code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __magic_name__ : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name __magic_name__ : Optional[Any] = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=8 ): '''simple docstring''' _snake_case = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _snake_case = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=5_12 ): '''simple docstring''' _snake_case = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _snake_case = np.array(pil_image.convert("RGB" ) ) _snake_case = arr.astype(np.floataa ) / 1_27.5 - 1 _snake_case = np.transpose(__a , [2, 0, 1] ) _snake_case = torch.from_numpy(__a ).unsqueeze(0 ) return image class __SCREAMING_SNAKE_CASE ( lowercase__ ): '''simple docstring''' def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) _snake_case = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # get the original timestep using init_timestep _snake_case = min(int(num_inference_steps * strength ) , lowercase_ ) _snake_case = max(num_inference_steps - init_timestep , 0 ) _snake_case = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None ): if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}''' ) _snake_case = image.to(device=lowercase_ , dtype=lowercase_ ) _snake_case = batch_size * num_images_per_prompt if image.shape[1] == 4: _snake_case = image else: if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) elif isinstance(lowercase_ , lowercase_ ): _snake_case = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowercase_ ) ] _snake_case = torch.cat(lowercase_ , dim=0 ) else: _snake_case = self.movq.encode(lowercase_ ).latent_dist.sample(lowercase_ ) _snake_case = self.movq.config.scaling_factor * init_latents _snake_case = torch.cat([init_latents] , dim=0 ) _snake_case = init_latents.shape _snake_case = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) # get latents _snake_case = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ ) _snake_case = init_latents return latents def UpperCamelCase( self , lowerCamelCase=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _snake_case = torch.device(F'''cuda:{gpu_id}''' ) _snake_case = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCamelCase( self , lowerCamelCase=0 ): if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) _snake_case = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _snake_case = None for cpu_offloaded_model in [self.unet, self.movq]: _snake_case , _snake_case = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. _snake_case = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase( self ): if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 512 , lowerCamelCase = 512 , lowerCamelCase = 100 , lowerCamelCase = 4.0 , lowerCamelCase = 0.3 , lowerCamelCase = 1 , lowerCamelCase = None , lowerCamelCase = "pil" , lowerCamelCase = True , ): _snake_case = self._execution_device _snake_case = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): _snake_case = torch.cat(lowercase_ , dim=0 ) _snake_case = image_embeds.shape[0] if isinstance(lowercase_ , lowercase_ ): _snake_case = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: _snake_case = image_embeds.repeat_interleave(lowercase_ , dim=0 ) _snake_case = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) _snake_case = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) if not isinstance(lowercase_ , lowercase_ ): _snake_case = [image] if not all(isinstance(lowercase_ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F'''Input is in incorrect format: {[type(lowercase_ ) for i in image]}. Currently, we only support PIL image and pytorch tensor''' ) _snake_case = torch.cat([prepare_image(lowercase_ , lowercase_ , lowercase_ ) for i in image] , dim=0 ) _snake_case = image.to(dtype=image_embeds.dtype , device=lowercase_ ) _snake_case = self.movq.encode(lowercase_ )["latents"] _snake_case = latents.repeat_interleave(lowercase_ , dim=0 ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) _snake_case , _snake_case = self.get_timesteps(lowercase_ , lowercase_ , lowercase_ ) _snake_case = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _snake_case , _snake_case = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) _snake_case = self.prepare_latents( lowercase_ , lowercase_ , lowercase_ , lowercase_ , image_embeds.dtype , lowercase_ , lowercase_ ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance _snake_case = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _snake_case = {"image_embeds": image_embeds} _snake_case = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: _snake_case , _snake_case = noise_pred.split(latents.shape[1] , dim=1 ) _snake_case , _snake_case = noise_pred.chunk(2 ) _snake_case , _snake_case = variance_pred.chunk(2 ) _snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _snake_case = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _snake_case , _snake_case = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _snake_case = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing _snake_case = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: _snake_case = image * 0.5 + 0.5 _snake_case = image.clamp(0 , 1 ) _snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _snake_case = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
672
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": _lowerCAmelCase: int = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def _lowercase( __a : Optional[Any] ): if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) _lowerCAmelCase: str = parser.parse_args() _lowerCAmelCase: Tuple = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
20
0
from abc import ABC, abstractmethod from typing import List, Optional class _lowercase ( lowercase__ ): def __init__( self : List[str] ) -> List[str]: """simple docstring""" self.test() def UpperCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" A_ = 0 A_ = False while not completed: if counter == 1: self.reset() A_ = self.advance() if not self.does_advance(lowercase_ ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) A_ ,A_ ,A_ = self.update(lowercase_ ) counter += 1 if counter > 1_0_0_0_0: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def UpperCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase ( self : str , lowerCamelCase__ : List[str] ) -> Dict: """simple docstring""" raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase ( self : List[Any] , lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase ( self : Optional[Any] , lowerCamelCase__ : Union[str, Any]=False ) -> Optional[Any]: """simple docstring""" raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class _lowercase ( lowercase__ ): def __init__( self : List[str] , lowerCamelCase__ : Dict ) -> Union[str, Any]: """simple docstring""" super(lowercase_ , self ).__init__() if not isinstance(lowercase_ , lowercase_ ) or len(lowercase_ ) == 0: raise ValueError(F"`token_ids` has to be a non-empty list, but is {token_ids}." ) if any((not isinstance(lowercase_ , lowercase_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}." ) A_ = token_ids A_ = len(self.token_ids ) A_ = -1 # the index of the currently fulfilled step A_ = False def UpperCamelCase ( self : int ) -> Dict: """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def UpperCamelCase ( self : int , lowerCamelCase__ : List[Any] ) -> int: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(lowercase_ )}" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def UpperCamelCase ( self : Dict , lowerCamelCase__ : Union[str, Any] ) -> Tuple: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(lowercase_ )}" ) A_ = False A_ = False A_ = False if self.does_advance(lowercase_ ): self.fulfilled_idx += 1 A_ = True if self.fulfilled_idx == (self.seqlen - 1): A_ = True A_ = completed else: # failed to make progress. A_ = True self.reset() return stepped, completed, reset def UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" A_ = False A_ = 0 def UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def UpperCamelCase ( self : Dict , lowerCamelCase__ : List[Any]=False ) -> List[str]: """simple docstring""" A_ = PhrasalConstraint(self.token_ids ) if stateful: A_ = self.seqlen A_ = self.fulfilled_idx A_ = self.completed return new_constraint class _lowercase : def __init__( self : Dict , lowerCamelCase__ : Any , lowerCamelCase__ : Tuple=True ) -> Optional[Any]: """simple docstring""" A_ = max([len(lowercase_ ) for one in nested_token_ids] ) A_ = {} for token_ids in nested_token_ids: A_ = root for tidx, token_id in enumerate(lowercase_ ): if token_id not in level: A_ = {} A_ = level[token_id] if no_subsets and self.has_subsets(lowercase_ , lowercase_ ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F" {nested_token_ids}." ) A_ = root def UpperCamelCase ( self : List[str] , lowerCamelCase__ : Tuple ) -> Union[str, Any]: """simple docstring""" A_ = self.trie for current_token in current_seq: A_ = start[current_token] A_ = list(start.keys() ) return next_tokens def UpperCamelCase ( self : Any , lowerCamelCase__ : str ) -> List[str]: """simple docstring""" A_ = self.next_tokens(lowercase_ ) return len(lowercase_ ) == 0 def UpperCamelCase ( self : List[Any] , lowerCamelCase__ : Any ) -> str: """simple docstring""" A_ = list(root.values() ) if len(lowercase_ ) == 0: return 1 else: return sum([self.count_leaves(lowercase_ ) for nn in next_nodes] ) def UpperCamelCase ( self : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : Optional[int] ) -> Any: """simple docstring""" A_ = self.count_leaves(lowercase_ ) return len(lowercase_ ) != leaf_count class _lowercase ( lowercase__ ): def __init__( self : Dict , lowerCamelCase__ : Tuple ) -> Any: """simple docstring""" super(lowercase_ , self ).__init__() if not isinstance(lowercase_ , lowercase_ ) or len(lowercase_ ) == 0: raise ValueError(F"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}." ) if any(not isinstance(lowercase_ , lowercase_ ) for token_ids in nested_token_ids ): raise ValueError(F"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}." ) if any( any((not isinstance(lowercase_ , lowercase_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}." ) A_ = DisjunctiveTrie(lowercase_ ) A_ = nested_token_ids A_ = self.trie.max_height A_ = [] A_ = False def UpperCamelCase ( self : List[str] ) -> Tuple: """simple docstring""" A_ = self.trie.next_tokens(self.current_seq ) if len(lowercase_ ) == 0: return None else: return token_list def UpperCamelCase ( self : Union[str, Any] , lowerCamelCase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowercase_ )}" ) A_ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def UpperCamelCase ( self : Union[str, Any] , lowerCamelCase__ : Dict ) -> Tuple: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowercase_ )}" ) A_ = False A_ = False A_ = False if self.does_advance(lowercase_ ): self.current_seq.append(lowercase_ ) A_ = True else: A_ = True self.reset() A_ = self.trie.reached_leaf(self.current_seq ) A_ = completed return stepped, completed, reset def UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" A_ = False A_ = [] def UpperCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def UpperCamelCase ( self : Any , lowerCamelCase__ : Optional[Any]=False ) -> Dict: """simple docstring""" A_ = DisjunctiveConstraint(self.token_ids ) if stateful: A_ = self.seqlen A_ = self.current_seq A_ = self.completed return new_constraint class _lowercase : def __init__( self : Optional[int] , lowerCamelCase__ : Dict ) -> int: """simple docstring""" A_ = constraints # max # of steps required to fulfill a given constraint A_ = max([c.seqlen for c in constraints] ) A_ = len(lowercase_ ) A_ = False self.init_state() def UpperCamelCase ( self : Any ) -> Optional[Any]: """simple docstring""" A_ = [] A_ = None A_ = [constraint.copy(stateful=lowercase_ ) for constraint in self.constraints] def UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A_ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" A_ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" A_ = constraint.advance() if isinstance(lowercase_ , lowercase_ ): token_list.append(lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): token_list.extend(lowercase_ ) else: A_ = self.inprogress_constraint.advance() if isinstance(lowercase_ , lowercase_ ): token_list.append(lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): token_list.extend(lowercase_ ) if len(lowercase_ ) == 0: return None else: return token_list def UpperCamelCase ( self : Union[str, Any] , lowerCamelCase__ : Dict ) -> Tuple: """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint A_ ,A_ = self.add(lowercase_ ) # the entire list of constraints are fulfilled if self.completed: break def UpperCamelCase ( self : Optional[Any] , lowerCamelCase__ : List[Any] ) -> Optional[Any]: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ): raise ValueError(F"`token_id` should be an `int`, but is `{token_id}`." ) A_ ,A_ = False, False if self.completed: A_ = True A_ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state A_ ,A_ ,A_ = self.inprogress_constraint.update(lowercase_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=lowercase_ ) ) A_ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) A_ = None if len(self.pending_constraints ) == 0: # we're done! A_ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(lowercase_ ): A_ ,A_ ,A_ = pending_constraint.update(lowercase_ ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(lowercase_ ) A_ = None if not complete and stepped: A_ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". A_ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. A_ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def UpperCamelCase ( self : List[Any] , lowerCamelCase__ : Dict=True ) -> Union[str, Any]: """simple docstring""" A_ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: A_ = [ constraint.copy(stateful=lowercase_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: A_ = self.inprogress_constraint.copy(stateful=lowercase_ ) A_ = [constraint.copy() for constraint in self.pending_constraints] return new_state
203
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _lowerCAmelCase: Tuple = get_logger(__name__) _lowerCAmelCase: List[str] = Path(__file__).parent / 'model_card_template.md' _lowerCAmelCase: Any = uuida().hex _lowerCAmelCase: List[Any] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase: int = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase: Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def _lowercase( __a : Union[Dict, str, None] = None ): a__ =f"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"""; torch/{_torch_version}""" if is_flax_available(): ua += f"""; jax/{_jax_version}""" ua += f"""; flax/{_flax_version}""" if is_onnx_available(): ua += f"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__a , __a ): ua += "; " + "; ".join(f"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__a , __a ): ua += "; " + user_agent return ua def _lowercase( __a : str , __a : Optional[str] = None , __a : Optional[str] = None ): if token is None: a__ =HfFolder.get_token() if organization is None: a__ =whoami(__a )['name'] return f"""{username}/{model_id}""" else: return f"""{organization}/{model_id}""" def _lowercase( __a : Union[str, Any] , __a : Dict ): if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(__a , 'local_rank' ) and args.local_rank not in [-1, 0]: return a__ =args.hub_token if hasattr(__a , 'hub_token' ) else None a__ =get_full_repo_name(__a , token=__a ) a__ =ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__a , model_name=__a , repo_name=__a , dataset_name=args.dataset_name if hasattr(__a , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__a , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__a , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(__a , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__a , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__a , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__a , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__a , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__a , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(__a , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__a , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) a__ =os.path.join(args.output_dir , 'README.md' ) model_card.save(__a ) def _lowercase( __a : Optional[str] , __a : Optional[str] = None ): if resolved_file is None or commit_hash is not None: return commit_hash a__ =str(Path(__a ).as_posix() ) a__ =re.search(r'snapshots/([^/]+)/' , __a ) if search is None: return None a__ =search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__a ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _lowerCAmelCase: List[str] = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) _lowerCAmelCase: List[str] = os.path.join(hf_cache_home, 'diffusers') def _lowercase( __a : Optional[str] = None , __a : Optional[str] = None ): if new_cache_dir is None: a__ =DIFFUSERS_CACHE if old_cache_dir is None: a__ =old_diffusers_cache a__ =Path(__a ).expanduser() a__ =Path(__a ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): a__ =new_cache_dir / old_blob_path.relative_to(__a ) new_blob_path.parent.mkdir(parents=__a , exist_ok=__a ) os.replace(__a , __a ) try: os.symlink(__a , __a ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _lowerCAmelCase: Dict = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): _lowerCAmelCase: int = 0 else: with open(cache_version_file) as f: try: _lowerCAmelCase: List[Any] = int(f.read()) except ValueError: _lowerCAmelCase: Any = 0 if cache_version < 1: _lowerCAmelCase: str = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: _lowerCAmelCase: Optional[Any] = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ 'the directory exists and can be written to.' ) def _lowercase( __a : str , __a : Optional[str] = None ): if variant is not None: a__ =weights_name.split('.' ) a__ =splits[:-1] + [variant] + splits[-1:] a__ ='.'.join(__a ) return weights_name def _lowercase( __a : Union[str, Any] , *, __a : Optional[Any] , __a : Optional[Any] , __a : List[Any] , __a : Tuple , __a : Optional[Any] , __a : Dict , __a : str , __a : int , __a : Tuple , __a : Union[str, Any] , __a : int=None , ): a__ =str(__a ) if os.path.isfile(__a ): return pretrained_model_name_or_path elif os.path.isdir(__a ): if os.path.isfile(os.path.join(__a , __a ) ): # Load from a PyTorch checkpoint a__ =os.path.join(__a , __a ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__a , __a , __a ) ): a__ =os.path.join(__a , __a , __a ) return model_file else: raise EnvironmentError( f"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__a ).base_version ) >= version.parse('0.20.0' ) ): try: a__ =hf_hub_download( __a , filename=_add_variant(__a , __a ) , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) warnings.warn( f"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __a , ) return model_file except: # noqa: E722 warnings.warn( f"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__a , __a )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__a , __a )}' so that the correct variant file can be added.""" , __a , ) try: # 2. Load model file as usual a__ =hf_hub_download( __a , filename=__a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( f"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ 'this model name. Check the model page at ' f"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( f"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( f"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" f""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" f""" directory containing a file named {weights_name} or""" ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( f"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' f"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ f"""containing a file named {weights_name}""" )
20
0
'''simple docstring''' class __snake_case: '''simple docstring''' def __init__( self , A_ , A_ ) -> str: lowerCAmelCase = name lowerCAmelCase = val def __str__( self ) -> Tuple: return f'{self.__class__.__name__}({self.name}, {self.val})' def __lt__( self , A_ ) -> Any: return self.val < other.val class __snake_case: '''simple docstring''' def __init__( self , A_ ) -> Any: lowerCAmelCase = {} lowerCAmelCase = {} lowerCAmelCase = self.build_heap(lowercase_ ) def __getitem__( self , A_ ) -> List[str]: return self.get_value(lowercase_ ) def __snake_case ( self , A_ ) -> Optional[int]: return (idx - 1) // 2 def __snake_case ( self , A_ ) -> int: return idx * 2 + 1 def __snake_case ( self , A_ ) -> List[Any]: return idx * 2 + 2 def __snake_case ( self , A_ ) -> Any: return self.heap_dict[key] def __snake_case ( self , A_ ) -> str: lowerCAmelCase = len(lowercase_ ) - 1 lowerCAmelCase = self.get_parent_idx(lowercase_ ) for idx, i in enumerate(lowercase_ ): lowerCAmelCase = idx lowerCAmelCase = i.val for i in range(lowercase_ , -1 , -1 ): self.sift_down(lowercase_ , lowercase_ ) return array def __snake_case ( self , A_ , A_ ) -> List[str]: while True: lowerCAmelCase = self.get_left_child_idx(lowercase_ ) # noqa: E741 lowerCAmelCase = self.get_right_child_idx(lowercase_ ) lowerCAmelCase = idx if l < len(lowercase_ ) and array[l] < array[idx]: lowerCAmelCase = l if r < len(lowercase_ ) and array[r] < array[smallest]: lowerCAmelCase = r if smallest != idx: lowerCAmelCase, lowerCAmelCase = array[smallest], array[idx] ( ( lowerCAmelCase ), ( lowerCAmelCase ), ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowerCAmelCase = smallest else: break def __snake_case ( self , A_ ) -> Dict: lowerCAmelCase = self.get_parent_idx(lowercase_ ) while p >= 0 and self.heap[p] > self.heap[idx]: lowerCAmelCase, lowerCAmelCase = self.heap[idx], self.heap[p] lowerCAmelCase, lowerCAmelCase = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowerCAmelCase = p lowerCAmelCase = self.get_parent_idx(lowercase_ ) def __snake_case ( self ) -> List[str]: return self.heap[0] def __snake_case ( self ) -> Optional[int]: lowerCAmelCase, lowerCAmelCase = self.heap[-1], self.heap[0] lowerCAmelCase, lowerCAmelCase = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowerCAmelCase = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def __snake_case ( self , A_ ) -> Tuple: self.heap.append(lowercase_ ) lowerCAmelCase = len(self.heap ) - 1 lowerCAmelCase = node.val self.sift_up(len(self.heap ) - 1 ) def __snake_case ( self ) -> Union[str, Any]: return len(self.heap ) == 0 def __snake_case ( self , A_ , A_ ) -> int: assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowerCAmelCase = new_value lowerCAmelCase = new_value self.sift_up(self.idx_of_element[node] ) UpperCAmelCase = Node('R', -1) UpperCAmelCase = Node('B', 6) UpperCAmelCase = Node('A', 3) UpperCAmelCase = Node('X', 1) UpperCAmelCase = Node('E', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array UpperCAmelCase = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('Min Heap - before decrease key') for i in my_min_heap.heap: print(i) print('Min Heap - After decrease key of node [B -> -17]') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
433
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger() def _lowercase( __a : int , __a : str , __a : LevitConfig , __a : Path , __a : bool = True ): print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": a__ =timm.create_model('levit_128s' , pretrained=__a ) else: a__ =timm.create_model('levit_128' , pretrained=__a ) if hidden_sizes == 192: a__ =timm.create_model('levit_192' , pretrained=__a ) if hidden_sizes == 256: a__ =timm.create_model('levit_256' , pretrained=__a ) if hidden_sizes == 384: a__ =timm.create_model('levit_384' , pretrained=__a ) from_model.eval() a__ =LevitForImageClassificationWithTeacher(__a ).eval() a__ =OrderedDict() a__ =from_model.state_dict() a__ =list(from_model.state_dict().keys() ) a__ =list(our_model.state_dict().keys() ) print(len(__a ) , len(__a ) ) for i in range(len(__a ) ): a__ =weights[og_keys[i]] our_model.load_state_dict(__a ) a__ =torch.randn((2, 3, 224, 224) ) a__ =from_model(__a ) a__ =our_model(__a ).logits assert torch.allclose(__a , __a ), "The model logits don't match the original one." a__ =name print(__a ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) a__ =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def _lowercase( __a : Path , __a : str = None , __a : bool = True ): a__ ='imagenet-1k-id2label.json' a__ =1000 a__ =(1, num_labels) a__ ='huggingface/label-files' a__ =num_labels a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} a__ =partial(__a , num_labels=__a , idalabel=__a , labelaid=__a ) a__ ={ 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } a__ ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __a , names_to_config[model_name] , __a , __a ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __a , __a , __a , __a ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _lowerCAmelCase: Union[str, Any] = parser.parse_args() _lowerCAmelCase: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
20
0
from itertools import product def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: lowercase : List[str] = sides_number lowercase : str = max_face_number * dice_number lowercase : Optional[int] = [0] * (max_total + 1) lowercase : List[Any] = 1 lowercase : int = range(__a , max_face_number + 1 ) for dice_numbers in product(__a , repeat=__a ): lowercase : Tuple = sum(__a ) totals_frequencies[total] += 1 return totals_frequencies def _snake_case( ) -> Union[str, Any]: lowercase : Dict = total_frequency_distribution( sides_number=4 , dice_number=9 ) lowercase : str = total_frequency_distribution( sides_number=6 , dice_number=6 ) lowercase : Optional[Any] = 0 lowercase : Tuple = 9 lowercase : Union[str, Any] = 4 * 9 lowercase : Dict = 6 for peter_total in range(__a , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowercase : List[Any] = (4**9) * (6**6) lowercase : List[str] = peter_wins_count / total_games_number lowercase : Tuple = round(__a , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
336
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowerCAmelCase: int = logging.get_logger(__name__) _lowerCAmelCase: Union[str, Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } _lowerCAmelCase: Tuple = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _lowercase( __a : Optional[Any] ): a__ ={} with open(__a , 'r' ) as file: for line_number, line in enumerate(__a ): a__ =line.strip() if line: a__ =line.split() a__ =line_number a__ =words[0] a__ =value return result def _lowercase( __a : Dict , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : str ): for attribute in key.split('.' ): a__ =getattr(__a , __a ) a__ =None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__a ): a__ =PARAM_MAPPING[full_name.split('.' )[-1]] a__ ='param' if weight_type is not None and weight_type != "param": a__ =getattr(__a , __a ).shape elif weight_type is not None and weight_type == "param": a__ =hf_pointer for attribute in hf_param_name.split('.' ): a__ =getattr(__a , __a ) a__ =shape_pointer.shape # let's reduce dimension a__ =value[0] else: a__ =hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a__ =value elif weight_type == "weight_g": a__ =value elif weight_type == "weight_v": a__ =value elif weight_type == "bias": a__ =value elif weight_type == "param": for attribute in hf_param_name.split('.' ): a__ =getattr(__a , __a ) a__ =value else: a__ =value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _lowercase( __a : Optional[int] , __a : int , __a : Optional[int] , __a : Optional[Any] , __a : List[Any] ): a__ =None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__a ): a__ =PARAM_MAPPING[full_name.split('.' )[-1]] a__ ='param' if weight_type is not None and weight_type != "param": a__ ='.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": a__ ='.'.join([key, hf_param_name] ) else: a__ =key a__ =value if 'lm_head' in full_key else value[0] _lowerCAmelCase: Dict = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _lowercase( __a : Dict , __a : int , __a : int=None , __a : List[str]=None ): a__ =False for key, mapped_key in MAPPING.items(): a__ ='wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: a__ =True if "*" in mapped_key: a__ =name.split(__a )[0].split('.' )[-2] a__ =mapped_key.replace('*' , __a ) if "weight_g" in name: a__ ='weight_g' elif "weight_v" in name: a__ ='weight_v' elif "bias" in name: a__ ='bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj a__ ='weight' else: a__ =None if hf_dict is not None: rename_dict(__a , __a , __a , __a , __a ) else: set_recursively(__a , __a , __a , __a , __a ) return is_used return is_used def _lowercase( __a : Union[str, Any] , __a : List[str] , __a : Dict ): a__ =[] a__ =fairseq_model.state_dict() a__ =hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): a__ =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == 'group' , ) a__ =True else: a__ =load_wavaveca_layer(__a , __a , __a ) if not is_used: unused_weights.append(__a ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _lowercase( __a : List[Any] , __a : Optional[Any] , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] ): a__ =full_name.split('conv_layers.' )[-1] a__ =name.split('.' ) a__ =int(items[0] ) a__ =int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def _lowercase( __a : str , __a : str , __a : Any=None , __a : str=None , __a : Any=True , __a : Union[str, Any]=False ): if config_path is not None: a__ =WavaVecaConfig.from_pretrained(__a ) else: a__ =WavaVecaConfig() if is_seq_class: a__ =read_txt_into_dict(__a ) a__ =idalabel a__ =WavaVecaForSequenceClassification(__a ) a__ =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) feature_extractor.save_pretrained(__a ) elif is_finetuned: if dict_path: a__ =Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a__ =target_dict.pad_index a__ =target_dict.bos_index a__ =target_dict.eos_index a__ =len(target_dict.symbols ) a__ =os.path.join(__a , 'vocab.json' ) if not os.path.isdir(__a ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__a ) ) return os.makedirs(__a , exist_ok=__a ) a__ =target_dict.indices # fairseq has the <pad> and <s> switched a__ =0 a__ =1 with open(__a , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(__a , __a ) a__ =WavaVecaCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=__a , ) a__ =True if config.feat_extract_norm == 'layer' else False a__ =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) a__ =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) a__ =WavaVecaForCTC(__a ) else: a__ =WavaVecaForPreTraining(__a ) if is_finetuned or is_seq_class: a__ , a__ , a__ =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: a__ =argparse.Namespace(task='audio_pretraining' ) a__ =fairseq.tasks.setup_task(__a ) a__ , a__ , a__ =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__a ) a__ =model[0].eval() recursively_load_weights(__a , __a , not is_finetuned ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) _lowerCAmelCase: Tuple = parser.parse_args() _lowerCAmelCase: Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
20
0
