(GrowFromCenter(lowercase_ , run_time=1)) a__ =target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.target.move_to(cpu_right_col_base[i - 5]) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5)) self.play(*lowercase_) self.play(*lowercase_) self.wait()
20
0
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ = "ClapFeatureExtractor" lowerCAmelCase_ = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__(self , UpperCAmelCase , UpperCAmelCase ) -> List[str]: super().__init__(lowercase_ , lowercase_ ) def __call__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Optional[Any]: _snake_case = kwargs.pop("""sampling_rate""" , lowercase_ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: _snake_case = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if audios is not None: _snake_case = self.feature_extractor( lowercase_ , sampling_rate=lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None and audios is not None: _snake_case = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def lowercase (self , *UpperCAmelCase , **UpperCAmelCase ) -> Dict: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def lowercase (self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def lowercase (self ) -> Optional[Any]: _snake_case = self.tokenizer.model_input_names _snake_case = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
585
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _lowerCAmelCase: Any = sys.version_info >= (3, 10) def _lowercase( __a : int=None , __a : Any=None ): return field(default_factory=lambda: default , metadata=__a ) @dataclass class lowercase_ : snake_case =42 snake_case =42 snake_case =42 snake_case =42 @dataclass class lowercase_ : snake_case =42 snake_case =field(default='toto' , metadata={'help': 'help message'} ) @dataclass class lowercase_ : snake_case =False snake_case =True snake_case =None class lowercase_ (lowercase__ ): snake_case ='titi' snake_case ='toto' class lowercase_ (lowercase__ ): snake_case ='titi' snake_case ='toto' snake_case =42 @dataclass class lowercase_ : snake_case ="toto" def __UpperCamelCase ( self) -> List[str]: a__ =BasicEnum(self.foo) @dataclass class lowercase_ : snake_case ="toto" def __UpperCamelCase ( self) -> List[str]: a__ =MixedTypeEnum(self.foo) @dataclass class lowercase_ : snake_case =None snake_case =field(default=lowercase__ , metadata={'help': 'help message'} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) @dataclass class lowercase_ : snake_case =list_field(default=[] ) snake_case =list_field(default=[1, 2, 3] ) snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] ) snake_case =list_field(default=[0.1, 0.2, 0.3] ) @dataclass class lowercase_ : snake_case =field() snake_case =field() snake_case =field() def __UpperCamelCase ( self) -> List[Any]: a__ =BasicEnum(self.required_enum) @dataclass class lowercase_ : snake_case =42 snake_case =field() snake_case =None snake_case =field(default='toto' , metadata={'help': 'help message'} ) snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class lowercase_ : snake_case =False snake_case =True snake_case =None @dataclass class lowercase_ : snake_case =None snake_case =field(default=lowercase__ , metadata={'help': 'help message'} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self , lowercase_ , lowercase_) -> int: self.assertEqual(len(a._actions) , len(b._actions)) for x, y in zip(a._actions , b._actions): a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'} a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , lowercase_) and yy.get('choices' , lowercase_): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](lowercase_) , yy['type'](lowercase_)) del xx["type"], yy["type"] self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_) expected.add_argument('--bar' , type=lowercase_ , required=lowercase_) expected.add_argument('--baz' , type=lowercase_ , required=lowercase_) expected.add_argument('--flag' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') self.argparsersEqual(lowercase_ , lowercase_) a__ =['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((a__) , ) =parser.parse_args_into_dataclasses(lowercase_ , look_for_args_file=lowercase_) self.assertFalse(example.flag) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=lowercase_) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message') self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Optional[Any]: a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') expected.add_argument('--baz' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=lowercase_ , dest='baz') expected.add_argument('--opt' , type=lowercase_ , default=lowercase_) a__ =[WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_) for dataclass_type in dataclass_types: a__ =HfArgumentParser(lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', '--no_baz']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', '--baz']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(args.foo , 'toto') a__ =parser.parse_args_into_dataclasses([])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto) a__ =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') a__ =parser.parse_args_into_dataclasses(['--foo', 'titi'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi) a__ =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) a__ =parser.parse_args_into_dataclasses(['--foo', '42'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo) def __UpperCamelCase ( self) -> List[Any]: @dataclass class lowercase_ : snake_case ="toto" a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(args.foo , 'toto') a__ =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') a__ =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) def __UpperCamelCase ( self) -> Optional[int]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=lowercase_) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=lowercase_) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual( lowercase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3]) , ) a__ =parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split()) self.assertEqual(lowercase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7])) def __UpperCamelCase ( self) -> Dict: a__ =argparse.ArgumentParser() expected.add_argument('--foo' , default=lowercase_ , type=lowercase_) expected.add_argument('--bar' , default=lowercase_ , type=lowercase_ , help='help message') expected.add_argument('--baz' , default=lowercase_ , type=lowercase_) expected.add_argument('--ces' , nargs='+' , default=[] , type=lowercase_) expected.add_argument('--des' , nargs='+' , default=[] , type=lowercase_) a__ =[OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_) for dataclass_type in dataclass_types: a__ =HfArgumentParser(lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , bar=lowercase_ , baz=lowercase_ , ces=[] , des=[])) a__ =parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split()) self.assertEqual(lowercase_ , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3])) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=lowercase_ , required=lowercase_) expected.add_argument('--required_str' , type=lowercase_ , required=lowercase_) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , ) self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , ) expected.add_argument('--opt' , type=lowercase_ , default=lowercase_) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message') expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_) self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } a__ =parser.parse_dict(lowercase_)[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(lowercase_ , parser.parse_dict , lowercase_ , allow_extra_keys=lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: a__ =os.path.join(lowercase_ , 'temp_json') os.mkdir(lowercase_) with open(temp_local_path + '.json' , 'w+') as f: json.dump(lowercase_ , lowercase_) a__ =parser.parse_yaml_file(Path(temp_local_path + '.json'))[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Any: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: a__ =os.path.join(lowercase_ , 'temp_yaml') os.mkdir(lowercase_) with open(temp_local_path + '.yaml' , 'w+') as f: yaml.dump(lowercase_ , lowercase_) a__ =parser.parse_yaml_file(Path(temp_local_path + '.yaml'))[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) self.assertIsNotNone(lowercase_)
20
0
"""simple docstring""" from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def UpperCamelCase ( _A , _A , _A , _A , ) -> Union[str, Any]: lowercase , lowercase : List[Any] = coefficient_matrix.shape lowercase , lowercase : Optional[int] = constant_matrix.shape if rowsa != colsa: lowercase : Tuple = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(__a ) if colsa != 1: lowercase : Optional[Any] = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(__a ) if rowsa != rowsa: lowercase : Dict = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ F"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(__a ) if len(__a ) != rowsa: lowercase : Union[str, Any] = ( """Number of initial values must be equal to number of rows in coefficient """ F"""matrix but received {len(__a )} and {rowsa}""" ) raise ValueError(__a ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) lowercase : Optional[Any] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) lowercase , lowercase : Union[str, Any] = table.shape strictly_diagonally_dominant(__a ) # Iterates the whole matrix for given number of times for _ in range(__a ): lowercase : int = [] for row in range(__a ): lowercase : Optional[Any] = 0 for col in range(__a ): if col == row: lowercase : Any = table[row][col] elif col == cols - 1: lowercase : Dict = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowercase : Tuple = (temp + val) / denom new_val.append(__a ) lowercase : Any = new_val return [float(__a ) for i in new_val] def UpperCamelCase ( _A ) -> Any: lowercase , lowercase : int = table.shape lowercase : Tuple = True for i in range(0 , __a ): lowercase : str = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
264
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase: List[Any] = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class lowercase_ (lowercase__ ): snake_case ='autoformer' snake_case ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , lowercase_ = None , lowercase_ = None , lowercase_ = "student_t" , lowercase_ = "nll" , lowercase_ = 1 , lowercase_ = [1, 2, 3, 4, 5, 6, 7] , lowercase_ = True , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 64 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 32 , lowercase_ = 32 , lowercase_ = "gelu" , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 100 , lowercase_ = 0.02 , lowercase_ = True , lowercase_=True , lowercase_ = 10 , lowercase_ = 25 , lowercase_ = 3 , **lowercase_ , ) -> Union[str, Any]: # time series specific configuration a__ =prediction_length a__ =context_length if context_length is not None else prediction_length a__ =distribution_output a__ =loss a__ =input_size a__ =num_time_features a__ =lags_sequence a__ =scaling a__ =num_dynamic_real_features a__ =num_static_real_features a__ =num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`') a__ =cardinality else: a__ =[0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`') a__ =embedding_dimension else: a__ =[min(50 , (cat + 1) // 2) for cat in self.cardinality] a__ =num_parallel_samples # Transformer architecture configuration a__ =input_size * len(self.lags_sequence) + self._number_of_features a__ =d_model a__ =encoder_attention_heads a__ =decoder_attention_heads a__ =encoder_ffn_dim a__ =decoder_ffn_dim a__ =encoder_layers a__ =decoder_layers a__ =dropout a__ =attention_dropout a__ =activation_dropout a__ =encoder_layerdrop a__ =decoder_layerdrop a__ =activation_function a__ =init_std a__ =use_cache # Autoformer a__ =label_length a__ =moving_average a__ =autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def __UpperCamelCase ( self) -> int: return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
20
0
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="resnet50" , _lowerCAmelCase=3 , _lowerCAmelCase=32 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , ) -> Union[str, Any]: '''simple docstring''' lowercase = parent lowercase = out_indices if out_indices is not None else [4] lowercase = stage_names lowercase = out_features lowercase = backbone lowercase = batch_size lowercase = image_size lowercase = num_channels lowercase = use_pretrained_backbone lowercase = is_training def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = self.get_config() return config, pixel_values def _a ( self ) -> Tuple: '''simple docstring''' return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = TimmBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowercase = model(lowercase_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def _a ( self ) -> str: '''simple docstring''' lowercase = self.prepare_config_and_inputs() lowercase , lowercase = config_and_inputs lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class __UpperCamelCase (lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): __A = (TimmBackbone,) if is_torch_available() else () __A = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} __A = False __A = False __A = False __A = False def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = TimmBackboneModelTester(self ) lowercase = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def _a ( self ) -> Dict: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self ) -> str: '''simple docstring''' lowercase = """resnet18""" lowercase = """microsoft/resnet-18""" lowercase = AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_ ) lowercase = AutoBackbone.from_pretrained(lowercase_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) lowercase = AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_ , out_indices=[1, 2, 3] ) lowercase = AutoBackbone.from_pretrained(lowercase_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn\'t support feed forward chunking""" ) def _a ( self ) -> int: '''simple docstring''' pass @unittest.skip("""TimmBackbone doesn\'t have num_hidden_layers attribute""" ) def _a ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def _a ( self ) -> Any: '''simple docstring''' pass @unittest.skip("""TimmBackbone models doesn\'t have inputs_embeds""" ) def _a ( self ) -> Any: '''simple docstring''' pass @unittest.skip("""TimmBackbone models doesn\'t have inputs_embeds""" ) def _a ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def _a ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("""model weights aren\'t tied in TimmBackbone.""" ) def _a ( self ) -> Dict: '''simple docstring''' pass @unittest.skip("""model weights aren\'t tied in TimmBackbone.""" ) def _a ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def _a ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("""TimmBackbone doesn\'t have hidden size info in its configuration.""" ) def _a ( self ) -> int: '''simple docstring''' pass @unittest.skip("""TimmBackbone doesn\'t support output_attentions.""" ) def _a ( self ) -> str: '''simple docstring''' pass @unittest.skip("""Safetensors is not supported by timm.""" ) def _a ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self ) -> Optional[Any]: '''simple docstring''' pass def _a ( self ) -> Any: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(lowercase_ ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase_ ) def _a ( self ) -> Any: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = True lowercase = self.has_attentions # no need to test all models as different heads yield the same functionality lowercase = self.all_model_classes[0] lowercase = model_class(lowercase_ ) model.to(lowercase_ ) lowercase = self._prepare_for_class(lowercase_ , lowercase_ ) lowercase = model(**lowercase_ ) lowercase = outputs[0][-1] # Encoder-/Decoder-only models lowercase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowercase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowercase_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase = model(**lowercase_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowercase = copy.deepcopy(lowercase_ ) lowercase = None lowercase = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase = model(**lowercase_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights lowercase = copy.deepcopy(lowercase_ ) lowercase = False lowercase = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase = model(**lowercase_ )
588
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowerCAmelCase: List[Any] = logging.get_logger(__name__) class lowercase_ (lowercase__ ): snake_case =['pixel_values'] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = None , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: super().__init__(**lowercase_) a__ =size if size is not None else {'shortest_edge': 256} a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) a__ =crop_size if crop_size is not None else {'height': 224, 'width': 224} a__ =get_size_dict(lowercase_ , param_name='crop_size') a__ =do_resize a__ =size a__ =resample a__ =do_center_crop a__ =crop_size a__ =do_rescale a__ =rescale_factor a__ =do_normalize a__ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a__ =image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") a__ =get_resize_output_image_size(lowercase_ , size=size['shortest_edge'] , default_to_square=lowercase_) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: a__ =get_size_dict(lowercase_) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""") return center_crop(lowercase_ , size=(size['height'], size['width']) , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_) -> np.ndarray: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> Tuple: a__ =do_resize if do_resize is not None else self.do_resize a__ =size if size is not None else self.size a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) a__ =resample if resample is not None else self.resample a__ =do_center_crop if do_center_crop is not None else self.do_center_crop a__ =crop_size if crop_size is not None else self.crop_size a__ =get_size_dict(lowercase_ , param_name='crop_size') a__ =do_rescale if do_rescale is not None else self.do_rescale a__ =rescale_factor if rescale_factor is not None else self.rescale_factor a__ =do_normalize if do_normalize is not None else self.do_normalize a__ =image_mean if image_mean is not None else self.image_mean a__ =image_std if image_std is not None else self.image_std a__ =make_list_of_images(lowercase_) if not valid_images(lowercase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a__ =[to_numpy_array(lowercase_) for image in images] if do_resize: a__ =[self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_) for image in images] if do_center_crop: a__ =[self.center_crop(image=lowercase_ , size=lowercase_) for image in images] if do_rescale: a__ =[self.rescale(image=lowercase_ , scale=lowercase_) for image in images] if do_normalize: a__ =[self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_) for image in images] a__ =[to_channel_dimension_format(lowercase_ , lowercase_) for image in images] a__ ={'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None) -> str: a__ =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_) != len(lowercase_): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(lowercase_): a__ =target_sizes.numpy() a__ =[] for idx in range(len(lowercase_)): a__ =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_) a__ =resized_logits[0].argmax(dim=0) semantic_segmentation.append(lowercase_) else: a__ =logits.argmax(dim=1) a__ =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
20
0
"""simple docstring""" import requests def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Dict = {"""Content-Type""": """application/json"""} UpperCAmelCase__ : List[Any] = requests.post(__a , json={"""text""": message_body} , headers=__a ) if response.status_code != 200: UpperCAmelCase__ : Tuple = ( """Request to slack returned an error """ F"{response.status_code}, the response is:\n{response.text}" ) raise ValueError(__a ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
65
from importlib import import_module from .logging import get_logger _lowerCAmelCase: str = get_logger(__name__) class lowercase_ : def __init__( self , lowercase_ , lowercase_=None) -> Tuple: a__ =attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__'): setattr(self , lowercase_ , getattr(lowercase_ , lowercase_)) a__ =module._original_module if isinstance(lowercase_ , _PatchedModuleObj) else module class lowercase_ : snake_case =[] def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None) -> List[str]: a__ =obj a__ =target a__ =new a__ =target.split('.')[0] a__ ={} a__ =attrs or [] def __enter__( self) -> Optional[int]: *a__ , a__ =self.target.split('.') # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowercase_)): try: a__ =import_module('.'.join(submodules[: i + 1])) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): a__ =getattr(self.obj , lowercase_) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowercase_ , _PatchedModuleObj) and obj_attr._original_module is submodule) ): a__ =obj_attr # patch at top level setattr(self.obj , lowercase_ , _PatchedModuleObj(lowercase_ , attrs=self.attrs)) a__ =getattr(self.obj , lowercase_) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowercase_ , lowercase_ , _PatchedModuleObj(getattr(lowercase_ , lowercase_ , lowercase_) , attrs=self.attrs)) a__ =getattr(lowercase_ , lowercase_) # finally set the target attribute setattr(lowercase_ , lowercase_ , self.new) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: a__ =getattr(import_module('.'.join(lowercase_)) , lowercase_) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowercase_) is attr_value: a__ =getattr(self.obj , lowercase_) setattr(self.obj , lowercase_ , self.new) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" a__ =globals()['__builtins__'][target_attr] setattr(self.obj , lowercase_ , self.new) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""") def __exit__( self , *lowercase_) -> str: for attr in list(self.original): setattr(self.obj , lowercase_ , self.original.pop(lowercase_)) def __UpperCamelCase ( self) -> Any: self.__enter__() self._active_patches.append(self) def __UpperCamelCase ( self) -> Union[str, Any]: try: self._active_patches.remove(self) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
20
0
'''simple docstring''' def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) _snake_case = str(bin(__a ) ) binary_number += "0" * shift_amount return binary_number def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) _snake_case = str(bin(__a ) )[2:] if shift_amount >= len(__a ): return "0b0" _snake_case = binary_number[: len(__a ) - shift_amount] return "0b" + shifted_binary_number def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if number >= 0: # Get binary representation of positive number _snake_case = "0" + str(bin(__a ) ).strip("-" )[2:] else: # Get binary (2's complement) representation of negative number _snake_case = len(bin(__a )[3:] ) # Find 2's complement of number _snake_case = bin(abs(__a ) - (1 << binary_number_length) )[3:] _snake_case = ( "1" + "0" * (binary_number_length - len(__a )) + binary_number ) if shift_amount >= len(__a ): return "0b" + binary_number[0] * len(__a ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__a ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
672
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": _lowerCAmelCase: int = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def _lowercase( __a : Optional[Any] ): if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) _lowerCAmelCase: str = parser.parse_args() _lowerCAmelCase: Tuple = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
20
0
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--original_config_file""", type=str, required=True, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--image_size""", default=512, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if string == "True": return True elif string == "False": return False else: raise ValueError(f"could not parse string as bool {string}" ) parser.add_argument( """--use_linear_projection""", help="""Override for use linear projection""", required=False, type=parse_bool ) parser.add_argument("""--cross_attention_dim""", help="""Override for cross attention_dim""", required=False, type=int) __lowercase = parser.parse_args() __lowercase = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
203