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _UpperCamelCase ( lowercase__ , unittest.TestCase): '''simple docstring''' _snake_case = DebertaTokenizer _snake_case = True _snake_case = DebertaTokenizerFast def a__ ( self ) -> Tuple: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase : int = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] lowercase : Tuple = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowercase : List[str] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase : Dict = {"unk_token": "[UNK]"} lowercase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase_ ) ) def a__ ( self , **a_ ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def a__ ( self , a_ ) -> Optional[int]: lowercase : List[str] = "lower newer" lowercase : Any = "lower newer" return input_text, output_text def a__ ( self ) -> str: lowercase : Optional[Any] = self.get_tokenizer() lowercase : List[str] = "lower newer" lowercase : Optional[int] = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] lowercase : Tuple = tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowercase : Optional[Any] = tokens + [tokenizer.unk_token] lowercase : Tuple = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) def a__ ( self ) -> List[str]: lowercase : str = self.get_tokenizer() lowercase : Any = tokenizer("Hello" , "World" ) lowercase : Tuple = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] , lowercase_ ) @slow def a__ ( self ) -> int: lowercase : List[str] = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) lowercase : List[str] = tokenizer.encode("sequence builders" , add_special_tokens=lowercase_ ) lowercase : List[Any] = tokenizer.encode("multi-sequence build" , add_special_tokens=lowercase_ ) lowercase : Tuple = tokenizer.encode( "sequence builders" , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) lowercase : Optional[Any] = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) lowercase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowercase_ ) lowercase : str = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def a__ ( self ) -> str: lowercase : List[Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowercase : Optional[int] = tokenizer_class.from_pretrained("microsoft/deberta-base" ) lowercase : Any = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] lowercase : Any = tokenizer(lowercase_ , padding=lowercase_ ) lowercase : List[str] = [tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ ) for seq in encoding["input_ids"]] # fmt: off lowercase : Optional[int] = { "input_ids": [ [1, 2_1_1_8, 1_1_1_2_6, 5_6_5, 3_5, 8_3, 2_5_1_9_1, 1_6_3, 1_8_8_5_4, 1_3, 1_2_1_5_6, 1_2, 1_6_1_0_1, 2_5_3_7_6, 1_3_8_0_7, 9, 2_2_2_0_5, 2_7_8_9_3, 1_6_3_5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_1_1_8, 1_1_1_2_6, 5_6_5, 2_4_5_3_6, 8_0, 4_3_7_9_7, 4_8_7_8, 7_3_7_3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_3_3, 7_8, 6_5, 1_6, 1_0, 3_7_2_4, 1_5_3_8, 3_3_1_8_3, 1_1_3_0_3, 4_3_7_9_7, 1_9_3_8, 4, 8_7_0, 2_4_1_6_5, 2_9_1_0_5, 5, 7_3_9, 3_2_6_4_4, 3_3_1_8_3, 1_1_3_0_3, 3_6_1_7_3, 8_8, 8_0, 6_5_0, 7_8_2_1, 4_5_9_4_0, 6, 5_2, 2_5_5_9, 5, 1_8_3_6, 9, 5, 7_3_9_7, 1_3_1_7_1, 3_1, 5, 1_8_3_6, 9, 3_2_6_4_4, 3_3_1_8_3, 1_1_3_0_3, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowercase : Optional[Any] = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data , lowercase_ ) for expected, decoded in zip(lowercase_ , lowercase_ ): self.assertEqual(lowercase_ , lowercase_ )
372
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowercase_ (unittest.TestCase ): @slow def __UpperCamelCase ( self) -> Optional[int]: a__ =AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowercase_).to(lowercase_) a__ =AutoTokenizer.from_pretrained('google/mt5-small') a__ =tokenizer('Hello there' , return_tensors='pt').input_ids a__ =tokenizer('Hi I am' , return_tensors='pt').input_ids a__ =model(input_ids.to(lowercase_) , labels=labels.to(lowercase_)).loss a__ =-(labels.shape[-1] * loss.item()) a__ =-84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
20
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : List[str] = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys UpperCAmelCase_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
533
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self) -> int: a__ =tempfile.mkdtemp() a__ =BlipImageProcessor() a__ =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel') a__ =BlipProcessor(lowercase_ , lowercase_) processor.save_pretrained(self.tmpdirname) def __UpperCamelCase ( self , **lowercase_) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).tokenizer def __UpperCamelCase ( self , **lowercase_) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).image_processor def __UpperCamelCase ( self) -> Optional[int]: shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self) -> str: a__ =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] a__ =[Image.fromarray(np.moveaxis(lowercase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self) -> str: a__ =BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) a__ =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') a__ =self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0) a__ =BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowercase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowercase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowercase_) def __UpperCamelCase ( self) -> int: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ =self.prepare_image_inputs() a__ =image_processor(lowercase_ , return_tensors='np') a__ =processor(images=lowercase_ , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self) -> List[str]: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =processor(text=lowercase_) a__ =tokenizer(lowercase_ , return_token_type_ids=lowercase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self) -> int: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =self.prepare_image_inputs() a__ =processor(text=lowercase_ , images=lowercase_) self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask']) # test if it raises when no input is passed with pytest.raises(lowercase_): processor() def __UpperCamelCase ( self) -> Tuple: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a__ =processor.batch_decode(lowercase_) a__ =tokenizer.batch_decode(lowercase_) self.assertListEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =self.prepare_image_inputs() a__ =processor(text=lowercase_ , images=lowercase_) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask'])
20
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : str = logging.get_logger(__name__) def __lowerCamelCase ( A__ , A__=False ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def __lowerCamelCase ( A__ , A__ , A__=False ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: UpperCamelCase = '' else: UpperCamelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) UpperCamelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase = in_proj_bias[: config.hidden_size] UpperCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase = in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( A__ ) -> str: """simple docstring""" UpperCamelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__a , __a ) def __lowerCamelCase ( A__ , A__ , A__ ) -> List[Any]: """simple docstring""" UpperCamelCase = dct.pop(__a ) UpperCamelCase = val def __lowerCamelCase ( ) -> Tuple: """simple docstring""" UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def __lowerCamelCase ( A__ , A__ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = ViTConfig() UpperCamelCase = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": UpperCamelCase = True UpperCamelCase = int(vit_name[-12:-10] ) UpperCamelCase = int(vit_name[-9:-6] ) else: UpperCamelCase = 1_000 UpperCamelCase = 'huggingface/label-files' UpperCamelCase = 'imagenet-1k-id2label.json' UpperCamelCase = json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) UpperCamelCase = {int(__a ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} UpperCamelCase = int(vit_name[-6:-4] ) UpperCamelCase = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('tiny' ): UpperCamelCase = 192 UpperCamelCase = 768 UpperCamelCase = 12 UpperCamelCase = 3 elif vit_name[9:].startswith('small' ): UpperCamelCase = 384 UpperCamelCase = 1_536 UpperCamelCase = 12 UpperCamelCase = 6 else: pass else: if vit_name[4:].startswith('small' ): UpperCamelCase = 768 UpperCamelCase = 2_304 UpperCamelCase = 8 UpperCamelCase = 8 elif vit_name[4:].startswith('base' ): pass elif vit_name[4:].startswith('large' ): UpperCamelCase = 1_024 UpperCamelCase = 4_096 UpperCamelCase = 24 UpperCamelCase = 16 elif vit_name[4:].startswith('huge' ): UpperCamelCase = 1_280 UpperCamelCase = 5_120 UpperCamelCase = 32 UpperCamelCase = 16 # load original model from timm UpperCamelCase = timm.create_model(__a , pretrained=__a ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCamelCase = timm_model.state_dict() if base_model: remove_classification_head_(__a ) UpperCamelCase = create_rename_keys(__a , __a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) read_in_q_k_v(__a , __a , __a ) # load HuggingFace model if vit_name[-5:] == "in21k": UpperCamelCase = ViTModel(__a ).eval() else: UpperCamelCase = ViTForImageClassification(__a ).eval() model.load_state_dict(__a ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: UpperCamelCase = DeiTImageProcessor(size=config.image_size ) else: UpperCamelCase = ViTImageProcessor(size=config.image_size ) UpperCamelCase = image_processor(images=prepare_img() , return_tensors='pt' ) UpperCamelCase = encoding['pixel_values'] UpperCamelCase = model(__a ) if base_model: UpperCamelCase = timm_model.forward_features(__a ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__a , outputs.pooler_output , atol=1e-3 ) else: UpperCamelCase = timm_model(__a ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__a , outputs.logits , atol=1e-3 ) Path(__a ).mkdir(exist_ok=__a ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if __name__ == "__main__": _lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
430
def _lowercase( __a : list[int] ): a__ =len(__a ) for i in range(__a ): for j in range(i + 1 , __a ): if numbers[j] < numbers[i]: a__ , a__ =numbers[j], numbers[i] return numbers if __name__ == "__main__": _lowerCAmelCase: Tuple = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase: int = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
20
0
'''simple docstring''' import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __lowerCAmelCase = get_logger(__name__) __lowerCAmelCase = Path(__file__).parent / 'model_card_template.md' __lowerCAmelCase = uuida().hex __lowerCAmelCase = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES __lowerCAmelCase = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES __lowerCAmelCase = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = None ): _snake_case = f"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"""; torch/{_torch_version}""" if is_flax_available(): ua += f"""; jax/{_jax_version}""" ua += f"""; flax/{_flax_version}""" if is_onnx_available(): ua += f"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get("""DIFFUSERS_IS_CI""" , """""" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__a , __a ): ua += "; " + "; ".join(f"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__a , __a ): ua += "; " + user_agent return ua def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None ): if token is None: _snake_case = HfFolder.get_token() if organization is None: _snake_case = whoami(__a )["""name"""] return f"""{username}/{model_id}""" else: return f"""{organization}/{model_id}""" def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if not is_jinja_available(): raise ValueError( """Modelcard rendering is based on Jinja templates.""" """ Please make sure to have `jinja` installed before using `create_model_card`.""" """ To install it, please run `pip install Jinja2`.""" ) if hasattr(__a , """local_rank""" ) and args.local_rank not in [-1, 0]: return _snake_case = args.hub_token if hasattr(__a , """hub_token""" ) else None _snake_case = get_full_repo_name(__a , token=__a ) _snake_case = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="""en""" , license="""apache-2.0""" , library_name="""diffusers""" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__a , model_name=__a , repo_name=__a , dataset_name=args.dataset_name if hasattr(__a , """dataset_name""" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__a , """gradient_accumulation_steps""" ) else None ) , adam_betaa=args.adam_betaa if hasattr(__a , """adam_beta1""" ) else None , adam_betaa=args.adam_betaa if hasattr(__a , """adam_beta2""" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__a , """adam_weight_decay""" ) else None , adam_epsilon=args.adam_epsilon if hasattr(__a , """adam_epsilon""" ) else None , lr_scheduler=args.lr_scheduler if hasattr(__a , """lr_scheduler""" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__a , """lr_warmup_steps""" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__a , """ema_inv_gamma""" ) else None , ema_power=args.ema_power if hasattr(__a , """ema_power""" ) else None , ema_max_decay=args.ema_max_decay if hasattr(__a , """ema_max_decay""" ) else None , mixed_precision=args.mixed_precision , ) _snake_case = os.path.join(args.output_dir , """README.md""" ) model_card.save(__a ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): if resolved_file is None or commit_hash is not None: return commit_hash _snake_case = str(Path(__a ).as_posix() ) _snake_case = re.search(R"""snapshots/([^/]+)/""" , __a ) if search is None: return None _snake_case = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__a ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __lowerCAmelCase = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) __lowerCAmelCase = os.path.join(hf_cache_home, 'diffusers') def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None ): if new_cache_dir is None: _snake_case = DIFFUSERS_CACHE if old_cache_dir is None: _snake_case = old_diffusers_cache _snake_case = Path(__a ).expanduser() _snake_case = Path(__a ).expanduser() for old_blob_path in old_cache_dir.glob("""**/blobs/*""" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): _snake_case = new_cache_dir / old_blob_path.relative_to(__a ) new_blob_path.parent.mkdir(parents=__a , exist_ok=__a ) os.replace(__a , __a ) try: os.symlink(__a , __a ) except OSError: logger.warning( """Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.""" ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __lowerCAmelCase = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): __lowerCAmelCase = 0 else: with open(cache_version_file) as f: try: __lowerCAmelCase = int(f.read()) except ValueError: __lowerCAmelCase = 0 if cache_version < 1: __lowerCAmelCase = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: __lowerCAmelCase = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( f'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( f'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' 'the directory exists and can be written to.' ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): if variant is not None: _snake_case = weights_name.split(""".""" ) _snake_case = splits[:-1] + [variant] + splits[-1:] _snake_case = """.""".join(__a ) return weights_name def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , *, _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , ): _snake_case = str(__a ) if os.path.isfile(__a ): return pretrained_model_name_or_path elif os.path.isdir(__a ): if os.path.isfile(os.path.join(__a , __a ) ): # Load from a PyTorch checkpoint _snake_case = os.path.join(__a , __a ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__a , __a , __a ) ): _snake_case = os.path.join(__a , __a , __a ) return model_file else: raise EnvironmentError( f"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__a ).base_version ) >= version.parse("""0.20.0""" ) ): try: _snake_case = hf_hub_download( __a , filename=_add_variant(__a , __a ) , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) warnings.warn( f"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __a , ) return model_file except: # noqa: E722 warnings.warn( f"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__a , __a )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__a , __a )}' so that the correct variant file can be added.""" , __a , ) try: # 2. Load model file as usual _snake_case = hf_hub_download( __a , filename=__a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ """listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a """ """token having permission to this repo with `use_auth_token` or log in with `huggingface-cli """ """login`.""" ) except RevisionNotFoundError: raise EnvironmentError( f"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ """this model name. Check the model page at """ f"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( f"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( f"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" f""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" f""" directory containing a file named {weights_name} or""" """ \nCheckout your internet connection or see how to run the library in""" """ offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.""" ) except EnvironmentError: raise EnvironmentError( f"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ """\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. """ f"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ f"""containing a file named {weights_name}""" )
585
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowercase_ : def __init__( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="resnet50" , lowercase_=3 , lowercase_=32 , lowercase_=3 , lowercase_=True , lowercase_=True , ) -> Union[str, Any]: a__ =parent a__ =out_indices if out_indices is not None else [4] a__ =stage_names a__ =out_features a__ =backbone a__ =batch_size a__ =image_size a__ =num_channels a__ =use_pretrained_backbone a__ =is_training def __UpperCamelCase ( self) -> Optional[Any]: a__ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ =self.get_config() return config, pixel_values def __UpperCamelCase ( self) -> Tuple: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> str: a__ =TimmBackbone(config=lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): a__ =model(lowercase_) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __UpperCamelCase ( self) -> str: a__ =self.prepare_config_and_inputs() a__ , a__ =config_and_inputs a__ ={'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class lowercase_ (lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): snake_case =(TimmBackbone,) if is_torch_available() else () snake_case ={'feature-extraction': TimmBackbone} if is_torch_available() else {} snake_case =False snake_case =False snake_case =False snake_case =False def __UpperCamelCase ( self) -> Optional[Any]: a__ =TimmBackboneModelTester(self) a__ =ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_) def __UpperCamelCase ( self) -> Dict: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self) -> str: a__ ='resnet18' a__ ='microsoft/resnet-18' a__ =AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_) a__ =AutoBackbone.from_pretrained(lowercase_) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(len(timm_model.stage_names) , len(transformers_model.stage_names)) self.assertEqual(timm_model.channels , transformers_model.channels) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,)) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names) - 1]) a__ =AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_ , out_indices=[1, 2, 3]) a__ =AutoBackbone.from_pretrained(lowercase_ , out_indices=[1, 2, 3]) self.assertEqual(timm_model.out_indices , transformers_model.out_indices) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(timm_model.channels , transformers_model.channels) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> Dict: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> List[Any]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.') def __UpperCamelCase ( self) -> str: pass @unittest.skip('Safetensors is not supported by timm.') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self) -> Optional[Any]: pass def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) a__ =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ =[*signature.parameters.keys()] a__ =['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_) def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =True a__ =self.has_attentions # no need to test all models as different heads yield the same functionality a__ =self.all_model_classes[0] a__ =model_class(lowercase_) model.to(lowercase_) a__ =self._prepare_for_class(lowercase_ , lowercase_) a__ =model(**lowercase_) a__ =outputs[0][-1] # Encoder-/Decoder-only models a__ =outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a__ =outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowercase_) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) def __UpperCamelCase ( self) -> List[str]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_) self.assertEqual(len(result.feature_maps) , len(config.out_indices)) self.assertEqual(len(model.channels) , len(config.out_indices)) # Check output of last stage is taken if out_features=None, out_indices=None a__ =copy.deepcopy(lowercase_) a__ =None a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_) self.assertEqual(len(result.feature_maps) , 1) self.assertEqual(len(model.channels) , 1) # Check backbone can be initialized with fresh weights a__ =copy.deepcopy(lowercase_) a__ =False a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_)
20
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class UpperCamelCase : def __init__( self :List[Any] , __magic_name__ :List[str] , __magic_name__ :Optional[Any]=13 , __magic_name__ :List[str]=7 , __magic_name__ :int=True , __magic_name__ :Tuple=True , __magic_name__ :Dict=True , __magic_name__ :Optional[int]=True , __magic_name__ :Tuple=99 , __magic_name__ :int=[1, 1, 2] , __magic_name__ :Optional[int]=1 , __magic_name__ :str=32 , __magic_name__ :Tuple=4 , __magic_name__ :Optional[int]=8 , __magic_name__ :Union[str, Any]=37 , __magic_name__ :Dict="gelu_new" , __magic_name__ :Optional[Any]=0.1 , __magic_name__ :Optional[int]=0.1 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :str=512 , __magic_name__ :Tuple=3 , __magic_name__ :Union[str, Any]=0.02 , __magic_name__ :Tuple=3 , __magic_name__ :Union[str, Any]=4 , __magic_name__ :List[Any]=None , __magic_name__ :List[str]=False , ) ->int: lowercase : List[Any] = parent lowercase : Union[str, Any] = batch_size lowercase : List[str] = seq_length lowercase : Any = is_training lowercase : str = use_input_mask lowercase : Any = use_token_type_ids lowercase : Optional[int] = use_labels lowercase : int = vocab_size lowercase : Union[str, Any] = block_sizes lowercase : Dict = num_decoder_layers lowercase : Union[str, Any] = d_model lowercase : Dict = n_head lowercase : Dict = d_head lowercase : Union[str, Any] = d_inner lowercase : Optional[Any] = hidden_act lowercase : List[Any] = hidden_dropout lowercase : Union[str, Any] = attention_dropout lowercase : Union[str, Any] = activation_dropout lowercase : Optional[int] = max_position_embeddings lowercase : Tuple = type_vocab_size lowercase : Dict = 2 lowercase : Tuple = num_labels lowercase : int = num_choices lowercase : Dict = scope lowercase : Union[str, Any] = initializer_std # Used in the tests to check the size of the first attention layer lowercase : List[str] = n_head # Used in the tests to check the size of the first hidden state lowercase : int = self.d_model # Used in the tests to check the number of output hidden states/attentions lowercase : int = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowercase : Dict = self.num_hidden_layers + 2 def __snake_case ( self :Any ) ->Any: lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : int = None if self.use_input_mask: lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None if self.use_token_type_ids: lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : Optional[int] = None lowercase : Tuple = None lowercase : Optional[int] = None if self.use_labels: lowercase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any = ids_tensor([self.batch_size] , self.num_choices ) lowercase : Optional[int] = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def __snake_case ( self :Optional[int] , __magic_name__ :List[str] , __magic_name__ :Tuple , __magic_name__ :Any , __magic_name__ :Union[str, Any] , __magic_name__ :Union[str, Any] , __magic_name__ :Optional[Any] , __magic_name__ :Optional[int] , ) ->int: lowercase : str = TFFunnelModel(config=lowercase_ ) lowercase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : str = model(lowercase_ ) lowercase : Optional[int] = [input_ids, input_mask] lowercase : Tuple = model(lowercase_ ) lowercase : List[Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowercase : Tuple = False lowercase : Optional[Any] = TFFunnelModel(config=lowercase_ ) lowercase : Any = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowercase : str = False lowercase : int = TFFunnelModel(config=lowercase_ ) lowercase : Dict = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def __snake_case ( self :List[str] , __magic_name__ :List[Any] , __magic_name__ :Any , __magic_name__ :str , __magic_name__ :int , __magic_name__ :Optional[Any] , __magic_name__ :Dict , __magic_name__ :Any , ) ->List[str]: lowercase : Tuple = TFFunnelBaseModel(config=lowercase_ ) lowercase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : int = model(lowercase_ ) lowercase : Optional[Any] = [input_ids, input_mask] lowercase : Any = model(lowercase_ ) lowercase : Tuple = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) lowercase : Union[str, Any] = False lowercase : Optional[Any] = TFFunnelBaseModel(config=lowercase_ ) lowercase : int = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) lowercase : Tuple = False lowercase : Union[str, Any] = TFFunnelBaseModel(config=lowercase_ ) lowercase : Optional[Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def __snake_case ( self :List[str] , __magic_name__ :Tuple , __magic_name__ :Tuple , __magic_name__ :Optional[int] , __magic_name__ :List[str] , __magic_name__ :Tuple , __magic_name__ :List[Any] , __magic_name__ :Optional[Any] , ) ->List[str]: lowercase : Tuple = TFFunnelForPreTraining(config=lowercase_ ) lowercase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : Tuple = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self :Optional[Any] , __magic_name__ :Any , __magic_name__ :Dict , __magic_name__ :Any , __magic_name__ :List[str] , __magic_name__ :List[Any] , __magic_name__ :Tuple , __magic_name__ :List[str] , ) ->Optional[int]: lowercase : str = TFFunnelForMaskedLM(config=lowercase_ ) lowercase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : Tuple = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self :Optional[int] , __magic_name__ :Any , __magic_name__ :Optional[int] , __magic_name__ :Tuple , __magic_name__ :List[str] , __magic_name__ :Union[str, Any] , __magic_name__ :int , __magic_name__ :Optional[Any] , ) ->Union[str, Any]: lowercase : str = self.num_labels lowercase : Union[str, Any] = TFFunnelForSequenceClassification(config=lowercase_ ) lowercase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : int = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self :int , __magic_name__ :Dict , __magic_name__ :Tuple , __magic_name__ :Union[str, Any] , __magic_name__ :int , __magic_name__ :Any , __magic_name__ :Optional[Any] , __magic_name__ :str , ) ->List[str]: lowercase : Optional[int] = self.num_choices lowercase : Tuple = TFFunnelForMultipleChoice(config=lowercase_ ) lowercase : List[str] = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) lowercase : List[str] = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) lowercase : Optional[Any] = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) lowercase : Union[str, Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowercase : Tuple = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self :List[str] , __magic_name__ :str , __magic_name__ :Tuple , __magic_name__ :Tuple , __magic_name__ :Tuple , __magic_name__ :Dict , __magic_name__ :Any , __magic_name__ :Tuple , ) ->Tuple: lowercase : Optional[int] = self.num_labels lowercase : List[Any] = TFFunnelForTokenClassification(config=lowercase_ ) lowercase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : List[Any] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self :List[str] , __magic_name__ :List[str] , __magic_name__ :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Optional[int] , __magic_name__ :int , __magic_name__ :Dict , __magic_name__ :str , ) ->List[Any]: lowercase : List[Any] = TFFunnelForQuestionAnswering(config=lowercase_ ) lowercase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : Optional[int] = model(lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self :Any ) ->str: lowercase : Any = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Dict = config_and_inputs lowercase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCamelCase (lowercase__ , lowercase__ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) _SCREAMING_SNAKE_CASE : List[str] = ( { """feature-extraction""": (TFFunnelBaseModel, TFFunnelModel), """fill-mask""": TFFunnelForMaskedLM, """question-answering""": TFFunnelForQuestionAnswering, """text-classification""": TFFunnelForSequenceClassification, """token-classification""": TFFunnelForTokenClassification, """zero-shot""": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE : Tuple = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False def __snake_case ( self :List[Any] ) ->List[str]: lowercase : Any = TFFunnelModelTester(self ) lowercase : Dict = ConfigTester(self , config_class=lowercase_ ) def __snake_case ( self :Tuple ) ->Tuple: self.config_tester.run_common_tests() def __snake_case ( self :Optional[int] ) ->List[str]: lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __snake_case ( self :Any ) ->Union[str, Any]: lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase_ ) def __snake_case ( self :str ) ->Optional[int]: lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def __snake_case ( self :Any ) ->Optional[int]: lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) def __snake_case ( self :Optional[Any] ) ->int: lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) @require_tf class UpperCamelCase (lowercase__ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : int = False def __snake_case ( self :Optional[Any] ) ->Optional[int]: lowercase : List[str] = TFFunnelModelTester(self , base=lowercase_ ) lowercase : Tuple = ConfigTester(self , config_class=lowercase_ ) def __snake_case ( self :int ) ->Optional[Any]: self.config_tester.run_common_tests() def __snake_case ( self :List[Any] ) ->str: lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowercase_ ) def __snake_case ( self :List[Any] ) ->Any: lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def __snake_case ( self :Any ) ->List[str]: lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase_ )
264
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCAmelCase: Optional[Any] = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: List[str] = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _lowerCAmelCase: List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
20