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _lowerCAmelCase: Tuple = get_logger(__name__) _lowerCAmelCase: List[str] = Path(__file__).parent / 'model_card_template.md' _lowerCAmelCase: Any = uuida().hex _lowerCAmelCase: List[Any] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase: int = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase: Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def _lowercase( __a : Union[Dict, str, None] = None ): a__ =f"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"""; torch/{_torch_version}""" if is_flax_available(): ua += f"""; jax/{_jax_version}""" ua += f"""; flax/{_flax_version}""" if is_onnx_available(): ua += f"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__a , __a ): ua += "; " + "; ".join(f"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__a , __a ): ua += "; " + user_agent return ua def _lowercase( __a : str , __a : Optional[str] = None , __a : Optional[str] = None ): if token is None: a__ =HfFolder.get_token() if organization is None: a__ =whoami(__a )['name'] return f"""{username}/{model_id}""" else: return f"""{organization}/{model_id}""" def _lowercase( __a : Union[str, Any] , __a : Dict ): if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(__a , 'local_rank' ) and args.local_rank not in [-1, 0]: return a__ =args.hub_token if hasattr(__a , 'hub_token' ) else None a__ =get_full_repo_name(__a , token=__a ) a__ =ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__a , model_name=__a , repo_name=__a , dataset_name=args.dataset_name if hasattr(__a , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__a , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__a , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(__a , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__a , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__a , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__a , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__a , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__a , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(__a , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__a , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) a__ =os.path.join(args.output_dir , 'README.md' ) model_card.save(__a ) def _lowercase( __a : Optional[str] , __a : Optional[str] = None ): if resolved_file is None or commit_hash is not None: return commit_hash a__ =str(Path(__a ).as_posix() ) a__ =re.search(r'snapshots/([^/]+)/' , __a ) if search is None: return None a__ =search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__a ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _lowerCAmelCase: List[str] = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) _lowerCAmelCase: List[str] = os.path.join(hf_cache_home, 'diffusers') def _lowercase( __a : Optional[str] = None , __a : Optional[str] = None ): if new_cache_dir is None: a__ =DIFFUSERS_CACHE if old_cache_dir is None: a__ =old_diffusers_cache a__ =Path(__a ).expanduser() a__ =Path(__a ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): a__ =new_cache_dir / old_blob_path.relative_to(__a ) new_blob_path.parent.mkdir(parents=__a , exist_ok=__a ) os.replace(__a , __a ) try: os.symlink(__a , __a ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _lowerCAmelCase: Dict = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): _lowerCAmelCase: int = 0 else: with open(cache_version_file) as f: try: _lowerCAmelCase: List[Any] = int(f.read()) except ValueError: _lowerCAmelCase: Any = 0 if cache_version < 1: _lowerCAmelCase: str = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: _lowerCAmelCase: Optional[Any] = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ 'the directory exists and can be written to.' ) def _lowercase( __a : str , __a : Optional[str] = None ): if variant is not None: a__ =weights_name.split('.' ) a__ =splits[:-1] + [variant] + splits[-1:] a__ ='.'.join(__a ) return weights_name def _lowercase( __a : Union[str, Any] , *, __a : Optional[Any] , __a : Optional[Any] , __a : List[Any] , __a : Tuple , __a : Optional[Any] , __a : Dict , __a : str , __a : int , __a : Tuple , __a : Union[str, Any] , __a : int=None , ): a__ =str(__a ) if os.path.isfile(__a ): return pretrained_model_name_or_path elif os.path.isdir(__a ): if os.path.isfile(os.path.join(__a , __a ) ): # Load from a PyTorch checkpoint a__ =os.path.join(__a , __a ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__a , __a , __a ) ): a__ =os.path.join(__a , __a , __a ) return model_file else: raise EnvironmentError( f"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__a ).base_version ) >= version.parse('0.20.0' ) ): try: a__ =hf_hub_download( __a , filename=_add_variant(__a , __a ) , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) warnings.warn( f"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __a , ) return model_file except: # noqa: E722 warnings.warn( f"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__a , __a )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__a , __a )}' so that the correct variant file can be added.""" , __a , ) try: # 2. Load model file as usual a__ =hf_hub_download( __a , filename=__a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( f"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ 'this model name. Check the model page at ' f"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( f"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( f"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" f""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" f""" directory containing a file named {weights_name} or""" ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( f"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' f"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ f"""containing a file named {weights_name}""" )
20
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase = logging.get_logger(__name__) class __snake_case( lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase : List[str] = "maskformer-swin" UpperCAmelCase : Union[str, Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , A_=224 , A_=4 , A_=3 , A_=96 , A_=[2, 2, 6, 2] , A_=[3, 6, 12, 24] , A_=7 , A_=4.0 , A_=True , A_=0.0 , A_=0.0 , A_=0.1 , A_="gelu" , A_=False , A_=0.0_2 , A_=1e-5 , A_=None , A_=None , **A_ , ) -> Union[str, Any]: super().__init__(**lowercase_ ) lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = embed_dim lowerCAmelCase = depths lowerCAmelCase = len(lowercase_ ) lowerCAmelCase = num_heads lowerCAmelCase = window_size lowerCAmelCase = mlp_ratio lowerCAmelCase = qkv_bias lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = drop_path_rate lowerCAmelCase = hidden_act lowerCAmelCase = use_absolute_embeddings lowerCAmelCase = layer_norm_eps lowerCAmelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase, lowerCAmelCase = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
433
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger() def _lowercase( __a : int , __a : str , __a : LevitConfig , __a : Path , __a : bool = True ): print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": a__ =timm.create_model('levit_128s' , pretrained=__a ) else: a__ =timm.create_model('levit_128' , pretrained=__a ) if hidden_sizes == 192: a__ =timm.create_model('levit_192' , pretrained=__a ) if hidden_sizes == 256: a__ =timm.create_model('levit_256' , pretrained=__a ) if hidden_sizes == 384: a__ =timm.create_model('levit_384' , pretrained=__a ) from_model.eval() a__ =LevitForImageClassificationWithTeacher(__a ).eval() a__ =OrderedDict() a__ =from_model.state_dict() a__ =list(from_model.state_dict().keys() ) a__ =list(our_model.state_dict().keys() ) print(len(__a ) , len(__a ) ) for i in range(len(__a ) ): a__ =weights[og_keys[i]] our_model.load_state_dict(__a ) a__ =torch.randn((2, 3, 224, 224) ) a__ =from_model(__a ) a__ =our_model(__a ).logits assert torch.allclose(__a , __a ), "The model logits don't match the original one." a__ =name print(__a ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) a__ =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def _lowercase( __a : Path , __a : str = None , __a : bool = True ): a__ ='imagenet-1k-id2label.json' a__ =1000 a__ =(1, num_labels) a__ ='huggingface/label-files' a__ =num_labels a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} a__ =partial(__a , num_labels=__a , idalabel=__a , labelaid=__a ) a__ ={ 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } a__ ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __a , names_to_config[model_name] , __a , __a ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __a , __a , __a , __a ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _lowerCAmelCase: Union[str, Any] = parser.parse_args() _lowerCAmelCase: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
20
0
from __future__ import annotations from typing import Generic, TypeVar lowercase : Optional[Any] = TypeVar("""T""") class __snake_case ( Generic[T] ): def __init__( self ,snake_case ): '''simple docstring''' lowercase : List[str] = data lowercase : List[str] = self lowercase : Any = 0 class __snake_case ( Generic[T] ): def __init__( self ): '''simple docstring''' lowercase : List[str] = {} def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[str] = DisjointSetTreeNode(lowercase_ ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[str] = self.map[data] if elem_ref != elem_ref.parent: lowercase : Optional[Any] = self.find_set(elem_ref.parent.data ) return elem_ref.parent def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' if nodea.rank > nodea.rank: lowercase : Optional[int] = nodea else: lowercase : str = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' self.link(self.find_set(lowercase_ ) ,self.find_set(lowercase_ ) ) class __snake_case ( Generic[T] ): def __init__( self ): '''simple docstring''' lowercase : Dict = {} def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if node not in self.connections: lowercase : List[str] = {} def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' self.add_node(lowercase_ ) self.add_node(lowercase_ ) lowercase : Union[str, Any] = weight lowercase : Optional[int] = weight def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = [] lowercase : Optional[Any] = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda snake_case : x[2] ) # creating the disjoint set lowercase : Tuple = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(lowercase_ ) # MST generation lowercase : Tuple = 0 lowercase : List[Any] = 0 lowercase : Tuple = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: lowercase , lowercase , lowercase : Tuple = edges[index] index += 1 lowercase : Optional[int] = disjoint_set.find_set(lowercase_ ) lowercase : Optional[int] = disjoint_set.find_set(lowercase_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(lowercase_ ,lowercase_ ,lowercase_ ) disjoint_set.union(lowercase_ ,lowercase_ ) return graph
336
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowerCAmelCase: int = logging.get_logger(__name__) _lowerCAmelCase: Union[str, Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } _lowerCAmelCase: Tuple = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _lowercase( __a : Optional[Any] ): a__ ={} with open(__a , 'r' ) as file: for line_number, line in enumerate(__a ): a__ =line.strip() if line: a__ =line.split() a__ =line_number a__ =words[0] a__ =value return result def _lowercase( __a : Dict , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : str ): for attribute in key.split('.' ): a__ =getattr(__a , __a ) a__ =None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__a ): a__ =PARAM_MAPPING[full_name.split('.' )[-1]] a__ ='param' if weight_type is not None and weight_type != "param": a__ =getattr(__a , __a ).shape elif weight_type is not None and weight_type == "param": a__ =hf_pointer for attribute in hf_param_name.split('.' ): a__ =getattr(__a , __a ) a__ =shape_pointer.shape # let's reduce dimension a__ =value[0] else: a__ =hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a__ =value elif weight_type == "weight_g": a__ =value elif weight_type == "weight_v": a__ =value elif weight_type == "bias": a__ =value elif weight_type == "param": for attribute in hf_param_name.split('.' ): a__ =getattr(__a , __a ) a__ =value else: a__ =value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _lowercase( __a : Optional[int] , __a : int , __a : Optional[int] , __a : Optional[Any] , __a : List[Any] ): a__ =None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__a ): a__ =PARAM_MAPPING[full_name.split('.' )[-1]] a__ ='param' if weight_type is not None and weight_type != "param": a__ ='.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": a__ ='.'.join([key, hf_param_name] ) else: a__ =key a__ =value if 'lm_head' in full_key else value[0] _lowerCAmelCase: Dict = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _lowercase( __a : Dict , __a : int , __a : int=None , __a : List[str]=None ): a__ =False for key, mapped_key in MAPPING.items(): a__ ='wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: a__ =True if "*" in mapped_key: a__ =name.split(__a )[0].split('.' )[-2] a__ =mapped_key.replace('*' , __a ) if "weight_g" in name: a__ ='weight_g' elif "weight_v" in name: a__ ='weight_v' elif "bias" in name: a__ ='bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj a__ ='weight' else: a__ =None if hf_dict is not None: rename_dict(__a , __a , __a , __a , __a ) else: set_recursively(__a , __a , __a , __a , __a ) return is_used return is_used def _lowercase( __a : Union[str, Any] , __a : List[str] , __a : Dict ): a__ =[] a__ =fairseq_model.state_dict() a__ =hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): a__ =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == 'group' , ) a__ =True else: a__ =load_wavaveca_layer(__a , __a , __a ) if not is_used: unused_weights.append(__a ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _lowercase( __a : List[Any] , __a : Optional[Any] , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] ): a__ =full_name.split('conv_layers.' )[-1] a__ =name.split('.' ) a__ =int(items[0] ) a__ =int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def _lowercase( __a : str , __a : str , __a : Any=None , __a : str=None , __a : Any=True , __a : Union[str, Any]=False ): if config_path is not None: a__ =WavaVecaConfig.from_pretrained(__a ) else: a__ =WavaVecaConfig() if is_seq_class: a__ =read_txt_into_dict(__a ) a__ =idalabel a__ =WavaVecaForSequenceClassification(__a ) a__ =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) feature_extractor.save_pretrained(__a ) elif is_finetuned: if dict_path: a__ =Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a__ =target_dict.pad_index a__ =target_dict.bos_index a__ =target_dict.eos_index a__ =len(target_dict.symbols ) a__ =os.path.join(__a , 'vocab.json' ) if not os.path.isdir(__a ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__a ) ) return os.makedirs(__a , exist_ok=__a ) a__ =target_dict.indices # fairseq has the <pad> and <s> switched a__ =0 a__ =1 with open(__a , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(__a , __a ) a__ =WavaVecaCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=__a , ) a__ =True if config.feat_extract_norm == 'layer' else False a__ =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) a__ =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) a__ =WavaVecaForCTC(__a ) else: a__ =WavaVecaForPreTraining(__a ) if is_finetuned or is_seq_class: a__ , a__ , a__ =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: a__ =argparse.Namespace(task='audio_pretraining' ) a__ =fairseq.tasks.setup_task(__a ) a__ , a__ , a__ =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__a ) a__ =model[0].eval() recursively_load_weights(__a , __a , not is_finetuned ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) _lowerCAmelCase: Tuple = parser.parse_args() _lowerCAmelCase: Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
20
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase : Dict = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
372
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowercase_ (unittest.TestCase ): @slow def __UpperCamelCase ( self) -> Optional[int]: a__ =AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowercase_).to(lowercase_) a__ =AutoTokenizer.from_pretrained('google/mt5-small') a__ =tokenizer('Hello there' , return_tensors='pt').input_ids a__ =tokenizer('Hi I am' , return_tensors='pt').input_ids a__ =model(input_ids.to(lowercase_) , labels=labels.to(lowercase_)).loss a__ =-(labels.shape[-1] * loss.item()) a__ =-84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
20
0
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ : List[str] = get_tests_dir('fixtures/test_sentencepiece.model') UpperCAmelCase_ : List[Any] = {'target_lang': 'fi', 'source_lang': 'en'} UpperCAmelCase_ : int = '>>zh<<' UpperCAmelCase_ : int = 'Helsinki-NLP/' if is_torch_available(): UpperCAmelCase_ : str = 'pt' elif is_tf_available(): UpperCAmelCase_ : Optional[int] = 'tf' else: UpperCAmelCase_ : List[Any] = 'jax' @require_sentencepiece class lowercase__ ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : str = MarianTokenizer A_ : Tuple = False A_ : int = True def UpperCAmelCase_ ( self ): super().setUp() _SCREAMING_SNAKE_CASE : List[str] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] _SCREAMING_SNAKE_CASE : Tuple = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) _SCREAMING_SNAKE_CASE : List[Any] = Path(self.tmpdirname ) save_json(lowercase_ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowercase_ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase_ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowercase_ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) _SCREAMING_SNAKE_CASE : List[str] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self , **__snake_case ): return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase_ ( self , __snake_case ): return ( "This is a test", "This is a test", ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Tuple = """</s>""" _SCREAMING_SNAKE_CASE : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowercase_ ) , 9 ) def UpperCAmelCase_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Optional[int] = MarianTokenizer.from_pretrained(f"""{ORG_NAME}opus-mt-en-de""" ) _SCREAMING_SNAKE_CASE : int = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) _SCREAMING_SNAKE_CASE : str = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(lowercase_ , batch.input_ids[0] ) _SCREAMING_SNAKE_CASE : List[Any] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [x.name for x in Path(lowercase_ ).glob("""*""" )] self.assertIn("""source.spm""" , lowercase_ ) MarianTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() _SCREAMING_SNAKE_CASE : Optional[int] = tok( ["""I am a small frog""" * 1000, """I am a small frog"""] , padding=lowercase_ , truncation=lowercase_ , return_tensors=lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : str = self.get_tokenizer() _SCREAMING_SNAKE_CASE : Dict = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowercase_ , return_tensors=lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def UpperCAmelCase_ ( self ): # fmt: off _SCREAMING_SNAKE_CASE : List[str] = {"""input_ids""": [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Union[str, Any] = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) _SCREAMING_SNAKE_CASE : List[Any] = """Tämä on testi""" _SCREAMING_SNAKE_CASE : Union[str, Any] = """This is a test""" _SCREAMING_SNAKE_CASE : int = [76, 7, 2047, 2] _SCREAMING_SNAKE_CASE : str = [69, 12, 11, 940, 2] _SCREAMING_SNAKE_CASE : str = tokenizer(lowercase_ ).input_ids self.assertListEqual(lowercase_ , lowercase_ ) _SCREAMING_SNAKE_CASE : List[Any] = tokenizer(text_target=lowercase_ ).input_ids self.assertListEqual(lowercase_ , lowercase_ ) _SCREAMING_SNAKE_CASE : Tuple = tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ ) self.assertEqual(lowercase_ , lowercase_ )
533
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self) -> int: a__ =tempfile.mkdtemp() a__ =BlipImageProcessor() a__ =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel') a__ =BlipProcessor(lowercase_ , lowercase_) processor.save_pretrained(self.tmpdirname) def __UpperCamelCase ( self , **lowercase_) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).tokenizer def __UpperCamelCase ( self , **lowercase_) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).image_processor def __UpperCamelCase ( self) -> Optional[int]: shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self) -> str: a__ =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] a__ =[Image.fromarray(np.moveaxis(lowercase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self) -> str: a__ =BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) a__ =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') a__ =self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0) a__ =BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowercase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowercase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowercase_) def __UpperCamelCase ( self) -> int: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ =self.prepare_image_inputs() a__ =image_processor(lowercase_ , return_tensors='np') a__ =processor(images=lowercase_ , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self) -> List[str]: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =processor(text=lowercase_) a__ =tokenizer(lowercase_ , return_token_type_ids=lowercase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self) -> int: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =self.prepare_image_inputs() a__ =processor(text=lowercase_ , images=lowercase_) self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask']) # test if it raises when no input is passed with pytest.raises(lowercase_): processor() def __UpperCamelCase ( self) -> Tuple: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a__ =processor.batch_decode(lowercase_) a__ =tokenizer.batch_decode(lowercase_) self.assertListEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =self.prepare_image_inputs() a__ =processor(text=lowercase_ , images=lowercase_) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask'])
20
0
'''simple docstring''' from PIL import Image def __lowerCamelCase ( A__ , A__ ) -> int: """simple docstring""" UpperCamelCase = (259 * (level + 255)) / (255 * (259 - level)) def contrast(A__ ) -> int: return int(128 + factor * (c - 128) ) return img.point(__a ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change contrast to 170 _lowerCamelCase : Optional[int] = change_contrast(img, 170) cont_img.save("image_data/lena_high_contrast.png", format="png")
430
def _lowercase( __a : list[int] ): a__ =len(__a ) for i in range(__a ): for j in range(i + 1 , __a ): if numbers[j] < numbers[i]: a__ , a__ =numbers[j], numbers[i] return numbers if __name__ == "__main__": _lowerCAmelCase: Tuple = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase: int = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
20
0
'''simple docstring''' from maths.prime_factors import prime_factors def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if not isinstance(__a , __a ): _snake_case = f"""Input value of [number={number}] must be an integer""" raise TypeError(__a ) if number < 1: raise ValueError("""Input must be a positive integer""" ) return -1 if len(prime_factors(__a ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
585
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowercase_ : def __init__( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="resnet50" , lowercase_=3 , lowercase_=32 , lowercase_=3 , lowercase_=True , lowercase_=True , ) -> Union[str, Any]: a__ =parent a__ =out_indices if out_indices is not None else [4] a__ =stage_names a__ =out_features a__ =backbone a__ =batch_size a__ =image_size a__ =num_channels a__ =use_pretrained_backbone a__ =is_training def __UpperCamelCase ( self) -> Optional[Any]: a__ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ =self.get_config() return config, pixel_values def __UpperCamelCase ( self) -> Tuple: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> str: a__ =TimmBackbone(config=lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): a__ =model(lowercase_) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __UpperCamelCase ( self) -> str: a__ =self.prepare_config_and_inputs() a__ , a__ =config_and_inputs a__ ={'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class lowercase_ (lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): snake_case =(TimmBackbone,) if is_torch_available() else () snake_case ={'feature-extraction': TimmBackbone} if is_torch_available() else {} snake_case =False snake_case =False snake_case =False snake_case =False def __UpperCamelCase ( self) -> Optional[Any]: a__ =TimmBackboneModelTester(self) a__ =ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_) def __UpperCamelCase ( self) -> Dict: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self) -> str: a__ ='resnet18' a__ ='microsoft/resnet-18' a__ =AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_) a__ =AutoBackbone.from_pretrained(lowercase_) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(len(timm_model.stage_names) , len(transformers_model.stage_names)) self.assertEqual(timm_model.channels , transformers_model.channels) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,)) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names) - 1]) a__ =AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_ , out_indices=[1, 2, 3]) a__ =AutoBackbone.from_pretrained(lowercase_ , out_indices=[1, 2, 3]) self.assertEqual(timm_model.out_indices , transformers_model.out_indices) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(timm_model.channels , transformers_model.channels) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> Dict: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> List[Any]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.') def __UpperCamelCase ( self) -> str: pass @unittest.skip('Safetensors is not supported by timm.') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self) -> Optional[Any]: pass def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) a__ =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ =[*signature.parameters.keys()] a__ =['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_) def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =True a__ =self.has_attentions # no need to test all models as different heads yield the same functionality a__ =self.all_model_classes[0] a__ =model_class(lowercase_) model.to(lowercase_) a__ =self._prepare_for_class(lowercase_ , lowercase_) a__ =model(**lowercase_) a__ =outputs[0][-1] # Encoder-/Decoder-only models a__ =outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a__ =outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowercase_) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) def __UpperCamelCase ( self) -> List[str]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_) self.assertEqual(len(result.feature_maps) , len(config.out_indices)) self.assertEqual(len(model.channels) , len(config.out_indices)) # Check output of last stage is taken if out_features=None, out_indices=None a__ =copy.deepcopy(lowercase_) a__ =None a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_) self.assertEqual(len(result.feature_maps) , 1) self.assertEqual(len(model.channels) , 1) # Check backbone can be initialized with fresh weights a__ =copy.deepcopy(lowercase_) a__ =False a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_)
20
0
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path _lowerCAmelCase = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) _lowerCAmelCase = [ord(letter) for letter in string.ascii_lowercase] _lowerCAmelCase = {ord(char) for char in VALID_CHARS} _lowerCAmelCase = ["the", "be", "to", "of", "and", "in", "that", "have"] def UpperCamelCase ( _A , _A ) -> str: lowercase : List[Any] = """""" lowercase : Optional[int] = 42 lowercase : Union[str, Any] = 42 lowercase : int = 42 for keychar, cipherchar in zip(cycle(__a ) , __a ): lowercase : Any = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__a ) return decoded def UpperCamelCase ( _A ) -> Union[str, Any]: lowercase : List[str] = [] for key in product(__a , repeat=3 ): lowercase : List[Any] = try_key(__a , __a ) if encoded is not None: possibles.append(__a ) return possibles def UpperCamelCase ( _A , _A ) -> Optional[Any]: return [possible for possible in possibles if common_word in possible.lower()] def UpperCamelCase ( _A = "p059_cipher.txt" ) -> Tuple: lowercase : Optional[Any] = 42 lowercase : Optional[int] = 42 lowercase : List[str] = 42 lowercase : Union[str, Any] = 42 lowercase : int = Path(__a ).parent.joinpath(__a ).read_text(encoding="""utf-8""" ) lowercase : str = [int(__a ) for number in data.strip().split(""",""" )] lowercase : Optional[Any] = filter_valid_chars(__a ) for common_word in COMMON_WORDS: lowercase : List[Any] = filter_common_word(__a , __a ) if len(__a ) == 1: break lowercase : str = possibles[0] return sum(ord(__a ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
264
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCAmelCase: Optional[Any] = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: List[str] = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _lowerCAmelCase: List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
20
0
'''simple docstring''' from collections import Counter from timeit import timeit def SCREAMING_SNAKE_CASE ( lowercase_ : str = "" , ): return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def SCREAMING_SNAKE_CASE ( lowercase_ : str = "" ): if len(__a ) == 0: return True lowercase = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string lowercase = {} for character in lower_case_input_str: lowercase = character_freq_dict.get(__a , 0 ) + 1 lowercase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def SCREAMING_SNAKE_CASE ( lowercase_ : str = "" ): print("""\nFor string = """ , __a , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(__a ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(__a ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": lowercase_ : Any = input( '''Enter string to determine if it can be rearranged as a palindrome or not: ''' ).strip() benchmark(check_str) lowercase_ : Optional[Any] = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'''{check_str} can {"" if status else "not "}be rearranged as a palindrome''')
588
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase: str = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class lowercase_ (lowercase__ ): snake_case ='big_bird' def __init__( self , lowercase_=50358 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu_new" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=4096 , lowercase_=2 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=66 , lowercase_="block_sparse" , lowercase_=True , lowercase_=False , lowercase_=64 , lowercase_=3 , lowercase_=None , **lowercase_ , ) -> Any: super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , sep_token_id=lowercase_ , **lowercase_ , ) a__ =vocab_size a__ =max_position_embeddings a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =initializer_range a__ =type_vocab_size a__ =layer_norm_eps a__ =use_cache a__ =rescale_embeddings a__ =attention_type a__ =use_bias a__ =block_size a__ =num_random_blocks a__ =classifier_dropout class lowercase_ (lowercase__ ): @property def __UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a__ ={0: 'batch', 1: 'choice', 2: 'sequence'} else: a__ ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
20
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __lowercase ( lowercase__ ): snake_case_ = """dandelin/vilt-b32-finetuned-vqa""" snake_case_ = ( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) snake_case_ = """image_qa""" snake_case_ = AutoProcessor snake_case_ = AutoModelForVisualQuestionAnswering snake_case_ = ["""image""", """text"""] snake_case_ = ["""text"""] def __init__( self : Optional[int] ,*A : int ,**A : List[Any] ): '''simple docstring''' requires_backends(self ,["""vision"""] ) super().__init__(*lowercase_ ,**lowercase_ ) def __lowercase ( self : int ,A : Any ,A : List[Any] ): '''simple docstring''' return self.pre_processor(lowercase_ ,lowercase_ ,return_tensors="""pt""" ) def __lowercase ( self : Tuple ,A : Tuple ): '''simple docstring''' with torch.no_grad(): return self.model(**lowercase_ ).logits def __lowercase ( self : str ,A : str ): '''simple docstring''' UpperCAmelCase__ : Any = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
65
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger(__name__) _lowerCAmelCase: Tuple = torch.device('cpu') def _lowercase( ): a__ ='http://images.cocodataset.org/val2017/000000039769.jpg' a__ =Image.open(requests.get(__a , stream=__a ).raw ) return im def _lowercase( __a : Optional[Any] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _lowercase( __a : int , __a : int , __a : Optional[Any] ): a__ =dct.pop(__a ) a__ =val def _lowercase( __a : Optional[Any] ): a__ =[] for k in state_dict.keys(): a__ =k if ".pwconv" in k: a__ =k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: a__ =k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: a__ =k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: a__ =k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: a__ =k_new.split('.' ) if ls[2].isdigit(): a__ ='swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: a__ =k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _lowercase( __a : Union[str, Any] , __a : int , __a : str ): a__ =SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a__ =1000 a__ ='huggingface/label-files' a__ ='imagenet-1k-id2label.json' a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a__ =[3, 3, 6, 4] a__ =[48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a__ =[3, 3, 9, 6] a__ =[48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a__ =[4, 3, 10, 5] a__ =[48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a__ =[4, 4, 12, 6] a__ =[64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): a__ =torch.hub.load_state_dict_from_url(__a , map_location='cpu' , check_hash=__a ) else: a__ =torch.load(__a , map_location='cpu' ) a__ =checkpoint a__ =create_rename_keys(__a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__a , __a , __a ) # load HuggingFace model a__ =SwiftFormerForImageClassification(__a ).eval() hf_model.load_state_dict(__a ) # prepare test inputs a__ =prepare_img() a__ =ViTImageProcessor.from_pretrained('preprocessor_config' ) a__ =processor(images=__a , return_tensors='pt' ) # compare outputs from both models a__ =get_expected_output(__a ) a__ =hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , __a , atol=1e-3 ) Path(__a ).mkdir(exist_ok=__a ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') _lowerCAmelCase: Optional[int] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
20
0
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ): debug_launcher(test_script.main ) def UpperCamelCase( self ): debug_launcher(test_ops.main )
672
from __future__ import annotations from typing import Any class lowercase_ : def __init__( self , lowercase_) -> None: a__ =num_of_nodes a__ =[] a__ ={} def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: self.m_edges.append([u_node, v_node, weight]) def __UpperCamelCase ( self , lowercase_) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node]) def __UpperCamelCase ( self , lowercase_) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: a__ =self.find_component(lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: if component_size[u_node] <= component_size[v_node]: a__ =v_node component_size[v_node] += component_size[u_node] self.set_component(lowercase_) elif component_size[u_node] >= component_size[v_node]: a__ =self.find_component(lowercase_) component_size[u_node] += component_size[v_node] self.set_component(lowercase_) def __UpperCamelCase ( self) -> None: a__ =[] a__ =0 a__ =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes): self.m_component.update({node: node}) component_size.append(1) a__ =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: a__ , a__ , a__ =edge a__ =self.m_component[u] a__ =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): a__ =[u, v, w] for edge in minimum_weight_edge: if isinstance(lowercase_ , lowercase_): a__ , a__ , a__ =edge a__ =self.m_component[u] a__ =self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowercase_ , lowercase_ , lowercase_) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""") num_of_components -= 1 a__ =[-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""") def _lowercase( ): pass if __name__ == "__main__": import doctest doctest.testmod()
20
0
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class _lowercase : def __init__( self : Optional[Any] , lowerCamelCase__ : int , lowerCamelCase__ : Optional[int]=1_4 , lowerCamelCase__ : str=7 , lowerCamelCase__ : Any=True , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : Dict=False , lowerCamelCase__ : str=True , lowerCamelCase__ : Optional[Any]=9_9 , lowerCamelCase__ : str=3_2 , lowerCamelCase__ : str=4 , lowerCamelCase__ : Dict=4 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[Any]=3_7 , lowerCamelCase__ : int="gelu" , lowerCamelCase__ : Tuple=0.1 , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : Optional[int]=5_1_2 , lowerCamelCase__ : Dict=0.02 , ) -> int: """simple docstring""" A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = rotary_dim A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = initializer_range A_ = None A_ = vocab_size - 1 A_ = vocab_size - 1 A_ = vocab_size - 1 def UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowercase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict def UpperCamelCase ( self : Union[str, Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : int , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str ) -> Any: """simple docstring""" A_ = 2_0 A_ = model_class_name(lowercase_ ) A_ = model.init_cache(input_ids.shape[0] , lowercase_ ) A_ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) A_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) A_ = model( input_ids[:, :-1] , attention_mask=lowercase_ , past_key_values=lowercase_ , position_ids=lowercase_ , ) A_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) A_ = model( input_ids[:, -1:] , attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , position_ids=lowercase_ , ) A_ = model(lowercase_ ) A_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}" ) def UpperCamelCase ( self : Tuple , lowerCamelCase__ : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] ) -> str: """simple docstring""" A_ = 2_0 A_ = model_class_name(lowercase_ ) A_ = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) A_ = model.init_cache(input_ids.shape[0] , lowercase_ ) A_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) A_ = model( input_ids[:, :-1] , attention_mask=lowercase_ , past_key_values=lowercase_ , position_ids=lowercase_ , ) A_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) A_ = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowercase_ , position_ids=lowercase_ , ) A_ = model(lowercase_ , attention_mask=lowercase_ ) A_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}" ) @require_flax class _lowercase ( lowercase__,lowercase__,unittest.TestCase ): _lowercase : Tuple = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () _lowercase : str = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" A_ = FlaxGPTJModelTester(self ) def UpperCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" for model_class_name in self.all_model_classes: A_ ,A_ ,A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase ( self : List[str] ) -> Any: """simple docstring""" for model_class_name in self.all_model_classes: A_ ,A_ ,A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) @tooslow def UpperCamelCase ( self : str ) -> Any: """simple docstring""" A_ = GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' ) A_ = tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=lowercase_ , truncation=lowercase_ ) A_ = FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' ) A_ = False A_ = model.config.eos_token_id A_ = jax.jit(model.generate ) A_ = jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences A_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) A_ = [ '''Hello this is a long string of text.\n\nI\'m trying to get the text of the''', '''Hey, I\'m a little late to the party. I\'m going to''', ] self.assertListEqual(lowercase_ , lowercase_ ) @is_pt_flax_cross_test def UpperCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs A_ = self._prepare_for_class(lowercase_ , lowercase_ ) A_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class A_ = model_class.__name__[4:] # Skip the "Flax" at the beginning A_ = getattr(lowercase_ , lowercase_ ) A_ ,A_ = pt_inputs['''input_ids'''].shape A_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowercase_ ): A_ = 0 A_ = 1 A_ = 0 A_ = 1 A_ = pt_model_class(lowercase_ ).eval() A_ = model_class(lowercase_ , dtype=jnp.floataa ) A_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_ ) A_ = fx_state with torch.no_grad(): A_ = pt_model(**lowercase_ ).to_tuple() A_ = fx_model(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(lowercase_ , lowercase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowercase_ ) A_ = model_class.from_pretrained(lowercase_ , from_pt=lowercase_ ) A_ = fx_model_loaded(**lowercase_ ).to_tuple() self.assertEqual( len(lowercase_ ) , len(lowercase_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(lowercase_ , lowercase_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def UpperCamelCase ( self : Any ) -> Dict: """simple docstring""" A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs A_ = self._prepare_for_class(lowercase_ , lowercase_ ) A_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class A_ = model_class.__name__[4:] # Skip the "Flax" at the beginning A_ = getattr(lowercase_ , lowercase_ ) A_ = pt_model_class(lowercase_ ).eval() A_ = model_class(lowercase_ , dtype=jnp.floataa ) A_ = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params ) A_ ,A_ = pt_inputs['''input_ids'''].shape A_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowercase_ ): A_ = 0 A_ = 1 A_ = 0 A_ = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): A_ = pt_model(**lowercase_ ).to_tuple() A_ = fx_model(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(lowercase_ , lowercase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowercase_ ) A_ = pt_model_class.from_pretrained(lowercase_ , from_flax=lowercase_ ) with torch.no_grad(): A_ = pt_model_loaded(**lowercase_ ).to_tuple() self.assertEqual( len(lowercase_ ) , len(lowercase_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(lowercase_ , lowercase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def UpperCamelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" for model_class_name in self.all_model_classes: A_ = model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' ) A_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase_ )
203
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCAmelCase: Union[str, Any] = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' _lowerCAmelCase: Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' _lowerCAmelCase: List[Any] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): def __UpperCamelCase ( self) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=True , lowercase_=False) -> Any: if rouge_types is None: a__ =['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] a__ =rouge_scorer.RougeScorer(rouge_types=lowercase_ , use_stemmer=lowercase_) if use_aggregator: a__ =scoring.BootstrapAggregator() else: a__ =[] for ref, pred in zip(lowercase_ , lowercase_): a__ =scorer.score(lowercase_ , lowercase_) if use_aggregator: aggregator.add_scores(lowercase_) else: scores.append(lowercase_) if use_aggregator: a__ =aggregator.aggregate() else: a__ ={} for key in scores[0]: a__ =[score[key] for score in scores] return result
20
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) lowerCAmelCase = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(lowercase_ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , lowercase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowercase_ , atol=1e-3 ) ) @slow def __snake_case ( self ) -> Tuple: lowerCAmelCase = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) lowerCAmelCase = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(lowercase_ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , lowercase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowercase_ , atol=1e-3 ) )
433
from __future__ import annotations _lowerCAmelCase: str = '#' class lowercase_ : def __init__( self) -> None: a__ ={} def __UpperCamelCase ( self , lowercase_) -> None: a__ =self._trie for char in text: if char not in trie: a__ ={} a__ =trie[char] a__ =True def __UpperCamelCase ( self , lowercase_) -> tuple | list: a__ =self._trie for char in prefix: if char in trie: a__ =trie[char] else: return [] return self._elements(lowercase_) def __UpperCamelCase ( self , lowercase_) -> tuple: a__ =[] for c, v in d.items(): a__ =[' '] if c == END else [(c + s) for s in self._elements(lowercase_)] result.extend(lowercase_) return tuple(lowercase_) _lowerCAmelCase: Optional[int] = Trie() _lowerCAmelCase: List[str] = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def _lowercase( __a : str ): a__ =trie.find_word(__a ) return tuple(string + word for word in suffixes ) def _lowercase( ): print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
20
0
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self ,snake_case ,snake_case=7 ,snake_case=3 ,snake_case=18 ,snake_case=30 ,snake_case=400 ,snake_case=True ,snake_case=None ,snake_case=True ,snake_case=[0.5, 0.5, 0.5] ,snake_case=[0.5, 0.5, 0.5] ,): '''simple docstring''' lowercase : str = size if size is not None else {"""height""": 18, """width""": 18} lowercase : Optional[int] = parent lowercase : List[Any] = batch_size lowercase : Dict = num_channels lowercase : List[Any] = image_size lowercase : List[str] = min_resolution lowercase : str = max_resolution lowercase : Union[str, Any] = do_resize lowercase : Any = size lowercase : List[str] = do_normalize lowercase : Tuple = image_mean lowercase : str = image_std def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __snake_case ( lowercase__ , unittest.TestCase ): _a : List[Any]= DPTImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = DPTImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ ,"""image_mean""" ) ) self.assertTrue(hasattr(lowercase_ ,"""image_std""" ) ) self.assertTrue(hasattr(lowercase_ ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ ,"""do_resize""" ) ) self.assertTrue(hasattr(lowercase_ ,"""size""" ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 18, """width""": 18} ) lowercase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{"""height""": 42, """width""": 42} ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : Any = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ ,Image.Image ) # Test not batched input lowercase : Dict = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched lowercase : List[Any] = image_processing(lowercase_ ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase_ ,numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ ,np.ndarray ) # Test not batched input lowercase : Optional[Any] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched lowercase : Any = image_processing(lowercase_ ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase_ ,torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ ,torch.Tensor ) # Test not batched input lowercase : Dict = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched lowercase : Dict = image_processing(lowercase_ ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,)
336
_lowerCAmelCase: List[str] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def _lowercase( ): a__ =input('Enter message: ' ) a__ =input('Enter key [alphanumeric]: ' ) a__ =input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): a__ ='encrypt' a__ =encrypt_message(__a , __a ) elif mode.lower().startswith('d' ): a__ ='decrypt' a__ =decrypt_message(__a , __a ) print(f"""\n{mode.title()}ed message:""" ) print(__a ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'encrypt' ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'decrypt' ) def _lowercase( __a : str , __a : str , __a : str ): a__ =[] a__ =0 a__ =key.upper() for symbol in message: a__ =LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__a ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__a ): a__ =0 else: translated.append(__a ) return "".join(__a ) if __name__ == "__main__": main()
20
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase : Optional[Any] = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
372
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : Tuple = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class lowercase__ ( lowercase__ ): '''simple docstring''' A_ : List[str] = """glpn""" def __init__( self , __snake_case=3 , __snake_case=4 , __snake_case=[2, 2, 2, 2] , __snake_case=[8, 4, 2, 1] , __snake_case=[32, 64, 160, 256] , __snake_case=[7, 3, 3, 3] , __snake_case=[4, 2, 2, 2] , __snake_case=[1, 2, 5, 8] , __snake_case=[4, 4, 4, 4] , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=0.1 , __snake_case=1e-6 , __snake_case=64 , __snake_case=10 , __snake_case=-1 , **__snake_case , ): super().__init__(**lowercase_ ) _SCREAMING_SNAKE_CASE : List[str] = num_channels _SCREAMING_SNAKE_CASE : str = num_encoder_blocks _SCREAMING_SNAKE_CASE : int = depths _SCREAMING_SNAKE_CASE : Union[str, Any] = sr_ratios _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_sizes _SCREAMING_SNAKE_CASE : Optional[Any] = patch_sizes _SCREAMING_SNAKE_CASE : Optional[int] = strides _SCREAMING_SNAKE_CASE : Tuple = mlp_ratios _SCREAMING_SNAKE_CASE : Tuple = num_attention_heads _SCREAMING_SNAKE_CASE : str = hidden_act _SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob _SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Optional[int] = initializer_range _SCREAMING_SNAKE_CASE : Any = drop_path_rate _SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps _SCREAMING_SNAKE_CASE : List[Any] = decoder_hidden_size _SCREAMING_SNAKE_CASE : Any = max_depth _SCREAMING_SNAKE_CASE : Optional[Any] = head_in_index
533
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =KandinskyVaaPriorPipeline snake_case =['prompt'] snake_case =['prompt', 'negative_prompt'] snake_case =[ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] snake_case =False @property def __UpperCamelCase ( self) -> Optional[int]: return 32 @property def __UpperCamelCase ( self) -> Tuple: return 32 @property def __UpperCamelCase ( self) -> int: return self.time_input_dim @property def __UpperCamelCase ( self) -> str: return self.time_input_dim * 4 @property def __UpperCamelCase ( self) -> Optional[int]: return 100 @property def __UpperCamelCase ( self) -> Union[str, Any]: a__ =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self) -> Union[str, Any]: torch.manual_seed(0) a__ =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowercase_) @property def __UpperCamelCase ( self) -> Tuple: torch.manual_seed(0) a__ ={ 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } a__ =PriorTransformer(**lowercase_) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 a__ =nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def __UpperCamelCase ( self) -> Any: torch.manual_seed(0) a__ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) a__ =CLIPVisionModelWithProjection(lowercase_) return model @property def __UpperCamelCase ( self) -> Optional[int]: a__ =CLIPImageProcessor( crop_size=224 , do_center_crop=lowercase_ , do_normalize=lowercase_ , do_resize=lowercase_ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor def __UpperCamelCase ( self) -> Any: a__ =self.dummy_prior a__ =self.dummy_image_encoder a__ =self.dummy_text_encoder a__ =self.dummy_tokenizer a__ =self.dummy_image_processor a__ =UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=lowercase_ , clip_sample_range=10.0 , ) a__ ={ 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def __UpperCamelCase ( self , lowercase_ , lowercase_=0) -> Tuple: if str(lowercase_).startswith('mps'): a__ =torch.manual_seed(lowercase_) else: a__ =torch.Generator(device=lowercase_).manual_seed(lowercase_) a__ ={ 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __UpperCamelCase ( self) -> int: a__ ='cpu' a__ =self.get_dummy_components() a__ =self.pipeline_class(**lowercase_) a__ =pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) a__ =pipe(**self.get_dummy_inputs(lowercase_)) a__ =output.image_embeds a__ =pipe( **self.get_dummy_inputs(lowercase_) , return_dict=lowercase_ , )[0] a__ =image[0, -10:] a__ =image_from_tuple[0, -10:] assert image.shape == (1, 32) a__ =np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def __UpperCamelCase ( self) -> List[Any]: a__ =torch_device == 'cpu' a__ =True a__ =False self._test_inference_batch_single_identical( test_max_difference=lowercase_ , relax_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , ) @skip_mps def __UpperCamelCase ( self) -> Optional[int]: a__ =torch_device == 'cpu' a__ =False self._test_attention_slicing_forward_pass( test_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , )
20
0
'''simple docstring''' import math def __lowerCamelCase ( A__ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = [True] * n UpperCamelCase = False UpperCamelCase = False UpperCamelCase = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): UpperCamelCase = i * 2 while index < n: UpperCamelCase = False UpperCamelCase = index + i UpperCamelCase = [2] for i in range(3 , __a , 2 ): if is_prime[i]: primes.append(__a ) return primes def __lowerCamelCase ( A__ = 999_966_663_333 ) -> int: """simple docstring""" UpperCamelCase = math.floor(math.sqrt(__a ) ) + 100 UpperCamelCase = prime_sieve(__a ) UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = primes[prime_index] while (last_prime**2) <= limit: UpperCamelCase = primes[prime_index + 1] UpperCamelCase = last_prime**2 UpperCamelCase = next_prime**2 # Get numbers divisible by lps(current) UpperCamelCase = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) UpperCamelCase = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps UpperCamelCase = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair UpperCamelCase = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
430