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ) -> Any: '''simple docstring''' lowercase = parent lowercase = 13 lowercase = 7 lowercase = True lowercase = True lowercase = True lowercase = True lowercase = 99 lowercase = 384 lowercase = 2 lowercase = 4 lowercase = 37 lowercase = """gelu""" lowercase = 0.1 lowercase = 0.1 lowercase = 512 lowercase = 16 lowercase = 2 lowercase = 0.02 lowercase = 3 lowercase = 4 lowercase = 128 lowercase = 2 lowercase = 9 lowercase = 1 lowercase = None def _a ( self ) -> Dict: '''simple docstring''' lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase = None lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase = ids_tensor([self.batch_size] , self.num_choices ) lowercase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowercase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase = TFConvBertModel(config=lowercase_ ) lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase = [input_ids, input_mask] lowercase = model(lowercase_ ) lowercase = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase = TFConvBertForMaskedLM(config=lowercase_ ) lowercase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Any: '''simple docstring''' lowercase = self.num_labels lowercase = TFConvBertForSequenceClassification(config=lowercase_ ) lowercase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase = self.num_choices lowercase = TFConvBertForMultipleChoice(config=lowercase_ ) lowercase = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) lowercase = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) lowercase = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) lowercase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowercase = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = self.num_labels lowercase = TFConvBertForTokenClassification(config=lowercase_ ) lowercase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = TFConvBertForQuestionAnswering(config=lowercase_ ) lowercase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase = model(lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCamelCase (lowercase__ , lowercase__ , unittest.TestCase ): __A = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __A = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __A = False __A = False __A = False def _a ( self ) -> str: '''simple docstring''' lowercase = TFConvBertModelTester(self ) lowercase = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def _a ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def _a ( self ) -> int: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase_ ) def _a ( self ) -> Tuple: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) @slow def _a ( self ) -> Tuple: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = True lowercase = True if hasattr(lowercase_ , """use_cache""" ): lowercase = True lowercase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) lowercase = getattr(self.model_tester , """key_length""" , lowercase_ ) for model_class in self.all_model_classes: lowercase = self._prepare_for_class(lowercase_ , lowercase_ ) lowercase = model_class(lowercase_ ) lowercase = len(model(lowercase_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ , saved_model=lowercase_ ) lowercase = os.path.join(lowercase_ , """saved_model""" , """1""" ) lowercase = tf.keras.models.load_model(lowercase_ ) lowercase = model(lowercase_ ) if self.is_encoder_decoder: lowercase = outputs["""encoder_hidden_states"""] lowercase = outputs["""encoder_attentions"""] else: lowercase = outputs["""hidden_states"""] lowercase = outputs["""attentions"""] self.assertEqual(len(lowercase_ ) , lowercase_ ) lowercase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowercase_ ) , lowercase_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(lowercase_ ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = True lowercase = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) lowercase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) lowercase = getattr(self.model_tester , """key_length""" , lowercase_ ) lowercase = getattr(self.model_tester , """key_length""" , lowercase_ ) def check_decoder_attentions_output(_lowerCAmelCase ): lowercase = len(lowercase_ ) self.assertEqual(out_len % 2 , 0 ) lowercase = outputs.decoder_attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_lowerCAmelCase ): lowercase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: lowercase = True lowercase = False lowercase = model_class(lowercase_ ) lowercase = model(self._prepare_for_class(lowercase_ , lowercase_ ) ) lowercase = len(lowercase_ ) self.assertEqual(config.output_hidden_states , lowercase_ ) check_encoder_attentions_output(lowercase_ ) if self.is_encoder_decoder: lowercase = model_class(lowercase_ ) lowercase = model(self._prepare_for_class(lowercase_ , lowercase_ ) ) self.assertEqual(config.output_hidden_states , lowercase_ ) check_decoder_attentions_output(lowercase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowercase = True lowercase = model_class(lowercase_ ) lowercase = model(self._prepare_for_class(lowercase_ , lowercase_ ) ) self.assertEqual(config.output_hidden_states , lowercase_ ) check_encoder_attentions_output(lowercase_ ) # Check attention is always last and order is fine lowercase = True lowercase = True lowercase = model_class(lowercase_ ) lowercase = model(self._prepare_for_class(lowercase_ , lowercase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase_ ) ) self.assertEqual(model.config.output_hidden_states , lowercase_ ) check_encoder_attentions_output(lowercase_ ) @require_tf class __UpperCamelCase (unittest.TestCase ): @slow def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase = model(lowercase_ )[0] lowercase = [1, 6, 768] self.assertEqual(output.shape , lowercase_ ) lowercase = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase_ , atol=1E-4 )
588
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase: str = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class lowercase_ (lowercase__ ): snake_case ='big_bird' def __init__( self , lowercase_=50358 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu_new" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=4096 , lowercase_=2 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=66 , lowercase_="block_sparse" , lowercase_=True , lowercase_=False , lowercase_=64 , lowercase_=3 , lowercase_=None , **lowercase_ , ) -> Any: super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , sep_token_id=lowercase_ , **lowercase_ , ) a__ =vocab_size a__ =max_position_embeddings a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =initializer_range a__ =type_vocab_size a__ =layer_norm_eps a__ =use_cache a__ =rescale_embeddings a__ =attention_type a__ =use_bias a__ =block_size a__ =num_random_blocks a__ =classifier_dropout class lowercase_ (lowercase__ ): @property def __UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a__ ={0: 'batch', 1: 'choice', 2: 'sequence'} else: a__ ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
20
0
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( lowercase__ , unittest.TestCase ): snake_case_ = MgpstrTokenizer snake_case_ = False snake_case_ = {} snake_case_ = False def __lowercase ( self : int ): '''simple docstring''' super().setUp() # fmt: off UpperCAmelCase__ : Optional[int] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on UpperCAmelCase__ : Union[str, Any] = dict(zip(lowercase_ ,range(len(lowercase_ ) ) ) ) UpperCAmelCase__ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase_ ) + """\n""" ) def __lowercase ( self : Dict ,**A : Any ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**lowercase_ ) def __lowercase ( self : List[Any] ,A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = """tester""" UpperCAmelCase__ : Tuple = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def __lowercase ( self : Optional[int] ): '''simple docstring''' pass def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.get_tokenizers(do_lower_case=lowercase_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): UpperCAmelCase__ : Any = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) UpperCAmelCase__ : int = tokenizer.encode([special_token] ,add_special_tokens=lowercase_ ) self.assertEqual(len(lowercase_ ) ,1 ) UpperCAmelCase__ : Union[str, Any] = tokenizer.decode(lowercase_ ,skip_special_tokens=lowercase_ ) self.assertTrue(special_token not in decoded ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.get_input_output_texts(lowercase_ ) UpperCAmelCase__ : int = tokenizer.tokenize(lowercase_ ) UpperCAmelCase__ : Optional[Any] = tokenizer.convert_tokens_to_ids(lowercase_ ) UpperCAmelCase__ : int = tokenizer.encode(lowercase_ ,add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ ,lowercase_ ) UpperCAmelCase__ : List[str] = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertNotEqual(len(lowercase_ ) ,0 ) UpperCAmelCase__ : str = tokenizer.decode(lowercase_ ) self.assertIsInstance(lowercase_ ,lowercase_ ) self.assertEqual(text_a.replace(""" """ ,"""""" ) ,lowercase_ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' pass
65
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger(__name__) _lowerCAmelCase: Tuple = torch.device('cpu') def _lowercase( ): a__ ='http://images.cocodataset.org/val2017/000000039769.jpg' a__ =Image.open(requests.get(__a , stream=__a ).raw ) return im def _lowercase( __a : Optional[Any] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _lowercase( __a : int , __a : int , __a : Optional[Any] ): a__ =dct.pop(__a ) a__ =val def _lowercase( __a : Optional[Any] ): a__ =[] for k in state_dict.keys(): a__ =k if ".pwconv" in k: a__ =k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: a__ =k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: a__ =k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: a__ =k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: a__ =k_new.split('.' ) if ls[2].isdigit(): a__ ='swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: a__ =k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _lowercase( __a : Union[str, Any] , __a : int , __a : str ): a__ =SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a__ =1000 a__ ='huggingface/label-files' a__ ='imagenet-1k-id2label.json' a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a__ =[3, 3, 6, 4] a__ =[48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a__ =[3, 3, 9, 6] a__ =[48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a__ =[4, 3, 10, 5] a__ =[48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a__ =[4, 4, 12, 6] a__ =[64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): a__ =torch.hub.load_state_dict_from_url(__a , map_location='cpu' , check_hash=__a ) else: a__ =torch.load(__a , map_location='cpu' ) a__ =checkpoint a__ =create_rename_keys(__a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__a , __a , __a ) # load HuggingFace model a__ =SwiftFormerForImageClassification(__a ).eval() hf_model.load_state_dict(__a ) # prepare test inputs a__ =prepare_img() a__ =ViTImageProcessor.from_pretrained('preprocessor_config' ) a__ =processor(images=__a , return_tensors='pt' ) # compare outputs from both models a__ =get_expected_output(__a ) a__ =hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , __a , atol=1e-3 ) Path(__a ).mkdir(exist_ok=__a ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') _lowerCAmelCase: Optional[int] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
20
0
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _snake_case = flax_key_tuple[:-1] + ("weight",) _snake_case = torch.permute(__a , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__a ): # linear layer _snake_case = flax_key_tuple[:-1] + ("weight",) _snake_case = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _snake_case = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if "metadata" in layer: _snake_case = layer.split("metadata" ) _snake_case = "".join(split_layer[0] )[:-1] _snake_case = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _snake_case = layer.split("kvstore" ) _snake_case = "".join(split_layer[0] )[:-1] _snake_case = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _snake_case = layer.split("/" ) _snake_case = "/".join(split_layer[:-1] ) _snake_case = (split_layer[-1],) if "kvstore/path" in layer: _snake_case = f'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: _snake_case = "file" else: _snake_case = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = rename_keys(__a ) _snake_case = {} for k, v in current_block.items(): _snake_case = v _snake_case = new_current_block torch.save(__a , __a ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = WEIGHTS_NAME ): '''simple docstring''' _snake_case = convert_file_size_to_int(__a ) _snake_case = [] _snake_case = {} _snake_case = 0 _snake_case = 0 os.makedirs(__a , exist_ok=__a ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _snake_case = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _snake_case = flatten_dict(__a , sep="/" ) _snake_case = {} for layer in checkpoint_info.keys(): _snake_case , _snake_case , _snake_case = get_key_and_tensorstore_dict( __a , __a , __a ) if curr_real_layer_name in all_layers: _snake_case = content else: _snake_case = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _snake_case = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _snake_case = torch.tensor(__a ) _snake_case = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _snake_case , _snake_case = rename_base_flax_keys(tuple(key.split("/" ) ) , __a ) _snake_case = "/".join(__a ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _snake_case = os.path.join( __a , weights_name.replace(".bin" , f'''-{len(__a )+1:05d}-of-???.bin''' ) ) rename_and_save_block(__a , __a ) sharded_state_dicts.append(current_block.keys() ) del current_block _snake_case = {} _snake_case = 0 _snake_case = raw_weights.to(getattr(__a , __a ) ) current_block_size += weight_size total_size += weight_size # Add the last block _snake_case = os.path.join(__a , weights_name.replace(".bin" , f'''-{len(__a )+1:05d}-of-???.bin''' ) ) rename_and_save_block(__a , __a ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__a ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _snake_case = {} _snake_case = {} for idx, shard in enumerate(__a ): _snake_case = weights_name.replace( ".bin" , f'''-{idx+1:05d}-of-{len(__a ):05d}.bin''' ) # len(sharded_state_dicts):05d} _snake_case = os.path.join(__a , weights_name.replace(".bin" , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__a , os.path.join(__a , __a ) ) _snake_case = shard for key in shard: _snake_case = shard_file # Add the metadata _snake_case = {"total_size": total_size} _snake_case = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(__a , __a ) , "w" , encoding="utf-8" ) as f: _snake_case = json.dumps(__a , indent=2 , sort_keys=__a ) + "\n" f.write(__a ) return metadata, index if __name__ == "__main__": __magic_name__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) __magic_name__ : Union[str, Any] = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def snake_case_ ( ): '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _snake_case = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _snake_case = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _snake_case = TaTokenizer.from_pretrained("t5-small" ) _snake_case = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _snake_case = tokenizer(__a , return_tensors="pt" ).input_ids _snake_case = model.generate(__a , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
672
from __future__ import annotations from typing import Any class lowercase_ : def __init__( self , lowercase_) -> None: a__ =num_of_nodes a__ =[] a__ ={} def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: self.m_edges.append([u_node, v_node, weight]) def __UpperCamelCase ( self , lowercase_) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node]) def __UpperCamelCase ( self , lowercase_) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: a__ =self.find_component(lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: if component_size[u_node] <= component_size[v_node]: a__ =v_node component_size[v_node] += component_size[u_node] self.set_component(lowercase_) elif component_size[u_node] >= component_size[v_node]: a__ =self.find_component(lowercase_) component_size[u_node] += component_size[v_node] self.set_component(lowercase_) def __UpperCamelCase ( self) -> None: a__ =[] a__ =0 a__ =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes): self.m_component.update({node: node}) component_size.append(1) a__ =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: a__ , a__ , a__ =edge a__ =self.m_component[u] a__ =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): a__ =[u, v, w] for edge in minimum_weight_edge: if isinstance(lowercase_ , lowercase_): a__ , a__ , a__ =edge a__ =self.m_component[u] a__ =self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowercase_ , lowercase_ , lowercase_) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""") num_of_components -= 1 a__ =[-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""") def _lowercase( ): pass if __name__ == "__main__": import doctest doctest.testmod()
20
0
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available __lowercase = logging.getLogger(__name__) @dataclass class _lowercase : _lowercase : Optional[int] = 42 _lowercase : Any = 42 _lowercase : Optional[int] = 42 @dataclass class _lowercase : _lowercase : Optional[int] = 42 _lowercase : int = 42 _lowercase : Any = None _lowercase : Dict = None class _lowercase ( lowercase__ ): _lowercase : int = 'train' _lowercase : Any = 'dev' _lowercase : Any = 'test' class _lowercase : @staticmethod def UpperCamelCase ( lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any] ) -> List[InputExample]: """simple docstring""" raise NotImplementedError @staticmethod def UpperCamelCase ( lowerCamelCase__ : Tuple ) -> List[str]: """simple docstring""" raise NotImplementedError @staticmethod def UpperCamelCase ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Tuple=False , lowerCamelCase__ : str="[CLS]" , lowerCamelCase__ : Tuple=1 , lowerCamelCase__ : Union[str, Any]="[SEP]" , lowerCamelCase__ : Optional[int]=False , lowerCamelCase__ : Tuple=False , lowerCamelCase__ : int=0 , lowerCamelCase__ : Optional[int]=0 , lowerCamelCase__ : str=-1_0_0 , lowerCamelCase__ : Dict=0 , lowerCamelCase__ : Dict=True , ) -> List[InputFeatures]: """simple docstring""" A_ = {label: i for i, label in enumerate(lowercase_ )} A_ = [] for ex_index, example in enumerate(lowercase_ ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d of %d''' , lowercase_ , len(lowercase_ ) ) A_ = [] A_ = [] for word, label in zip(example.words , example.labels ): A_ = tokenizer.tokenize(lowercase_ ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(lowercase_ ) > 0: tokens.extend(lowercase_ ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(lowercase_ ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. A_ = tokenizer.num_special_tokens_to_add() if len(lowercase_ ) > max_seq_length - special_tokens_count: A_ = tokens[: (max_seq_length - special_tokens_count)] A_ = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] A_ = [sequence_a_segment_id] * len(lowercase_ ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: A_ = [cls_token] + tokens A_ = [pad_token_label_id] + label_ids A_ = [cls_token_segment_id] + segment_ids A_ = tokenizer.convert_tokens_to_ids(lowercase_ ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. A_ = [1 if mask_padding_with_zero else 0] * len(lowercase_ ) # Zero-pad up to the sequence length. A_ = max_seq_length - len(lowercase_ ) if pad_on_left: A_ = ([pad_token] * padding_length) + input_ids A_ = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask A_ = ([pad_token_segment_id] * padding_length) + segment_ids A_ = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(lowercase_ ) == max_seq_length assert len(lowercase_ ) == max_seq_length assert len(lowercase_ ) == max_seq_length assert len(lowercase_ ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(lowercase_ ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(lowercase_ ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(lowercase_ ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(lowercase_ ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(lowercase_ ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: A_ = None features.append( InputFeatures( input_ids=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , label_ids=lowercase_ ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class _lowercase ( lowercase__ ): _lowercase : Optional[int] = 42 _lowercase : Optional[int] = nn.CrossEntropyLoss().ignore_index def __init__( self : Any , lowerCamelCase__ : Tuple , lowerCamelCase__ : Dict , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Dict = None , lowerCamelCase__ : Any=False , lowerCamelCase__ : str = Split.train , ) -> str: """simple docstring""" A_ = os.path.join( lowercase_ , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(lowercase_ ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A_ = cached_features_file + '''.lock''' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not overwrite_cache: logger.info(F"Loading features from cached file {cached_features_file}" ) A_ = torch.load(lowercase_ ) else: logger.info(F"Creating features from dataset file at {data_dir}" ) A_ = token_classification_task.read_examples_from_file(lowercase_ , lowercase_ ) # TODO clean up all this to leverage built-in features of tokenizers A_ = token_classification_task.convert_examples_to_features( lowercase_ , lowercase_ , lowercase_ , lowercase_ , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F"Saving features into cached file {cached_features_file}" ) torch.save(self.features , lowercase_ ) def __len__( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : List[Any] , lowerCamelCase__ : str ) -> InputFeatures: """simple docstring""" return self.features[i] if is_tf_available(): import tensorflow as tf class _lowercase : _lowercase : Dict = 42 _lowercase : Dict = -100 def __init__( self : int , lowerCamelCase__ : str , lowerCamelCase__ : Any , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[str] = None , lowerCamelCase__ : Optional[int]=False , lowerCamelCase__ : Optional[Any] = Split.train , ) -> Union[str, Any]: """simple docstring""" A_ = token_classification_task.read_examples_from_file(lowercase_ , lowercase_ ) # TODO clean up all this to leverage built-in features of tokenizers A_ = token_classification_task.convert_examples_to_features( lowercase_ , lowercase_ , lowercase_ , lowercase_ , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: A_ = tf.data.Dataset.from_generator( lowercase_ , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: A_ = tf.data.Dataset.from_generator( lowercase_ , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def UpperCamelCase ( self : int ) -> int: """simple docstring""" A_ = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Optional[int] ) -> Any: """simple docstring""" return len(self.features ) def __getitem__( self : Union[str, Any] , lowerCamelCase__ : List[Any] ) -> InputFeatures: """simple docstring""" return self.features[i]
203
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCAmelCase: Union[str, Any] = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' _lowerCAmelCase: Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' _lowerCAmelCase: List[Any] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): def __UpperCamelCase ( self) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=True , lowercase_=False) -> Any: if rouge_types is None: a__ =['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] a__ =rouge_scorer.RougeScorer(rouge_types=lowercase_ , use_stemmer=lowercase_) if use_aggregator: a__ =scoring.BootstrapAggregator() else: a__ =[] for ref, pred in zip(lowercase_ , lowercase_): a__ =scorer.score(lowercase_ , lowercase_) if use_aggregator: aggregator.add_scores(lowercase_) else: scores.append(lowercase_) if use_aggregator: a__ =aggregator.aggregate() else: a__ ={} for key in scores[0]: a__ =[score[key] for score in scores] return result
20
0
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def _snake_case ( _SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" lowerCAmelCase = int(number**0.5 ) return number == sq * sq def _snake_case ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den lowerCAmelCase = x_den * y_den * z_den lowerCAmelCase = gcd(__a , __a ) top //= hcf bottom //= hcf return top, bottom def _snake_case ( _SCREAMING_SNAKE_CASE : int = 35 ) -> Dict: """simple docstring""" lowerCAmelCase = set() lowerCAmelCase = 42 lowerCAmelCase = Fraction(0 ) lowerCAmelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 lowerCAmelCase = x_num * y_den + x_den * y_num lowerCAmelCase = x_den * y_den lowerCAmelCase = gcd(__a , __a ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase = add_three( __a , __a , __a , __a , __a , __a ) unique_s.add(__a ) # n=2 lowerCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) lowerCAmelCase = x_den * x_den * y_den * y_den if is_sq(__a ) and is_sq(__a ): lowerCAmelCase = int(sqrt(__a ) ) lowerCAmelCase = int(sqrt(__a ) ) lowerCAmelCase = gcd(__a , __a ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase = add_three( __a , __a , __a , __a , __a , __a ) unique_s.add(__a ) # n=-1 lowerCAmelCase = x_num * y_num lowerCAmelCase = x_den * y_num + x_num * y_den lowerCAmelCase = gcd(__a , __a ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase = add_three( __a , __a , __a , __a , __a , __a ) unique_s.add(__a ) # n=2 lowerCAmelCase = x_num * x_num * y_num * y_num lowerCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__a ) and is_sq(__a ): lowerCAmelCase = int(sqrt(__a ) ) lowerCAmelCase = int(sqrt(__a ) ) lowerCAmelCase = gcd(__a , __a ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase = add_three( __a , __a , __a , __a , __a , __a ) unique_s.add(__a ) for num, den in unique_s: total += Fraction(__a , __a ) return total.denominator + total.numerator if __name__ == "__main__": print(F'''{solution() = }''')
433
from __future__ import annotations _lowerCAmelCase: str = '#' class lowercase_ : def __init__( self) -> None: a__ ={} def __UpperCamelCase ( self , lowercase_) -> None: a__ =self._trie for char in text: if char not in trie: a__ ={} a__ =trie[char] a__ =True def __UpperCamelCase ( self , lowercase_) -> tuple | list: a__ =self._trie for char in prefix: if char in trie: a__ =trie[char] else: return [] return self._elements(lowercase_) def __UpperCamelCase ( self , lowercase_) -> tuple: a__ =[] for c, v in d.items(): a__ =[' '] if c == END else [(c + s) for s in self._elements(lowercase_)] result.extend(lowercase_) return tuple(lowercase_) _lowerCAmelCase: Optional[int] = Trie() _lowerCAmelCase: List[str] = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def _lowercase( __a : str ): a__ =trie.find_word(__a ) return tuple(string + word for word in suffixes ) def _lowercase( ): print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
20
0
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[int]: if not numbers: return 0 if not isinstance(__a , (list, tuple) ) or not all( isinstance(__a , __a ) for number in numbers ): raise ValueError("""numbers must be an iterable of integers""" ) lowercase : Optional[Any] = numbers[0] for i in range(1 , len(__a ) ): # update the maximum and minimum subarray products lowercase : Any = numbers[i] if number < 0: lowercase , lowercase : Optional[Any] = min_till_now, max_till_now lowercase : Optional[Any] = max(__a , max_till_now * number ) lowercase : List[str] = min(__a , min_till_now * number ) # update the maximum product found till now lowercase : List[Any] = max(__a , __a ) return max_prod
336
_lowerCAmelCase: List[str] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def _lowercase( ): a__ =input('Enter message: ' ) a__ =input('Enter key [alphanumeric]: ' ) a__ =input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): a__ ='encrypt' a__ =encrypt_message(__a , __a ) elif mode.lower().startswith('d' ): a__ ='decrypt' a__ =decrypt_message(__a , __a ) print(f"""\n{mode.title()}ed message:""" ) print(__a ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'encrypt' ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'decrypt' ) def _lowercase( __a : str , __a : str , __a : str ): a__ =[] a__ =0 a__ =key.upper() for symbol in message: a__ =LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__a ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__a ): a__ =0 else: translated.append(__a ) return "".join(__a ) if __name__ == "__main__": main()
20
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm lowerCAmelCase : int = logging.get_logger(__name__) @dataclass class _UpperCamelCase ( lowercase__): '''simple docstring''' _snake_case = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **a_ ) -> Dict: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase : Tuple = deprecated_arg[3:] setattr(self , lowercase_ , not kwargs.pop(lowercase_ ) ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) lowercase : int = kwargs.pop("torchscript" , self.torchscript ) lowercase : Any = kwargs.pop("torch_xla_tpu_print_metrics" , self.torch_xla_tpu_print_metrics ) lowercase : Any = kwargs.pop("fp16_opt_level" , self.fpaa_opt_level ) super().__init__(**lowercase_ ) _snake_case = field(default=lowercase__ , metadata={'''help''': '''Trace the models using torchscript'''}) _snake_case = field(default=lowercase__ , metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''}) _snake_case = field( default='''O1''' , metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) } , ) @cached_property def a__ ( self ) -> Tuple["torch.device", int]: requires_backends(self , ["torch"] ) logger.info("PyTorch: setting up devices" ) if not self.cuda: lowercase : int = torch.device("cpu" ) lowercase : str = 0 elif is_torch_tpu_available(): lowercase : Union[str, Any] = xm.xla_device() lowercase : str = 0 else: lowercase : Optional[int] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) lowercase : int = torch.cuda.device_count() return device, n_gpu @property def a__ ( self ) -> List[Any]: return is_torch_tpu_available() and self.tpu @property def a__ ( self ) -> int: requires_backends(self , ["torch"] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def a__ ( self ) -> "torch.device": requires_backends(self , ["torch"] ) return self._setup_devices[0] @property def a__ ( self ) -> List[str]: requires_backends(self , ["torch"] ) return self._setup_devices[1] @property def a__ ( self ) -> List[str]: return self.n_gpu > 0
372
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[Any] = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } _SCREAMING_SNAKE_CASE : str = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(lowercase_ ) , lowercase_ ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(lowercase_ ) , x.transpose() ) ) _SCREAMING_SNAKE_CASE : str = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(lowercase_ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : str = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE : List[str] = torch.tensor(lowercase_ ) self.assertTrue(np.allclose(transpose(lowercase_ ) , transpose(lowercase_ ).numpy() ) ) _SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE : Dict = torch.tensor(lowercase_ ) self.assertTrue(np.allclose(transpose(lowercase_ , axes=(1, 2, 0) ) , transpose(lowercase_ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE : int = tf.constant(lowercase_ ) self.assertTrue(np.allclose(transpose(lowercase_ ) , transpose(lowercase_ ).numpy() ) ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE : Any = tf.constant(lowercase_ ) self.assertTrue(np.allclose(transpose(lowercase_ , axes=(1, 2, 0) ) , transpose(lowercase_ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE : List[Any] = jnp.array(lowercase_ ) self.assertTrue(np.allclose(transpose(lowercase_ ) , np.asarray(transpose(lowercase_ ) ) ) ) _SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.array(lowercase_ ) self.assertTrue(np.allclose(transpose(lowercase_ , axes=(1, 2, 0) ) , np.asarray(transpose(lowercase_ , axes=(1, 2, 0) ) ) ) ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[str] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(lowercase_ , (4, 3) ) , np.reshape(lowercase_ , (4, 3) ) ) ) _SCREAMING_SNAKE_CASE : List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(lowercase_ , (12, 5) ) , np.reshape(lowercase_ , (12, 5) ) ) ) @require_torch def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE : Dict = torch.tensor(lowercase_ ) self.assertTrue(np.allclose(reshape(lowercase_ , (4, 3) ) , reshape(lowercase_ , (4, 3) ).numpy() ) ) _SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(lowercase_ ) self.assertTrue(np.allclose(reshape(lowercase_ , (12, 5) ) , reshape(lowercase_ , (12, 5) ).numpy() ) ) @require_tf def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Optional[Any] = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE : Optional[Any] = tf.constant(lowercase_ ) self.assertTrue(np.allclose(reshape(lowercase_ , (4, 3) ) , reshape(lowercase_ , (4, 3) ).numpy() ) ) _SCREAMING_SNAKE_CASE : Tuple = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE : Dict = tf.constant(lowercase_ ) self.assertTrue(np.allclose(reshape(lowercase_ , (12, 5) ) , reshape(lowercase_ , (12, 5) ).numpy() ) ) @require_flax def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE : List[Any] = jnp.array(lowercase_ ) self.assertTrue(np.allclose(reshape(lowercase_ , (4, 3) ) , np.asarray(reshape(lowercase_ , (4, 3) ) ) ) ) _SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(3 , 4 , 5 ) _SCREAMING_SNAKE_CASE : List[str] = jnp.array(lowercase_ ) self.assertTrue(np.allclose(reshape(lowercase_ , (12, 5) ) , np.asarray(reshape(lowercase_ , (12, 5) ) ) ) ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(lowercase_ ) , np.squeeze(lowercase_ ) ) ) _SCREAMING_SNAKE_CASE : int = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(lowercase_ , axis=2 ) , np.squeeze(lowercase_ , axis=2 ) ) ) @require_torch def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE : Any = torch.tensor(lowercase_ ) self.assertTrue(np.allclose(squeeze(lowercase_ ) , squeeze(lowercase_ ).numpy() ) ) _SCREAMING_SNAKE_CASE : Any = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE : Dict = torch.tensor(lowercase_ ) self.assertTrue(np.allclose(squeeze(lowercase_ , axis=2 ) , squeeze(lowercase_ , axis=2 ).numpy() ) ) @require_tf def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Any = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE : List[Any] = tf.constant(lowercase_ ) self.assertTrue(np.allclose(squeeze(lowercase_ ) , squeeze(lowercase_ ).numpy() ) ) _SCREAMING_SNAKE_CASE : Dict = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE : Dict = tf.constant(lowercase_ ) self.assertTrue(np.allclose(squeeze(lowercase_ , axis=2 ) , squeeze(lowercase_ , axis=2 ).numpy() ) ) @require_flax def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Any = np.random.randn(1 , 3 , 4 ) _SCREAMING_SNAKE_CASE : Dict = jnp.array(lowercase_ ) self.assertTrue(np.allclose(squeeze(lowercase_ ) , np.asarray(squeeze(lowercase_ ) ) ) ) _SCREAMING_SNAKE_CASE : List[str] = np.random.randn(1 , 4 , 1 , 5 ) _SCREAMING_SNAKE_CASE : Optional[Any] = jnp.array(lowercase_ ) self.assertTrue(np.allclose(squeeze(lowercase_ , axis=2 ) , np.asarray(squeeze(lowercase_ , axis=2 ) ) ) ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(lowercase_ , axis=1 ) , np.expand_dims(lowercase_ , axis=1 ) ) ) @require_torch def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Dict = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE : Any = torch.tensor(lowercase_ ) self.assertTrue(np.allclose(expand_dims(lowercase_ , axis=1 ) , expand_dims(lowercase_ , axis=1 ).numpy() ) ) @require_tf def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Dict = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE : int = tf.constant(lowercase_ ) self.assertTrue(np.allclose(expand_dims(lowercase_ , axis=1 ) , expand_dims(lowercase_ , axis=1 ).numpy() ) ) @require_flax def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Optional[Any] = np.random.randn(3 , 4 ) _SCREAMING_SNAKE_CASE : Optional[int] = jnp.array(lowercase_ ) self.assertTrue(np.allclose(expand_dims(lowercase_ , axis=1 ) , np.asarray(expand_dims(lowercase_ , axis=1 ) ) ) )