from manim import * class lowercase_ (lowercase__ ): def __UpperCamelCase ( self) -> List[Any]: a__ =Rectangle(height=0.5 , width=0.5) a__ =Rectangle(height=0.46 , width=0.46).set_stroke(width=0) a__ =[mem.copy() for i in range(6)] a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(lowercase_ , lowercase_).arrange(lowercase_ , buff=0) a__ =Text('CPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) cpu.move_to([-2.5, -0.5, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(4)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('GPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) gpu.move_to([-1, -1, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Model' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) model.move_to([3, -1.0, 0]) self.add(lowercase_) a__ =[] for i, rect in enumerate(lowercase_): rect.set_stroke(lowercase_) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) a__ =Rectangle(height=0.46 / 4 , width=0.46 / 3).set_stroke(width=0.0).set_fill(lowercase_ , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=lowercase_) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0) self.add(lowercase_) cpu_targs.append(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Loaded Checkpoint' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4) checkpoint.move_to([3, 0.5, 0]) a__ =Square(side_length=2.2) key.move_to([-5, 2, 0]) a__ =MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(lowercase_ , lowercase_) a__ =MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left()) a__ =MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(lowercase_) , Write(lowercase_)) self.play(Write(lowercase_ , run_time=1) , Create(lowercase_ , run_time=1)) a__ =[] a__ =[] for i, rect in enumerate(lowercase_): a__ =fill.copy().set_fill(lowercase_ , opacity=0.7) target.move_to(lowercase_) first_animations.append(GrowFromCenter(lowercase_ , run_time=1)) a__ =target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.target.move_to(cpu_right_col_base[i - 5]) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5)) self.play(*lowercase_) self.play(*lowercase_) self.wait()
20
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class _lowerCAmelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ = "pix2struct_text_model" lowerCAmelCase_ = ["past_key_values"] lowerCAmelCase_ = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__(self , UpperCAmelCase=50244 , UpperCAmelCase=768 , UpperCAmelCase=64 , UpperCAmelCase=2048 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=32 , UpperCAmelCase=128 , UpperCAmelCase=0.1 , UpperCAmelCase=1e-6 , UpperCAmelCase=1.0 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0 , UpperCAmelCase=False , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ) -> str: _snake_case = vocab_size _snake_case = hidden_size _snake_case = d_kv _snake_case = d_ff _snake_case = num_layers _snake_case = num_heads _snake_case = relative_attention_num_buckets _snake_case = relative_attention_max_distance _snake_case = dropout_rate _snake_case = layer_norm_epsilon _snake_case = initializer_factor _snake_case = use_cache _snake_case = eos_token_id _snake_case = decoder_start_token_id # for backwards compatibility _snake_case = dense_act_fn super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , tie_word_embeddings=lowercase_ , is_decoder=lowercase_ , **lowercase_ , ) @classmethod def lowercase (cls , UpperCAmelCase , **UpperCAmelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) _snake_case, _snake_case = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": _snake_case = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class _lowerCAmelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ = "pix2struct_vision_model" def __init__(self , UpperCAmelCase=768 , UpperCAmelCase=768 , UpperCAmelCase=2048 , UpperCAmelCase=64 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase="gelu_new" , UpperCAmelCase=1e-6 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=1e-1_0 , UpperCAmelCase=1.0 , UpperCAmelCase=4096 , UpperCAmelCase=32 , UpperCAmelCase=128 , **UpperCAmelCase , ) -> Optional[Any]: super().__init__(**lowercase_ ) _snake_case = hidden_size _snake_case = patch_embed_hidden_size _snake_case = d_ff _snake_case = dropout_rate _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = initializer_range _snake_case = initializer_factor _snake_case = attention_dropout _snake_case = layer_norm_eps _snake_case = dense_act_fn _snake_case = seq_len _snake_case = relative_attention_num_buckets _snake_case = relative_attention_max_distance _snake_case = d_kv @classmethod def lowercase (cls , UpperCAmelCase , **UpperCAmelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_ ) _snake_case, _snake_case = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": _snake_case = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class _lowerCAmelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ = "pix2struct" lowerCAmelCase_ = True def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=1.0 , UpperCAmelCase=0.02 , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ) -> str: super().__init__(tie_word_embeddings=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ ) if text_config is None: _snake_case = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: _snake_case = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) _snake_case = PixaStructTextConfig(**lowercase_ ) _snake_case = PixaStructVisionConfig(**lowercase_ ) _snake_case = self.text_config.decoder_start_token_id _snake_case = self.text_config.pad_token_id _snake_case = self.text_config.eos_token_id _snake_case = initializer_factor _snake_case = initializer_range _snake_case = self.initializer_range _snake_case = self.initializer_range _snake_case = is_vqa @classmethod def lowercase (cls , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Any: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def lowercase (self ) -> Union[str, Any]: _snake_case = copy.deepcopy(self.__dict__ ) _snake_case = self.text_config.to_dict() _snake_case = self.vision_config.to_dict() _snake_case = self.__class__.model_type return output
585
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _lowerCAmelCase: Any = sys.version_info >= (3, 10) def _lowercase( __a : int=None , __a : Any=None ): return field(default_factory=lambda: default , metadata=__a ) @dataclass class lowercase_ : snake_case =42 snake_case =42 snake_case =42 snake_case =42 @dataclass class lowercase_ : snake_case =42 snake_case =field(default='toto' , metadata={'help': 'help message'} ) @dataclass class lowercase_ : snake_case =False snake_case =True snake_case =None class lowercase_ (lowercase__ ): snake_case ='titi' snake_case ='toto' class lowercase_ (lowercase__ ): snake_case ='titi' snake_case ='toto' snake_case =42 @dataclass class lowercase_ : snake_case ="toto" def __UpperCamelCase ( self) -> List[str]: a__ =BasicEnum(self.foo) @dataclass class lowercase_ : snake_case ="toto" def __UpperCamelCase ( self) -> List[str]: a__ =MixedTypeEnum(self.foo) @dataclass class lowercase_ : snake_case =None snake_case =field(default=lowercase__ , metadata={'help': 'help message'} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) @dataclass class lowercase_ : snake_case =list_field(default=[] ) snake_case =list_field(default=[1, 2, 3] ) snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] ) snake_case =list_field(default=[0.1, 0.2, 0.3] ) @dataclass class lowercase_ : snake_case =field() snake_case =field() snake_case =field() def __UpperCamelCase ( self) -> List[Any]: a__ =BasicEnum(self.required_enum) @dataclass class lowercase_ : snake_case =42 snake_case =field() snake_case =None snake_case =field(default='toto' , metadata={'help': 'help message'} ) snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class lowercase_ : snake_case =False snake_case =True snake_case =None @dataclass class lowercase_ : snake_case =None snake_case =field(default=lowercase__ , metadata={'help': 'help message'} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self , lowercase_ , lowercase_) -> int: self.assertEqual(len(a._actions) , len(b._actions)) for x, y in zip(a._actions , b._actions): a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'} a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , lowercase_) and yy.get('choices' , lowercase_): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](lowercase_) , yy['type'](lowercase_)) del xx["type"], yy["type"] self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_) expected.add_argument('--bar' , type=lowercase_ , required=lowercase_) expected.add_argument('--baz' , type=lowercase_ , required=lowercase_) expected.add_argument('--flag' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') self.argparsersEqual(lowercase_ , lowercase_) a__ =['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((a__) , ) =parser.parse_args_into_dataclasses(lowercase_ , look_for_args_file=lowercase_) self.assertFalse(example.flag) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=lowercase_) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message') self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Optional[Any]: a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') expected.add_argument('--baz' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=lowercase_ , dest='baz') expected.add_argument('--opt' , type=lowercase_ , default=lowercase_) a__ =[WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_) for dataclass_type in dataclass_types: a__ =HfArgumentParser(lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', '--no_baz']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', '--baz']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(args.foo , 'toto') a__ =parser.parse_args_into_dataclasses([])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto) a__ =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') a__ =parser.parse_args_into_dataclasses(['--foo', 'titi'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi) a__ =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) a__ =parser.parse_args_into_dataclasses(['--foo', '42'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo) def __UpperCamelCase ( self) -> List[Any]: @dataclass class lowercase_ : snake_case ="toto" a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(args.foo , 'toto') a__ =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') a__ =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) def __UpperCamelCase ( self) -> Optional[int]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=lowercase_) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=lowercase_) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual( lowercase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3]) , ) a__ =parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split()) self.assertEqual(lowercase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7])) def __UpperCamelCase ( self) -> Dict: a__ =argparse.ArgumentParser() expected.add_argument('--foo' , default=lowercase_ , type=lowercase_) expected.add_argument('--bar' , default=lowercase_ , type=lowercase_ , help='help message') expected.add_argument('--baz' , default=lowercase_ , type=lowercase_) expected.add_argument('--ces' , nargs='+' , default=[] , type=lowercase_) expected.add_argument('--des' , nargs='+' , default=[] , type=lowercase_) a__ =[OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_) for dataclass_type in dataclass_types: a__ =HfArgumentParser(lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , bar=lowercase_ , baz=lowercase_ , ces=[] , des=[])) a__ =parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split()) self.assertEqual(lowercase_ , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3])) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=lowercase_ , required=lowercase_) expected.add_argument('--required_str' , type=lowercase_ , required=lowercase_) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , ) self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , ) expected.add_argument('--opt' , type=lowercase_ , default=lowercase_) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message') expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_) self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } a__ =parser.parse_dict(lowercase_)[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(lowercase_ , parser.parse_dict , lowercase_ , allow_extra_keys=lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: a__ =os.path.join(lowercase_ , 'temp_json') os.mkdir(lowercase_) with open(temp_local_path + '.json' , 'w+') as f: json.dump(lowercase_ , lowercase_) a__ =parser.parse_yaml_file(Path(temp_local_path + '.json'))[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Any: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: a__ =os.path.join(lowercase_ , 'temp_yaml') os.mkdir(lowercase_) with open(temp_local_path + '.yaml' , 'w+') as f: yaml.dump(lowercase_ , lowercase_) a__ =parser.parse_yaml_file(Path(temp_local_path + '.yaml'))[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) self.assertIsNotNone(lowercase_)
20
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class UpperCamelCase (unittest.TestCase ): def __init__( self :Optional[int] , __magic_name__ :List[Any] , __magic_name__ :List[Any]=7 , __magic_name__ :Any=3 , __magic_name__ :List[Any]=18 , __magic_name__ :List[Any]=30 , __magic_name__ :Tuple=400 , __magic_name__ :List[Any]=True , __magic_name__ :Tuple=32 , __magic_name__ :Dict=True , ) ->str: lowercase : int = parent lowercase : Optional[int] = batch_size lowercase : Tuple = num_channels lowercase : Dict = image_size lowercase : Union[str, Any] = min_resolution lowercase : int = max_resolution lowercase : Union[str, Any] = do_resize lowercase : List[str] = size_divisor lowercase : Tuple = do_rescale def __snake_case ( self :List[str] ) ->Dict: return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class UpperCamelCase (lowercase__ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = GLPNImageProcessor if is_vision_available() else None def __snake_case ( self :Optional[int] ) ->str: lowercase : Any = GLPNImageProcessingTester(self ) @property def __snake_case ( self :str ) ->Tuple: return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self :List[Any] ) ->List[Any]: lowercase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size_divisor""" ) ) self.assertTrue(hasattr(lowercase_ , """resample""" ) ) self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) ) def __snake_case ( self :Dict ) ->Optional[int]: pass def __snake_case ( self :Union[str, Any] ) ->Optional[int]: # Initialize image_processing lowercase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowercase : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __snake_case ( self :Any ) ->int: # Initialize image_processing lowercase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowercase : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __snake_case ( self :Optional[Any] ) ->Optional[Any]: # Initialize image_processing lowercase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowercase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
264
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase: List[Any] = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class lowercase_ (lowercase__ ): snake_case ='autoformer' snake_case ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , lowercase_ = None , lowercase_ = None , lowercase_ = "student_t" , lowercase_ = "nll" , lowercase_ = 1 , lowercase_ = [1, 2, 3, 4, 5, 6, 7] , lowercase_ = True , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 64 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 32 , lowercase_ = 32 , lowercase_ = "gelu" , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 100 , lowercase_ = 0.02 , lowercase_ = True , lowercase_=True , lowercase_ = 10 , lowercase_ = 25 , lowercase_ = 3 , **lowercase_ , ) -> Union[str, Any]: # time series specific configuration a__ =prediction_length a__ =context_length if context_length is not None else prediction_length a__ =distribution_output a__ =loss a__ =input_size a__ =num_time_features a__ =lags_sequence a__ =scaling a__ =num_dynamic_real_features a__ =num_static_real_features a__ =num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`') a__ =cardinality else: a__ =[0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`') a__ =embedding_dimension else: a__ =[min(50 , (cat + 1) // 2) for cat in self.cardinality] a__ =num_parallel_samples # Transformer architecture configuration a__ =input_size * len(self.lags_sequence) + self._number_of_features a__ =d_model a__ =encoder_attention_heads a__ =decoder_attention_heads a__ =encoder_ffn_dim a__ =decoder_ffn_dim a__ =encoder_layers a__ =decoder_layers a__ =dropout a__ =attention_dropout a__ =activation_dropout a__ =encoder_layerdrop a__ =decoder_layerdrop a__ =activation_function a__ =init_std a__ =use_cache # Autoformer a__ =label_length a__ =moving_average a__ =autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def __UpperCamelCase ( self) -> int: return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
20
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar lowercase_ : Optional[Any] = TypeVar('''T''') lowercase_ : Dict = TypeVar('''U''') class __UpperCamelCase (Generic[T, U] ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = key lowercase = val lowercase = None lowercase = None def __repr__( self ) -> str: '''simple docstring''' return ( F"""Node: key: {self.key}, val: {self.val}, """ F"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class __UpperCamelCase (Generic[T, U] ): def __init__( self ) -> None: '''simple docstring''' lowercase = DoubleLinkedListNode(lowercase_ , lowercase_ ) lowercase = DoubleLinkedListNode(lowercase_ , lowercase_ ) lowercase , lowercase = self.rear, self.head def __repr__( self ) -> str: '''simple docstring''' lowercase = ["""DoubleLinkedList"""] lowercase = self.head while node.next is not None: rep.append(str(lowercase_ ) ) lowercase = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase_ ) def _a ( self , _lowerCAmelCase ) -> None: '''simple docstring''' lowercase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None lowercase = node lowercase = previous lowercase = node lowercase = self.rear def _a ( self , _lowerCAmelCase ) -> DoubleLinkedListNode[T, U] | None: '''simple docstring''' if node.prev is None or node.next is None: return None lowercase = node.next lowercase = node.prev lowercase = None lowercase = None return node class __UpperCamelCase (Generic[T, U] ): __A = {} def __init__( self , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase = DoubleLinkedList() lowercase = capacity lowercase = 0 lowercase = 0 lowercase = 0 lowercase = {} def __repr__( self ) -> str: '''simple docstring''' return ( F"""CacheInfo(hits={self.hits}, misses={self.miss}, """ F"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self , _lowerCAmelCase ) -> bool: '''simple docstring''' return key in self.cache def _a ( self , _lowerCAmelCase ) -> U | None: '''simple docstring''' if key in self.cache: self.hits += 1 lowercase = self.cache[key] lowercase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase_ ) return node.val self.miss += 1 return None def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> None: '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity lowercase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase_ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 lowercase = DoubleLinkedListNode(lowercase_ , lowercase_ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value lowercase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list lowercase = value self.list.add(lowercase_ ) @classmethod def _a ( cls , _lowerCAmelCase = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: '''simple docstring''' def cache_decorator_inner(_lowerCAmelCase ) -> Callable[..., U]: def cache_decorator_wrapper(*_lowerCAmelCase ) -> U: if func not in cls.decorator_function_to_instance_map: lowercase = LRUCache(lowercase_ ) lowercase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: lowercase = func(*lowercase_ ) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase_ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase_ , """cache_info""" , lowercase_ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
588
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowerCAmelCase: List[Any] = logging.get_logger(__name__) class lowercase_ (lowercase__ ): snake_case =['pixel_values'] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = None , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: super().__init__(**lowercase_) a__ =size if size is not None else {'shortest_edge': 256} a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) a__ =crop_size if crop_size is not None else {'height': 224, 'width': 224} a__ =get_size_dict(lowercase_ , param_name='crop_size') a__ =do_resize a__ =size a__ =resample a__ =do_center_crop a__ =crop_size a__ =do_rescale a__ =rescale_factor a__ =do_normalize a__ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a__ =image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") a__ =get_resize_output_image_size(lowercase_ , size=size['shortest_edge'] , default_to_square=lowercase_) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: a__ =get_size_dict(lowercase_) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""") return center_crop(lowercase_ , size=(size['height'], size['width']) , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_) -> np.ndarray: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> Tuple: a__ =do_resize if do_resize is not None else self.do_resize a__ =size if size is not None else self.size a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) a__ =resample if resample is not None else self.resample a__ =do_center_crop if do_center_crop is not None else self.do_center_crop a__ =crop_size if crop_size is not None else self.crop_size a__ =get_size_dict(lowercase_ , param_name='crop_size') a__ =do_rescale if do_rescale is not None else self.do_rescale a__ =rescale_factor if rescale_factor is not None else self.rescale_factor a__ =do_normalize if do_normalize is not None else self.do_normalize a__ =image_mean if image_mean is not None else self.image_mean a__ =image_std if image_std is not None else self.image_std a__ =make_list_of_images(lowercase_) if not valid_images(lowercase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a__ =[to_numpy_array(lowercase_) for image in images] if do_resize: a__ =[self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_) for image in images] if do_center_crop: a__ =[self.center_crop(image=lowercase_ , size=lowercase_) for image in images] if do_rescale: a__ =[self.rescale(image=lowercase_ , scale=lowercase_) for image in images] if do_normalize: a__ =[self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_) for image in images] a__ =[to_channel_dimension_format(lowercase_ , lowercase_) for image in images] a__ ={'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None) -> str: a__ =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_) != len(lowercase_): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(lowercase_): a__ =target_sizes.numpy() a__ =[] for idx in range(len(lowercase_)): a__ =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_) a__ =resized_logits[0].argmax(dim=0) semantic_segmentation.append(lowercase_) else: a__ =logits.argmax(dim=1) a__ =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
20
0
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __UpperCAmelCase = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def lowerCAmelCase ( __UpperCamelCase=None ): '''simple docstring''' if subparsers is not None: UpperCAmelCase__ : int = subparsers.add_parser("""tpu-config""" , description=_description ) else: UpperCAmelCase__ : Dict = argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description ) # Core arguments UpperCAmelCase__ : str = parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" , type=__a , default=__a , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=__a , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=__a , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) UpperCAmelCase__ : List[str] = parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=__a , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=__a ) return parser def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : List[Any] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(__a ): UpperCAmelCase__ : str = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCAmelCase__ : List[Any] = defaults.command_file if not args.command and defaults.commands is not None: UpperCAmelCase__ : Dict = defaults.commands if not args.tpu_name: UpperCAmelCase__ : List[str] = defaults.tpu_name if not args.tpu_zone: UpperCAmelCase__ : Union[str, Any] = defaults.tpu_zone if args.accelerate_version == "dev": UpperCAmelCase__ : Tuple = """git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": UpperCAmelCase__ : Tuple = """accelerate -U""" elif isinstance(parse(args.accelerate_version ) , __a ): UpperCAmelCase__ : List[str] = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file , """r""" ) as f: UpperCAmelCase__ : Union[str, Any] = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , __a ): UpperCAmelCase__ : Optional[int] = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCAmelCase__ : Optional[int] = ["""cd /usr/share"""] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command UpperCAmelCase__ : List[Any] = """; """.join(__a ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCAmelCase__ : Dict = ["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(__a )}" ) return subprocess.run(__a ) print("""Successfully setup pod.""" ) def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : List[Any] = tpu_command_parser() UpperCAmelCase__ : Any = parser.parse_args() tpu_command_launcher(__a )
65
from importlib import import_module from .logging import get_logger _lowerCAmelCase: str = get_logger(__name__) class lowercase_ : def __init__( self , lowercase_ , lowercase_=None) -> Tuple: a__ =attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__'): setattr(self , lowercase_ , getattr(lowercase_ , lowercase_)) a__ =module._original_module if isinstance(lowercase_ , _PatchedModuleObj) else module class lowercase_ : snake_case =[] def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None) -> List[str]: a__ =obj a__ =target a__ =new a__ =target.split('.')[0] a__ ={} a__ =attrs or [] def __enter__( self) -> Optional[int]: *a__ , a__ =self.target.split('.') # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowercase_)): try: a__ =import_module('.'.join(submodules[: i + 1])) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): a__ =getattr(self.obj , lowercase_) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowercase_ , _PatchedModuleObj) and obj_attr._original_module is submodule) ): a__ =obj_attr # patch at top level setattr(self.obj , lowercase_ , _PatchedModuleObj(lowercase_ , attrs=self.attrs)) a__ =getattr(self.obj , lowercase_) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowercase_ , lowercase_ , _PatchedModuleObj(getattr(lowercase_ , lowercase_ , lowercase_) , attrs=self.attrs)) a__ =getattr(lowercase_ , lowercase_) # finally set the target attribute setattr(lowercase_ , lowercase_ , self.new) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: a__ =getattr(import_module('.'.join(lowercase_)) , lowercase_) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowercase_) is attr_value: a__ =getattr(self.obj , lowercase_) setattr(self.obj , lowercase_ , self.new) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" a__ =globals()['__builtins__'][target_attr] setattr(self.obj , lowercase_ , self.new) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""") def __exit__( self , *lowercase_) -> str: for attr in list(self.original): setattr(self.obj , lowercase_ , self.original.pop(lowercase_)) def __UpperCamelCase ( self) -> Any: self.__enter__() self._active_patches.append(self) def __UpperCamelCase ( self) -> Union[str, Any]: try: self._active_patches.remove(self) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