533
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =KandinskyVaaPriorPipeline snake_case =['prompt'] snake_case =['prompt', 'negative_prompt'] snake_case =[ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] snake_case =False @property def __UpperCamelCase ( self) -> Optional[int]: return 32 @property def __UpperCamelCase ( self) -> Tuple: return 32 @property def __UpperCamelCase ( self) -> int: return self.time_input_dim @property def __UpperCamelCase ( self) -> str: return self.time_input_dim * 4 @property def __UpperCamelCase ( self) -> Optional[int]: return 100 @property def __UpperCamelCase ( self) -> Union[str, Any]: a__ =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self) -> Union[str, Any]: torch.manual_seed(0) a__ =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowercase_) @property def __UpperCamelCase ( self) -> Tuple: torch.manual_seed(0) a__ ={ 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } a__ =PriorTransformer(**lowercase_) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 a__ =nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def __UpperCamelCase ( self) -> Any: torch.manual_seed(0) a__ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) a__ =CLIPVisionModelWithProjection(lowercase_) return model @property def __UpperCamelCase ( self) -> Optional[int]: a__ =CLIPImageProcessor( crop_size=224 , do_center_crop=lowercase_ , do_normalize=lowercase_ , do_resize=lowercase_ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor def __UpperCamelCase ( self) -> Any: a__ =self.dummy_prior a__ =self.dummy_image_encoder a__ =self.dummy_text_encoder a__ =self.dummy_tokenizer a__ =self.dummy_image_processor a__ =UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=lowercase_ , clip_sample_range=10.0 , ) a__ ={ 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def __UpperCamelCase ( self , lowercase_ , lowercase_=0) -> Tuple: if str(lowercase_).startswith('mps'): a__ =torch.manual_seed(lowercase_) else: a__ =torch.Generator(device=lowercase_).manual_seed(lowercase_) a__ ={ 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __UpperCamelCase ( self) -> int: a__ ='cpu' a__ =self.get_dummy_components() a__ =self.pipeline_class(**lowercase_) a__ =pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) a__ =pipe(**self.get_dummy_inputs(lowercase_)) a__ =output.image_embeds a__ =pipe( **self.get_dummy_inputs(lowercase_) , return_dict=lowercase_ , )[0] a__ =image[0, -10:] a__ =image_from_tuple[0, -10:] assert image.shape == (1, 32) a__ =np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def __UpperCamelCase ( self) -> List[Any]: a__ =torch_device == 'cpu' a__ =True a__ =False self._test_inference_batch_single_identical( test_max_difference=lowercase_ , relax_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , ) @skip_mps def __UpperCamelCase ( self) -> Optional[int]: a__ =torch_device == 'cpu' a__ =False self._test_attention_slicing_forward_pass( test_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , )
20
0
'''simple docstring''' import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE ( lowercase__ , unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @property def A ( self : str ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = ort.SessionOptions() UpperCamelCase = False return options def A ( self : Dict ): """simple docstring""" UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) UpperCamelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , safety_checker=lowercase_ , feature_extractor=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCamelCase = 'A red cat sitting on a park bench' UpperCamelCase = np.random.RandomState(0 ) UpperCamelCase = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , guidance_scale=7.5 , num_inference_steps=1_0 , generator=lowercase_ , output_type='np' , ) UpperCamelCase = output.images UpperCamelCase = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def A ( self : int ): """simple docstring""" UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) UpperCamelCase = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting' , subfolder='scheduler' , revision='onnx' ) UpperCamelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , scheduler=lowercase_ , safety_checker=lowercase_ , feature_extractor=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCamelCase = 'A red cat sitting on a park bench' UpperCamelCase = np.random.RandomState(0 ) UpperCamelCase = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , guidance_scale=7.5 , num_inference_steps=2_0 , generator=lowercase_ , output_type='np' , ) UpperCamelCase = output.images UpperCamelCase = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
430
from manim import * class lowercase_ (lowercase__ ): def __UpperCamelCase ( self) -> List[Any]: a__ =Rectangle(height=0.5 , width=0.5) a__ =Rectangle(height=0.46 , width=0.46).set_stroke(width=0) a__ =[mem.copy() for i in range(6)] a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(lowercase_ , lowercase_).arrange(lowercase_ , buff=0) a__ =Text('CPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) cpu.move_to([-2.5, -0.5, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(4)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('GPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) gpu.move_to([-1, -1, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Model' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) model.move_to([3, -1.0, 0]) self.add(lowercase_) a__ =[] for i, rect in enumerate(lowercase_): rect.set_stroke(lowercase_) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) a__ =Rectangle(height=0.46 / 4 , width=0.46 / 3).set_stroke(width=0.0).set_fill(lowercase_ , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=lowercase_) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0) self.add(lowercase_) cpu_targs.append(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Loaded Checkpoint' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4) checkpoint.move_to([3, 0.5, 0]) a__ =Square(side_length=2.2) key.move_to([-5, 2, 0]) a__ =MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(lowercase_ , lowercase_) a__ =MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left()) a__ =MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(lowercase_) , Write(lowercase_)) self.play(Write(lowercase_ , run_time=1) , Create(lowercase_ , run_time=1)) a__ =[] a__ =[] for i, rect in enumerate(lowercase_): a__ =fill.copy().set_fill(lowercase_ , opacity=0.7) target.move_to(lowercase_) first_animations.append(GrowFromCenter(lowercase_ , run_time=1)) a__ =target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.target.move_to(cpu_right_col_base[i - 5]) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5)) self.play(*lowercase_) self.play(*lowercase_) self.wait()
20
0
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ = ["pixel_values"] def __init__(self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: super().__init__(**lowercase_ ) _snake_case = size if size is not None else {"""shortest_edge""": 256} _snake_case = get_size_dict(lowercase_ , default_to_square=lowercase_ ) _snake_case = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _snake_case = get_size_dict(lowercase_ , param_name="""crop_size""" ) _snake_case = do_resize _snake_case = size _snake_case = resample _snake_case = do_center_crop _snake_case = crop_size _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PILImageResampling.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: _snake_case = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _snake_case = get_resize_output_image_size(lowercase_ , size=size["""shortest_edge"""] , default_to_square=lowercase_ ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: _snake_case = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(lowercase_ , size=(size["""height"""], size["""width"""]) , data_format=lowercase_ , **lowercase_ ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase ) -> np.ndarray: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> Tuple: _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = size if size is not None else self.size _snake_case = get_size_dict(lowercase_ , default_to_square=lowercase_ ) _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(lowercase_ , param_name="""crop_size""" ) _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _snake_case = [to_numpy_array(lowercase_ ) for image in images] if do_resize: _snake_case = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_center_crop: _snake_case = [self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images] if do_rescale: _snake_case = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: _snake_case = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] _snake_case = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] _snake_case = {"""pixel_values""": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ ) def lowercase (self , UpperCAmelCase , UpperCAmelCase = None ) -> str: _snake_case = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_ ) != len(lowercase_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(lowercase_ ): _snake_case = target_sizes.numpy() _snake_case = [] for idx in range(len(lowercase_ ) ): _snake_case = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=lowercase_ ) _snake_case = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase_ ) else: _snake_case = logits.argmax(dim=1 ) _snake_case = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
585
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _lowerCAmelCase: Any = sys.version_info >= (3, 10) def _lowercase( __a : int=None , __a : Any=None ): return field(default_factory=lambda: default , metadata=__a ) @dataclass class lowercase_ : snake_case =42 snake_case =42 snake_case =42 snake_case =42 @dataclass class lowercase_ : snake_case =42 snake_case =field(default='toto' , metadata={'help': 'help message'} ) @dataclass class lowercase_ : snake_case =False snake_case =True snake_case =None class lowercase_ (lowercase__ ): snake_case ='titi' snake_case ='toto' class lowercase_ (lowercase__ ): snake_case ='titi' snake_case ='toto' snake_case =42 @dataclass class lowercase_ : snake_case ="toto" def __UpperCamelCase ( self) -> List[str]: a__ =BasicEnum(self.foo) @dataclass class lowercase_ : snake_case ="toto" def __UpperCamelCase ( self) -> List[str]: a__ =MixedTypeEnum(self.foo) @dataclass class lowercase_ : snake_case =None snake_case =field(default=lowercase__ , metadata={'help': 'help message'} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) @dataclass class lowercase_ : snake_case =list_field(default=[] ) snake_case =list_field(default=[1, 2, 3] ) snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] ) snake_case =list_field(default=[0.1, 0.2, 0.3] ) @dataclass class lowercase_ : snake_case =field() snake_case =field() snake_case =field() def __UpperCamelCase ( self) -> List[Any]: a__ =BasicEnum(self.required_enum) @dataclass class lowercase_ : snake_case =42 snake_case =field() snake_case =None snake_case =field(default='toto' , metadata={'help': 'help message'} ) snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class lowercase_ : snake_case =False snake_case =True snake_case =None @dataclass class lowercase_ : snake_case =None snake_case =field(default=lowercase__ , metadata={'help': 'help message'} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self , lowercase_ , lowercase_) -> int: self.assertEqual(len(a._actions) , len(b._actions)) for x, y in zip(a._actions , b._actions): a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'} a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , lowercase_) and yy.get('choices' , lowercase_): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](lowercase_) , yy['type'](lowercase_)) del xx["type"], yy["type"] self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_) expected.add_argument('--bar' , type=lowercase_ , required=lowercase_) expected.add_argument('--baz' , type=lowercase_ , required=lowercase_) expected.add_argument('--flag' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') self.argparsersEqual(lowercase_ , lowercase_) a__ =['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((a__) , ) =parser.parse_args_into_dataclasses(lowercase_ , look_for_args_file=lowercase_) self.assertFalse(example.flag) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=lowercase_) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message') self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Optional[Any]: a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') expected.add_argument('--baz' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=lowercase_ , dest='baz') expected.add_argument('--opt' , type=lowercase_ , default=lowercase_) a__ =[WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_) for dataclass_type in dataclass_types: a__ =HfArgumentParser(lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', '--no_baz']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', '--baz']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(args.foo , 'toto') a__ =parser.parse_args_into_dataclasses([])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto) a__ =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') a__ =parser.parse_args_into_dataclasses(['--foo', 'titi'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi) a__ =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) a__ =parser.parse_args_into_dataclasses(['--foo', '42'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo) def __UpperCamelCase ( self) -> List[Any]: @dataclass class lowercase_ : snake_case ="toto" a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(args.foo , 'toto') a__ =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') a__ =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) def __UpperCamelCase ( self) -> Optional[int]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=lowercase_) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=lowercase_) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual( lowercase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3]) , ) a__ =parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split()) self.assertEqual(lowercase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7])) def __UpperCamelCase ( self) -> Dict: a__ =argparse.ArgumentParser() expected.add_argument('--foo' , default=lowercase_ , type=lowercase_) expected.add_argument('--bar' , default=lowercase_ , type=lowercase_ , help='help message') expected.add_argument('--baz' , default=lowercase_ , type=lowercase_) expected.add_argument('--ces' , nargs='+' , default=[] , type=lowercase_) expected.add_argument('--des' , nargs='+' , default=[] , type=lowercase_) a__ =[OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_) for dataclass_type in dataclass_types: a__ =HfArgumentParser(lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , bar=lowercase_ , baz=lowercase_ , ces=[] , des=[])) a__ =parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split()) self.assertEqual(lowercase_ , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3])) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=lowercase_ , required=lowercase_) expected.add_argument('--required_str' , type=lowercase_ , required=lowercase_) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , ) self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , ) expected.add_argument('--opt' , type=lowercase_ , default=lowercase_) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message') expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_) self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } a__ =parser.parse_dict(lowercase_)[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(lowercase_ , parser.parse_dict , lowercase_ , allow_extra_keys=lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: a__ =os.path.join(lowercase_ , 'temp_json') os.mkdir(lowercase_) with open(temp_local_path + '.json' , 'w+') as f: json.dump(lowercase_ , lowercase_) a__ =parser.parse_yaml_file(Path(temp_local_path + '.json'))[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Any: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: a__ =os.path.join(lowercase_ , 'temp_yaml') os.mkdir(lowercase_) with open(temp_local_path + '.yaml' , 'w+') as f: yaml.dump(lowercase_ , lowercase_) a__ =parser.parse_yaml_file(Path(temp_local_path + '.yaml'))[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) self.assertIsNotNone(lowercase_)
20
0
"""simple docstring""" import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _lowerCAmelCase = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase (datasets.BuilderConfig ): _SCREAMING_SNAKE_CASE : List[str] = None _SCREAMING_SNAKE_CASE : List[Any] = """utf-8""" _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : str = None _SCREAMING_SNAKE_CASE : Dict = True # deprecated _SCREAMING_SNAKE_CASE : List[str] = None # deprecated _SCREAMING_SNAKE_CASE : Optional[int] = 10 << 20 # 10MB _SCREAMING_SNAKE_CASE : List[str] = None class UpperCamelCase (datasets.ArrowBasedBuilder ): _SCREAMING_SNAKE_CASE : List[Any] = JsonConfig def __snake_case ( self :Optional[Any] ) ->List[str]: if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) lowercase : List[Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def __snake_case ( self :Union[str, Any] , __magic_name__ :int ) ->int: if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) lowercase : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowercase_ , (str, list, tuple) ): lowercase : Any = data_files if isinstance(lowercase_ , lowercase_ ): lowercase : Union[str, Any] = [files] lowercase : int = [dl_manager.iter_files(lowercase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] lowercase : int = [] for split_name, files in data_files.items(): if isinstance(lowercase_ , lowercase_ ): lowercase : int = [files] lowercase : str = [dl_manager.iter_files(lowercase_ ) for file in files] splits.append(datasets.SplitGenerator(name=lowercase_ , gen_kwargs={"""files""": files} ) ) return splits def __snake_case ( self :Tuple , __magic_name__ :Union[str, Any] ) ->pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): lowercase : Any = self.config.features.arrow_schema.field(lowercase_ ).type lowercase : Optional[Any] = pa_table.append_column(lowercase_ , pa.array([None] * len(lowercase_ ) , type=lowercase_ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example lowercase : Tuple = table_cast(lowercase_ , self.config.features.arrow_schema ) return pa_table def __snake_case ( self :Optional[Any] , __magic_name__ :int ) ->Optional[int]: for file_idx, file in enumerate(itertools.chain.from_iterable(lowercase_ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(lowercase_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowercase : Dict = json.load(lowercase_ ) # We keep only the field we are interested in lowercase : Any = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(lowercase_ , (list, tuple) ): lowercase : Any = set().union(*[row.keys() for row in dataset] ) lowercase : int = {col: [row.get(lowercase_ ) for row in dataset] for col in keys} else: lowercase : Union[str, Any] = dataset lowercase : Dict = pa.Table.from_pydict(lowercase_ ) yield file_idx, self._cast_table(lowercase_ ) # If the file has one json object per line else: with open(lowercase_ , """rb""" ) as f: lowercase : Optional[Any] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small lowercase : Tuple = max(self.config.chunksize // 32 , 16 << 10 ) lowercase : str = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: lowercase : Dict = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(lowercase_ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": lowercase : Optional[int] = batch.decode(self.config.encoding , errors=lowercase_ ).encode("""utf-8""" ) try: while True: try: lowercase : Tuple = paj.read_json( io.BytesIO(lowercase_ ) , read_options=paj.ReadOptions(block_size=lowercase_ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(lowercase_ , pa.ArrowInvalid ) and "straddling" not in str(lowercase_ ) or block_size > len(lowercase_ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"""Batch of {len(lowercase_ )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( lowercase_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowercase : str = json.load(lowercase_ ) except json.JSONDecodeError: logger.error(f"""Failed to read file '{file}' with error {type(lowercase_ )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(lowercase_ , lowercase_ ): # list is the only sequence type supported in JSON try: lowercase : List[Any] = set().union(*[row.keys() for row in dataset] ) lowercase : int = {col: [row.get(lowercase_ ) for row in dataset] for col in keys} lowercase : Tuple = pa.Table.from_pydict(lowercase_ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"""Failed to read file '{file}' with error {type(lowercase_ )}: {e}""" ) raise ValueError(f"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(lowercase_ ) break else: logger.error(f"""Failed to read file '{file}' with error {type(lowercase_ )}: {e}""" ) raise ValueError( f"""Not able to read records in the JSON file at {file}. """ f"""You should probably indicate the field of the JSON file containing your records. """ f"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowercase_ ) batch_idx += 1
264
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase: List[Any] = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class lowercase_ (lowercase__ ): snake_case ='autoformer' snake_case ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , lowercase_ = None , lowercase_ = None , lowercase_ = "student_t" , lowercase_ = "nll" , lowercase_ = 1 , lowercase_ = [1, 2, 3, 4, 5, 6, 7] , lowercase_ = True , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 64 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 32 , lowercase_ = 32 , lowercase_ = "gelu" , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 100 , lowercase_ = 0.02 , lowercase_ = True , lowercase_=True , lowercase_ = 10 , lowercase_ = 25 , lowercase_ = 3 , **lowercase_ , ) -> Union[str, Any]: # time series specific configuration a__ =prediction_length a__ =context_length if context_length is not None else prediction_length a__ =distribution_output a__ =loss a__ =input_size a__ =num_time_features a__ =lags_sequence a__ =scaling a__ =num_dynamic_real_features a__ =num_static_real_features a__ =num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`') a__ =cardinality else: a__ =[0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`') a__ =embedding_dimension else: a__ =[min(50 , (cat + 1) // 2) for cat in self.cardinality] a__ =num_parallel_samples # Transformer architecture configuration a__ =input_size * len(self.lags_sequence) + self._number_of_features a__ =d_model a__ =encoder_attention_heads a__ =decoder_attention_heads a__ =encoder_ffn_dim a__ =decoder_ffn_dim a__ =encoder_layers a__ =decoder_layers a__ =dropout a__ =attention_dropout a__ =activation_dropout a__ =encoder_layerdrop a__ =decoder_layerdrop a__ =activation_function a__ =init_std a__ =use_cache # Autoformer a__ =label_length a__ =moving_average a__ =autocorrelation_factor super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def __UpperCamelCase ( self) -> int: return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
20
0
'''simple docstring''' lowercase_ : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.609344, "knot": 1.852, } lowercase_ : dict[str, float] = { "km/h": 1.0, "m/s": 0.277777778, "mph": 0.621371192, "knot": 0.539956803, } def SCREAMING_SNAKE_CASE ( lowercase_ : float , lowercase_ : str , lowercase_ : str ): if unit_to not in speed_chart or unit_from not in speed_chart_inverse: lowercase = ( F"""Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n""" F"""Valid values are: {', '.join(__a )}""" ) raise ValueError(__a ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
588
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowerCAmelCase: List[Any] = logging.get_logger(__name__) class lowercase_ (lowercase__ ): snake_case =['pixel_values'] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = None , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: super().__init__(**lowercase_) a__ =size if size is not None else {'shortest_edge': 256} a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) a__ =crop_size if crop_size is not None else {'height': 224, 'width': 224} a__ =get_size_dict(lowercase_ , param_name='crop_size') a__ =do_resize a__ =size a__ =resample a__ =do_center_crop a__ =crop_size a__ =do_rescale a__ =rescale_factor a__ =do_normalize a__ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a__ =image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") a__ =get_resize_output_image_size(lowercase_ , size=size['shortest_edge'] , default_to_square=lowercase_) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: a__ =get_size_dict(lowercase_) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""") return center_crop(lowercase_ , size=(size['height'], size['width']) , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_) -> np.ndarray: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> Tuple: a__ =do_resize if do_resize is not None else self.do_resize a__ =size if size is not None else self.size a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) a__ =resample if resample is not None else self.resample a__ =do_center_crop if do_center_crop is not None else self.do_center_crop a__ =crop_size if crop_size is not None else self.crop_size a__ =get_size_dict(lowercase_ , param_name='crop_size') a__ =do_rescale if do_rescale is not None else self.do_rescale a__ =rescale_factor if rescale_factor is not None else self.rescale_factor a__ =do_normalize if do_normalize is not None else self.do_normalize a__ =image_mean if image_mean is not None else self.image_mean a__ =image_std if image_std is not None else self.image_std a__ =make_list_of_images(lowercase_) if not valid_images(lowercase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a__ =[to_numpy_array(lowercase_) for image in images] if do_resize: a__ =[self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_) for image in images] if do_center_crop: a__ =[self.center_crop(image=lowercase_ , size=lowercase_) for image in images] if do_rescale: a__ =[self.rescale(image=lowercase_ , scale=lowercase_) for image in images] if do_normalize: a__ =[self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_) for image in images] a__ =[to_channel_dimension_format(lowercase_ , lowercase_) for image in images] a__ ={'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None) -> str: a__ =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_) != len(lowercase_): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(lowercase_): a__ =target_sizes.numpy() a__ =[] for idx in range(len(lowercase_)): a__ =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_) a__ =resized_logits[0].argmax(dim=0) semantic_segmentation.append(lowercase_) else: a__ =logits.argmax(dim=1) a__ =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
20
0
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __UpperCAmelCase = object() # For specifying empty leaf dict `{}` __UpperCAmelCase = object() def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Any = tuple((re.compile(x + """$""" ) for x in qs) ) for i in range(len(__a ) - len(__a ) + 1 ): UpperCAmelCase__ : Tuple = [x.match(__a ) for x, y in zip(__a , ks[i:] )] if matches and all(__a ): return True return False def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' def replace(__UpperCamelCase , __UpperCamelCase ): for rule, replacement in rules: if _match(__a , __a ): return replacement return val return replace def lowerCAmelCase ( ): '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P("""mp""" , __a )), (("transformer", "wte", "embedding"), P("""mp""" , __a )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__a , """mp""" )), (("attention", "out_proj", "kernel"), P("""mp""" , __a )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__a , """mp""" )), (("mlp", "c_fc", "bias"), P("""mp""" )), (("mlp", "c_proj", "kernel"), P("""mp""" , __a )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : int = _get_partition_rules() UpperCAmelCase__ : Optional[int] = _replacement_rules(__a ) UpperCAmelCase__ : Optional[int] = {k: _unmatched for k in flatten_dict(__a )} UpperCAmelCase__ : Dict = {k: replace(__a , __a ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__a ) )
65
from importlib import import_module from .logging import get_logger _lowerCAmelCase: str = get_logger(__name__) class lowercase_ : def __init__( self , lowercase_ , lowercase_=None) -> Tuple: a__ =attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__'): setattr(self , lowercase_ , getattr(lowercase_ , lowercase_)) a__ =module._original_module if isinstance(lowercase_ , _PatchedModuleObj) else module class lowercase_ : snake_case =[] def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None) -> List[str]: a__ =obj a__ =target a__ =new a__ =target.split('.')[0] a__ ={} a__ =attrs or [] def __enter__( self) -> Optional[int]: *a__ , a__ =self.target.split('.') # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowercase_)): try: a__ =import_module('.'.join(submodules[: i + 1])) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): a__ =getattr(self.obj , lowercase_) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowercase_ , _PatchedModuleObj) and obj_attr._original_module is submodule) ): a__ =obj_attr # patch at top level setattr(self.obj , lowercase_ , _PatchedModuleObj(lowercase_ , attrs=self.attrs)) a__ =getattr(self.obj , lowercase_) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowercase_ , lowercase_ , _PatchedModuleObj(getattr(lowercase_ , lowercase_ , lowercase_) , attrs=self.attrs)) a__ =getattr(lowercase_ , lowercase_) # finally set the target attribute setattr(lowercase_ , lowercase_ , self.new) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: a__ =getattr(import_module('.'.join(lowercase_)) , lowercase_) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowercase_) is attr_value: a__ =getattr(self.obj , lowercase_) setattr(self.obj , lowercase_ , self.new) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" a__ =globals()['__builtins__'][target_attr] setattr(self.obj , lowercase_ , self.new) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""") def __exit__( self , *lowercase_) -> str: for attr in list(self.original): setattr(self.obj , lowercase_ , self.original.pop(lowercase_)) def __UpperCamelCase ( self) -> Any: self.__enter__() self._active_patches.append(self) def __UpperCamelCase ( self) -> Union[str, Any]: try: self._active_patches.remove(self) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
20
0
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __magic_name__ : List[str] = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") __magic_name__ : Dict = F'https://www.google.com/search?q={query}&num=100' __magic_name__ : int = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: __magic_name__ : Dict = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: __magic_name__ : str = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )['url'][0] webbrowser.open(link)
672
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": _lowerCAmelCase: int = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def _lowercase( __a : Optional[Any] ): if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) _lowerCAmelCase: str = parser.parse_args() _lowerCAmelCase: Tuple = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
20
0
from __future__ import annotations import queue class _lowercase : def __init__( self : List[Any] , lowerCamelCase__ : int ) -> Dict: """simple docstring""" A_ = data A_ = None A_ = None def _lowerCamelCase ( ): '''simple docstring''' print('''\n********Press N to stop entering at any point of time********\n''' ) A_ = input('''Enter the value of the root node: ''' ).strip().lower() A_ = queue.Queue() A_ = TreeNode(int(__a ) ) q.put(__a ) while not q.empty(): A_ = q.get() A_ = f"Enter the left node of {node_found.data}: " A_ = input(__a ).strip().lower() or '''n''' if check == "n": return tree_node A_ = TreeNode(int(__a ) ) A_ = left_node q.put(__a ) A_ = f"Enter the right node of {node_found.data}: " A_ = input(__a ).strip().lower() or '''n''' if check == "n": return tree_node A_ = TreeNode(int(__a ) ) A_ = right_node q.put(__a ) raise def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(__a , __a ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(__a , __a ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(__a , __a ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(__a , __a ) or not node: return A_ = queue.Queue() q.put(__a ) while not q.empty(): A_ = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(__a , __a ) or not node: return A_ = queue.Queue() q.put(__a ) while not q.empty(): A_ = [] while not q.empty(): A_ = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__a ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(__a , __a ) or not node: return A_ = [] A_ = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(__a ) A_ = n.left # end of while means current node doesn't have left child A_ = stack.pop() # start to traverse its right child A_ = n.right def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(__a , __a ) or not node: return A_ = [] A_ = node while n or stack: while n: stack.append(__a ) A_ = n.left A_ = stack.pop() print(n.data , end=''',''' ) A_ = n.right def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(__a , __a ) or not node: return A_ ,A_ = [], [] A_ = node stacka.append(__a ) while stacka: # to find the reversed order of post order, store it in stack2 A_ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__a ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE = "" , SCREAMING_SNAKE_CASE=50 , SCREAMING_SNAKE_CASE="*" ): '''simple docstring''' if not s: return "\n" + width * char A_ ,A_ = divmod(width - len(__a ) - 2 , 2 ) return f"{left * char} {s} {(left + extra) * char}" if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) __lowercase = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 50 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
203
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _lowerCAmelCase: Tuple = get_logger(__name__) _lowerCAmelCase: List[str] = Path(__file__).parent / 'model_card_template.md' _lowerCAmelCase: Any = uuida().hex _lowerCAmelCase: List[Any] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase: int = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase: Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def _lowercase( __a : Union[Dict, str, None] = None ): a__ =f"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"""; torch/{_torch_version}""" if is_flax_available(): ua += f"""; jax/{_jax_version}""" ua += f"""; flax/{_flax_version}""" if is_onnx_available(): ua += f"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__a , __a ): ua += "; " + "; ".join(f"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__a , __a ): ua += "; " + user_agent return ua def _lowercase( __a : str , __a : Optional[str] = None , __a : Optional[str] = None ): if token is None: a__ =HfFolder.get_token() if organization is None: a__ =whoami(__a )['name'] return f"""{username}/{model_id}""" else: return f"""{organization}/{model_id}""" def _lowercase( __a : Union[str, Any] , __a : Dict ): if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(__a , 'local_rank' ) and args.local_rank not in [-1, 0]: return a__ =args.hub_token if hasattr(__a , 'hub_token' ) else None a__ =get_full_repo_name(__a , token=__a ) a__ =ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__a , model_name=__a , repo_name=__a , dataset_name=args.dataset_name if hasattr(__a , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__a , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__a , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(__a , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__a , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__a , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__a , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__a , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__a , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(__a , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__a , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) a__ =os.path.join(args.output_dir , 'README.md' ) model_card.save(__a ) def _lowercase( __a : Optional[str] , __a : Optional[str] = None ): if resolved_file is None or commit_hash is not None: return commit_hash a__ =str(Path(__a ).as_posix() ) a__ =re.search(r'snapshots/([^/]+)/' , __a ) if search is None: return None a__ =search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__a ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _lowerCAmelCase: List[str] = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) _lowerCAmelCase: List[str] = os.path.join(hf_cache_home, 'diffusers') def _lowercase( __a : Optional[str] = None , __a : Optional[str] = None ): if new_cache_dir is None: a__ =DIFFUSERS_CACHE if old_cache_dir is None: a__ =old_diffusers_cache a__ =Path(__a ).expanduser() a__ =Path(__a ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): a__ =new_cache_dir / old_blob_path.relative_to(__a ) new_blob_path.parent.mkdir(parents=__a , exist_ok=__a ) os.replace(__a , __a ) try: os.symlink(__a , __a ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _lowerCAmelCase: Dict = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): _lowerCAmelCase: int = 0 else: with open(cache_version_file) as f: try: _lowerCAmelCase: List[Any] = int(f.read()) except ValueError: _lowerCAmelCase: Any = 0 if cache_version < 1: _lowerCAmelCase: str = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: _lowerCAmelCase: Optional[Any] = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ 'the directory exists and can be written to.' ) def _lowercase( __a : str , __a : Optional[str] = None ): if variant is not None: a__ =weights_name.split('.' ) a__ =splits[:-1] + [variant] + splits[-1:] a__ ='.'.join(__a ) return weights_name def _lowercase( __a : Union[str, Any] , *, __a : Optional[Any] , __a : Optional[Any] , __a : List[Any] , __a : Tuple , __a : Optional[Any] , __a : Dict , __a : str , __a : int , __a : Tuple , __a : Union[str, Any] , __a : int=None , ): a__ =str(__a ) if os.path.isfile(__a ): return pretrained_model_name_or_path elif os.path.isdir(__a ): if os.path.isfile(os.path.join(__a , __a ) ): # Load from a PyTorch checkpoint a__ =os.path.join(__a , __a ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__a , __a , __a ) ): a__ =os.path.join(__a , __a , __a ) return model_file else: raise EnvironmentError( f"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__a ).base_version ) >= version.parse('0.20.0' ) ): try: a__ =hf_hub_download( __a , filename=_add_variant(__a , __a ) , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) warnings.warn( f"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __a , ) return model_file except: # noqa: E722 warnings.warn( f"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__a , __a )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__a , __a )}' so that the correct variant file can be added.""" , __a , ) try: # 2. Load model file as usual a__ =hf_hub_download( __a , filename=__a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( f"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ 'this model name. Check the model page at ' f"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( f"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( f"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" f""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" f""" directory containing a file named {weights_name} or""" ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( f"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' f"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ f"""containing a file named {weights_name}""" )
20
0
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __snake_case( lowercase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = BlenderbotSmallTokenizer UpperCAmelCase : Union[str, Any] = False def __snake_case ( self ) -> Optional[Any]: super().setUp() lowerCAmelCase = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""] lowerCAmelCase = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowerCAmelCase = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""] lowerCAmelCase = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""} lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowercase_ ) ) def __snake_case ( self , **A_ ) -> int: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def __snake_case ( self , A_ ) -> Tuple: lowerCAmelCase = """adapt act apte""" lowerCAmelCase = """adapt act apte""" return input_text, output_text def __snake_case ( self ) -> Dict: lowerCAmelCase = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase = """adapt act apte""" lowerCAmelCase = ["""adapt""", """act""", """ap@@""", """te"""] lowerCAmelCase = tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowerCAmelCase = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] lowerCAmelCase = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) assert tok("""sam""" ).input_ids == [1384] lowerCAmelCase = """I am a small frog.""" lowerCAmelCase = tok([src_text] , padding=lowercase_ , truncation=lowercase_ )["""input_ids"""] lowerCAmelCase = tok.batch_decode(lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __snake_case ( self ) -> List[Any]: lowerCAmelCase = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) lowerCAmelCase = """I am a small frog .""" lowerCAmelCase = """.""" lowerCAmelCase = tok(lowercase_ )["""input_ids"""] lowerCAmelCase = tok(lowercase_ )["""input_ids"""] assert encoded[-1] == encoded_dot[0]
433
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger() def _lowercase( __a : int , __a : str , __a : LevitConfig , __a : Path , __a : bool = True ): print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": a__ =timm.create_model('levit_128s' , pretrained=__a ) else: a__ =timm.create_model('levit_128' , pretrained=__a ) if hidden_sizes == 192: a__ =timm.create_model('levit_192' , pretrained=__a ) if hidden_sizes == 256: a__ =timm.create_model('levit_256' , pretrained=__a ) if hidden_sizes == 384: a__ =timm.create_model('levit_384' , pretrained=__a ) from_model.eval() a__ =LevitForImageClassificationWithTeacher(__a ).eval() a__ =OrderedDict() a__ =from_model.state_dict() a__ =list(from_model.state_dict().keys() ) a__ =list(our_model.state_dict().keys() ) print(len(__a ) , len(__a ) ) for i in range(len(__a ) ): a__ =weights[og_keys[i]] our_model.load_state_dict(__a ) a__ =torch.randn((2, 3, 224, 224) ) a__ =from_model(__a ) a__ =our_model(__a ).logits assert torch.allclose(__a , __a ), "The model logits don't match the original one." a__ =name print(__a ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) a__ =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def _lowercase( __a : Path , __a : str = None , __a : bool = True ): a__ ='imagenet-1k-id2label.json' a__ =1000 a__ =(1, num_labels) a__ ='huggingface/label-files' a__ =num_labels a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} a__ =partial(__a , num_labels=__a , idalabel=__a , labelaid=__a ) a__ ={ 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } a__ ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __a , names_to_config[model_name] , __a , __a ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __a , __a , __a , __a ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _lowerCAmelCase: Union[str, Any] = parser.parse_args() _lowerCAmelCase: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
20
0
from __future__ import annotations def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : int = get_failure_array(__a ) # 2) Step through text searching for pattern lowercase , lowercase : Tuple = 0, 0 # index into text, pattern while i < len(__a ): if pattern[j] == text[i]: if j == (len(__a ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: lowercase : Optional[Any] = failure[j - 1] continue i += 1 return False def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : Optional[Any] = [0] lowercase : str = 0 lowercase : Union[str, Any] = 1 while j < len(__a ): if pattern[i] == pattern[j]: i += 1 elif i > 0: lowercase : Any = failure[i - 1] continue j += 1 failure.append(__a ) return failure if __name__ == "__main__": # Test 1) lowercase : List[Any] = 'abc1abc12' lowercase : List[Any] = 'alskfjaldsabc1abc1abc12k23adsfabcabc' lowercase : Optional[Any] = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowercase : Any = 'ABABX' lowercase : Optional[Any] = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) lowercase : Dict = 'AAAB' lowercase : Optional[Any] = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) lowercase : Union[str, Any] = 'abcdabcy' lowercase : Optional[Any] = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) lowercase : Optional[Any] = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
336
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowerCAmelCase: int = logging.get_logger(__name__) _lowerCAmelCase: Union[str, Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } _lowerCAmelCase: Tuple = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _lowercase( __a : Optional[Any] ): a__ ={} with open(__a , 'r' ) as file: for line_number, line in enumerate(__a ): a__ =line.strip() if line: a__ =line.split() a__ =line_number a__ =words[0] a__ =value return result def _lowercase( __a : Dict , __a : Optional[Any] , __a : List[str] , __a : Dict , __a : str ): for attribute in key.split('.' ): a__ =getattr(__a , __a ) a__ =None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__a ): a__ =PARAM_MAPPING[full_name.split('.' )[-1]] a__ ='param' if weight_type is not None and weight_type != "param": a__ =getattr(__a , __a ).shape elif weight_type is not None and weight_type == "param": a__ =hf_pointer for attribute in hf_param_name.split('.' ): a__ =getattr(__a , __a ) a__ =shape_pointer.shape # let's reduce dimension a__ =value[0] else: a__ =hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a__ =value elif weight_type == "weight_g": a__ =value elif weight_type == "weight_v": a__ =value elif weight_type == "bias": a__ =value elif weight_type == "param": for attribute in hf_param_name.split('.' ): a__ =getattr(__a , __a ) a__ =value else: a__ =value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _lowercase( __a : Optional[int] , __a : int , __a : Optional[int] , __a : Optional[Any] , __a : List[Any] ): a__ =None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__a ): a__ =PARAM_MAPPING[full_name.split('.' )[-1]] a__ ='param' if weight_type is not None and weight_type != "param": a__ ='.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": a__ ='.'.join([key, hf_param_name] ) else: a__ =key a__ =value if 'lm_head' in full_key else value[0] _lowerCAmelCase: Dict = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _lowercase( __a : Dict , __a : int , __a : int=None , __a : List[str]=None ): a__ =False for key, mapped_key in MAPPING.items(): a__ ='wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: a__ =True if "*" in mapped_key: a__ =name.split(__a )[0].split('.' )[-2] a__ =mapped_key.replace('*' , __a ) if "weight_g" in name: a__ ='weight_g' elif "weight_v" in name: a__ ='weight_v' elif "bias" in name: a__ ='bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj a__ ='weight' else: a__ =None if hf_dict is not None: rename_dict(__a , __a , __a , __a , __a ) else: set_recursively(__a , __a , __a , __a , __a ) return is_used return is_used def _lowercase( __a : Union[str, Any] , __a : List[str] , __a : Dict ): a__ =[] a__ =fairseq_model.state_dict() a__ =hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): a__ =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == 'group' , ) a__ =True else: a__ =load_wavaveca_layer(__a , __a , __a ) if not is_used: unused_weights.append(__a ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _lowercase( __a : List[Any] , __a : Optional[Any] , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] ): a__ =full_name.split('conv_layers.' )[-1] a__ =name.split('.' ) a__ =int(items[0] ) a__ =int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) a__ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def _lowercase( __a : str , __a : str , __a : Any=None , __a : str=None , __a : Any=True , __a : Union[str, Any]=False ): if config_path is not None: a__ =WavaVecaConfig.from_pretrained(__a ) else: a__ =WavaVecaConfig() if is_seq_class: a__ =read_txt_into_dict(__a ) a__ =idalabel a__ =WavaVecaForSequenceClassification(__a ) a__ =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) feature_extractor.save_pretrained(__a ) elif is_finetuned: if dict_path: a__ =Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a__ =target_dict.pad_index a__ =target_dict.bos_index a__ =target_dict.eos_index a__ =len(target_dict.symbols ) a__ =os.path.join(__a , 'vocab.json' ) if not os.path.isdir(__a ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__a ) ) return os.makedirs(__a , exist_ok=__a ) a__ =target_dict.indices # fairseq has the <pad> and <s> switched a__ =0 a__ =1 with open(__a , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(__a , __a ) a__ =WavaVecaCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=__a , ) a__ =True if config.feat_extract_norm == 'layer' else False a__ =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) a__ =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) a__ =WavaVecaForCTC(__a ) else: a__ =WavaVecaForPreTraining(__a ) if is_finetuned or is_seq_class: a__ , a__ , a__ =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: a__ =argparse.Namespace(task='audio_pretraining' ) a__ =fairseq.tasks.setup_task(__a ) a__ , a__ , a__ =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__a ) a__ =model[0].eval() recursively_load_weights(__a , __a , not is_finetuned ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) _lowerCAmelCase: Tuple = parser.parse_args() _lowerCAmelCase: Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
20
0
'''simple docstring''' def _A ( A ) -> Any: return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
372
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowercase_ (unittest.TestCase ): @slow def __UpperCamelCase ( self) -> Optional[int]: a__ =AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowercase_).to(lowercase_) a__ =AutoTokenizer.from_pretrained('google/mt5-small') a__ =tokenizer('Hello there' , return_tensors='pt').input_ids a__ =tokenizer('Hi I am' , return_tensors='pt').input_ids a__ =model(input_ids.to(lowercase_) , labels=labels.to(lowercase_)).loss a__ =-(labels.shape[-1] * loss.item()) a__ =-84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
20
0
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example UpperCAmelCase_ : Dict = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example UpperCAmelCase_ : List[Any] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i in range(len(__a ) ): _SCREAMING_SNAKE_CASE : Union[str, Any] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours _SCREAMING_SNAKE_CASE : Optional[int] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(__a ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(__a ) - 1: neighbour_count += cells[i + 1][j] if i < len(__a ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. _SCREAMING_SNAKE_CASE : Dict = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(__a ) return next_generation def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = [] for _ in range(__a ): # Create output image _SCREAMING_SNAKE_CASE : Optional[Any] = Image.new("""RGB""" , (len(cells[0] ), len(__a )) ) _SCREAMING_SNAKE_CASE : Tuple = img.load() # Save cells to image for x in range(len(__a ) ): for y in range(len(cells[0] ) ): _SCREAMING_SNAKE_CASE : Dict = 255 - cells[y][x] * 255 _SCREAMING_SNAKE_CASE : Any = (colour, colour, colour) # Save image images.append(__a ) _SCREAMING_SNAKE_CASE : Union[str, Any] = new_generation(__a ) return images if __name__ == "__main__": UpperCAmelCase_ : List[str] = generate_images(GLIDER, 16) images[0].save('out.gif', save_all=True, append_images=images[1:])
533
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self) -> int: a__ =tempfile.mkdtemp() a__ =BlipImageProcessor() a__ =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel') a__ =BlipProcessor(lowercase_ , lowercase_) processor.save_pretrained(self.tmpdirname) def __UpperCamelCase ( self , **lowercase_) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).tokenizer def __UpperCamelCase ( self , **lowercase_) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).image_processor def __UpperCamelCase ( self) -> Optional[int]: shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self) -> str: a__ =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] a__ =[Image.fromarray(np.moveaxis(lowercase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self) -> str: a__ =BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) a__ =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') a__ =self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0) a__ =BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowercase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowercase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowercase_) def __UpperCamelCase ( self) -> int: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ =self.prepare_image_inputs() a__ =image_processor(lowercase_ , return_tensors='np') a__ =processor(images=lowercase_ , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self) -> List[str]: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =processor(text=lowercase_) a__ =tokenizer(lowercase_ , return_token_type_ids=lowercase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self) -> int: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =self.prepare_image_inputs() a__ =processor(text=lowercase_ , images=lowercase_) self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask']) # test if it raises when no input is passed with pytest.raises(lowercase_): processor() def __UpperCamelCase ( self) -> Tuple: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a__ =processor.batch_decode(lowercase_) a__ =tokenizer.batch_decode(lowercase_) self.assertListEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =BlipProcessor(tokenizer=lowercase_ , image_processor=lowercase_) a__ ='lower newer' a__ =self.prepare_image_inputs() a__ =processor(text=lowercase_ , images=lowercase_) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask'])
20
0
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __lowerCamelCase ( A__ ) -> str: """simple docstring""" UpperCamelCase = SwinConfig() UpperCamelCase = swin_name.split('_' ) UpperCamelCase = name_split[1] UpperCamelCase = int(name_split[4] ) UpperCamelCase = int(name_split[3][-1] ) if model_size == "tiny": UpperCamelCase = 96 UpperCamelCase = (2, 2, 6, 2) UpperCamelCase = (3, 6, 12, 24) elif model_size == "small": UpperCamelCase = 96 UpperCamelCase = (2, 2, 18, 2) UpperCamelCase = (3, 6, 12, 24) elif model_size == "base": UpperCamelCase = 128 UpperCamelCase = (2, 2, 18, 2) UpperCamelCase = (4, 8, 16, 32) else: UpperCamelCase = 192 UpperCamelCase = (2, 2, 18, 2) UpperCamelCase = (6, 12, 24, 48) if "in22k" in swin_name: UpperCamelCase = 21_841 else: UpperCamelCase = 1_000 UpperCamelCase = 'huggingface/label-files' UpperCamelCase = 'imagenet-1k-id2label.json' UpperCamelCase = json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) UpperCamelCase = {int(__a ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} UpperCamelCase = img_size UpperCamelCase = num_classes UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = num_heads UpperCamelCase = window_size return config def __lowerCamelCase ( A__ ) -> Union[str, Any]: """simple docstring""" if "patch_embed.proj" in name: UpperCamelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: UpperCamelCase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: UpperCamelCase = 'encoder.' + name if "attn.proj" in name: UpperCamelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": UpperCamelCase = 'layernorm.weight' if name == "norm.bias": UpperCamelCase = 'layernorm.bias' if "head" in name: UpperCamelCase = name.replace('head' , 'classifier' ) else: UpperCamelCase = 'swin.' + name return name def __lowerCamelCase ( A__ , A__ ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(__a ) if "mask" in key: continue elif "qkv" in key: UpperCamelCase = key.split('.' ) UpperCamelCase = int(key_split[1] ) UpperCamelCase = int(key_split[3] ) UpperCamelCase = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[ dim : dim * 2, : ] UpperCamelCase = val[-dim:, :] else: UpperCamelCase = val[ :dim ] UpperCamelCase = val[ dim : dim * 2 ] UpperCamelCase = val[ -dim: ] else: UpperCamelCase = val return orig_state_dict def __lowerCamelCase ( A__ , A__ ) -> Tuple: """simple docstring""" UpperCamelCase = timm.create_model(__a , pretrained=__a ) timm_model.eval() UpperCamelCase = get_swin_config(__a ) UpperCamelCase = SwinForImageClassification(__a ) model.eval() UpperCamelCase = convert_state_dict(timm_model.state_dict() , __a ) model.load_state_dict(__a ) UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) UpperCamelCase = Image.open(requests.get(__a , stream=__a ).raw ) UpperCamelCase = image_processor(images=__a , return_tensors='pt' ) UpperCamelCase = timm_model(inputs['pixel_values'] ) UpperCamelCase = model(**__a ).logits assert torch.allclose(__a , __a , atol=1e-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swin_name", default="swin_tiny_patch4_window7_224", type=str, help="Name of the Swin timm model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _lowerCamelCase : Tuple = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
430
def _lowercase( __a : list[int] ): a__ =len(__a ) for i in range(__a ): for j in range(i + 1 , __a ): if numbers[j] < numbers[i]: a__ , a__ =numbers[j], numbers[i] return numbers if __name__ == "__main__": _lowerCAmelCase: Tuple = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase: int = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
20
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _lowerCAmelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ = "yolos" def __init__(self , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-1_2 , UpperCAmelCase=[512, 864] , UpperCAmelCase=16 , UpperCAmelCase=3 , UpperCAmelCase=True , UpperCAmelCase=100 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=1 , UpperCAmelCase=5 , UpperCAmelCase=2 , UpperCAmelCase=5 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , **UpperCAmelCase , ) -> List[str]: super().__init__(**lowercase_ ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias _snake_case = num_detection_tokens _snake_case = use_mid_position_embeddings _snake_case = auxiliary_loss # Hungarian matcher _snake_case = class_cost _snake_case = bbox_cost _snake_case = giou_cost # Loss coefficients _snake_case = bbox_loss_coefficient _snake_case = giou_loss_coefficient _snake_case = eos_coefficient class _lowerCAmelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ = version.parse("1.11" ) @property def lowercase (self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowercase (self ) -> float: return 1e-4 @property def lowercase (self ) -> int: return 12
585
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowercase_ : def __init__( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="resnet50" , lowercase_=3 , lowercase_=32 , lowercase_=3 , lowercase_=True , lowercase_=True , ) -> Union[str, Any]: a__ =parent a__ =out_indices if out_indices is not None else [4] a__ =stage_names a__ =out_features a__ =backbone a__ =batch_size a__ =image_size a__ =num_channels a__ =use_pretrained_backbone a__ =is_training def __UpperCamelCase ( self) -> Optional[Any]: a__ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ =self.get_config() return config, pixel_values def __UpperCamelCase ( self) -> Tuple: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> str: a__ =TimmBackbone(config=lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): a__ =model(lowercase_) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __UpperCamelCase ( self) -> str: a__ =self.prepare_config_and_inputs() a__ , a__ =config_and_inputs a__ ={'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class lowercase_ (lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): snake_case =(TimmBackbone,) if is_torch_available() else () snake_case ={'feature-extraction': TimmBackbone} if is_torch_available() else {} snake_case =False snake_case =False snake_case =False snake_case =False def __UpperCamelCase ( self) -> Optional[Any]: a__ =TimmBackboneModelTester(self) a__ =ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_) def __UpperCamelCase ( self) -> Dict: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self) -> str: a__ ='resnet18' a__ ='microsoft/resnet-18' a__ =AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_) a__ =AutoBackbone.from_pretrained(lowercase_) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(len(timm_model.stage_names) , len(transformers_model.stage_names)) self.assertEqual(timm_model.channels , transformers_model.channels) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,)) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names) - 1]) a__ =AutoBackbone.from_pretrained(lowercase_ , use_timm_backbone=lowercase_ , out_indices=[1, 2, 3]) a__ =AutoBackbone.from_pretrained(lowercase_ , out_indices=[1, 2, 3]) self.assertEqual(timm_model.out_indices , transformers_model.out_indices) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(timm_model.channels , transformers_model.channels) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> Dict: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> List[Any]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.') def __UpperCamelCase ( self) -> str: pass @unittest.skip('Safetensors is not supported by timm.') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self) -> Optional[Any]: pass def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) a__ =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ =[*signature.parameters.keys()] a__ =['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_) def __UpperCamelCase ( self) -> Any: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =True a__ =self.has_attentions # no need to test all models as different heads yield the same functionality a__ =self.all_model_classes[0] a__ =model_class(lowercase_) model.to(lowercase_) a__ =self._prepare_for_class(lowercase_ , lowercase_) a__ =model(**lowercase_) a__ =outputs[0][-1] # Encoder-/Decoder-only models a__ =outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a__ =outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowercase_) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) def __UpperCamelCase ( self) -> List[str]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_) self.assertEqual(len(result.feature_maps) , len(config.out_indices)) self.assertEqual(len(model.channels) , len(config.out_indices)) # Check output of last stage is taken if out_features=None, out_indices=None a__ =copy.deepcopy(lowercase_) a__ =None a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_) self.assertEqual(len(result.feature_maps) , 1) self.assertEqual(len(model.channels) , 1) # Check backbone can be initialized with fresh weights a__ =copy.deepcopy(lowercase_) a__ =False a__ =model_class(lowercase_) model.to(lowercase_) model.eval() a__ =model(**lowercase_)