20
0
'''simple docstring''' import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __magic_name__ : Any = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def snake_case_ ( SCREAMING_SNAKE_CASE__ = "dhaka" , SCREAMING_SNAKE_CASE__ = 5 ): '''simple docstring''' _snake_case = min(__a , 50 ) # Prevent abuse! _snake_case = { "q": query, "tbm": "isch", "hl": "en", "ijn": "0", } _snake_case = requests.get("https://www.google.com/search" , params=__a , headers=__a ) _snake_case = BeautifulSoup(html.text , "html.parser" ) _snake_case = "".join( re.findall(r"AF_initDataCallback\(([^<]+)\);" , str(soup.select("script" ) ) ) ) _snake_case = json.dumps(__a ) _snake_case = json.loads(__a ) _snake_case = re.findall( r"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\"," , __a , ) if not matched_google_image_data: return 0 _snake_case = re.sub( r"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]" , "" , str(__a ) , ) _snake_case = re.findall( r"(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]" , __a , ) for index, fixed_full_res_image in enumerate(__a ): if index >= max_images: return index _snake_case = bytes(__a , "ascii" ).decode( "unicode-escape" ) _snake_case = bytes(__a , "ascii" ).decode( "unicode-escape" ) _snake_case = urllib.request.build_opener() _snake_case = [ ( "User-Agent", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582", ) ] urllib.request.install_opener(__a ) _snake_case = f'''query_{query.replace(" " , "_" )}''' if not os.path.exists(__a ): os.makedirs(__a ) urllib.request.urlretrieve( # noqa: S310 __a , f'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: __magic_name__ : Optional[Any] = download_images_from_google_query(sys.argv[1]) print(F'{image_count} images were downloaded to disk.') except IndexError: print("""Please provide a search term.""") raise
672
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": _lowerCAmelCase: int = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def _lowercase( __a : Optional[Any] ): if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) _lowerCAmelCase: str = parser.parse_args() _lowerCAmelCase: Tuple = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
20
0
def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' assert ( isinstance(__a , __a ) and number_of_steps > 0 ), f"number_of_steps needs to be positive integer, your input {number_of_steps}" if number_of_steps == 1: return 1 A_ ,A_ = 1, 1 for _ in range(number_of_steps - 1 ): A_ ,A_ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
203
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _lowerCAmelCase: Tuple = get_logger(__name__) _lowerCAmelCase: List[str] = Path(__file__).parent / 'model_card_template.md' _lowerCAmelCase: Any = uuida().hex _lowerCAmelCase: List[Any] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase: int = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase: Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def _lowercase( __a : Union[Dict, str, None] = None ): a__ =f"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"""; torch/{_torch_version}""" if is_flax_available(): ua += f"""; jax/{_jax_version}""" ua += f"""; flax/{_flax_version}""" if is_onnx_available(): ua += f"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__a , __a ): ua += "; " + "; ".join(f"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__a , __a ): ua += "; " + user_agent return ua def _lowercase( __a : str , __a : Optional[str] = None , __a : Optional[str] = None ): if token is None: a__ =HfFolder.get_token() if organization is None: a__ =whoami(__a )['name'] return f"""{username}/{model_id}""" else: return f"""{organization}/{model_id}""" def _lowercase( __a : Union[str, Any] , __a : Dict ): if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(__a , 'local_rank' ) and args.local_rank not in [-1, 0]: return a__ =args.hub_token if hasattr(__a , 'hub_token' ) else None a__ =get_full_repo_name(__a , token=__a ) a__ =ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__a , model_name=__a , repo_name=__a , dataset_name=args.dataset_name if hasattr(__a , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__a , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__a , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(__a , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__a , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__a , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__a , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__a , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__a , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(__a , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__a , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) a__ =os.path.join(args.output_dir , 'README.md' ) model_card.save(__a ) def _lowercase( __a : Optional[str] , __a : Optional[str] = None ): if resolved_file is None or commit_hash is not None: return commit_hash a__ =str(Path(__a ).as_posix() ) a__ =re.search(r'snapshots/([^/]+)/' , __a ) if search is None: return None a__ =search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__a ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _lowerCAmelCase: List[str] = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) _lowerCAmelCase: List[str] = os.path.join(hf_cache_home, 'diffusers') def _lowercase( __a : Optional[str] = None , __a : Optional[str] = None ): if new_cache_dir is None: a__ =DIFFUSERS_CACHE if old_cache_dir is None: a__ =old_diffusers_cache a__ =Path(__a ).expanduser() a__ =Path(__a ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): a__ =new_cache_dir / old_blob_path.relative_to(__a ) new_blob_path.parent.mkdir(parents=__a , exist_ok=__a ) os.replace(__a , __a ) try: os.symlink(__a , __a ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _lowerCAmelCase: Dict = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): _lowerCAmelCase: int = 0 else: with open(cache_version_file) as f: try: _lowerCAmelCase: List[Any] = int(f.read()) except ValueError: _lowerCAmelCase: Any = 0 if cache_version < 1: _lowerCAmelCase: str = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: _lowerCAmelCase: Optional[Any] = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ 'the directory exists and can be written to.' ) def _lowercase( __a : str , __a : Optional[str] = None ): if variant is not None: a__ =weights_name.split('.' ) a__ =splits[:-1] + [variant] + splits[-1:] a__ ='.'.join(__a ) return weights_name def _lowercase( __a : Union[str, Any] , *, __a : Optional[Any] , __a : Optional[Any] , __a : List[Any] , __a : Tuple , __a : Optional[Any] , __a : Dict , __a : str , __a : int , __a : Tuple , __a : Union[str, Any] , __a : int=None , ): a__ =str(__a ) if os.path.isfile(__a ): return pretrained_model_name_or_path elif os.path.isdir(__a ): if os.path.isfile(os.path.join(__a , __a ) ): # Load from a PyTorch checkpoint a__ =os.path.join(__a , __a ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__a , __a , __a ) ): a__ =os.path.join(__a , __a , __a ) return model_file else: raise EnvironmentError( f"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__a ).base_version ) >= version.parse('0.20.0' ) ): try: a__ =hf_hub_download( __a , filename=_add_variant(__a , __a ) , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) warnings.warn( f"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __a , ) return model_file except: # noqa: E722 warnings.warn( f"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__a , __a )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__a , __a )}' so that the correct variant file can be added.""" , __a , ) try: # 2. Load model file as usual a__ =hf_hub_download( __a , filename=__a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( f"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ 'this model name. Check the model page at ' f"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( f"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( f"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" f""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" f""" directory containing a file named {weights_name} or""" ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( f"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' f"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ f"""containing a file named {weights_name}""" )
20
0
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __snake_case( lowercase__ ): '''simple docstring''' UpperCAmelCase : Optional[Any] = (PNDMScheduler,) UpperCAmelCase : Optional[int] = (("num_inference_steps", 50),) def __snake_case ( self , **A_ ) -> Optional[int]: lowerCAmelCase = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", } config.update(**lowercase_ ) return config def __snake_case ( self , A_=0 , **A_ ) -> List[Any]: lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop("""num_inference_steps""" , lowercase_ ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config(**lowercase_ ) lowerCAmelCase = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals lowerCAmelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) lowerCAmelCase = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals lowerCAmelCase = dummy_past_residuals[:] lowerCAmelCase = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample lowerCAmelCase = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCAmelCase = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample lowerCAmelCase = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __snake_case ( self ) -> Tuple: pass def __snake_case ( self , A_=0 , **A_ ) -> str: lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop("""num_inference_steps""" , lowercase_ ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) lowerCAmelCase = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase = dummy_past_residuals[:] lowerCAmelCase = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample lowerCAmelCase = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCAmelCase = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample lowerCAmelCase = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __snake_case ( self , **A_ ) -> int: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(**lowercase_ ) lowerCAmelCase = scheduler_class(**lowercase_ ) lowerCAmelCase = 10 lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): lowerCAmelCase = model(lowercase_ , lowercase_ ) lowerCAmelCase = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowerCAmelCase = model(lowercase_ , lowercase_ ) lowerCAmelCase = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def __snake_case ( self ) -> Dict: lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop("""num_inference_steps""" , lowercase_ ) for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**lowercase_ ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , """set_timesteps""" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , """set_timesteps""" ): lowerCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] lowerCAmelCase = dummy_past_residuals[:] lowerCAmelCase = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample lowerCAmelCase = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowerCAmelCase = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample lowerCAmelCase = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __snake_case ( self ) -> str: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def __snake_case ( self ) -> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(steps_offset=1 ) lowerCAmelCase = scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def __snake_case ( self ) -> List[str]: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] , [0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def __snake_case ( self ) -> Tuple: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def __snake_case ( self ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def __snake_case ( self ) -> Dict: for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def __snake_case ( self ) -> Optional[Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase_ ) def __snake_case ( self ) -> Union[str, Any]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 lowerCAmelCase = 27 for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowerCAmelCase = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def __snake_case ( self ) -> Dict: with self.assertRaises(lowercase_ ): lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def __snake_case ( self ) -> int: lowerCAmelCase = self.full_loop() lowerCAmelCase = torch.sum(torch.abs(lowercase_ ) ) lowerCAmelCase = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1e-3 def __snake_case ( self ) -> Any: lowerCAmelCase = self.full_loop(prediction_type="""v_prediction""" ) lowerCAmelCase = torch.sum(torch.abs(lowercase_ ) ) lowerCAmelCase = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1e-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1e-3 def __snake_case ( self ) -> Tuple: # We specify different beta, so that the first alpha is 0.99 lowerCAmelCase = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.0_1 ) lowerCAmelCase = torch.sum(torch.abs(lowercase_ ) ) lowerCAmelCase = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1e-3 def __snake_case ( self ) -> List[str]: # We specify different beta, so that the first alpha is 0.99 lowerCAmelCase = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.0_1 ) lowerCAmelCase = torch.sum(torch.abs(lowercase_ ) ) lowerCAmelCase = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1e-3
433
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger() def _lowercase( __a : int , __a : str , __a : LevitConfig , __a : Path , __a : bool = True ): print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": a__ =timm.create_model('levit_128s' , pretrained=__a ) else: a__ =timm.create_model('levit_128' , pretrained=__a ) if hidden_sizes == 192: a__ =timm.create_model('levit_192' , pretrained=__a ) if hidden_sizes == 256: a__ =timm.create_model('levit_256' , pretrained=__a ) if hidden_sizes == 384: a__ =timm.create_model('levit_384' , pretrained=__a ) from_model.eval() a__ =LevitForImageClassificationWithTeacher(__a ).eval() a__ =OrderedDict() a__ =from_model.state_dict() a__ =list(from_model.state_dict().keys() ) a__ =list(our_model.state_dict().keys() ) print(len(__a ) , len(__a ) ) for i in range(len(__a ) ): a__ =weights[og_keys[i]] our_model.load_state_dict(__a ) a__ =torch.randn((2, 3, 224, 224) ) a__ =from_model(__a ) a__ =our_model(__a ).logits assert torch.allclose(__a , __a ), "The model logits don't match the original one." a__ =name print(__a ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) a__ =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def _lowercase( __a : Path , __a : str = None , __a : bool = True ): a__ ='imagenet-1k-id2label.json' a__ =1000 a__ =(1, num_labels) a__ ='huggingface/label-files' a__ =num_labels a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} a__ =partial(__a , num_labels=__a , idalabel=__a , labelaid=__a ) a__ ={ 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } a__ ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __a , names_to_config[model_name] , __a , __a ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __a , __a , __a , __a ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _lowerCAmelCase: Union[str, Any] = parser.parse_args() _lowerCAmelCase: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
20
0
from string import ascii_lowercase, ascii_uppercase def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: if not sentence: return "" lowercase : int = dict(zip(__a , __a ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
336
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowerCAmelCase: int = logging.get_logger(__name__) _lowerCAmelCase: Union[str, Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } _lowerCAmelCase: Tuple = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _lowercase( __a : Optional[Any] ): a__ ={} with open(__a , 'r' ) as file: for line_number, line in enumerate(__a ): a__ =line.strip() if line: a__ =line.split() a__ =line_number a__ =words[0] a__ =value return result def _lowercase( __a : Dict , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : str ): for attribute in key.split('.' ): a__ =getattr(__a , __a ) a__ =None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__a ): a__ =PARAM_MAPPING[full_name.split('.' )[-1]] a__ ='param' if weight_type is not None and weight_type != "param": a__ =getattr(__a , __a ).shape elif weight_type is not None and weight_type == "param": a__ =hf_pointer for attribute in hf_param_name.split('.' ): a__ =getattr(__a , __a ) a__ =shape_pointer.shape # let's reduce dimension a__ =value[0] else: a__ =hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a__ =value elif weight_type == "weight_g": a__ =value elif weight_type == "weight_v": a__ =value elif weight_type == "bias": a__ =value elif weight_type == "param": for attribute in hf_param_name.split('.' ): a__ =getattr(__a , __a ) a__ =value else: a__ =value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _lowercase( __a : Optional[int] , __a : int , __a : Optional[int] , __a : Optional[Any] , __a : List[Any] ): a__ =None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__a ): a__ =PARAM_MAPPING[full_name.split('.' )[-1]] a__ ='param' if weight_type is not None and weight_type != "param": a__ ='.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": a__ ='.'.join([key, hf_param_name] ) else: a__ =key a__ =value if 'lm_head' in full_key else value[0] _lowerCAmelCase: Dict = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _lowercase( __a : Dict , __a : int , __a : int=None , __a : List[str]=None ): a__ =False for key, mapped_key in MAPPING.items(): a__ ='wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: a__ =True if "*" in mapped_key: a__ =name.split(__a )[0].split('.' )[-2] a__ =mapped_key.replace('*' , __a ) if "weight_g" in name: a__ ='weight_g' elif "weight_v" in name: a__ ='weight_v' elif "bias" in name: a__ ='bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj a__ ='weight' else: a__ =None if hf_dict is not None: rename_dict(__a , __a , __a , __a , __a ) else: set_recursively(__a , __a , __a , __a , __a ) return is_used return is_used def _lowercase( __a : Union[str, Any] , __a : List[str] , __a : Dict ): a__ =[] a__ =fairseq_model.state_dict() a__ =hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): a__ =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == 'group' , ) a__ =True else: a__ =load_wavaveca_layer(__a , __a , __a ) if not is_used: unused_weights.append(__a ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _lowercase( __a : List[Any] , __a : Optional[Any] , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] ): a__ =full_name.split('conv_layers.' )[-1] a__ =name.split('.' ) a__ =int(items[0] ) a__ =int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def _lowercase( __a : str , __a : str , __a : Any=None , __a : str=None , __a : Any=True , __a : Union[str, Any]=False ): if config_path is not None: a__ =WavaVecaConfig.from_pretrained(__a ) else: a__ =WavaVecaConfig() if is_seq_class: a__ =read_txt_into_dict(__a ) a__ =idalabel a__ =WavaVecaForSequenceClassification(__a ) a__ =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) feature_extractor.save_pretrained(__a ) elif is_finetuned: if dict_path: a__ =Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a__ =target_dict.pad_index a__ =target_dict.bos_index a__ =target_dict.eos_index a__ =len(target_dict.symbols ) a__ =os.path.join(__a , 'vocab.json' ) if not os.path.isdir(__a ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__a ) ) return os.makedirs(__a , exist_ok=__a ) a__ =target_dict.indices # fairseq has the <pad> and <s> switched a__ =0 a__ =1 with open(__a , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(__a , __a ) a__ =WavaVecaCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=__a , ) a__ =True if config.feat_extract_norm == 'layer' else False a__ =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) a__ =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) a__ =WavaVecaForCTC(__a ) else: a__ =WavaVecaForPreTraining(__a ) if is_finetuned or is_seq_class: a__ , a__ , a__ =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: a__ =argparse.Namespace(task='audio_pretraining' ) a__ =fairseq.tasks.setup_task(__a ) a__ , a__ , a__ =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__a ) a__ =model[0].eval() recursively_load_weights(__a , __a , not is_finetuned ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) _lowerCAmelCase: Tuple = parser.parse_args() _lowerCAmelCase: Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
20
0
'''simple docstring''' def _A ( A = 5_0_0_0_0_0_0_0 ) -> List[Any]: lowercase : List[Any] = set() lowercase : Dict = int((limit - 2_4) ** (1 / 2) ) lowercase : Any = set(range(3 ,prime_square_limit + 1 ,2 ) ) primes.add(2 ) for p in range(3 ,prime_square_limit + 1 ,2 ): if p not in primes: continue primes.difference_update(set(range(p * p ,prime_square_limit + 1 ,__a ) ) ) for primea in primes: lowercase : Optional[Any] = primea * primea for primea in primes: lowercase : Optional[Any] = primea * primea * primea if square + cube >= limit - 1_6: break for primea in primes: lowercase : Union[str, Any] = primea * primea * primea * primea lowercase : Tuple = square + cube + tetr if total >= limit: break ret.add(__a ) return len(__a ) if __name__ == "__main__": print(F'''{solution() = }''')
372
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowercase_ (unittest.TestCase ): @slow def __UpperCamelCase ( self) -> Optional[int]: a__ =AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowercase_).to(lowercase_) a__ =AutoTokenizer.from_pretrained('google/mt5-small') a__ =tokenizer('Hello there' , return_tensors='pt').input_ids a__ =tokenizer('Hi I am' , return_tensors='pt').input_ids a__ =model(input_ids.to(lowercase_) , labels=labels.to(lowercase_)).loss a__ =-(labels.shape[-1] * loss.item()) a__ =-84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
20
0
'''simple docstring''' from copy import deepcopy class lowercase__ : '''simple docstring''' def __init__( self , __snake_case = None , __snake_case = None ): if arr is None and size is not None: _SCREAMING_SNAKE_CASE : Any = size _SCREAMING_SNAKE_CASE : List[Any] = [0] * size elif arr is not None: self.init(lowercase_ ) else: raise ValueError("""Either arr or size must be specified""" ) def UpperCAmelCase_ ( self , __snake_case ): _SCREAMING_SNAKE_CASE : Tuple = len(lowercase_ ) _SCREAMING_SNAKE_CASE : List[Any] = deepcopy(lowercase_ ) for i in range(1 , self.size ): _SCREAMING_SNAKE_CASE : Any = self.next_(lowercase_ ) if j < self.size: self.tree[j] += self.tree[i] def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Optional[int] = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): _SCREAMING_SNAKE_CASE : Tuple = self.next_(lowercase_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def UpperCAmelCase_ ( __snake_case ): return index + (index & (-index)) @staticmethod def UpperCAmelCase_ ( __snake_case ): return index - (index & (-index)) def UpperCAmelCase_ ( self , __snake_case , __snake_case ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value _SCREAMING_SNAKE_CASE : Tuple = self.next_(lowercase_ ) def UpperCAmelCase_ ( self , __snake_case , __snake_case ): self.add(lowercase_ , value - self.get(lowercase_ ) ) def UpperCAmelCase_ ( self , __snake_case ): if right == 0: return 0 _SCREAMING_SNAKE_CASE : Union[str, Any] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] _SCREAMING_SNAKE_CASE : Dict = self.prev(lowercase_ ) return result def UpperCAmelCase_ ( self , __snake_case , __snake_case ): return self.prefix(lowercase_ ) - self.prefix(lowercase_ ) def UpperCAmelCase_ ( self , __snake_case ): return self.query(lowercase_ , index + 1 ) def UpperCAmelCase_ ( self , __snake_case ): value -= self.tree[0] if value < 0: return -1 _SCREAMING_SNAKE_CASE : Union[str, Any] = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 _SCREAMING_SNAKE_CASE : int = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
533
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self) -> int: a__ =tempfile.mkdtemp() a__ =BlipImageProcessor() a__ =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel') a__ =BlipProcessor(lowercase_ , lowercase_) processor.save_pretrained(self.tmpdirname) def __UpperCamelCase ( self , **lowercase_) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).tokenizer def __UpperCamelCase ( self , **lowercase_) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).image_processor def __UpperCamelCase ( self) -> Optional[int]: shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self) -> str: a__ =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] a__ =[Image.fromarray(np.moveaxis(lowercase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self) -> str: a__ =BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) a__ =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') a__ =self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0) a__ =BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowercase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowercase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowercase_) def __UpperCamelCase ( self) -> int: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ =self.prepare_image_inputs() a__ =image_processor(lowercase_ , return_tensors='np') a__ =processor(images=lowercase_ , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self) -> List[str]: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =processor(text=lowercase_) a__ =tokenizer(lowercase_ , return_token_type_ids=lowercase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self) -> int: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =self.prepare_image_inputs() a__ =processor(text=lowercase_ , images=lowercase_) self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask']) # test if it raises when no input is passed with pytest.raises(lowercase_): processor() def __UpperCamelCase ( self) -> Tuple: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a__ =processor.batch_decode(lowercase_) a__ =tokenizer.batch_decode(lowercase_) self.assertListEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =self.prepare_image_inputs() a__ =processor(text=lowercase_ , images=lowercase_) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask'])