20
0
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def UpperCamelCase ( _A , _A , _A ) -> Union[str, Any]: lowercase : Union[str, Any] = WavaVecaForSequenceClassification.from_pretrained(__a , config=__a ) lowercase : List[Any] = downstream_dict["""projector.weight"""] lowercase : List[str] = downstream_dict["""projector.bias"""] lowercase : List[Any] = downstream_dict["""model.post_net.linear.weight"""] lowercase : Union[str, Any] = downstream_dict["""model.post_net.linear.bias"""] return model def UpperCamelCase ( _A , _A , _A ) -> Dict: lowercase : Tuple = WavaVecaForAudioFrameClassification.from_pretrained(__a , config=__a ) lowercase : str = downstream_dict["""model.linear.weight"""] lowercase : str = downstream_dict["""model.linear.bias"""] return model def UpperCamelCase ( _A , _A , _A ) -> Optional[Any]: lowercase : Union[str, Any] = WavaVecaForXVector.from_pretrained(__a , config=__a ) lowercase : Dict = downstream_dict["""connector.weight"""] lowercase : Tuple = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): lowercase : str = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] lowercase : List[str] = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] lowercase : List[str] = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] lowercase : Optional[Any] = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] lowercase : int = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] lowercase : Tuple = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] lowercase : List[Any] = downstream_dict["""objective.W"""] return model @torch.no_grad() def UpperCamelCase ( _A , _A , _A , _A ) -> Any: lowercase : Optional[int] = torch.load(__a , map_location="""cpu""" ) lowercase : Optional[Any] = checkpoint["""Downstream"""] lowercase : Optional[Any] = WavaVecaConfig.from_pretrained(__a ) lowercase : Dict = WavaVecaFeatureExtractor.from_pretrained( __a , return_attention_mask=__a , do_normalize=__a ) lowercase : List[str] = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): lowercase : str = convert_classification(__a , __a , __a ) elif arch.endswith("""ForAudioFrameClassification""" ): lowercase : List[str] = convert_diarization(__a , __a , __a ) elif arch.endswith("""ForXVector""" ): lowercase : List[Any] = convert_xvector(__a , __a , __a ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: lowercase : Dict = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(__a ) hf_model.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') _lowerCAmelCase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
264
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCAmelCase: Optional[Any] = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: List[str] = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _lowerCAmelCase: List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
20
0
'''simple docstring''' from collections.abc import Iterable from typing import Any class __UpperCamelCase : def __init__( self , _lowerCAmelCase = None ) -> Dict: '''simple docstring''' lowercase = value lowercase = None # Added in order to delete a node easier lowercase = None lowercase = None def __repr__( self ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 ) class __UpperCamelCase : def __init__( self , _lowerCAmelCase = None ) -> int: '''simple docstring''' lowercase = root def __str__( self ) -> str: '''simple docstring''' return str(self.root ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> None: '''simple docstring''' if new_children is not None: # reset its kids lowercase = node.parent if node.parent is not None: # reset its parent if self.is_right(lowercase_ ): # If it is the right children lowercase = new_children else: lowercase = new_children else: lowercase = new_children def _a ( self , _lowerCAmelCase ) -> bool: '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def _a ( self ) -> bool: '''simple docstring''' return self.root is None def _a ( self , _lowerCAmelCase ) -> None: '''simple docstring''' lowercase = Node(lowercase_ ) # create a new Node if self.empty(): # if Tree is empty lowercase = new_node # set its root else: # Tree is not empty lowercase = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowercase = new_node # We insert the new node in a leaf break else: lowercase = parent_node.left else: if parent_node.right is None: lowercase = new_node break else: lowercase = parent_node.right lowercase = parent_node def _a ( self , *_lowerCAmelCase ) -> None: '''simple docstring''' for value in values: self.__insert(lowercase_ ) def _a ( self , _lowerCAmelCase ) -> Node | None: '''simple docstring''' if self.empty(): raise IndexError("""Warning: Tree is empty! please use another.""" ) else: lowercase = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowercase = node.left if value < node.value else node.right return node def _a ( self , _lowerCAmelCase = None ) -> Node | None: '''simple docstring''' if node is None: if self.root is None: return None lowercase = self.root if not self.empty(): while node.right is not None: lowercase = node.right return node def _a ( self , _lowerCAmelCase = None ) -> Node | None: '''simple docstring''' if node is None: lowercase = self.root if self.root is None: return None if not self.empty(): lowercase = self.root while node.left is not None: lowercase = node.left return node def _a ( self , _lowerCAmelCase ) -> None: '''simple docstring''' lowercase = self.search(lowercase_ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowercase_ , lowercase_ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowercase_ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowercase_ , node.left ) else: lowercase = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowercase = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def _a ( self , _lowerCAmelCase ) -> Iterable: '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def _a ( self , _lowerCAmelCase=None ) -> Any: '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> None: '''simple docstring''' if node: self.inorder(lowercase_ , node.left ) arr.append(node.value ) self.inorder(lowercase_ , node.right ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int: '''simple docstring''' lowercase = [] self.inorder(lowercase_ , lowercase_ ) # append all values to list using inorder traversal return arr[k - 1] def SCREAMING_SNAKE_CASE ( lowercase_ : Node | None ): lowercase = [] if curr_node is not None: lowercase = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def SCREAMING_SNAKE_CASE ( ): lowercase = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowercase = BinarySearchTree() for i in testlist: t.insert(__a ) # Prints all the elements of the list in order traversal print(__a ) if t.search(6 ) is not None: print("""The value 6 exists""" ) else: print("""The value 6 doesn\'t exist""" ) if t.search(-1 ) is not None: print("""The value -1 exists""" ) else: print("""The value -1 doesn\'t exist""" ) if not t.empty(): print("""Max Value: """ , t.get_max().value ) # type: ignore print("""Min Value: """ , t.get_min().value ) # type: ignore for i in testlist: t.remove(__a ) print(__a ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
588
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase: str = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class lowercase_ (lowercase__ ): snake_case ='big_bird' def __init__( self , lowercase_=50358 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu_new" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=4096 , lowercase_=2 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=66 , lowercase_="block_sparse" , lowercase_=True , lowercase_=False , lowercase_=64 , lowercase_=3 , lowercase_=None , **lowercase_ , ) -> Any: super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , sep_token_id=lowercase_ , **lowercase_ , ) a__ =vocab_size a__ =max_position_embeddings a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =initializer_range a__ =type_vocab_size a__ =layer_norm_eps a__ =use_cache a__ =rescale_embeddings a__ =attention_type a__ =use_bias a__ =block_size a__ =num_random_blocks a__ =classifier_dropout class lowercase_ (lowercase__ ): @property def __UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a__ ={0: 'batch', 1: 'choice', 2: 'sequence'} else: a__ ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
20
0
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): __UpperCAmelCase = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: __UpperCAmelCase = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = (images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase__ : Optional[int] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase__ : Tuple = numpy_to_pil(__a ) return images def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' if images.ndim == 3: UpperCAmelCase__ : Tuple = images[None, ...] UpperCAmelCase__ : Optional[Any] = (images * 255).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase__ : Optional[int] = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: UpperCAmelCase__ : Tuple = [Image.fromarray(__a ) for image in images] return pil_images
65
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger(__name__) _lowerCAmelCase: Tuple = torch.device('cpu') def _lowercase( ): a__ ='http://images.cocodataset.org/val2017/000000039769.jpg' a__ =Image.open(requests.get(__a , stream=__a ).raw ) return im def _lowercase( __a : Optional[Any] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _lowercase( __a : int , __a : int , __a : Optional[Any] ): a__ =dct.pop(__a ) a__ =val def _lowercase( __a : Optional[Any] ): a__ =[] for k in state_dict.keys(): a__ =k if ".pwconv" in k: a__ =k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: a__ =k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: a__ =k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: a__ =k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: a__ =k_new.split('.' ) if ls[2].isdigit(): a__ ='swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: a__ =k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _lowercase( __a : Union[str, Any] , __a : int , __a : str ): a__ =SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a__ =1000 a__ ='huggingface/label-files' a__ ='imagenet-1k-id2label.json' a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a__ =[3, 3, 6, 4] a__ =[48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": a__ =[3, 3, 9, 6] a__ =[48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": a__ =[4, 3, 10, 5] a__ =[48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": a__ =[4, 4, 12, 6] a__ =[64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): a__ =torch.hub.load_state_dict_from_url(__a , map_location='cpu' , check_hash=__a ) else: a__ =torch.load(__a , map_location='cpu' ) a__ =checkpoint a__ =create_rename_keys(__a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__a , __a , __a ) # load HuggingFace model a__ =SwiftFormerForImageClassification(__a ).eval() hf_model.load_state_dict(__a ) # prepare test inputs a__ =prepare_img() a__ =ViTImageProcessor.from_pretrained('preprocessor_config' ) a__ =processor(images=__a , return_tensors='pt' ) # compare outputs from both models a__ =get_expected_output(__a ) a__ =hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , __a , atol=1e-3 ) Path(__a ).mkdir(exist_ok=__a ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') _lowerCAmelCase: Optional[int] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
20
0
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __magic_name__ : List[Any] = abspath(join(dirname(dirname(dirname(__file__))), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__a ) def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main _snake_case = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(__a , id=__a )
672
from __future__ import annotations from typing import Any class lowercase_ : def __init__( self , lowercase_) -> None: a__ =num_of_nodes a__ =[] a__ ={} def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: self.m_edges.append([u_node, v_node, weight]) def __UpperCamelCase ( self , lowercase_) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node]) def __UpperCamelCase ( self , lowercase_) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: a__ =self.find_component(lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> None: if component_size[u_node] <= component_size[v_node]: a__ =v_node component_size[v_node] += component_size[u_node] self.set_component(lowercase_) elif component_size[u_node] >= component_size[v_node]: a__ =self.find_component(lowercase_) component_size[u_node] += component_size[v_node] self.set_component(lowercase_) def __UpperCamelCase ( self) -> None: a__ =[] a__ =0 a__ =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes): self.m_component.update({node: node}) component_size.append(1) a__ =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: a__ , a__ , a__ =edge a__ =self.m_component[u] a__ =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): a__ =[u, v, w] for edge in minimum_weight_edge: if isinstance(lowercase_ , lowercase_): a__ , a__ , a__ =edge a__ =self.m_component[u] a__ =self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowercase_ , lowercase_ , lowercase_) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""") num_of_components -= 1 a__ =[-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""") def _lowercase( ): pass if __name__ == "__main__": import doctest doctest.testmod()
20
0
def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = len(__a ) for i in range(1 , __a ): A_ = collection[i] A_ = 0 A_ = i - 1 while low <= high: A_ = (low + high) // 2 if val < collection[mid]: A_ = mid - 1 else: A_ = mid + 1 for j in range(__a , __a , -1 ): A_ = collection[j - 1] A_ = val return collection if __name__ == "__main__": __lowercase = input("""Enter numbers separated by a comma:\n""").strip() __lowercase = [int(item) for item in user_input.split(""",""")] print(binary_insertion_sort(unsorted))
203
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCAmelCase: Union[str, Any] = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' _lowerCAmelCase: Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' _lowerCAmelCase: List[Any] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): def __UpperCamelCase ( self) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=True , lowercase_=False) -> Any: if rouge_types is None: a__ =['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] a__ =rouge_scorer.RougeScorer(rouge_types=lowercase_ , use_stemmer=lowercase_) if use_aggregator: a__ =scoring.BootstrapAggregator() else: a__ =[] for ref, pred in zip(lowercase_ , lowercase_): a__ =scorer.score(lowercase_ , lowercase_) if use_aggregator: aggregator.add_scores(lowercase_) else: scores.append(lowercase_) if use_aggregator: a__ =aggregator.aggregate() else: a__ ={} for key in scores[0]: a__ =[score[key] for score in scores] return result
20
0
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __snake_case( lowercase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = KandinskyVaaPriorPipeline UpperCAmelCase : Optional[Any] = ["prompt"] UpperCAmelCase : str = ["prompt", "negative_prompt"] UpperCAmelCase : List[Any] = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] UpperCAmelCase : Tuple = False @property def __snake_case ( self ) -> Optional[int]: return 32 @property def __snake_case ( self ) -> Tuple: return 32 @property def __snake_case ( self ) -> int: return self.time_input_dim @property def __snake_case ( self ) -> str: return self.time_input_dim * 4 @property def __snake_case ( self ) -> Optional[int]: return 100 @property def __snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __snake_case ( self ) -> Union[str, Any]: torch.manual_seed(0 ) lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowercase_ ) @property def __snake_case ( self ) -> Tuple: torch.manual_seed(0 ) lowerCAmelCase = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } lowerCAmelCase = PriorTransformer(**lowercase_ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowerCAmelCase = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def __snake_case ( self ) -> Any: torch.manual_seed(0 ) lowerCAmelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) lowerCAmelCase = CLIPVisionModelWithProjection(lowercase_ ) return model @property def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = CLIPImageProcessor( crop_size=224 , do_center_crop=lowercase_ , do_normalize=lowercase_ , do_resize=lowercase_ , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=224 , ) return image_processor def __snake_case ( self ) -> Any: lowerCAmelCase = self.dummy_prior lowerCAmelCase = self.dummy_image_encoder lowerCAmelCase = self.dummy_text_encoder lowerCAmelCase = self.dummy_tokenizer lowerCAmelCase = self.dummy_image_processor lowerCAmelCase = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=lowercase_ , clip_sample_range=1_0.0 , ) lowerCAmelCase = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def __snake_case ( self , A_ , A_=0 ) -> Tuple: if str(lowercase_ ).startswith("""mps""" ): lowerCAmelCase = torch.manual_seed(lowercase_ ) else: lowerCAmelCase = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def __snake_case ( self ) -> int: lowerCAmelCase = """cpu""" lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**lowercase_ ) lowerCAmelCase = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase = pipe(**self.get_dummy_inputs(lowercase_ ) ) lowerCAmelCase = output.image_embeds lowerCAmelCase = pipe( **self.get_dummy_inputs(lowercase_ ) , return_dict=lowercase_ , )[0] lowerCAmelCase = image[0, -10:] lowerCAmelCase = image_from_tuple[0, -10:] assert image.shape == (1, 32) lowerCAmelCase = np.array( [-0.0_5_3_2, 1.7_1_2_0, 0.3_6_5_6, -1.0_8_5_2, -0.8_9_4_6, -1.1_7_5_6, 0.4_3_4_8, 0.2_4_8_2, 0.5_1_4_6, -0.1_1_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __snake_case ( self ) -> List[Any]: lowerCAmelCase = torch_device == """cpu""" lowerCAmelCase = True lowerCAmelCase = False self._test_inference_batch_single_identical( test_max_difference=lowercase_ , relax_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , ) @skip_mps def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = torch_device == """cpu""" lowerCAmelCase = False self._test_attention_slicing_forward_pass( test_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , )
433
from __future__ import annotations _lowerCAmelCase: str = '#' class lowercase_ : def __init__( self) -> None: a__ ={} def __UpperCamelCase ( self , lowercase_) -> None: a__ =self._trie for char in text: if char not in trie: a__ ={} a__ =trie[char] a__ =True def __UpperCamelCase ( self , lowercase_) -> tuple | list: a__ =self._trie for char in prefix: if char in trie: a__ =trie[char] else: return [] return self._elements(lowercase_) def __UpperCamelCase ( self , lowercase_) -> tuple: a__ =[] for c, v in d.items(): a__ =[' '] if c == END else [(c + s) for s in self._elements(lowercase_)] result.extend(lowercase_) return tuple(lowercase_) _lowerCAmelCase: Optional[int] = Trie() _lowerCAmelCase: List[str] = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def _lowercase( __a : str ): a__ =trie.find_word(__a ) return tuple(string + word for word in suffixes ) def _lowercase( ): print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
20
0
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowercase : Any = logging.get_logger(__name__) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase : int = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: lowercase : str = 128 elif "12-12" in model_name: lowercase : str = 12 lowercase : Dict = 12 elif "14-14" in model_name: lowercase : Any = 14 lowercase : Any = 14 elif "16-16" in model_name: lowercase : Optional[Any] = 16 lowercase : List[str] = 16 else: raise ValueError("""Model not supported""" ) lowercase : Optional[Any] = """huggingface/label-files""" if "speech-commands" in model_name: lowercase : Optional[Any] = 35 lowercase : List[Any] = """speech-commands-v2-id2label.json""" else: lowercase : Any = 527 lowercase : Optional[int] = """audioset-id2label.json""" lowercase : Dict = json.load(open(hf_hub_download(__a , __a , repo_type="""dataset""" ) , """r""" ) ) lowercase : List[str] = {int(__a ): v for k, v in idalabel.items()} lowercase : Union[str, Any] = idalabel lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} return config def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Dict: if "module.v" in name: lowercase : List[Any] = name.replace("""module.v""" , """audio_spectrogram_transformer""" ) if "cls_token" in name: lowercase : Dict = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "dist_token" in name: lowercase : Union[str, Any] = name.replace("""dist_token""" , """embeddings.distillation_token""" ) if "pos_embed" in name: lowercase : Any = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowercase : List[Any] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: lowercase : Optional[Any] = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: lowercase : Tuple = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase : Optional[Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase : Optional[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase : int = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase : List[str] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase : Union[str, Any] = name.replace("""mlp.fc2""" , """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: lowercase : List[str] = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: lowercase : str = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" ) if "module.mlp_head.1" in name: lowercase : Any = name.replace("""module.mlp_head.1""" , """classifier.dense""" ) return name def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: for key in orig_state_dict.copy().keys(): lowercase : Any = orig_state_dict.pop(__a ) if "qkv" in key: lowercase : Dict = key.split(""".""" ) lowercase : int = int(key_split[3] ) lowercase : List[Any] = config.hidden_size if "weight" in key: lowercase : Tuple = val[:dim, :] lowercase : Any = val[dim : dim * 2, :] lowercase : Union[str, Any] = val[-dim:, :] else: lowercase : List[Any] = val[:dim] lowercase : Tuple = val[dim : dim * 2] lowercase : int = val[-dim:] else: lowercase : Optional[int] = val return orig_state_dict def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase : Optional[Any] = [ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(__a , __a ) @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ) -> Optional[Any]: lowercase : Dict = get_audio_spectrogram_transformer_config(__a ) lowercase : Optional[Any] = { """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict lowercase : Tuple = model_name_to_url[model_name] lowercase : Union[str, Any] = torch.hub.load_state_dict_from_url(__a , map_location="""cpu""" ) # remove some keys remove_keys(__a ) # rename some keys lowercase : Any = convert_state_dict(__a , __a ) # load 🤗 model lowercase : List[Any] = ASTForAudioClassification(__a ) model.eval() model.load_state_dict(__a ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 lowercase : Union[str, Any] = -4.2677393 if """speech-commands""" not in model_name else -6.845978 lowercase : Optional[int] = 4.5689974 if """speech-commands""" not in model_name else 5.5654526 lowercase : Optional[int] = 1_024 if """speech-commands""" not in model_name else 128 lowercase : Any = ASTFeatureExtractor(mean=__a , std=__a , max_length=__a ) if "speech-commands" in model_name: lowercase : Dict = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" ) lowercase : Union[str, Any] = dataset[0]["""audio"""]["""array"""] else: lowercase : Any = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , ) lowercase , lowercase : Optional[Any] = torchaudio.load(__a ) lowercase : Any = waveform.squeeze().numpy() lowercase : Optional[int] = feature_extractor(__a , sampling_rate=16_000 , return_tensors="""pt""" ) # forward pass lowercase : Tuple = model(**__a ) lowercase : Tuple = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": lowercase : Any = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": lowercase : List[Any] = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": lowercase : Optional[Any] = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": lowercase : Union[str, Any] = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": lowercase : str = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": lowercase : Optional[int] = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": lowercase : Optional[Any] = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": lowercase : List[str] = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] , __a , atol=1e-4 ): raise ValueError("""Logits don\'t match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(__a ).mkdir(exist_ok=__a ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__a ) print(f"Saving feature extractor to {pytorch_dump_folder_path}" ) feature_extractor.save_pretrained(__a ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(f"MIT/{model_name}" ) feature_extractor.push_to_hub(f"MIT/{model_name}" ) if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowercase : Union[str, Any] = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
336
_lowerCAmelCase: List[str] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def _lowercase( ): a__ =input('Enter message: ' ) a__ =input('Enter key [alphanumeric]: ' ) a__ =input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): a__ ='encrypt' a__ =encrypt_message(__a , __a ) elif mode.lower().startswith('d' ): a__ ='decrypt' a__ =decrypt_message(__a , __a ) print(f"""\n{mode.title()}ed message:""" ) print(__a ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'encrypt' ) def _lowercase( __a : str , __a : str ): return translate_message(__a , __a , 'decrypt' ) def _lowercase( __a : str , __a : str , __a : str ): a__ =[] a__ =0 a__ =key.upper() for symbol in message: a__ =LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__a ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__a ): a__ =0 else: translated.append(__a ) return "".join(__a ) if __name__ == "__main__": main()
20
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCamelCase : '''simple docstring''' def __init__( self , a_ , a_=1_2 , a_=7 , a_=True , a_=True , a_=True , a_=9_9 , a_=3_2 , a_=3_2 , a_=2 , a_=4 , a_=3_7 , a_=0.1 , a_=0.1 , a_=5_1_2 , a_=0.02 , a_=0 , a_=None , ) -> Union[str, Any]: lowercase : int = parent lowercase : List[Any] = batch_size lowercase : Any = seq_length lowercase : List[Any] = is_training lowercase : Tuple = use_input_mask lowercase : int = use_labels lowercase : List[str] = vocab_size lowercase : List[Any] = hidden_size lowercase : List[str] = projection_dim lowercase : Dict = num_hidden_layers lowercase : Optional[int] = num_attention_heads lowercase : List[Any] = intermediate_size lowercase : Any = dropout lowercase : Optional[Any] = attention_dropout lowercase : Tuple = max_position_embeddings lowercase : List[str] = initializer_range lowercase : Optional[int] = scope lowercase : Optional[int] = bos_token_id def a__ ( self ) -> int: lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : List[Any] = None if self.use_input_mask: lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowercase : Optional[int] = input_mask.numpy() lowercase , lowercase : List[str] = input_mask.shape lowercase : str = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowercase_ ): lowercase : Optional[int] = 1 lowercase : List[str] = 0 lowercase : List[str] = self.get_config() return config, input_ids, tf.convert_to_tensor(lowercase_ ) def a__ ( self ) -> List[Any]: return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def a__ ( self , a_ , a_ , a_ ) -> List[Any]: lowercase : Any = TFBlipTextModel(config=lowercase_ ) lowercase : Optional[int] = model(lowercase_ , attention_mask=lowercase_ , training=lowercase_ ) lowercase : List[Any] = model(lowercase_ , training=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self ) -> List[str]: lowercase : Any = self.prepare_config_and_inputs() lowercase , lowercase , lowercase : List[str] = config_and_inputs lowercase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _UpperCamelCase ( lowercase__ , unittest.TestCase): '''simple docstring''' _snake_case = (TFBlipTextModel,) if is_tf_available() else () _snake_case = False _snake_case = False _snake_case = False def a__ ( self ) -> Optional[Any]: lowercase : int = BlipTextModelTester(self ) lowercase : List[str] = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7 ) def a__ ( self ) -> Dict: self.config_tester.run_common_tests() def a__ ( self ) -> int: lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def a__ ( self ) -> Union[str, Any]: pass def a__ ( self ) -> Dict: pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def a__ ( self ) -> Optional[Any]: pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def a__ ( self ) -> List[Any]: pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def a__ ( self ) -> Dict: pass @slow def a__ ( self ) -> Optional[int]: for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : List[Any] = TFBlipTextModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def a__ ( self , a_=True ) -> str: super().test_pt_tf_model_equivalence(allow_missing_keys=lowercase_ )
372
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
0
'''simple docstring''' def snake_case_ ( SCREAMING_SNAKE_CASE__ = 200_0000 ): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = [0 for i in range(n + 1 )] _SCREAMING_SNAKE_CASE : Tuple = 1 _SCREAMING_SNAKE_CASE : Optional[Any] = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , __a ): _SCREAMING_SNAKE_CASE : Union[str, Any] = 1 _SCREAMING_SNAKE_CASE : Optional[int] = 0 for i in range(__a ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"{solution() = }")
533