20
0
'''simple docstring''' import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch _lowerCamelCase : Dict = True except ImportError: _lowerCamelCase : Tuple = False try: from torch.hub import _get_torch_home _lowerCamelCase : Any = _get_torch_home() except ImportError: _lowerCamelCase : int = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) _lowerCamelCase : Optional[int] = os.path.join(torch_cache_home, "transformers") _lowerCamelCase : List[Any] = 'https://cdn.huggingface.co' _lowerCamelCase : List[str] = 'https://s3.amazonaws.com/models.huggingface.co/bert' _lowerCamelCase : int = '/'.join(str(Path(__file__).resolve()).split("/")[:-1]) _lowerCamelCase : str = os.path.join(PATH, "config.yaml") _lowerCamelCase : Tuple = os.path.join(PATH, "attributes.txt") _lowerCamelCase : Dict = os.path.join(PATH, "objects.txt") _lowerCamelCase : int = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) _lowerCamelCase : Union[str, Any] = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) _lowerCamelCase : List[Any] = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) _lowerCamelCase : Union[str, Any] = 'pytorch_model.bin' _lowerCamelCase : Dict = 'config.yaml' def __lowerCamelCase ( A__=OBJECTS , A__=ATTRIBUTES ) -> Optional[Any]: """simple docstring""" UpperCamelCase = [] with open(__a ) as f: for object in f.readlines(): vg_classes.append(object.split(',' )[0].lower().strip() ) UpperCamelCase = [] with open(__a ) as f: for object in f.readlines(): vg_attrs.append(object.split(',' )[0].lower().strip() ) return vg_classes, vg_attrs def __lowerCamelCase ( A__ ) -> List[Any]: """simple docstring""" UpperCamelCase = OrderedDict() with open(__a , 'rb' ) as f: UpperCamelCase = pkl.load(__a )['model'] for k in copy.deepcopy(list(ckp.keys() ) ): UpperCamelCase = ckp.pop(__a ) if isinstance(__a , np.ndarray ): UpperCamelCase = torch.tensor(__a ) else: assert isinstance(__a , torch.tensor ), type(__a ) UpperCamelCase = v return r class SCREAMING_SNAKE_CASE : """simple docstring""" _SCREAMING_SNAKE_CASE = {} def __init__( self : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] = "root" , UpperCamelCase__ : Union[str, Any]=0 ): """simple docstring""" UpperCamelCase = name UpperCamelCase = level UpperCamelCase = {} for k, v in dictionary.items(): if v is None: raise ValueError() UpperCamelCase = copy.deepcopy(lowercase_ ) UpperCamelCase = copy.deepcopy(lowercase_ ) if isinstance(lowercase_ , lowercase_ ): UpperCamelCase = Config(lowercase_ , name=lowercase_ , level=level + 1 ) UpperCamelCase = v setattr(self , lowercase_ , lowercase_ ) UpperCamelCase = d def __repr__( self : Dict ): """simple docstring""" return str(list((self._pointer.keys()) ) ) def __setattr__( self : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" UpperCamelCase = val UpperCamelCase = val UpperCamelCase = key.split('.' ) UpperCamelCase = len(lowercase_ ) - 1 UpperCamelCase = self._pointer if len(lowercase_ ) > 1: for i, l in enumerate(lowercase_ ): if hasattr(self , lowercase_ ) and isinstance(getattr(self , lowercase_ ) , lowercase_ ): setattr(getattr(self , lowercase_ ) , '.'.join(levels[i:] ) , lowercase_ ) if l == last_level: UpperCamelCase = val else: UpperCamelCase = pointer[l] def A ( self : List[str] ): """simple docstring""" return self._pointer def A ( self : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple ): """simple docstring""" with open(f"""{file_name}""" , 'w' ) as stream: dump(lowercase_ , lowercase_ ) def A ( self : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple ): """simple docstring""" with open(f"""{file_name}""" , 'w' ) as stream: json.dump(lowercase_ , lowercase_ ) @staticmethod def A ( UpperCamelCase__ : str ): """simple docstring""" with open(lowercase_ ) as stream: UpperCamelCase = load(lowercase_ , Loader=lowercase_ ) return data def __str__( self : Any ): """simple docstring""" UpperCamelCase = ' ' if self._name != "root": UpperCamelCase = f"""{t * (self._level-1)}{self._name}:\n""" else: UpperCamelCase = '' UpperCamelCase = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(lowercase_ , lowercase_ ): r += f"""{t * (self._level)}{v}\n""" self._level += 1 else: r += f"""{t * (self._level)}{k}: {v} ({type(lowercase_ ).__name__})\n""" UpperCamelCase = level return r[:-1] @classmethod def A ( cls : str , UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Optional[int] ): """simple docstring""" UpperCamelCase , UpperCamelCase = cls.get_config_dict(lowercase_ , **lowercase_ ) return cls(lowercase_ ) @classmethod def A ( cls : List[Any] , UpperCamelCase__ : Dict , **UpperCamelCase__ : str ): """simple docstring""" UpperCamelCase = kwargs.pop('cache_dir' , lowercase_ ) UpperCamelCase = kwargs.pop('force_download' , lowercase_ ) UpperCamelCase = kwargs.pop('resume_download' , lowercase_ ) UpperCamelCase = kwargs.pop('proxies' , lowercase_ ) UpperCamelCase = kwargs.pop('local_files_only' , lowercase_ ) if os.path.isdir(lowercase_ ): UpperCamelCase = os.path.join(lowercase_ , lowercase_ ) elif os.path.isfile(lowercase_ ) or is_remote_url(lowercase_ ): UpperCamelCase = pretrained_model_name_or_path else: UpperCamelCase = hf_bucket_url(lowercase_ , filename=lowercase_ , use_cdn=lowercase_ ) try: # Load from URL or cache if already cached UpperCamelCase = cached_path( lowercase_ , cache_dir=lowercase_ , force_download=lowercase_ , proxies=lowercase_ , resume_download=lowercase_ , local_files_only=lowercase_ , ) # Load config dict if resolved_config_file is None: raise EnvironmentError UpperCamelCase = Config.load_yaml(lowercase_ ) except EnvironmentError: UpperCamelCase = 'Can\'t load config for' raise EnvironmentError(lowercase_ ) if resolved_config_file == config_file: print('loading configuration file from path' ) else: print('loading configuration file cache' ) return Config.load_yaml(lowercase_ ), kwargs def __lowerCamelCase ( A__ ) -> str: """simple docstring""" UpperCamelCase = torch.load('dump.pt' , map_location=in_tensor.device ) UpperCamelCase = in_tensor.numpy() UpperCamelCase = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(__a , __a , rtol=0.01 , atol=0.1 ), ( F"""{sum([1 for x in np.isclose(__a , __a , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %""" " element-wise mismatch" ) raise Exception('tensors are all good' ) # Hugging face functions below def __lowerCamelCase ( A__ ) -> Any: """simple docstring""" UpperCamelCase = urlparse(__a ) return parsed.scheme in ("http", "https") def __lowerCamelCase ( A__ , A__ , A__=True ) -> Dict: """simple docstring""" UpperCamelCase = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX UpperCamelCase = '/' not in model_id if legacy_format: return F"""{endpoint}/{model_id}-{filename}""" else: return F"""{endpoint}/{model_id}/{filename}""" def __lowerCamelCase ( A__ , A__ , A__=None , A__=0 , A__=None , ) -> Dict: """simple docstring""" UpperCamelCase = 'python/{}'.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(__a , __a ): ua += "; " + "; ".join('{}/{}'.format(__a , __a ) for k, v in user_agent.items() ) elif isinstance(__a , __a ): ua += "; " + user_agent UpperCamelCase = {'user-agent': ua} if resume_size > 0: UpperCamelCase = 'bytes=%d-' % (resume_size,) UpperCamelCase = requests.get(__a , stream=__a , proxies=__a , headers=__a ) if response.status_code == 416: # Range not satisfiable return UpperCamelCase = response.headers.get('Content-Length' ) UpperCamelCase = resume_size + int(__a ) if content_length is not None else None UpperCamelCase = tqdm( unit='B' , unit_scale=__a , total=__a , initial=__a , desc='Downloading' , ) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(__a ) ) temp_file.write(__a ) progress.close() def __lowerCamelCase ( A__ , A__=None , A__=False , A__=None , A__=10 , A__=False , A__=None , A__=False , ) -> Dict: """simple docstring""" if cache_dir is None: UpperCamelCase = TRANSFORMERS_CACHE if isinstance(__a , __a ): UpperCamelCase = str(__a ) os.makedirs(__a , exist_ok=__a ) UpperCamelCase = None if not local_files_only: try: UpperCamelCase = requests.head(__a , allow_redirects=__a , proxies=__a , timeout=__a ) if response.status_code == 200: UpperCamelCase = response.headers.get('ETag' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass UpperCamelCase = url_to_filename(__a , __a ) # get cache path to put the file UpperCamelCase = os.path.join(__a , __a ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(__a ): return cache_path else: UpperCamelCase = [ file for file in fnmatch.filter(os.listdir(__a ) , filename + '.*' ) if not file.endswith('.json' ) and not file.endswith('.lock' ) ] if len(__a ) > 0: return os.path.join(__a , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( 'Cannot find the requested files in the cached path and outgoing traffic has been' ' disabled. To enable model look-ups and downloads online, set \'local_files_only\'' ' to False.' ) return None # From now on, etag is not None. if os.path.exists(__a ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. UpperCamelCase = cache_path + '.lock' with FileLock(__a ): # If the download just completed while the lock was activated. if os.path.exists(__a ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: UpperCamelCase = cache_path + '.incomplete' @contextmanager def _resumable_file_manager(): with open(__a , 'a+b' ) as f: yield f UpperCamelCase = _resumable_file_manager if os.path.exists(__a ): UpperCamelCase = os.stat(__a ).st_size else: UpperCamelCase = 0 else: UpperCamelCase = partial(tempfile.NamedTemporaryFile , dir=__a , delete=__a ) UpperCamelCase = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '%s not found in cache or force_download set to True, downloading to %s' , __a , temp_file.name , ) http_get( __a , __a , proxies=__a , resume_size=__a , user_agent=__a , ) os.replace(temp_file.name , __a ) UpperCamelCase = {'url': url, 'etag': etag} UpperCamelCase = cache_path + '.json' with open(__a , 'w' ) as meta_file: json.dump(__a , __a ) return cache_path def __lowerCamelCase ( A__ , A__=None ) -> List[Any]: """simple docstring""" UpperCamelCase = url.encode('utf-8' ) UpperCamelCase = shaaaa(__a ) UpperCamelCase = url_hash.hexdigest() if etag: UpperCamelCase = etag.encode('utf-8' ) UpperCamelCase = shaaaa(__a ) filename += "." + etag_hash.hexdigest() if url.endswith('.h5' ): filename += ".h5" return filename def __lowerCamelCase ( A__ , A__=None , A__=False , A__=None , A__=False , A__=None , A__=False , A__=False , A__=False , ) -> List[Any]: """simple docstring""" if cache_dir is None: UpperCamelCase = TRANSFORMERS_CACHE if isinstance(__a , __a ): UpperCamelCase = str(__a ) if isinstance(__a , __a ): UpperCamelCase = str(__a ) if is_remote_url(__a ): # URL, so get it from the cache (downloading if necessary) UpperCamelCase = get_from_cache( __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , user_agent=__a , local_files_only=__a , ) elif os.path.exists(__a ): # File, and it exists. UpperCamelCase = url_or_filename elif urlparse(__a ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('file {} not found'.format(__a ) ) else: # Something unknown raise ValueError('unable to parse {} as a URL or as a local path'.format(__a ) ) if extract_compressed_file: if not is_zipfile(__a ) and not tarfile.is_tarfile(__a ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" UpperCamelCase , UpperCamelCase = os.path.split(__a ) UpperCamelCase = output_file.replace('.' , '-' ) + '-extracted' UpperCamelCase = os.path.join(__a , __a ) if os.path.isdir(__a ) and os.listdir(__a ) and not force_extract: return output_path_extracted # Prevent parallel extractions UpperCamelCase = output_path + '.lock' with FileLock(__a ): shutil.rmtree(__a , ignore_errors=__a ) os.makedirs(__a ) if is_zipfile(__a ): with ZipFile(__a , 'r' ) as zip_file: zip_file.extractall(__a ) zip_file.close() elif tarfile.is_tarfile(__a ): UpperCamelCase = tarfile.open(__a ) tar_file.extractall(__a ) tar_file.close() else: raise EnvironmentError('Archive format of {} could not be identified'.format(__a ) ) return output_path_extracted return output_path def __lowerCamelCase ( A__ , A__="," ) -> Tuple: """simple docstring""" assert isinstance(__a , __a ) if os.path.isfile(__a ): with open(__a ) as f: UpperCamelCase = eval(f.read() ) else: UpperCamelCase = requests.get(__a ) try: UpperCamelCase = requests.json() except Exception: UpperCamelCase = req.content.decode() assert data is not None, "could not connect" try: UpperCamelCase = eval(__a ) except Exception: UpperCamelCase = data.split('\n' ) req.close() return data def __lowerCamelCase ( A__ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = requests.get(__a ) UpperCamelCase = np.array(Image.open(BytesIO(response.content ) ) ) return img def __lowerCamelCase ( A__ ) -> List[str]: """simple docstring""" UpperCamelCase = url.split('/' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(__a ) with open(__a , 'rb' ) as stream: UpperCamelCase = pkl.load(__a ) UpperCamelCase = weights.pop('model' ) UpperCamelCase = {} for k, v in model.items(): UpperCamelCase = torch.from_numpy(__a ) if "running_var" in k: UpperCamelCase = torch.tensor([0] ) UpperCamelCase = k.replace('running_var' , 'num_batches_tracked' ) UpperCamelCase = zero return new def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" print(F"""{os.path.abspath(os.path.join(__a , os.pardir ) )}/demo.ipynb""" ) def __lowerCamelCase ( A__ , A__="RGB" ) -> Any: """simple docstring""" assert isinstance(__a , __a ) if os.path.isfile(__a ): UpperCamelCase = cva.imread(__a ) else: UpperCamelCase = get_image_from_url(__a ) assert img is not None, F"""could not connect to: {im}""" UpperCamelCase = cva.cvtColor(__a , cva.COLOR_BGR2RGB ) if input_format == "RGB": UpperCamelCase = img[:, :, ::-1] return img def __lowerCamelCase ( A__ , A__=1 ) -> Optional[Any]: """simple docstring""" return (images[i : i + batch] for i in range(0 , len(__a ) , __a ))
430
def _lowercase( __a : list[int] ): a__ =len(__a ) for i in range(__a ): for j in range(i + 1 , __a ): if numbers[j] < numbers[i]: a__ , a__ =numbers[j], numbers[i] return numbers if __name__ == "__main__": _lowerCAmelCase: Tuple = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase: int = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
20
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = StableDiffusionLDMaDPipeline lowerCAmelCase_ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase (self ) -> Any: torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) _snake_case = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0 ) _snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _snake_case = CLIPTextModel(lowercase_ ) _snake_case = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _snake_case = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase (self , UpperCAmelCase , UpperCAmelCase=0 ) -> List[str]: if str(lowercase_ ).startswith("""mps""" ): _snake_case = torch.manual_seed(lowercase_ ) else: _snake_case = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) _snake_case = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowercase (self ) -> Any: _snake_case = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionLDMaDPipeline(**lowercase_ ) _snake_case = ldmad_pipe.to(lowercase_ ) ldmad_pipe.set_progress_bar_config(disable=lowercase_ ) _snake_case = self.get_dummy_inputs(lowercase_ ) _snake_case = ldmad_pipe(**lowercase_ ) _snake_case, _snake_case = output.rgb, output.depth _snake_case = rgb[0, -3:, -3:, -1] _snake_case = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _snake_case = np.array( [0.3733_8176, 0.7_0247, 0.7420_3193, 0.5164_3604, 0.5825_6793, 0.6093_2136, 0.418_1095, 0.4835_5877, 0.4653_5262] ) _snake_case = np.array([103.46727, 85.81_2004, 87.84_9236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def lowercase (self ) -> Optional[int]: _snake_case = self.get_dummy_components() _snake_case = StableDiffusionLDMaDPipeline(**lowercase_ ) _snake_case = ldmad_pipe.to(lowercase_ ) ldmad_pipe.set_progress_bar_config(disable=lowercase_ ) _snake_case = self.get_dummy_inputs(lowercase_ ) _snake_case = 3 * [inputs["""prompt"""]] # forward _snake_case = ldmad_pipe(**lowercase_ ) _snake_case, _snake_case = output.rgb, output.depth _snake_case = rgb_slice_a[0, -3:, -3:, -1] _snake_case = depth_slice_a[0, -3:, -1] _snake_case = self.get_dummy_inputs(lowercase_ ) _snake_case = 3 * [inputs.pop("""prompt""" )] _snake_case = ldmad_pipe.tokenizer( lowercase_ , padding="""max_length""" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=lowercase_ , return_tensors="""pt""" , ) _snake_case = text_inputs["""input_ids"""].to(lowercase_ ) _snake_case = ldmad_pipe.text_encoder(lowercase_ )[0] _snake_case = prompt_embeds # forward _snake_case = ldmad_pipe(**lowercase_ ) _snake_case, _snake_case = output.rgb, output.depth _snake_case = rgb_slice_a[0, -3:, -3:, -1] _snake_case = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def lowercase (self ) -> Dict: _snake_case = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = PNDMScheduler(skip_prk_steps=lowercase_ ) _snake_case = StableDiffusionLDMaDPipeline(**lowercase_ ) _snake_case = ldmad_pipe.to(lowercase_ ) ldmad_pipe.set_progress_bar_config(disable=lowercase_ ) _snake_case = self.get_dummy_inputs(lowercase_ ) _snake_case = """french fries""" _snake_case = ldmad_pipe(**lowercase_ , negative_prompt=lowercase_ ) _snake_case, _snake_case = output.rgb, output.depth _snake_case = rgb[0, -3:, -3:, -1] _snake_case = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _snake_case = np.array( [0.3_7044, 0.7181_1503, 0.722_3251, 0.4860_3675, 0.563_8391, 0.636_4948, 0.4283_3704, 0.490_1315, 0.4792_6217] ) _snake_case = np.array([107.84738, 84.6_2802, 89.96_2135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase (self , UpperCAmelCase , UpperCAmelCase="cpu" , UpperCAmelCase=torch.floataa , UpperCAmelCase=0 ) -> Optional[Any]: _snake_case = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) _snake_case = np.random.RandomState(lowercase_ ).standard_normal((1, 4, 64, 64) ) _snake_case = torch.from_numpy(lowercase_ ).to(device=lowercase_ , dtype=lowercase_ ) _snake_case = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowercase (self ) -> List[Any]: _snake_case = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ) _snake_case = ldmad_pipe.to(lowercase_ ) ldmad_pipe.set_progress_bar_config(disable=lowercase_ ) _snake_case = self.get_inputs(lowercase_ ) _snake_case = ldmad_pipe(**lowercase_ ) _snake_case, _snake_case = output.rgb, output.depth _snake_case = rgb[0, -3:, -3:, -1].flatten() _snake_case = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) _snake_case = np.array( [0.5380_5465, 0.5670_7305, 0.548_6515, 0.5701_2236, 0.581_4511, 0.5625_3487, 0.5484_3014, 0.5509_2263, 0.645_9706] ) _snake_case = np.array( [0.926_3781, 0.667_8672, 0.548_6515, 0.9220_2145, 0.6783_1135, 0.5625_3487, 0.924_1694, 0.755_1478, 0.645_9706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Any: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase (self , UpperCAmelCase , UpperCAmelCase="cpu" , UpperCAmelCase=torch.floataa , UpperCAmelCase=0 ) -> List[str]: _snake_case = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) _snake_case = np.random.RandomState(lowercase_ ).standard_normal((1, 4, 64, 64) ) _snake_case = torch.from_numpy(lowercase_ ).to(device=lowercase_ , dtype=lowercase_ ) _snake_case = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowercase (self ) -> List[Any]: _snake_case = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ).to(lowercase_ ) ldmad_pipe.set_progress_bar_config(disable=lowercase_ ) _snake_case = self.get_inputs(lowercase_ ) _snake_case = ldmad_pipe(**lowercase_ ) _snake_case, _snake_case = output.rgb, output.depth _snake_case = 0.49_5586 _snake_case = 0.3379_5515 _snake_case = 112.48518 _snake_case = 98.48_9746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def lowercase (self ) -> Optional[int]: _snake_case = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d-4c""" ).to(lowercase_ ) ldmad_pipe.set_progress_bar_config(disable=lowercase_ ) _snake_case = self.get_inputs(lowercase_ ) _snake_case = ldmad_pipe(**lowercase_ ) _snake_case, _snake_case = output.rgb, output.depth _snake_case = 0.419_4127 _snake_case = 0.3537_5586 _snake_case = 0.563_8502 _snake_case = 0.3468_6103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
585
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowercase_ : def __init__( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="resnet50" , lowercase_=3 , lowercase_=32 , lowercase_=3 , lowercase_=True , lowercase_=True , ) -> Union[str, Any]: a__ =parent a__ =out_indices if out_indices is not None else [4] a__ =stage_names a__ =out_features a__ =backbone a__ =batch_size a__ =image_size a__ =num_channels a__ =use_pretrained_backbone a__ =is_training def __UpperCamelCase ( self) -> Optional[Any]: a__ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ =self.get_config() return config, pixel_values def __UpperCamelCase ( self) -> Tuple: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> str: a__ =TimmBackbone(config=lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): a__ =model(lowercase_) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __UpperCamelCase ( self) -> str: a__ =self.prepare_config_and_inputs() a__ , a__ =config_and_inputs a__ ={'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class lowercase_ (lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): snake_case =(TimmBackbone,) if is_torch_available() else () snake_case ={'feature-extraction': TimmBackbone} if is_torch_available() else {} snake_case =False snake_case =False snake_case =False snake_case =False def __UpperCamelCase ( self) -> Optional[Any]: a__ =TimmBackboneModelTester(self) a__ =ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_) def __UpperCamelCase ( self) -> Dict: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self) -> str: a__ ='resnet18' a__ ='microsoft/resnet-18' a__ =AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_) a__ =AutoBackbone.from_pretrained(lowercase_) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(len(timm_model.stage_names) , len(transformers_model.stage_names)) self.assertEqual(timm_model.channels , transformers_model.channels) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,)) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names) - 1]) a__ =AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_ , out_indices=[1, 2, 3]) a__ =AutoBackbone.from_pretrained(lowercase_ , out_indices=[1, 2, 3]) self.assertEqual(timm_model.out_indices , transformers_model.out_indices) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(timm_model.channels , transformers_model.channels) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> Dict: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> List[Any]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.') def __UpperCamelCase ( self) -> str: pass @unittest.skip('Safetensors is not supported by timm.') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self) -> Optional[Any]: pass def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) a__ =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ =[*signature.parameters.keys()] a__ =['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_) def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =True a__ =self.has_attentions # no need to test all models as different heads yield the same functionality a__ =self.all_model_classes[0] a__ =model_class(lowercase_) model.to(lowercase_) a__ =self._prepare_for_class(lowercase_ , lowercase_) a__ =model(**lowercase_) a__ =outputs[0][-1] # Encoder-/Decoder-only models a__ =outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a__ =outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowercase_) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) def __UpperCamelCase ( self) -> List[str]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_) self.assertEqual(len(result.feature_maps) , len(config.out_indices)) self.assertEqual(len(model.channels) , len(config.out_indices)) # Check output of last stage is taken if out_features=None, out_indices=None a__ =copy.deepcopy(lowercase_) a__ =None a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_) self.assertEqual(len(result.feature_maps) , 1) self.assertEqual(len(model.channels) , 1) # Check backbone can be initialized with fresh weights a__ =copy.deepcopy(lowercase_) a__ =False a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_)
20
0
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase (lowercase__ , lowercase__ , lowercase__ ): @register_to_config def __init__( self :Any , __magic_name__ :int , __magic_name__ :Dict , __magic_name__ :Optional[Any] , __magic_name__ :List[str] , __magic_name__ :Optional[Any] , __magic_name__ :Optional[Any] , __magic_name__ :int , __magic_name__ :Union[str, Any] , __magic_name__ :Any , __magic_name__ :Optional[int] = False , ) ->str: super().__init__() lowercase : Any = nn.Embedding(lowercase_ , lowercase_ ) lowercase : Optional[Any] = nn.Embedding(lowercase_ , lowercase_ ) lowercase : List[Any] = False lowercase : Union[str, Any] = nn.Dropout(p=lowercase_ ) lowercase : List[str] = TaConfig( vocab_size=lowercase_ , d_model=lowercase_ , num_heads=lowercase_ , d_kv=lowercase_ , d_ff=lowercase_ , dropout_rate=lowercase_ , feed_forward_proj=lowercase_ , is_decoder=lowercase_ , is_encoder_decoder=lowercase_ , ) lowercase : Union[str, Any] = nn.ModuleList() for lyr_num in range(lowercase_ ): lowercase : Union[str, Any] = TaBlock(lowercase_ ) self.encoders.append(lowercase_ ) lowercase : Union[str, Any] = TaLayerNorm(lowercase_ ) lowercase : int = nn.Dropout(p=lowercase_ ) def __snake_case ( self :List[str] , __magic_name__ :Optional[Any] , __magic_name__ :int ) ->Tuple: lowercase : List[Any] = self.token_embedder(lowercase_ ) lowercase : Dict = encoder_input_tokens.shape[1] lowercase : str = torch.arange(lowercase_ , device=encoder_input_tokens.device ) x += self.position_encoding(lowercase_ ) lowercase : Any = self.dropout_pre(lowercase_ ) # inverted the attention mask lowercase : str = encoder_input_tokens.size() lowercase : Optional[Any] = self.get_extended_attention_mask(lowercase_ , lowercase_ ) for lyr in self.encoders: lowercase : Tuple = lyr(lowercase_ , lowercase_ )[0] lowercase : Union[str, Any] = self.layer_norm(lowercase_ ) return self.dropout_post(lowercase_ ), encoder_inputs_mask
264
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCAmelCase: Optional[Any] = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: List[str] = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _lowerCAmelCase: List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
20
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : list[int] ): lowercase = len(__a ) for i in range(__a ): for j in range(i + 1 , __a ): if numbers[j] < numbers[i]: lowercase , lowercase = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowercase_ : Tuple = input('''Enter numbers separated by a comma:\n''').strip() lowercase_ : int = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
588
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase: str = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class lowercase_ (lowercase__ ): snake_case ='big_bird' def __init__( self , lowercase_=50358 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu_new" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=4096 , lowercase_=2 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=66 , lowercase_="block_sparse" , lowercase_=True , lowercase_=False , lowercase_=64 , lowercase_=3 , lowercase_=None , **lowercase_ , ) -> Any: super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , sep_token_id=lowercase_ , **lowercase_ , ) a__ =vocab_size a__ =max_position_embeddings a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =initializer_range a__ =type_vocab_size a__ =layer_norm_eps a__ =use_cache a__ =rescale_embeddings a__ =attention_type a__ =use_bias a__ =block_size a__ =num_random_blocks a__ =classifier_dropout class lowercase_ (lowercase__ ): @property def __UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a__ ={0: 'batch', 1: 'choice', 2: 'sequence'} else: a__ ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
20
0
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(lowercase__ ) , """Tatoeba directory does not exist.""" ) class __lowercase ( unittest.TestCase ): @cached_property def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = tempfile.mkdtemp() return TatoebaConverter(save_dir=lowercase_ ) @slow def __lowercase ( self : Any ): '''simple docstring''' self.resolver.convert_models(["""heb-eng"""] ) @slow def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.resolver.write_model_card("""opus-mt-he-en""" ,dry_run=lowercase_ ) assert mmeta["long_pair"] == "heb-eng"
65
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger(__name__) _lowerCAmelCase: Tuple = torch.device('cpu') def _lowercase( ): a__ ='http://images.cocodataset.org/val2017/000000039769.jpg' a__ =Image.open(requests.get(__a , stream=__a ).raw ) return im def _lowercase( __a : Optional[Any] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _lowercase( __a : int , __a : int , __a : Optional[Any] ): a__ =dct.pop(__a ) a__ =val def _lowercase( __a : Optional[Any] ): a__ =[] for k in state_dict.keys(): a__ =k if ".pwconv" in k: a__ =k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: a__ =k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: a__ =k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: a__ =k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: a__ =k_new.split('.' ) if ls[2].isdigit(): a__ ='swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: a__ =k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _lowercase( __a : Union[str, Any] , __a : int , __a : str ): a__ =SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a__ =1000 a__ ='huggingface/label-files' a__ ='imagenet-1k-id2label.json' a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a__ =[3, 3, 6, 4] a__ =[48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a__ =[3, 3, 9, 6] a__ =[48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a__ =[4, 3, 10, 5] a__ =[48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a__ =[4, 4, 12, 6] a__ =[64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): a__ =torch.hub.load_state_dict_from_url(__a , map_location='cpu' , check_hash=__a ) else: a__ =torch.load(__a , map_location='cpu' ) a__ =checkpoint a__ =create_rename_keys(__a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__a , __a , __a ) # load HuggingFace model a__ =SwiftFormerForImageClassification(__a ).eval() hf_model.load_state_dict(__a ) # prepare test inputs a__ =prepare_img() a__ =ViTImageProcessor.from_pretrained('preprocessor_config' ) a__ =processor(images=__a , return_tensors='pt' ) # compare outputs from both models a__ =get_expected_output(__a ) a__ =hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , __a , atol=1e-3 ) Path(__a ).mkdir(exist_ok=__a ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') _lowerCAmelCase: Optional[int] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
20
0
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , lowerCamelCase , lowerCamelCase=2 , lowerCamelCase=3 , lowerCamelCase=4 , lowerCamelCase=2 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=36 , lowerCamelCase=3 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=6 , lowerCamelCase=6 , lowerCamelCase=3 , lowerCamelCase=4 , lowerCamelCase=None , lowerCamelCase=1_000 , ): _snake_case = parent _snake_case = batch_size _snake_case = num_channels _snake_case = image_size _snake_case = patch_size _snake_case = text_seq_length _snake_case = is_training _snake_case = use_input_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = coordinate_size _snake_case = shape_size _snake_case = num_labels _snake_case = num_choices _snake_case = scope _snake_case = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _snake_case = text_seq_length _snake_case = (image_size // patch_size) ** 2 + 1 _snake_case = self.text_seq_length + self.image_seq_length def UpperCamelCase( self ): _snake_case = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _snake_case = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _snake_case = bbox[i, j, 3] _snake_case = bbox[i, j, 1] _snake_case = t if bbox[i, j, 2] < bbox[i, j, 0]: _snake_case = bbox[i, j, 2] _snake_case = bbox[i, j, 0] _snake_case = t _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_input_mask: _snake_case = random_attention_mask([self.batch_size, self.text_seq_length] ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _snake_case = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): _snake_case = LayoutLMvaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() # text + image _snake_case = model(lowercase_ , pixel_values=lowercase_ ) _snake_case = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) _snake_case = model(lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , token_type_ids=lowercase_ ) _snake_case = model(lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _snake_case = model(lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _snake_case = model(pixel_values=lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): _snake_case = self.num_labels _snake_case = LayoutLMvaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() _snake_case = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): _snake_case = self.num_labels _snake_case = LayoutLMvaForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() _snake_case = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): _snake_case = LayoutLMvaForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() _snake_case = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase( self ): _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Tuple = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase__ : str = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCamelCase( self ): _snake_case = LayoutLMvaModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): _snake_case = copy.deepcopy(lowercase_ ) if model_class in get_values(lowercase_ ): _snake_case = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(lowercase_ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowercase_ ): _snake_case = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) elif model_class in get_values(lowercase_ ): _snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) _snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) elif model_class in [ *get_values(lowercase_ ), ]: _snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) elif model_class in [ *get_values(lowercase_ ), ]: _snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=lowercase_ , ) return inputs_dict def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCamelCase( self ): _snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _snake_case = type self.model_tester.create_and_check_model(*lowercase_ ) def UpperCamelCase( self ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def UpperCamelCase( self ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) def UpperCamelCase( self ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) @slow def UpperCamelCase( self ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = LayoutLMvaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def snake_case_ ( ): '''simple docstring''' _snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase( self ): return LayoutLMvaImageProcessor(apply_ocr=lowercase_ ) if is_vision_available() else None @slow def UpperCamelCase( self ): _snake_case = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(lowercase_ ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowercase_ , return_tensors="pt" ).pixel_values.to(lowercase_ ) _snake_case = torch.tensor([[1, 2]] ) _snake_case = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _snake_case = model( input_ids=input_ids.to(lowercase_ ) , bbox=bbox.to(lowercase_ ) , pixel_values=pixel_values.to(lowercase_ ) , ) # verify the logits _snake_case = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , lowercase_ ) _snake_case = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase_ , atol=1e-4 ) )
672
from __future__ import annotations from typing import Any class lowercase_ : def __init__( self , lowercase_) -> None: a__ =num_of_nodes a__ =[] a__ ={} def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: self.m_edges.append([u_node, v_node, weight]) def __UpperCamelCase ( self , lowercase_) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node]) def __UpperCamelCase ( self , lowercase_) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: a__ =self.find_component(lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: if component_size[u_node] <= component_size[v_node]: a__ =v_node component_size[v_node] += component_size[u_node] self.set_component(lowercase_) elif component_size[u_node] >= component_size[v_node]: a__ =self.find_component(lowercase_) component_size[u_node] += component_size[v_node] self.set_component(lowercase_) def __UpperCamelCase ( self) -> None: a__ =[] a__ =0 a__ =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes): self.m_component.update({node: node}) component_size.append(1) a__ =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: a__ , a__ , a__ =edge a__ =self.m_component[u] a__ =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): a__ =[u, v, w] for edge in minimum_weight_edge: if isinstance(lowercase_ , lowercase_): a__ , a__ , a__ =edge a__ =self.m_component[u] a__ =self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowercase_ , lowercase_ , lowercase_) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""") num_of_components -= 1 a__ =[-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""") def _lowercase( ): pass if __name__ == "__main__": import doctest doctest.testmod()
20
0
def _lowerCamelCase ( SCREAMING_SNAKE_CASE = 50 ): '''simple docstring''' A_ = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
203
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCAmelCase: Union[str, Any] = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' _lowerCAmelCase: Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' _lowerCAmelCase: List[Any] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): def __UpperCamelCase ( self) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=True , lowercase_=False) -> Any: if rouge_types is None: a__ =['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] a__ =rouge_scorer.RougeScorer(rouge_types=lowercase_ , use_stemmer=lowercase_) if use_aggregator: a__ =scoring.BootstrapAggregator() else: a__ =[] for ref, pred in zip(lowercase_ , lowercase_): a__ =scorer.score(lowercase_ , lowercase_) if use_aggregator: aggregator.add_scores(lowercase_) else: scores.append(lowercase_) if use_aggregator: a__ =aggregator.aggregate() else: a__ ={} for key in scores[0]: a__ =[score[key] for score in scores] return result
20
0
'''simple docstring''' from __future__ import annotations from typing import Any class __snake_case: '''simple docstring''' def __init__( self , A_ ) -> None: lowerCAmelCase = num_of_nodes lowerCAmelCase = [] lowerCAmelCase = {} def __snake_case ( self , A_ , A_ , A_ ) -> None: self.m_edges.append([u_node, v_node, weight] ) def __snake_case ( self , A_ ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def __snake_case ( self , A_ ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase = self.find_component(lowercase_ ) def __snake_case ( self , A_ , A_ , A_ ) -> None: if component_size[u_node] <= component_size[v_node]: lowerCAmelCase = v_node component_size[v_node] += component_size[u_node] self.set_component(lowercase_ ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase = self.find_component(lowercase_ ) component_size[u_node] += component_size[v_node] self.set_component(lowercase_ ) def __snake_case ( self ) -> None: lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = edge lowerCAmelCase = self.m_component[u] lowerCAmelCase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = edge lowerCAmelCase = self.m_component[u] lowerCAmelCase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowercase_ , lowercase_ , lowercase_ ) print(f'Added edge [{u} - {v}]\nAdded weight: {w}\n' ) num_of_components -= 1 lowerCAmelCase = [-1] * self.m_num_of_nodes print(f'The total weight of the minimal spanning tree is: {mst_weight}' ) def _snake_case ( ) -> Union[str, Any]: """simple docstring""" pass if __name__ == "__main__": import doctest doctest.testmod()
433
from __future__ import annotations _lowerCAmelCase: str = '#' class lowercase_ : def __init__( self) -> None: a__ ={} def __UpperCamelCase ( self , lowercase_) -> None: a__ =self._trie for char in text: if char not in trie: a__ ={} a__ =trie[char] a__ =True def __UpperCamelCase ( self , lowercase_) -> tuple | list: a__ =self._trie for char in prefix: if char in trie: a__ =trie[char] else: return [] return self._elements(lowercase_) def __UpperCamelCase ( self , lowercase_) -> tuple: a__ =[] for c, v in d.items(): a__ =[' '] if c == END else [(c + s) for s in self._elements(lowercase_)] result.extend(lowercase_) return tuple(lowercase_) _lowerCAmelCase: Optional[int] = Trie() _lowerCAmelCase: List[str] = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def _lowercase( __a : str ): a__ =trie.find_word(__a ) return tuple(string + word for word in suffixes ) def _lowercase( ): print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
20
0
from __future__ import annotations lowercase : Tuple = tuple[int, int, int] lowercase : Any = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase lowercase : int = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- lowercase : Optional[int] = 'EGZWVONAHDCLFQMSIPJBYUKXTR' lowercase : str = 'FOBHMDKEXQNRAULPGSJVTYICZW' lowercase : List[Any] = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- lowercase : Tuple = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- lowercase : str = 'RMDJXFUWGISLHVTCQNKYPBEZOA' lowercase : Any = 'SGLCPQWZHKXAREONTFBVIYJUDM' lowercase : str = 'HVSICLTYKQUBXDWAJZOMFGPREN' lowercase : Tuple = 'RZWQHFMVDBKICJLNTUXAGYPSOE' lowercase : Optional[Any] = 'LFKIJODBEGAMQPXVUHYSTCZRWN' lowercase : List[str] = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: # Checks if there are 3 unique rotors if (unique_rotsel := len(set(__a ) )) < 3: lowercase : Tuple = f"Please use 3 unique rotors (not {unique_rotsel})" raise Exception(__a ) # Checks if rotor positions are valid lowercase , lowercase , lowercase : Optional[Any] = rotpos if not 0 < rotorposa <= len(__a ): lowercase : Dict = f"First rotor position is not within range of 1..26 ({rotorposa}" raise ValueError(__a ) if not 0 < rotorposa <= len(__a ): lowercase : Optional[Any] = f"Second rotor position is not within range of 1..26 ({rotorposa})" raise ValueError(__a ) if not 0 < rotorposa <= len(__a ): lowercase : Tuple = f"Third rotor position is not within range of 1..26 ({rotorposa})" raise ValueError(__a ) # Validates string and returns dict lowercase : Tuple = _plugboard(__a ) return rotpos, rotsel, pbdict def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(__a , __a ): lowercase : Optional[Any] = f"Plugboard setting isn't type string ({type(__a )})" raise TypeError(__a ) elif len(__a ) % 2 != 0: lowercase : Tuple = f"Odd number of symbols ({len(__a )})" raise Exception(__a ) elif pbstring == "": return {} pbstring.replace(""" """ , """""" ) # Checks if all characters are unique lowercase : str = set() for i in pbstring: if i not in abc: lowercase : Any = f"'{i}' not in list of symbols" raise Exception(__a ) elif i in tmppbl: lowercase : Optional[int] = f"Duplicate symbol ({i})" raise Exception(__a ) else: tmppbl.add(__a ) del tmppbl # Created the dictionary lowercase : List[str] = {} for j in range(0 , len(__a ) - 1 , 2 ): lowercase : List[str] = pbstring[j + 1] lowercase : Any = pbstring[j] return pb def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = (rotora, rotora, rotora) , SCREAMING_SNAKE_CASE__ = "" , ) -> List[Any]: lowercase : List[str] = text.upper() lowercase , lowercase , lowercase : Any = _validator( __a , __a , plugb.upper() ) lowercase , lowercase , lowercase : Dict = rotor_position lowercase , lowercase , lowercase : Union[str, Any] = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 lowercase : Dict = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: lowercase : Optional[int] = plugboard[symbol] # rotor ra -------------------------- lowercase : Optional[int] = abc.index(__a ) + rotorposa lowercase : int = rotora[index % len(__a )] # rotor rb -------------------------- lowercase : int = abc.index(__a ) + rotorposa lowercase : Any = rotora[index % len(__a )] # rotor rc -------------------------- lowercase : Any = abc.index(__a ) + rotorposa lowercase : Optional[Any] = rotora[index % len(__a )] # reflector -------------------------- # this is the reason you don't need another machine to decipher lowercase : Optional[Any] = reflector[symbol] # 2nd rotors lowercase : List[Any] = abc[rotora.index(__a ) - rotorposa] lowercase : int = abc[rotora.index(__a ) - rotorposa] lowercase : Tuple = abc[rotora.index(__a ) - rotorposa] # 2nd plugboard if symbol in plugboard: lowercase : Optional[int] = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(__a ): lowercase : Optional[Any] = 0 rotorposa += 1 if rotorposa >= len(__a ): lowercase : List[str] = 0 rotorposa += 1 if rotorposa >= len(__a ): lowercase : Optional[Any] = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(__a ) return "".join(__a ) if __name__ == "__main__": lowercase : List[Any] = 'This is my Python script that emulates the Enigma machine from WWII.' lowercase : int = (1, 1, 1) lowercase : Any = 'pictures' lowercase : Any = (rotora, rotora, rotora) lowercase : Any = enigma(message, rotor_pos, rotor_sel, pb) print("""Encrypted message:""", en) print("""Decrypted message:""", enigma(en, rotor_pos, rotor_sel, pb))
336
_lowerCAmelCase: List[str] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def _lowercase( ): a__ =input('Enter message: ' ) a__ =input('Enter key [alphanumeric]: ' ) a__ =input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): a__ ='encrypt' a__ =encrypt_message(__a , __a ) elif mode.lower().startswith('d' ): a__ ='decrypt' a__ =decrypt_message(__a , __a ) print(f"""\n{mode.title()}ed message:""" ) print(__a ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'encrypt' ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'decrypt' ) def _lowercase( __a : str , __a : str , __a : str ): a__ =[] a__ =0 a__ =key.upper() for symbol in message: a__ =LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__a ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__a ): a__ =0 else: translated.append(__a ) return "".join(__a ) if __name__ == "__main__": main()
20
0
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
372
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
0
'''simple docstring''' def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) _SCREAMING_SNAKE_CASE : List[Any] = sum(__a ) / len(__a ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__a ) if __name__ == "__main__": import doctest doctest.testmod()
533
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =KandinskyVaaPriorPipeline snake_case =['prompt'] snake_case =['prompt', 'negative_prompt'] snake_case =[ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] snake_case =False @property def __UpperCamelCase ( self) -> Optional[int]: return 32 @property def __UpperCamelCase ( self) -> Tuple: return 32 @property def __UpperCamelCase ( self) -> int: return self.time_input_dim @property def __UpperCamelCase ( self) -> str: return self.time_input_dim * 4 @property def __UpperCamelCase ( self) -> Optional[int]: return 100 @property def __UpperCamelCase ( self) -> Union[str, Any]: a__ =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self) -> Union[str, Any]: torch.manual_seed(0) a__ =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowercase_) @property def __UpperCamelCase ( self) -> Tuple: torch.manual_seed(0) a__ ={ 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } a__ =PriorTransformer(**lowercase_) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 a__ =nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def __UpperCamelCase ( self) -> Any: torch.manual_seed(0) a__ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) a__ =CLIPVisionModelWithProjection(lowercase_) return model @property def __UpperCamelCase ( self) -> Optional[int]: a__ =CLIPImageProcessor( crop_size=224 , do_center_crop=lowercase_ , do_normalize=lowercase_ , do_resize=lowercase_ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor def __UpperCamelCase ( self) -> Any: a__ =self.dummy_prior a__ =self.dummy_image_encoder a__ =self.dummy_text_encoder a__ =self.dummy_tokenizer a__ =self.dummy_image_processor a__ =UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=lowercase_ , clip_sample_range=10.0 , ) a__ ={ 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def __UpperCamelCase ( self , lowercase_ , lowercase_=0) -> Tuple: if str(lowercase_).startswith('mps'): a__ =torch.manual_seed(lowercase_) else: a__ =torch.Generator(device=lowercase_).manual_seed(lowercase_) a__ ={ 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __UpperCamelCase ( self) -> int: a__ ='cpu' a__ =self.get_dummy_components() a__ =self.pipeline_class(**lowercase_) a__ =pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) a__ =pipe(**self.get_dummy_inputs(lowercase_)) a__ =output.image_embeds a__ =pipe( **self.get_dummy_inputs(lowercase_) , return_dict=lowercase_ , )[0] a__ =image[0, -10:] a__ =image_from_tuple[0, -10:] assert image.shape == (1, 32) a__ =np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def __UpperCamelCase ( self) -> List[Any]: a__ =torch_device == 'cpu' a__ =True a__ =False self._test_inference_batch_single_identical( test_max_difference=lowercase_ , relax_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , ) @skip_mps def __UpperCamelCase ( self) -> Optional[int]: a__ =torch_device == 'cpu' a__ =False self._test_attention_slicing_forward_pass( test_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , )
20
0
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCamelCase : Union[str, Any] = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' _lowerCamelCase : Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' _lowerCamelCase : List[Any] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def A ( self : str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def A ( self : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str=None , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Any=False ): """simple docstring""" if rouge_types is None: UpperCamelCase = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] UpperCamelCase = rouge_scorer.RougeScorer(rouge_types=lowercase_ , use_stemmer=lowercase_ ) if use_aggregator: UpperCamelCase = scoring.BootstrapAggregator() else: UpperCamelCase = [] for ref, pred in zip(lowercase_ , lowercase_ ): UpperCamelCase = scorer.score(lowercase_ , lowercase_ ) if use_aggregator: aggregator.add_scores(lowercase_ ) else: scores.append(lowercase_ ) if use_aggregator: UpperCamelCase = aggregator.aggregate() else: UpperCamelCase = {} for key in scores[0]: UpperCamelCase = [score[key] for score in scores] return result
430
from manim import * class lowercase_ (lowercase__ ): def __UpperCamelCase ( self) -> List[Any]: a__ =Rectangle(height=0.5 , width=0.5) a__ =Rectangle(height=0.46 , width=0.46).set_stroke(width=0) a__ =[mem.copy() for i in range(6)] a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(lowercase_ , lowercase_).arrange(lowercase_ , buff=0) a__ =Text('CPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) cpu.move_to([-2.5, -0.5, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(4)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('GPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) gpu.move_to([-1, -1, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Model' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) model.move_to([3, -1.0, 0]) self.add(lowercase_) a__ =[] for i, rect in enumerate(lowercase_): rect.set_stroke(lowercase_) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) a__ =Rectangle(height=0.46 / 4 , width=0.46 / 3).set_stroke(width=0.0).set_fill(lowercase_ , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=lowercase_) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0) self.add(lowercase_) cpu_targs.append(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Loaded Checkpoint' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4) checkpoint.move_to([3, 0.5, 0]) a__ =Square(side_length=2.2) key.move_to([-5, 2, 0]) a__ =MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(lowercase_ , lowercase_) a__ =MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left()) a__ =MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(lowercase_) , Write(lowercase_)) self.play(Write(lowercase_ , run_time=1) , Create(lowercase_ , run_time=1)) a__ =[] a__ =[] for i, rect in enumerate(lowercase_): a__ =fill.copy().set_fill(lowercase_ , opacity=0.7) target.move_to(lowercase_) first_animations.append(GrowFromCenter(lowercase_ , run_time=1)) a__ =target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.target.move_to(cpu_right_col_base[i - 5]) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5)) self.play(*lowercase_) self.play(*lowercase_) self.wait()