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =KandinskyVaaPriorPipeline snake_case =['prompt'] snake_case =['prompt', 'negative_prompt'] snake_case =[ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] snake_case =False @property def __UpperCamelCase ( self) -> Optional[int]: return 32 @property def __UpperCamelCase ( self) -> Tuple: return 32 @property def __UpperCamelCase ( self) -> int: return self.time_input_dim @property def __UpperCamelCase ( self) -> str: return self.time_input_dim * 4 @property def __UpperCamelCase ( self) -> Optional[int]: return 100 @property def __UpperCamelCase ( self) -> Union[str, Any]: a__ =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self) -> Union[str, Any]: torch.manual_seed(0) a__ =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowercase_) @property def __UpperCamelCase ( self) -> Tuple: torch.manual_seed(0) a__ ={ 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } a__ =PriorTransformer(**lowercase_) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 a__ =nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def __UpperCamelCase ( self) -> Any: torch.manual_seed(0) a__ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) a__ =CLIPVisionModelWithProjection(lowercase_) return model @property def __UpperCamelCase ( self) -> Optional[int]: a__ =CLIPImageProcessor( crop_size=224 , do_center_crop=lowercase_ , do_normalize=lowercase_ , do_resize=lowercase_ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor def __UpperCamelCase ( self) -> Any: a__ =self.dummy_prior a__ =self.dummy_image_encoder a__ =self.dummy_text_encoder a__ =self.dummy_tokenizer a__ =self.dummy_image_processor a__ =UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=lowercase_ , clip_sample_range=10.0 , ) a__ ={ 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def __UpperCamelCase ( self , lowercase_ , lowercase_=0) -> Tuple: if str(lowercase_).startswith('mps'): a__ =torch.manual_seed(lowercase_) else: a__ =torch.Generator(device=lowercase_).manual_seed(lowercase_) a__ ={ 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __UpperCamelCase ( self) -> int: a__ ='cpu' a__ =self.get_dummy_components() a__ =self.pipeline_class(**lowercase_) a__ =pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) a__ =pipe(**self.get_dummy_inputs(lowercase_)) a__ =output.image_embeds a__ =pipe( **self.get_dummy_inputs(lowercase_) , return_dict=lowercase_ , )[0] a__ =image[0, -10:] a__ =image_from_tuple[0, -10:] assert image.shape == (1, 32) a__ =np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def __UpperCamelCase ( self) -> List[Any]: a__ =torch_device == 'cpu' a__ =True a__ =False self._test_inference_batch_single_identical( test_max_difference=lowercase_ , relax_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , ) @skip_mps def __UpperCamelCase ( self) -> Optional[int]: a__ =torch_device == 'cpu' a__ =False self._test_attention_slicing_forward_pass( test_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , )
20
0
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _lowerCamelCase : List[Any] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : int , UpperCamelCase__ : str , UpperCamelCase__ : List[str]=7 , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : Optional[Any]=1_8 , UpperCamelCase__ : List[Any]=3_0 , UpperCamelCase__ : List[Any]=4_0_0 , UpperCamelCase__ : int=None , UpperCamelCase__ : int=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : str=None , ): """simple docstring""" UpperCamelCase = size if size is not None else {'height': 2_0, 'width': 2_0} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = size UpperCamelCase = do_normalize UpperCamelCase = do_convert_rgb UpperCamelCase = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] UpperCamelCase = patch_size if patch_size is not None else {'height': 1_6, 'width': 1_6} def A ( self : Any ): """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def A ( self : str ): """simple docstring""" UpperCamelCase = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' UpperCamelCase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE ( lowercase__ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = PixaStructImageProcessor if is_vision_available() else None def A ( self : Any ): """simple docstring""" UpperCamelCase = PixaStructImageProcessingTester(self ) @property def A ( self : List[str] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase_ , 'do_convert_rgb' ) ) def A ( self : List[str] ): """simple docstring""" UpperCamelCase = self.image_processor_tester.prepare_dummy_image() UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) UpperCamelCase = 2_0_4_8 UpperCamelCase = image_processor(lowercase_ , return_tensors='pt' , max_patches=lowercase_ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_6_0_6 ) , atol=1E-3 , rtol=1E-3 ) ) def A ( self : int ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input UpperCamelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowercase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase = image_processor( lowercase_ , return_tensors='pt' , max_patches=lowercase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A ( self : Dict ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input UpperCamelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 UpperCamelCase = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowercase_ ): UpperCamelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowercase_ ).flattened_patches UpperCamelCase = 'Hello' UpperCamelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowercase_ , header_text=lowercase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase = image_processor( lowercase_ , return_tensors='pt' , max_patches=lowercase_ , header_text=lowercase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) UpperCamelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowercase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase = image_processor( lowercase_ , return_tensors='pt' , max_patches=lowercase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input UpperCamelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowercase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase = image_processor( lowercase_ , return_tensors='pt' , max_patches=lowercase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE ( lowercase__ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = PixaStructImageProcessor if is_vision_available() else None def A ( self : Tuple ): """simple docstring""" UpperCamelCase = PixaStructImageProcessingTester(self , num_channels=4 ) UpperCamelCase = 3 @property def A ( self : Optional[int] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase_ , 'do_convert_rgb' ) ) def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input UpperCamelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=lowercase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase = image_processor( lowercase_ , return_tensors='pt' , max_patches=lowercase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
430
from manim import * class lowercase_ (lowercase__ ): def __UpperCamelCase ( self) -> List[Any]: a__ =Rectangle(height=0.5 , width=0.5) a__ =Rectangle(height=0.46 , width=0.46).set_stroke(width=0) a__ =[mem.copy() for i in range(6)] a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(lowercase_ , lowercase_).arrange(lowercase_ , buff=0) a__ =Text('CPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) cpu.move_to([-2.5, -0.5, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(4)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('GPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) gpu.move_to([-1, -1, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Model' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) model.move_to([3, -1.0, 0]) self.add(lowercase_) a__ =[] for i, rect in enumerate(lowercase_): rect.set_stroke(lowercase_) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) a__ =Rectangle(height=0.46 / 4 , width=0.46 / 3).set_stroke(width=0.0).set_fill(lowercase_ , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=lowercase_) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0) self.add(lowercase_) cpu_targs.append(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Loaded Checkpoint' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4) checkpoint.move_to([3, 0.5, 0]) a__ =Square(side_length=2.2) key.move_to([-5, 2, 0]) a__ =MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(lowercase_ , lowercase_) a__ =MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left()) a__ =MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(lowercase_) , Write(lowercase_)) self.play(Write(lowercase_ , run_time=1) , Create(lowercase_ , run_time=1)) a__ =[] a__ =[] for i, rect in enumerate(lowercase_): a__ =fill.copy().set_fill(lowercase_ , opacity=0.7) target.move_to(lowercase_) first_animations.append(GrowFromCenter(lowercase_ , run_time=1)) a__ =target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.target.move_to(cpu_right_col_base[i - 5]) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5)) self.play(*lowercase_) self.play(*lowercase_) self.wait()
20
0
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) # General docstring UpperCAmelCase_ : Optional[int] = "MobileNetV1Config" # Base docstring UpperCAmelCase_ : str = "google/mobilenet_v1_1.0_224" UpperCAmelCase_ : Tuple = [1, 1024, 7, 7] # Image classification docstring UpperCAmelCase_ : Optional[Any] = "google/mobilenet_v1_1.0_224" UpperCAmelCase_ : str = "tabby, tabby cat" UpperCAmelCase_ : Union[str, Any] = [ "google/mobilenet_v1_1.0_224", "google/mobilenet_v1_0.75_192", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=None ): __magic_name__ : Optional[int] ={} if isinstance(lowerCamelCase , lowerCamelCase ): __magic_name__ : Optional[Any] =model.mobilenet_va else: __magic_name__ : str =model __magic_name__ : Tuple ="""MobilenetV1/Conv2d_0/""" __magic_name__ : str =backbone.conv_stem.convolution.weight __magic_name__ : Any =backbone.conv_stem.normalization.bias __magic_name__ : Union[str, Any] =backbone.conv_stem.normalization.weight __magic_name__ : Optional[Any] =backbone.conv_stem.normalization.running_mean __magic_name__ : Any =backbone.conv_stem.normalization.running_var for i in range(13 ): __magic_name__ : Optional[Any] =i + 1 __magic_name__ : List[str] =i * 2 __magic_name__ : List[str] =backbone.layer[pt_index] __magic_name__ : Any =F"MobilenetV1/Conv2d_{tf_index}_depthwise/" __magic_name__ : Any =pointer.convolution.weight __magic_name__ : List[str] =pointer.normalization.bias __magic_name__ : Optional[Any] =pointer.normalization.weight __magic_name__ : List[str] =pointer.normalization.running_mean __magic_name__ : List[str] =pointer.normalization.running_var __magic_name__ : int =backbone.layer[pt_index + 1] __magic_name__ : List[Any] =F"MobilenetV1/Conv2d_{tf_index}_pointwise/" __magic_name__ : Optional[Any] =pointer.convolution.weight __magic_name__ : int =pointer.normalization.bias __magic_name__ : List[str] =pointer.normalization.weight __magic_name__ : Optional[Any] =pointer.normalization.running_mean __magic_name__ : Optional[int] =pointer.normalization.running_var if isinstance(lowerCamelCase , lowerCamelCase ): __magic_name__ : Optional[int] ="""MobilenetV1/Logits/Conv2d_1c_1x1/""" __magic_name__ : str =model.classifier.weight __magic_name__ : str =model.classifier.bias return tf_to_pt_map def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model __magic_name__ : Optional[int] =tf.train.list_variables(lowerCamelCase ) __magic_name__ : Dict ={} for name, shape in init_vars: logger.info(F"Loading TF weight {name} with shape {shape}" ) __magic_name__ : Optional[Any] =tf.train.load_variable(lowerCamelCase , lowerCamelCase ) __magic_name__ : Any =array # Build TF to PyTorch weights loading map __magic_name__ : int =_build_tf_to_pytorch_map(lowerCamelCase , lowerCamelCase , lowerCamelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(F"Importing {name}" ) if name not in tf_weights: logger.info(F"{name} not in tf pre-trained weights, skipping" ) continue __magic_name__ : Optional[Any] =tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) __magic_name__ : Union[str, Any] =np.transpose(lowerCamelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer __magic_name__ : str =array.squeeze().transpose() else: __magic_name__ : List[Any] =np.transpose(lowerCamelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(F"Initialize PyTorch weight {name} {array.shape}" ) __magic_name__ : Optional[Any] =torch.from_numpy(lowerCamelCase ) tf_weights.pop(lowerCamelCase , lowerCamelCase ) tf_weights.pop(name + """/RMSProp""" , lowerCamelCase ) tf_weights.pop(name + """/RMSProp_1""" , lowerCamelCase ) tf_weights.pop(name + """/ExponentialMovingAverage""" , lowerCamelCase ) logger.info(F"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ , __magic_name__ : int =features.shape[-2:] __magic_name__ , __magic_name__ : Tuple =conv_layer.stride __magic_name__ , __magic_name__ : str =conv_layer.kernel_size if in_height % stride_height == 0: __magic_name__ : List[str] =max(kernel_height - stride_height , 0 ) else: __magic_name__ : int =max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: __magic_name__ : int =max(kernel_width - stride_width , 0 ) else: __magic_name__ : List[Any] =max(kernel_width - (in_width % stride_width) , 0 ) __magic_name__ : int =pad_along_width // 2 __magic_name__ : Union[str, Any] =pad_along_width - pad_left __magic_name__ : Union[str, Any] =pad_along_height // 2 __magic_name__ : str =pad_along_height - pad_top __magic_name__ : int =(pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(lowerCamelCase , lowerCamelCase , """constant""" , 0.0 ) class __A ( nn.Module ): def __init__( self :Tuple , __snake_case :MobileNetVaConfig , __snake_case :int , __snake_case :int , __snake_case :int , __snake_case :Optional[int] = 1 , __snake_case :Optional[int] = 1 , __snake_case :bool = False , __snake_case :Optional[bool] = True , __snake_case :Optional[bool or str] = True , ): '''simple docstring''' super().__init__() __magic_name__ : Union[str, Any] =config if in_channels % groups != 0: raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups." ) if out_channels % groups != 0: raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups." ) __magic_name__ : List[Any] =0 if config.tf_padding else int((kernel_size - 1) / 2 ) __magic_name__ : Union[str, Any] =nn.Convad( in_channels=__snake_case , out_channels=__snake_case , kernel_size=__snake_case , stride=__snake_case , padding=__snake_case , groups=__snake_case , bias=__snake_case , padding_mode="""zeros""" , ) if use_normalization: __magic_name__ : Any =nn.BatchNormad( num_features=__snake_case , eps=config.layer_norm_eps , momentum=0.9997 , affine=__snake_case , track_running_stats=__snake_case , ) else: __magic_name__ : int =None if use_activation: if isinstance(__snake_case , __snake_case ): __magic_name__ : int =ACTaFN[use_activation] elif isinstance(config.hidden_act , __snake_case ): __magic_name__ : List[Any] =ACTaFN[config.hidden_act] else: __magic_name__ : Tuple =config.hidden_act else: __magic_name__ : Any =None def A__ ( self :Union[str, Any] , __snake_case :torch.Tensor ): '''simple docstring''' if self.config.tf_padding: __magic_name__ : Tuple =apply_tf_padding(__snake_case , self.convolution ) __magic_name__ : int =self.convolution(__snake_case ) if self.normalization is not None: __magic_name__ : Optional[Any] =self.normalization(__snake_case ) if self.activation is not None: __magic_name__ : Dict =self.activation(__snake_case ) return features class __A ( UpperCamelCase__ ): UpperCamelCase = MobileNetVaConfig UpperCamelCase = load_tf_weights_in_mobilenet_va UpperCamelCase = """mobilenet_v1""" UpperCamelCase = """pixel_values""" UpperCamelCase = False def A__ ( self :Dict , __snake_case :Union[nn.Linear, nn.Convad] ): '''simple docstring''' if isinstance(__snake_case , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__snake_case , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) UpperCAmelCase_ : Optional[Any] = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCAmelCase_ : int = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , UpperCamelCase__ , ) class __A ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , __snake_case :MobileNetVaConfig , __snake_case :bool = True ): '''simple docstring''' super().__init__(__snake_case ) __magic_name__ : Tuple =config __magic_name__ : int =32 __magic_name__ : Optional[int] =max(int(depth * config.depth_multiplier ) , config.min_depth ) __magic_name__ : str =MobileNetVaConvLayer( __snake_case , in_channels=config.num_channels , out_channels=__snake_case , kernel_size=3 , stride=2 , ) __magic_name__ : List[Any] =[1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] __magic_name__ : List[str] =nn.ModuleList() for i in range(13 ): __magic_name__ : Optional[int] =out_channels if strides[i] == 2 or i == 0: depth *= 2 __magic_name__ : Dict =max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( __snake_case , in_channels=__snake_case , out_channels=__snake_case , kernel_size=3 , stride=strides[i] , groups=__snake_case , ) ) self.layer.append( MobileNetVaConvLayer( __snake_case , in_channels=__snake_case , out_channels=__snake_case , kernel_size=1 , ) ) __magic_name__ : Optional[Any] =nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def A__ ( self :Optional[int] , __snake_case :Optional[int] ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A__ ( self :Union[str, Any] , __snake_case :Optional[torch.Tensor] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' __magic_name__ : str =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __magic_name__ : str =return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) __magic_name__ : Any =self.conv_stem(__snake_case ) __magic_name__ : Optional[int] =() if output_hidden_states else None for i, layer_module in enumerate(self.layer ): __magic_name__ : Tuple =layer_module(__snake_case ) if output_hidden_states: __magic_name__ : int =all_hidden_states + (hidden_states,) __magic_name__ : Optional[int] =hidden_states if self.pooler is not None: __magic_name__ : str =torch.flatten(self.pooler(__snake_case ) , start_dim=1 ) else: __magic_name__ : Tuple =None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__snake_case , pooler_output=__snake_case , hidden_states=__snake_case , ) @add_start_docstrings( """ MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , UpperCamelCase__ , ) class __A ( UpperCamelCase__ ): def __init__( self :int , __snake_case :MobileNetVaConfig ): '''simple docstring''' super().__init__(__snake_case ) __magic_name__ : Any =config.num_labels __magic_name__ : List[Any] =MobileNetVaModel(__snake_case ) __magic_name__ : int =self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head __magic_name__ : List[Any] =nn.Dropout(config.classifier_dropout_prob , inplace=__snake_case ) __magic_name__ : Dict =nn.Linear(__snake_case , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A__ ( self :List[str] , __snake_case :Optional[torch.Tensor] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[torch.Tensor] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' __magic_name__ : List[Any] =return_dict if return_dict is not None else self.config.use_return_dict __magic_name__ : Any =self.mobilenet_va(__snake_case , output_hidden_states=__snake_case , return_dict=__snake_case ) __magic_name__ : Any =outputs.pooler_output if return_dict else outputs[1] __magic_name__ : List[Any] =self.classifier(self.dropout(__snake_case ) ) __magic_name__ : List[Any] =None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __magic_name__ : Any ="""regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __magic_name__ : Union[str, Any] ="""single_label_classification""" else: __magic_name__ : Tuple ="""multi_label_classification""" if self.config.problem_type == "regression": __magic_name__ : List[str] =MSELoss() if self.num_labels == 1: __magic_name__ : Optional[Any] =loss_fct(logits.squeeze() , labels.squeeze() ) else: __magic_name__ : int =loss_fct(__snake_case , __snake_case ) elif self.config.problem_type == "single_label_classification": __magic_name__ : List[str] =CrossEntropyLoss() __magic_name__ : Optional[Any] =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __magic_name__ : Dict =BCEWithLogitsLoss() __magic_name__ : Tuple =loss_fct(__snake_case , __snake_case ) if not return_dict: __magic_name__ : int =(logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__snake_case , logits=__snake_case , hidden_states=outputs.hidden_states , )
21
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __A ( tf.keras.layers.Layer ): def __init__( self :Optional[int] , __snake_case :Dict[str, int] , __snake_case :List[str] , __snake_case :int = None , __snake_case :int = None ): '''simple docstring''' super().__init__() __magic_name__ : Optional[int] =pad_token_id __magic_name__ : List[Any] =max_length __magic_name__ : Dict =vocab __magic_name__ : int =merges __magic_name__ : Optional[int] =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case ) @classmethod def A__ ( cls :List[Any] , __snake_case :GPTaTokenizer , *__snake_case :int , **__snake_case :Any ): '''simple docstring''' __magic_name__ : List[Any] =[""" """.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()] __magic_name__ : str =tokenizer.get_vocab() return cls(__snake_case , __snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Dict , __snake_case :Union[str, os.PathLike] , *__snake_case :Union[str, Any] , **__snake_case :int ): '''simple docstring''' __magic_name__ : Dict =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case ) return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Optional[Any] , __snake_case :List[Any] ): '''simple docstring''' return cls(**__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def A__ ( self :List[Any] , __snake_case :Dict , __snake_case :int = None ): '''simple docstring''' __magic_name__ : Optional[Any] =self.tf_tokenizer(__snake_case ) __magic_name__ : Tuple =tf.ones_like(__snake_case ) if self.pad_token_id is not None: # pad the tokens up to max length __magic_name__ : Tuple =max_length if max_length is not None else self.max_length if max_length is not None: __magic_name__ , __magic_name__ : Tuple =pad_model_inputs( __snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
21
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : Dict = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys UpperCAmelCase_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
import math import tensorflow as tf from packaging import version def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : List[str] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Optional[Any] =tf.cast(math.pi , x.dtype ) __magic_name__ : int =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Any =tf.convert_to_tensor(lowerCamelCase ) return x * tf.tanh(tf.math.softplus(lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[Any] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Union[str, Any] =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Dict =tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCAmelCase_ ( lowerCamelCase ): return tf.clip_by_value(_gelu(lowerCamelCase ) , -10 , 10 ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=-1 ): __magic_name__ , __magic_name__ : List[Any] =tf.split(lowerCamelCase , 2 , axis=lowerCamelCase ) return a * tf.math.sigmoid(lowerCamelCase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowerCAmelCase_ ( lowerCamelCase ): return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase ) UpperCAmelCase_ : List[str] = tf.keras.activations.gelu UpperCAmelCase_ : Dict = approximate_gelu_wrap else: UpperCAmelCase_ : Dict = _gelu UpperCAmelCase_ : str = _gelu_new UpperCAmelCase_ : Any = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowerCAmelCase_ ( lowerCamelCase ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
21
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES UpperCAmelCase_ : Union[str, Any] = "tiny-wmt19-en-ru" # Build # borrowed from a test UpperCAmelCase_ : List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCAmelCase_ : List[Any] = dict(zip(vocab, range(len(vocab)))) UpperCAmelCase_ : List[Any] = ["l o 123", "lo w 1456", "e r</w> 1789", ""] with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : Union[str, Any] = Path(tmpdirname) UpperCAmelCase_ : Tuple = build_dir / VOCAB_FILES_NAMES["src_vocab_file"] UpperCAmelCase_ : List[str] = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"] UpperCAmelCase_ : List[str] = build_dir / VOCAB_FILES_NAMES["merges_file"] with open(src_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, "w") as fp: fp.write("\n".join(merges)) UpperCAmelCase_ : Tuple = FSMTTokenizer( langs=["en", "ru"], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) UpperCAmelCase_ : List[Any] = FSMTConfig( langs=["ru", "en"], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) UpperCAmelCase_ : List[Any] = FSMTForConditionalGeneration(config) print(F"""num of params {tiny_model.num_parameters()}""") # Test UpperCAmelCase_ : str = tokenizer(["Making tiny model"], return_tensors="pt") UpperCAmelCase_ : str = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-ru
21
from collections.abc import Sequence def lowerCAmelCase_ ( lowerCamelCase = None ): if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __magic_name__ : str =nums[0] for i in range(1 , len(lowerCamelCase ) ): __magic_name__ : Any =nums[i] __magic_name__ : Dict =max(lowerCamelCase , ans + num , lowerCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCAmelCase_ : List[str] = int(input("Enter number of elements : ").strip()) UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
21
1
import cmath import math def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : List[str] =math.radians(lowerCamelCase ) __magic_name__ : Union[str, Any] =math.radians(lowerCamelCase ) # Convert voltage and current to rectangular form __magic_name__ : int =cmath.rect(lowerCamelCase , lowerCamelCase ) __magic_name__ : List[str] =cmath.rect(lowerCamelCase , lowerCamelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
21
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : UpperCamelCase = 42 UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""Translation""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def __call__( self :Union[str, Any] ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def A__ ( self :List[Any] ): '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __A : UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""TranslationVariableLanguages""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =sorted(set(self.languages ) ) if self.languages else None __magic_name__ : Optional[int] =len(self.languages ) if self.languages else None def __call__( self :List[str] ): '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def A__ ( self :str , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[int] =set(self.languages ) if self.languages and set(__snake_case ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __magic_name__ : Any =[] for lang, text in translation_dict.items(): if isinstance(__snake_case , __snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __magic_name__ , __magic_name__ : List[str] =zip(*sorted(__snake_case ) ) return {"language": languages, "translation": translations} def A__ ( self :List[Any] ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
21
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __A ( UpperCamelCase__ ): @slow @require_torch def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) __magic_name__ : int =BertTokenizer.from_pretrained("""bert-base-uncased""" ) __magic_name__ : str =bertabert.config.encoder.vocab_size __magic_name__ : Union[str, Any] =tokenizer.sep_token_id __magic_name__ : Optional[Any] =tokenizer.cls_token_id __magic_name__ : str =1_28 __magic_name__ : List[str] =datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) __magic_name__ : Union[str, Any] =datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) __magic_name__ : Union[str, Any] =train_dataset.select(range(32 ) ) __magic_name__ : str =val_dataset.select(range(16 ) ) __magic_name__ : int =4 def _map_to_encoder_decoder_inputs(__snake_case :Optional[int] ): # Tokenizer will automatically set [BOS] <text> [EOS] __magic_name__ : Dict =tokenizer(batch["""article"""] , padding="""max_length""" , truncation=__snake_case , max_length=5_12 ) __magic_name__ : Dict =tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=__snake_case , max_length=1_28 ) __magic_name__ : Optional[int] =inputs.input_ids __magic_name__ : Tuple =inputs.attention_mask __magic_name__ : Any =outputs.input_ids __magic_name__ : Tuple =outputs.input_ids.copy() __magic_name__ : Union[str, Any] =[ [-1_00 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] __magic_name__ : List[str] =outputs.attention_mask assert all(len(__snake_case ) == 5_12 for x in inputs.input_ids ) assert all(len(__snake_case ) == 1_28 for x in outputs.input_ids ) return batch def _compute_metrics(__snake_case :Tuple ): __magic_name__ : Tuple =pred.label_ids __magic_name__ : Any =pred.predictions # all unnecessary tokens are removed __magic_name__ : Optional[int] =tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case ) __magic_name__ : List[Any] =tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case ) __magic_name__ : Optional[Any] =sum([int(pred_str[i] == label_str[i] ) for i in range(len(__snake_case ) )] ) / len(__snake_case ) return {"accuracy": accuracy} # map train dataset __magic_name__ : Dict =train_dataset.map( _map_to_encoder_decoder_inputs , batched=__snake_case , batch_size=__snake_case , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset __magic_name__ : List[str] =val_dataset.map( _map_to_encoder_decoder_inputs , batched=__snake_case , batch_size=__snake_case , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) __magic_name__ : Tuple =self.get_auto_remove_tmp_dir() __magic_name__ : Optional[int] =SeqaSeqTrainingArguments( output_dir=__snake_case , per_device_train_batch_size=__snake_case , per_device_eval_batch_size=__snake_case , predict_with_generate=__snake_case , evaluation_strategy="""steps""" , do_train=__snake_case , do_eval=__snake_case , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __magic_name__ : List[str] =SeqaSeqTrainer( model=__snake_case , args=__snake_case , compute_metrics=_compute_metrics , train_dataset=__snake_case , eval_dataset=__snake_case , tokenizer=__snake_case , ) # start training trainer.train()
21
from sklearn.metrics import matthews_corrcoef import datasets UpperCAmelCase_ : Dict = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCAmelCase_ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCAmelCase_ : Dict = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def A__ ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def A__ ( self :Tuple , __snake_case :str , __snake_case :Tuple , __snake_case :List[str]=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ), }
21
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCAmelCase_ : Tuple = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): UpperCamelCase = """upernet""" def __init__( self :int , __snake_case :int=None , __snake_case :Optional[int]=5_12 , __snake_case :Any=0.02 , __snake_case :str=[1, 2, 3, 6] , __snake_case :Optional[Any]=True , __snake_case :Optional[Any]=0.4 , __snake_case :Tuple=3_84 , __snake_case :Optional[int]=2_56 , __snake_case :Dict=1 , __snake_case :Any=False , __snake_case :Tuple=2_55 , **__snake_case :int , ): '''simple docstring''' super().__init__(**__snake_case ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __magic_name__ : Optional[Any] =CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(__snake_case , __snake_case ): __magic_name__ : int =backbone_config.get("""model_type""" ) __magic_name__ : Optional[Any] =CONFIG_MAPPING[backbone_model_type] __magic_name__ : List[Any] =config_class.from_dict(__snake_case ) __magic_name__ : Dict =backbone_config __magic_name__ : Optional[Any] =hidden_size __magic_name__ : List[str] =initializer_range __magic_name__ : Tuple =pool_scales __magic_name__ : Optional[Any] =use_auxiliary_head __magic_name__ : List[str] =auxiliary_loss_weight __magic_name__ : int =auxiliary_in_channels __magic_name__ : Optional[int] =auxiliary_channels __magic_name__ : Optional[int] =auxiliary_num_convs __magic_name__ : int =auxiliary_concat_input __magic_name__ : Optional[Any] =loss_ignore_index def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : List[str] =copy.deepcopy(self.__dict__ ) __magic_name__ : Dict =self.backbone_config.to_dict() __magic_name__ : Optional[int] =self.__class__.model_type return output