20
0
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __lowerCAmelCase = trt.Logger(trt.Logger.WARNING) __lowerCAmelCase = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __lowerCAmelCase = logging.getLogger(__name__) __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) __lowerCAmelCase = parser.parse_args() if args.tokenizer_name: __lowerCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) __lowerCAmelCase = args.per_device_eval_batch_size __lowerCAmelCase = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __lowerCAmelCase = True __lowerCAmelCase = 'temp_engine/bert-fp32.engine' if args.fpaa: __lowerCAmelCase = 'temp_engine/bert-fp16.engine' if args.inta: __lowerCAmelCase = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') __lowerCAmelCase = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __lowerCAmelCase = [network.get_input(i) for i in range(network.num_inputs)] __lowerCAmelCase = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __lowerCAmelCase = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __lowerCAmelCase = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __lowerCAmelCase = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) _snake_case = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) _snake_case = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , __a ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , __a ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , __a ) # start time _snake_case = time.time() # Run inference context.execute_async( bindings=[int(__a ) for d_inp in d_inputs] + [int(__a ), int(__a )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(__a , __a , __a ) cuda.memcpy_dtoh_async(__a , __a , __a ) # Synchronize the stream and take time stream.synchronize() # end time _snake_case = time.time() _snake_case = end_time - start_time _snake_case = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __lowerCAmelCase = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __lowerCAmelCase = raw_datasets['validation'].column_names __lowerCAmelCase = 'question' if 'question' in column_names else column_names[0] __lowerCAmelCase = 'context' if 'context' in column_names else column_names[1] __lowerCAmelCase = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __lowerCAmelCase = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) __lowerCAmelCase = min(args.max_seq_length, tokenizer.model_max_length) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace _snake_case = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. _snake_case = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=__a , stride=args.doc_stride , return_overflowing_tokens=__a , return_offsets_mapping=__a , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. _snake_case = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. _snake_case = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). _snake_case = tokenized_examples.sequence_ids(__a ) _snake_case = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. _snake_case = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. _snake_case = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples __lowerCAmelCase = raw_datasets['validation'] # Validation Feature Creation __lowerCAmelCase = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) __lowerCAmelCase = default_data_collator __lowerCAmelCase = eval_dataset.remove_columns(['example_id', 'offset_mapping']) __lowerCAmelCase = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. _snake_case = postprocess_qa_predictions( examples=__a , features=__a , predictions=__a , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=__a , ) # Format the result to the format the metric expects. if args.version_2_with_negative: _snake_case = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: _snake_case = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] _snake_case = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=__a , label_ids=__a ) __lowerCAmelCase = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): return trt.volume(engine.get_binding_shape(__a ) ) * engine.get_binding_dtype(__a ).itemsize # Allocate device memory for inputs and outputs. __lowerCAmelCase = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __lowerCAmelCase = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __lowerCAmelCase = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __lowerCAmelCase = cuda.mem_alloc(h_outputa.nbytes) __lowerCAmelCase = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __lowerCAmelCase = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') __lowerCAmelCase = 0.0 __lowerCAmelCase = 0 __lowerCAmelCase = timeit.default_timer() __lowerCAmelCase = None for step, batch in enumerate(eval_dataloader): __lowerCAmelCase = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __lowerCAmelCase = outputs __lowerCAmelCase = torch.tensor(start_logits) __lowerCAmelCase = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __lowerCAmelCase = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __lowerCAmelCase = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __lowerCAmelCase = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __lowerCAmelCase = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __lowerCAmelCase = nested_truncate(all_preds, len(eval_dataset)) __lowerCAmelCase = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_000)) logger.info('Total Number of Inference = %d', niter) __lowerCAmelCase = post_processing_function(eval_examples, eval_dataset, all_preds) __lowerCAmelCase = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
585
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _lowerCAmelCase: Any = sys.version_info >= (3, 10) def _lowercase( __a : int=None , __a : Any=None ): return field(default_factory=lambda: default , metadata=__a ) @dataclass class lowercase_ : snake_case =42 snake_case =42 snake_case =42 snake_case =42 @dataclass class lowercase_ : snake_case =42 snake_case =field(default='toto' , metadata={'help': 'help message'} ) @dataclass class lowercase_ : snake_case =False snake_case =True snake_case =None class lowercase_ (lowercase__ ): snake_case ='titi' snake_case ='toto' class lowercase_ (lowercase__ ): snake_case ='titi' snake_case ='toto' snake_case =42 @dataclass class lowercase_ : snake_case ="toto" def __UpperCamelCase ( self) -> List[str]: a__ =BasicEnum(self.foo) @dataclass class lowercase_ : snake_case ="toto" def __UpperCamelCase ( self) -> List[str]: a__ =MixedTypeEnum(self.foo) @dataclass class lowercase_ : snake_case =None snake_case =field(default=lowercase__ , metadata={'help': 'help message'} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) @dataclass class lowercase_ : snake_case =list_field(default=[] ) snake_case =list_field(default=[1, 2, 3] ) snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] ) snake_case =list_field(default=[0.1, 0.2, 0.3] ) @dataclass class lowercase_ : snake_case =field() snake_case =field() snake_case =field() def __UpperCamelCase ( self) -> List[Any]: a__ =BasicEnum(self.required_enum) @dataclass class lowercase_ : snake_case =42 snake_case =field() snake_case =None snake_case =field(default='toto' , metadata={'help': 'help message'} ) snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class lowercase_ : snake_case =False snake_case =True snake_case =None @dataclass class lowercase_ : snake_case =None snake_case =field(default=lowercase__ , metadata={'help': 'help message'} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self , lowercase_ , lowercase_) -> int: self.assertEqual(len(a._actions) , len(b._actions)) for x, y in zip(a._actions , b._actions): a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'} a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , lowercase_) and yy.get('choices' , lowercase_): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](lowercase_) , yy['type'](lowercase_)) del xx["type"], yy["type"] self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_) expected.add_argument('--bar' , type=lowercase_ , required=lowercase_) expected.add_argument('--baz' , type=lowercase_ , required=lowercase_) expected.add_argument('--flag' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') self.argparsersEqual(lowercase_ , lowercase_) a__ =['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((a__) , ) =parser.parse_args_into_dataclasses(lowercase_ , look_for_args_file=lowercase_) self.assertFalse(example.flag) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=lowercase_) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message') self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Optional[Any]: a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') expected.add_argument('--baz' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=lowercase_ , dest='baz') expected.add_argument('--opt' , type=lowercase_ , default=lowercase_) a__ =[WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_) for dataclass_type in dataclass_types: a__ =HfArgumentParser(lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', '--no_baz']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', '--baz']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(args.foo , 'toto') a__ =parser.parse_args_into_dataclasses([])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto) a__ =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') a__ =parser.parse_args_into_dataclasses(['--foo', 'titi'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi) a__ =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) a__ =parser.parse_args_into_dataclasses(['--foo', '42'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo) def __UpperCamelCase ( self) -> List[Any]: @dataclass class lowercase_ : snake_case ="toto" a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(args.foo , 'toto') a__ =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') a__ =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) def __UpperCamelCase ( self) -> Optional[int]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=lowercase_) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=lowercase_) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual( lowercase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3]) , ) a__ =parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split()) self.assertEqual(lowercase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7])) def __UpperCamelCase ( self) -> Dict: a__ =argparse.ArgumentParser() expected.add_argument('--foo' , default=lowercase_ , type=lowercase_) expected.add_argument('--bar' , default=lowercase_ , type=lowercase_ , help='help message') expected.add_argument('--baz' , default=lowercase_ , type=lowercase_) expected.add_argument('--ces' , nargs='+' , default=[] , type=lowercase_) expected.add_argument('--des' , nargs='+' , default=[] , type=lowercase_) a__ =[OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_) for dataclass_type in dataclass_types: a__ =HfArgumentParser(lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , bar=lowercase_ , baz=lowercase_ , ces=[] , des=[])) a__ =parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split()) self.assertEqual(lowercase_ , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3])) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=lowercase_ , required=lowercase_) expected.add_argument('--required_str' , type=lowercase_ , required=lowercase_) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , ) self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , ) expected.add_argument('--opt' , type=lowercase_ , default=lowercase_) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message') expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_) self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } a__ =parser.parse_dict(lowercase_)[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(lowercase_ , parser.parse_dict , lowercase_ , allow_extra_keys=lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: a__ =os.path.join(lowercase_ , 'temp_json') os.mkdir(lowercase_) with open(temp_local_path + '.json' , 'w+') as f: json.dump(lowercase_ , lowercase_) a__ =parser.parse_yaml_file(Path(temp_local_path + '.json'))[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Any: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: a__ =os.path.join(lowercase_ , 'temp_yaml') os.mkdir(lowercase_) with open(temp_local_path + '.yaml' , 'w+') as f: yaml.dump(lowercase_ , lowercase_) a__ =parser.parse_yaml_file(Path(temp_local_path + '.yaml'))[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) self.assertIsNotNone(lowercase_)
20
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class UpperCamelCase (unittest.TestCase ): def __snake_case ( self :List[str] ) ->int: lowercase : Union[str, Any] = tempfile.mkdtemp() lowercase : List[str] = BlipImageProcessor() lowercase : Any = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) lowercase : List[Any] = BlipProcessor(lowercase_ , lowercase_ ) processor.save_pretrained(self.tmpdirname ) def __snake_case ( self :Dict , **__magic_name__ :Union[str, Any] ) ->str: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).tokenizer def __snake_case ( self :Dict , **__magic_name__ :Dict ) ->List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).image_processor def __snake_case ( self :List[Any] ) ->Optional[int]: shutil.rmtree(self.tmpdirname ) def __snake_case ( self :Dict ) ->str: lowercase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase : str = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case ( self :Optional[Any] ) ->str: lowercase : Optional[int] = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase : Any = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase : Any = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 ) lowercase : Any = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def __snake_case ( self :Dict ) ->int: lowercase : Optional[Any] = self.get_image_processor() lowercase : str = self.get_tokenizer() lowercase : int = BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowercase : Union[str, Any] = self.prepare_image_inputs() lowercase : Optional[Any] = image_processor(lowercase_ , return_tensors="""np""" ) lowercase : List[str] = processor(images=lowercase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __snake_case ( self :Tuple ) ->List[str]: lowercase : List[str] = self.get_image_processor() lowercase : Dict = self.get_tokenizer() lowercase : Any = BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowercase : Optional[Any] = """lower newer""" lowercase : Optional[int] = processor(text=lowercase_ ) lowercase : int = tokenizer(lowercase_ , return_token_type_ids=lowercase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __snake_case ( self :Union[str, Any] ) ->int: lowercase : int = self.get_image_processor() lowercase : Tuple = self.get_tokenizer() lowercase : Any = BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowercase : Union[str, Any] = """lower newer""" lowercase : List[Any] = self.prepare_image_inputs() lowercase : Tuple = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def __snake_case ( self :str ) ->Tuple: lowercase : Dict = self.get_image_processor() lowercase : Optional[int] = self.get_tokenizer() lowercase : Tuple = BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowercase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase : Dict = processor.batch_decode(lowercase_ ) lowercase : str = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def __snake_case ( self :Tuple ) ->List[Any]: lowercase : Union[str, Any] = self.get_image_processor() lowercase : Union[str, Any] = self.get_tokenizer() lowercase : int = BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowercase : Optional[Any] = """lower newer""" lowercase : Tuple = self.prepare_image_inputs() lowercase : Union[str, Any] = processor(text=lowercase_ , images=lowercase_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
264
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase: List[Any] = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class lowercase_ (lowercase__ ): snake_case ='autoformer' snake_case ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , lowercase_ = None , lowercase_ = None , lowercase_ = "student_t" , lowercase_ = "nll" , lowercase_ = 1 , lowercase_ = [1, 2, 3, 4, 5, 6, 7] , lowercase_ = True , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 64 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 32 , lowercase_ = 32 , lowercase_ = "gelu" , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 100 , lowercase_ = 0.02 , lowercase_ = True , lowercase_=True , lowercase_ = 10 , lowercase_ = 25 , lowercase_ = 3 , **lowercase_ , ) -> Union[str, Any]: # time series specific configuration a__ =prediction_length a__ =context_length if context_length is not None else prediction_length a__ =distribution_output a__ =loss a__ =input_size a__ =num_time_features a__ =lags_sequence a__ =scaling a__ =num_dynamic_real_features a__ =num_static_real_features a__ =num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`') a__ =cardinality else: a__ =[0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`') a__ =embedding_dimension else: a__ =[min(50 , (cat + 1) // 2) for cat in self.cardinality] a__ =num_parallel_samples # Transformer architecture configuration a__ =input_size * len(self.lags_sequence) + self._number_of_features a__ =d_model a__ =encoder_attention_heads a__ =decoder_attention_heads a__ =encoder_ffn_dim a__ =decoder_ffn_dim a__ =encoder_layers a__ =decoder_layers a__ =dropout a__ =attention_dropout a__ =activation_dropout a__ =encoder_layerdrop a__ =decoder_layerdrop a__ =activation_function a__ =init_std a__ =use_cache # Autoformer a__ =label_length a__ =moving_average a__ =autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def __UpperCamelCase ( self) -> int: return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
20
0
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : List[Any] = logging.get_logger(__name__) lowercase_ : Any = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class __UpperCamelCase (lowercase__ ): __A = '''autoformer''' __A = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = "student_t" , _lowerCAmelCase = "nll" , _lowerCAmelCase = 1 , _lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7] , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = 0 , _lowerCAmelCase = 0 , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 64 , _lowerCAmelCase = 2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 32 , _lowerCAmelCase = 32 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 100 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = True , _lowerCAmelCase=True , _lowerCAmelCase = 10 , _lowerCAmelCase = 25 , _lowerCAmelCase = 3 , **_lowerCAmelCase , ) -> Union[str, Any]: '''simple docstring''' lowercase = prediction_length lowercase = context_length if context_length is not None else prediction_length lowercase = distribution_output lowercase = loss lowercase = input_size lowercase = num_time_features lowercase = lags_sequence lowercase = scaling lowercase = num_dynamic_real_features lowercase = num_static_real_features lowercase = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) lowercase = cardinality else: lowercase = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) lowercase = embedding_dimension else: lowercase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowercase = num_parallel_samples # Transformer architecture configuration lowercase = input_size * len(self.lags_sequence ) + self._number_of_features lowercase = d_model lowercase = encoder_attention_heads lowercase = decoder_attention_heads lowercase = encoder_ffn_dim lowercase = decoder_ffn_dim lowercase = encoder_layers lowercase = decoder_layers lowercase = dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = encoder_layerdrop lowercase = decoder_layerdrop lowercase = activation_function lowercase = init_std lowercase = use_cache # Autoformer lowercase = label_length lowercase = moving_average lowercase = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def _a ( self ) -> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
588
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowerCAmelCase: List[Any] = logging.get_logger(__name__) class lowercase_ (lowercase__ ): snake_case =['pixel_values'] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = None , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: super().__init__(**lowercase_) a__ =size if size is not None else {'shortest_edge': 256} a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) a__ =crop_size if crop_size is not None else {'height': 224, 'width': 224} a__ =get_size_dict(lowercase_ , param_name='crop_size') a__ =do_resize a__ =size a__ =resample a__ =do_center_crop a__ =crop_size a__ =do_rescale a__ =rescale_factor a__ =do_normalize a__ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a__ =image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") a__ =get_resize_output_image_size(lowercase_ , size=size['shortest_edge'] , default_to_square=lowercase_) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: a__ =get_size_dict(lowercase_) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""") return center_crop(lowercase_ , size=(size['height'], size['width']) , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_) -> np.ndarray: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> Tuple: a__ =do_resize if do_resize is not None else self.do_resize a__ =size if size is not None else self.size a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) a__ =resample if resample is not None else self.resample a__ =do_center_crop if do_center_crop is not None else self.do_center_crop a__ =crop_size if crop_size is not None else self.crop_size a__ =get_size_dict(lowercase_ , param_name='crop_size') a__ =do_rescale if do_rescale is not None else self.do_rescale a__ =rescale_factor if rescale_factor is not None else self.rescale_factor a__ =do_normalize if do_normalize is not None else self.do_normalize a__ =image_mean if image_mean is not None else self.image_mean a__ =image_std if image_std is not None else self.image_std a__ =make_list_of_images(lowercase_) if not valid_images(lowercase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a__ =[to_numpy_array(lowercase_) for image in images] if do_resize: a__ =[self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_) for image in images] if do_center_crop: a__ =[self.center_crop(image=lowercase_ , size=lowercase_) for image in images] if do_rescale: a__ =[self.rescale(image=lowercase_ , scale=lowercase_) for image in images] if do_normalize: a__ =[self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_) for image in images] a__ =[to_channel_dimension_format(lowercase_ , lowercase_) for image in images] a__ ={'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None) -> str: a__ =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_) != len(lowercase_): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(lowercase_): a__ =target_sizes.numpy() a__ =[] for idx in range(len(lowercase_)): a__ =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_) a__ =resized_logits[0].argmax(dim=0) semantic_segmentation.append(lowercase_) else: a__ =logits.argmax(dim=1) a__ =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
20
0
"""simple docstring""" __UpperCAmelCase = 'Alexander Joslin' import operator as op from .stack import Stack def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Tuple = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCAmelCase__ : List[str] = Stack() UpperCAmelCase__ : str = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__a ) ) elif i in operators: # RULE 2 operator_stack.push(__a ) elif i == ")": # RULE 4 UpperCAmelCase__ : Optional[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase__ : List[str] = operand_stack.peek() operand_stack.pop() UpperCAmelCase__ : List[Any] = operand_stack.peek() operand_stack.pop() UpperCAmelCase__ : int = operators[opr](__a , __a ) operand_stack.push(__a ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __UpperCAmelCase = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(F"{equation} = {dijkstras_two_stack_algorithm(equation)}")
65
from importlib import import_module from .logging import get_logger _lowerCAmelCase: str = get_logger(__name__) class lowercase_ : def __init__( self , lowercase_ , lowercase_=None) -> Tuple: a__ =attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__'): setattr(self , lowercase_ , getattr(lowercase_ , lowercase_)) a__ =module._original_module if isinstance(lowercase_ , _PatchedModuleObj) else module class lowercase_ : snake_case =[] def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None) -> List[str]: a__ =obj a__ =target a__ =new a__ =target.split('.')[0] a__ ={} a__ =attrs or [] def __enter__( self) -> Optional[int]: *a__ , a__ =self.target.split('.') # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowercase_)): try: a__ =import_module('.'.join(submodules[: i + 1])) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): a__ =getattr(self.obj , lowercase_) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowercase_ , _PatchedModuleObj) and obj_attr._original_module is submodule) ): a__ =obj_attr # patch at top level setattr(self.obj , lowercase_ , _PatchedModuleObj(lowercase_ , attrs=self.attrs)) a__ =getattr(self.obj , lowercase_) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowercase_ , lowercase_ , _PatchedModuleObj(getattr(lowercase_ , lowercase_ , lowercase_) , attrs=self.attrs)) a__ =getattr(lowercase_ , lowercase_) # finally set the target attribute setattr(lowercase_ , lowercase_ , self.new) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: a__ =getattr(import_module('.'.join(lowercase_)) , lowercase_) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowercase_) is attr_value: a__ =getattr(self.obj , lowercase_) setattr(self.obj , lowercase_ , self.new) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" a__ =globals()['__builtins__'][target_attr] setattr(self.obj , lowercase_ , self.new) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""") def __exit__( self , *lowercase_) -> str: for attr in list(self.original): setattr(self.obj , lowercase_ , self.original.pop(lowercase_)) def __UpperCamelCase ( self) -> Any: self.__enter__() self._active_patches.append(self) def __UpperCamelCase ( self) -> Union[str, Any]: try: self._active_patches.remove(self) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
20
0