21
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =OmegaConf.load(lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(lowerCamelCase ) ) ) return config def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): if conf_path is None: __magic_name__ : List[str] ="""./model_checkpoints/vqgan_only.yaml""" __magic_name__ : Dict =load_config(lowerCamelCase , display=lowerCamelCase ) __magic_name__ : Tuple =VQModel(**config.model.params ) if ckpt_path is None: __magic_name__ : Optional[Any] ="""./model_checkpoints/vqgan_only.pt""" __magic_name__ : Tuple =torch.load(lowerCamelCase , map_location=lowerCamelCase ) if ".ckpt" in ckpt_path: __magic_name__ : Any =sd["""state_dict"""] model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) model.to(lowerCamelCase ) del sd return model def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =model.encode(lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) __magic_name__ : List[Any] =model.decode(lowerCamelCase ) return xrec def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ , __magic_name__ : Optional[int] =string.rsplit(""".""" , 1 ) if reload: __magic_name__ : Optional[int] =importlib.import_module(lowerCamelCase ) importlib.reload(lowerCamelCase ) return getattr(importlib.import_module(lowerCamelCase , package=lowerCamelCase ) , cls ) def lowerCAmelCase_ ( lowerCamelCase ): if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True ): __magic_name__ : str =instantiate_from_config(lowerCamelCase ) if sd is not None: model.load_state_dict(lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # load the specified checkpoint if ckpt: __magic_name__ : str =torch.load(lowerCamelCase , map_location="""cpu""" ) __magic_name__ : Any =pl_sd["""global_step"""] print(F"loaded model from global step {global_step}." ) else: __magic_name__ : List[Any] ={"""state_dict""": None} __magic_name__ : Optional[Any] =None __magic_name__ : Tuple =load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=lowerCamelCase , eval_mode=lowerCamelCase )["""model"""] return model, global_step
21
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): @slow def A__ ( self :Any ): '''simple docstring''' __magic_name__ : str =TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __magic_name__ : Dict =tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __magic_name__ : Any =model(__snake_case )["""last_hidden_state"""] __magic_name__ : Any =tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , __snake_case ) # compare the actual values for a slice. __magic_name__ : List[str] =tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
21
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): def A__ ( self :Tuple ): '''simple docstring''' debug_launcher(test_script.main ) def A__ ( self :Dict ): '''simple docstring''' debug_launcher(test_ops.main )
21
1
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCAmelCase_ : Any = 4 UpperCAmelCase_ : List[str] = 3 class __A ( UpperCamelCase__ ): pass def lowerCAmelCase_ ( lowerCamelCase ): for shard in shards: for i in range(lowerCamelCase ): yield {"i": i, "shard": shard} def lowerCAmelCase_ ( ): __magic_name__ : Tuple =int(os.environ["""RANK"""] ) __magic_name__ : List[Any] =int(os.environ["""WORLD_SIZE"""] ) __magic_name__ : Optional[Any] =ArgumentParser() parser.add_argument("""--streaming""" , type=lowerCamelCase ) parser.add_argument("""--local_rank""" , type=lowerCamelCase ) parser.add_argument("""--num_workers""" , type=lowerCamelCase , default=0 ) __magic_name__ : List[str] =parser.parse_args() __magic_name__ : int =args.streaming __magic_name__ : Optional[int] =args.num_workers __magic_name__ : str ={"""shards""": [F"shard_{shard_idx}" for shard_idx in range(lowerCamelCase )]} __magic_name__ : Optional[Any] =IterableDataset.from_generator(lowerCamelCase , gen_kwargs=lowerCamelCase ) if not streaming: __magic_name__ : Dict =Dataset.from_list(list(lowerCamelCase ) ) __magic_name__ : Tuple =split_dataset_by_node(lowerCamelCase , rank=lowerCamelCase , world_size=lowerCamelCase ) __magic_name__ : List[Any] =torch.utils.data.DataLoader(lowerCamelCase , num_workers=lowerCamelCase ) __magic_name__ : Dict =NUM_SHARDS * NUM_ITEMS_PER_SHARD __magic_name__ : Tuple =full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __magic_name__ : Union[str, Any] =sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F"local_size {local_size} != expected_local_size {expected_local_size}" ) if __name__ == "__main__": main()
21
UpperCAmelCase_ : Tuple = 0 # The first color of the flag. UpperCAmelCase_ : Any = 1 # The second color of the flag. UpperCAmelCase_ : str = 2 # The third color of the flag. UpperCAmelCase_ : Tuple = (red, white, blue) def lowerCAmelCase_ ( lowerCamelCase ): if not sequence: return [] if len(lowerCamelCase ) == 1: return list(lowerCamelCase ) __magic_name__ : int =0 __magic_name__ : str =len(lowerCamelCase ) - 1 __magic_name__ : Optional[Any] =0 while mid <= high: if sequence[mid] == colors[0]: __magic_name__ , __magic_name__ : Tuple =sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: __magic_name__ , __magic_name__ : Optional[Any] =sequence[high], sequence[mid] high -= 1 else: __magic_name__ : Optional[int] =F"The elements inside the sequence must contains only {colors} values" raise ValueError(lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[Any] = input("Enter numbers separated by commas:\n").strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
21
1
from __future__ import annotations def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(lowerCamelCase ): print(F"{i}\t\t{d}" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for j in range(lowerCamelCase ): __magic_name__ , __magic_name__ , __magic_name__ : Any =(graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: return True return False def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Any =[float("""inf""" )] * vertex_count __magic_name__ : Optional[int] =0.0 for _ in range(vertex_count - 1 ): for j in range(lowerCamelCase ): __magic_name__ , __magic_name__ , __magic_name__ : List[str] =(graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: __magic_name__ : Optional[Any] =distance[u] + w __magic_name__ : Optional[Any] =check_negative_cycle(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if negative_cycle_exists: raise Exception("""Negative cycle found""" ) return distance if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Dict = int(input("Enter number of vertices: ").strip()) UpperCAmelCase_ : Any = int(input("Enter number of edges: ").strip()) UpperCAmelCase_ : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print("Edge ", i + 1) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = ( int(x) for x in input("Enter source, destination, weight: ").strip().split(" ") ) UpperCAmelCase_ : str = {"src": src, "dst": dest, "weight": weight} UpperCAmelCase_ : List[Any] = int(input("\nEnter shortest path source:").strip()) UpperCAmelCase_ : str = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
21
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __A ( UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = 1 @register_to_config def __init__( self :Any , __snake_case :Tuple=20_00 , __snake_case :Optional[Any]=0.1 , __snake_case :Any=20 , __snake_case :Optional[int]=1E-3 ): '''simple docstring''' __magic_name__ : Dict =None __magic_name__ : List[str] =None __magic_name__ : str =None def A__ ( self :Dict , __snake_case :Optional[int] , __snake_case :Union[str, torch.device] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] =torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case ) def A__ ( self :List[str] , __snake_case :List[str] , __snake_case :int , __snake_case :int , __snake_case :List[str]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __magic_name__ : int =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __magic_name__ : Optional[int] =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __magic_name__ : str =std.flatten() while len(std.shape ) < len(score.shape ): __magic_name__ : List[str] =std.unsqueeze(-1 ) __magic_name__ : Union[str, Any] =-score / std # compute __magic_name__ : Tuple =-1.0 / len(self.timesteps ) __magic_name__ : int =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __magic_name__ : Dict =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __magic_name__ : Any =beta_t.unsqueeze(-1 ) __magic_name__ : Dict =-0.5 * beta_t * x __magic_name__ : Optional[int] =torch.sqrt(__snake_case ) __magic_name__ : int =drift - diffusion**2 * score __magic_name__ : List[str] =x + drift * dt # add noise __magic_name__ : Optional[int] =randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype ) __magic_name__ : Optional[Any] =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self :List[Any] ): '''simple docstring''' return self.config.num_train_timesteps
21
1
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right UpperCAmelCase_ : int = 250004 UpperCAmelCase_ : List[str] = 250020 @require_sentencepiece @require_tokenizers class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = MBartTokenizer UpperCamelCase = MBartTokenizerFast UpperCamelCase = True UpperCamelCase = True def A__ ( self :Union[str, Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __magic_name__ : List[str] =MBartTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self :str ): '''simple docstring''' __magic_name__ : Any =MBartTokenizer(__snake_case , keep_accents=__snake_case ) __magic_name__ : int =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__snake_case , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __magic_name__ : Optional[int] =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __magic_name__ : Optional[Any] =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __magic_name__ : Any =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def A__ ( self :Tuple ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __magic_name__ : Tuple =(self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): __magic_name__ : List[Any] =self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __magic_name__ : List[str] =self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __magic_name__ : Optional[Any] =tempfile.mkdtemp() __magic_name__ : Dict =tokenizer_r.save_pretrained(__snake_case ) __magic_name__ : Dict =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) __magic_name__ : int =tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __magic_name__ : Any =tokenizer_r.from_pretrained(__snake_case ) __magic_name__ : List[Any] =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True __magic_name__ : List[str] =tempfile.mkdtemp() __magic_name__ : Optional[int] =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __magic_name__ : Dict =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __magic_name__ : Any =tokenizer_r.from_pretrained(__snake_case ) __magic_name__ : int =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False __magic_name__ : List[Any] =tempfile.mkdtemp() __magic_name__ : Dict =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __magic_name__ : List[str] =tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __magic_name__ : str =tokenizer_r.from_pretrained(__snake_case ) __magic_name__ : Optional[int] =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @require_torch @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): UpperCamelCase = """facebook/mbart-large-en-ro""" UpperCamelCase = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] UpperCamelCase = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] UpperCamelCase = [8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2, EN_CODE] @classmethod def A__ ( cls :str ): '''simple docstring''' __magic_name__ : MBartTokenizer =MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) __magic_name__ : Any =1 return cls def A__ ( self :Any ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 25_00_20 ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Any =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) def A__ ( self :List[Any] ): '''simple docstring''' self.assertIn(__snake_case , self.tokenizer.all_special_ids ) __magic_name__ : Union[str, Any] =[RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] __magic_name__ : Optional[int] =self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) __magic_name__ : List[str] =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertNotIn(self.tokenizer.eos_token , __snake_case ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : str =["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , __snake_case ) __magic_name__ : Dict =10 __magic_name__ : Optional[Any] =self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __snake_case ) self.assertEqual(len(__snake_case ) , __snake_case ) def A__ ( self :Optional[Any] ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [25_00_26, 25_00_01] ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[int] =tempfile.mkdtemp() __magic_name__ : Dict =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) __magic_name__ : Dict =MBartTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case ) @require_torch def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Any =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__snake_case , return_tensors="""pt""" ) __magic_name__ : str =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) __magic_name__ : Any =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __magic_name__ : int =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Tuple =self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors="""pt""" ) __magic_name__ : Tuple =self.tokenizer( text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=10 , return_tensors="""pt""" ) __magic_name__ : List[Any] =targets["""input_ids"""] __magic_name__ : List[str] =shift_tokens_right(__snake_case , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def A__ ( self :str ): '''simple docstring''' __magic_name__ : Union[str, Any] =self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(__snake_case ) , { # A, test, EOS, en_XX """input_ids""": [[62, 30_34, 2, 25_00_04]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 25_00_01, } , )
21
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCAmelCase_ : Dict = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__( self :List[str] , __snake_case :int , __snake_case :int , __snake_case :float , **__snake_case :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =feature_size __magic_name__ : Union[str, Any] =sampling_rate __magic_name__ : List[Any] =padding_value __magic_name__ : List[str] =kwargs.pop("""padding_side""" , """right""" ) __magic_name__ : Tuple =kwargs.pop("""return_attention_mask""" , __snake_case ) super().__init__(**__snake_case ) def A__ ( self :Any , __snake_case :Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __snake_case :Union[bool, str, PaddingStrategy] = True , __snake_case :Optional[int] = None , __snake_case :bool = False , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[Union[str, TensorType]] = None , ): '''simple docstring''' if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __magic_name__ : Union[str, Any] ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) __magic_name__ : int =processed_features[self.model_input_names[0]] __magic_name__ : Union[str, Any] =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__snake_case ) == 0: if return_attention_mask: __magic_name__ : List[str] =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __magic_name__ : Optional[int] =required_input[0] if isinstance(__snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __magic_name__ : Optional[Any] =0 while len(required_input[index] ) == 0: index += 1 if index < len(__snake_case ): __magic_name__ : List[str] =required_input[index][0] if return_tensors is None: if is_tf_tensor(__snake_case ): __magic_name__ : int ="""tf""" elif is_torch_tensor(__snake_case ): __magic_name__ : str ="""pt""" elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ): __magic_name__ : List[Any] ="""np""" else: raise ValueError( f"type of {first_element} unknown: {type(__snake_case )}. " """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __magic_name__ : List[str] =to_numpy(__snake_case ) else: __magic_name__ : str =[to_numpy(__snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy __magic_name__ : Dict =self._get_padding_strategies(padding=__snake_case , max_length=__snake_case ) __magic_name__ : Optional[Any] =processed_features[self.model_input_names[0]] __magic_name__ : Dict =len(__snake_case ) if not all(len(__snake_case ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) __magic_name__ : Optional[int] =[] for i in range(__snake_case ): __magic_name__ : Any ={k: v[i] for k, v in processed_features.items()} # truncation __magic_name__ : List[str] =self._truncate( __snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) truncated_inputs.append(__snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __magic_name__ : Optional[int] =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __magic_name__ : Tuple =PaddingStrategy.MAX_LENGTH __magic_name__ : str ={} for i in range(__snake_case ): # padding __magic_name__ : List[str] =self._pad( truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: __magic_name__ : Dict =[] if value.dtype is np.dtype(np.floataa ): __magic_name__ : Optional[int] =value.astype(np.floataa ) batch_outputs[key].append(__snake_case ) return BatchFeature(__snake_case , tensor_type=__snake_case ) def A__ ( self :Any , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' __magic_name__ : Dict =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __magic_name__ : Any =len(__snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : Dict =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : List[Any] =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __magic_name__ : int =np.ones(len(__snake_case ) , dtype=np.intaa ) if needs_to_be_padded: __magic_name__ : List[Any] =max_length - len(__snake_case ) if self.padding_side == "right": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (0, difference) ) __magic_name__ : Tuple =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __magic_name__ : str =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (difference, 0) ) __magic_name__ : Optional[int] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __magic_name__ : List[Any] =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def A__ ( self :Optional[Any] , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) __magic_name__ : Union[str, Any] =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : List[str] =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : Any =len(__snake_case ) > max_length if needs_to_be_truncated: __magic_name__ : List[Any] =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __magic_name__ : List[str] =processed_features["""attention_mask"""][:max_length] return processed_features def A__ ( self :List[Any] , __snake_case :str=False , __snake_case :Optional[int]=None ): '''simple docstring''' if padding is not False: if padding is True: __magic_name__ : Union[str, Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__snake_case , __snake_case ): __magic_name__ : Optional[int] =PaddingStrategy(__snake_case ) elif isinstance(__snake_case , __snake_case ): __magic_name__ : Any =padding else: __magic_name__ : Any =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
21
1
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
21
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): def __init__( self :List[Any] ): '''simple docstring''' super().__init__() __magic_name__ : Tuple =nn.Linear(3 , 4 ) __magic_name__ : Union[str, Any] =nn.BatchNormad(4 ) __magic_name__ : List[str] =nn.Linear(4 , 5 ) def A__ ( self :Dict , __snake_case :Tuple ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) ) class __A ( UpperCamelCase__ ): def A__ ( self :Any , __snake_case :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Any ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __A ( UpperCamelCase__ ): def A__ ( self :List[str] , __snake_case :Tuple , __snake_case :Union[str, Any] ): '''simple docstring''' return output + 1 class __A ( unittest.TestCase ): def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : Tuple =ModelHook() add_hook_to_module(__snake_case , __snake_case ) self.assertEqual(test_model._hf_hook , __snake_case ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : List[str] =ModelHook() add_hook_to_module(__snake_case , __snake_case ) add_hook_to_module(__snake_case , __snake_case , append=__snake_case ) self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() __magic_name__ : Any =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(x + 1 ) __magic_name__ : Optional[Any] =test_model(x + 2 ) __magic_name__ : int =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : int =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : str =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : List[str] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Optional[Any] =SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) assert torch.allclose(__snake_case , __snake_case , atol=1E-5 ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() __magic_name__ : Dict =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(__snake_case ) __magic_name__ : Dict =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Optional[int] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Union[str, Any] =SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) assert torch.allclose(__snake_case , output + 2 , atol=1E-5 ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Tuple =ModelForTest() __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Dict =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __magic_name__ : Any =True __magic_name__ : Any =test_model(__snake_case ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[Any] =model(__snake_case ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) ) __magic_name__ : int =torch.randn(2 , 3 ).to(0 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , torch.device(0 ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : int =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : int ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[int] =torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : Union[str, Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __magic_name__ : Tuple ={ """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Tuple =torch.randn(2 , 3 ) __magic_name__ : int =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : str =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Optional[int] =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Dict =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : List[str] =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Any =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
21
1
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __A ( UpperCamelCase__ ): UpperCamelCase = """segformer""" def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ): '''simple docstring''' super().__init__(**__snake_case ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , ) __magic_name__ : Dict =num_channels __magic_name__ : str =num_encoder_blocks __magic_name__ : List[Any] =depths __magic_name__ : Optional[Any] =sr_ratios __magic_name__ : List[str] =hidden_sizes __magic_name__ : List[str] =patch_sizes __magic_name__ : Any =strides __magic_name__ : Optional[Any] =mlp_ratios __magic_name__ : str =num_attention_heads __magic_name__ : int =hidden_act __magic_name__ : List[Any] =hidden_dropout_prob __magic_name__ : Optional[Any] =attention_probs_dropout_prob __magic_name__ : Optional[Any] =classifier_dropout_prob __magic_name__ : List[str] =initializer_range __magic_name__ : List[str] =drop_path_rate __magic_name__ : List[Any] =layer_norm_eps __magic_name__ : List[str] =decoder_hidden_size __magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case ) __magic_name__ : Dict =semantic_loss_ignore_index class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.11""" ) @property def A__ ( self :List[str] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self :Any ): '''simple docstring''' return 1E-4 @property def A__ ( self :int ): '''simple docstring''' return 12
21
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = KandinskyInpaintPipeline UpperCamelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCamelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCamelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase = False @property def A__ ( self :Union[str, Any] ): '''simple docstring''' return 32 @property def A__ ( self :Optional[Any] ): '''simple docstring''' return 32 @property def A__ ( self :List[Any] ): '''simple docstring''' return self.time_input_dim @property def A__ ( self :Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def A__ ( self :List[Any] ): '''simple docstring''' return 1_00 @property def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Dict =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self :str ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : str =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __magic_name__ : Tuple =MultilingualCLIP(__snake_case ) __magic_name__ : Optional[int] =text_encoder.eval() return text_encoder @property def A__ ( self :Dict ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Optional[Any] ={ """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __magic_name__ : Union[str, Any] =UNetaDConditionModel(**__snake_case ) return model @property def A__ ( self :List[str] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self :Tuple ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Dict =VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[str] =self.dummy_text_encoder __magic_name__ : Optional[Any] =self.dummy_tokenizer __magic_name__ : Optional[Any] =self.dummy_unet __magic_name__ : Tuple =self.dummy_movq __magic_name__ : List[str] =DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , ) __magic_name__ : str ={ """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self :str , __snake_case :Optional[Any] , __snake_case :int=0 ): '''simple docstring''' __magic_name__ : Union[str, Any] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : Dict =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case ) # create init_image __magic_name__ : str =floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : int =image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ : str =Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask __magic_name__ : Dict =np.ones((64, 64) , dtype=np.floataa ) __magic_name__ : Any =0 if str(__snake_case ).startswith("""mps""" ): __magic_name__ : Dict =torch.manual_seed(__snake_case ) else: __magic_name__ : Tuple =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__ : List[Any] ={ """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Tuple ="""cpu""" __magic_name__ : List[Any] =self.get_dummy_components() __magic_name__ : Union[str, Any] =self.pipeline_class(**__snake_case ) __magic_name__ : Tuple =pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Tuple =pipe(**self.get_dummy_inputs(__snake_case ) ) __magic_name__ : List[Any] =output.images __magic_name__ : Any =pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] __magic_name__ : int =image[0, -3:, -3:, -1] __magic_name__ : str =image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) __magic_name__ : Optional[Any] =np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def A__ ( self :Dict ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def A__ ( self :List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : List[str] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) __magic_name__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __magic_name__ : List[Any] =np.ones((7_68, 7_68) , dtype=np.floataa ) __magic_name__ : Any =0 __magic_name__ : int ="""a hat""" __magic_name__ : int =KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) __magic_name__ : Dict =KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) __magic_name__ : int =pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Union[str, Any] =torch.Generator(device="""cpu""" ).manual_seed(0 ) __magic_name__ , __magic_name__ : Dict =pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __magic_name__ : Optional[Any] =pipeline( __snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) __magic_name__ : Optional[int] =output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
21
1
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Dict =1.5 __magic_name__ : Union[str, Any] =int(factor * num_class_images ) __magic_name__ : int =ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=lowerCamelCase , aesthetic_weight=0.1 ) os.makedirs(F"{class_data_dir}/images" , exist_ok=lowerCamelCase ) if len(list(Path(F"{class_data_dir}/images" ).iterdir() ) ) >= num_class_images: return while True: __magic_name__ : Optional[Any] =client.query(text=lowerCamelCase ) if len(lowerCamelCase ) >= factor * num_class_images or num_images > 1E4: break else: __magic_name__ : Optional[int] =int(factor * num_images ) __magic_name__ : Tuple =ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=lowerCamelCase , aesthetic_weight=0.1 , ) __magic_name__ : List[str] =0 __magic_name__ : List[str] =0 __magic_name__ : List[str] =tqdm(desc="""downloading real regularization images""" , total=lowerCamelCase ) with open(F"{class_data_dir}/caption.txt" , """w""" ) as fa, open(F"{class_data_dir}/urls.txt" , """w""" ) as fa, open( F"{class_data_dir}/images.txt" , """w""" ) as fa: while total < num_class_images: __magic_name__ : Optional[int] =class_images[count] count += 1 try: __magic_name__ : Optional[int] =requests.get(images["""url"""] ) if img.status_code == 200: __magic_name__ : Optional[Any] =Image.open(BytesIO(img.content ) ) with open(F"{class_data_dir}/images/{total}.jpg" , """wb""" ) as f: f.write(img.content ) fa.write(images["""caption"""] + """\n""" ) fa.write(images["""url"""] + """\n""" ) fa.write(F"{class_data_dir}/images/{total}.jpg" + """\n""" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def lowerCAmelCase_ ( ): __magic_name__ : str =argparse.ArgumentParser("""""" , add_help=lowerCamelCase ) parser.add_argument("""--class_prompt""" , help="""text prompt to retrieve images""" , required=lowerCamelCase , type=lowerCamelCase ) parser.add_argument("""--class_data_dir""" , help="""path to save images""" , required=lowerCamelCase , type=lowerCamelCase ) parser.add_argument("""--num_class_images""" , help="""number of images to download""" , default=200 , type=lowerCamelCase ) return parser.parse_args() if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
21
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __A : def __init__( self :int , __snake_case :List[Any] , __snake_case :List[Any]=2 , __snake_case :Dict=True , __snake_case :Tuple=False , __snake_case :List[str]=10 , __snake_case :List[str]=3 , __snake_case :Union[str, Any]=32 * 8 , __snake_case :Optional[int]=32 * 8 , __snake_case :Any=4 , __snake_case :Union[str, Any]=64 , ): '''simple docstring''' __magic_name__ : Optional[int] =parent __magic_name__ : List[Any] =batch_size __magic_name__ : List[str] =is_training __magic_name__ : List[str] =use_auxiliary_loss __magic_name__ : Union[str, Any] =num_queries __magic_name__ : str =num_channels __magic_name__ : Union[str, Any] =min_size __magic_name__ : Union[str, Any] =max_size __magic_name__ : Optional[int] =num_labels __magic_name__ : Tuple =hidden_dim __magic_name__ : Any =hidden_dim def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __snake_case ) __magic_name__ : List[Any] =torch.ones([self.batch_size, self.min_size, self.max_size] , device=__snake_case ) __magic_name__ : List[str] =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__snake_case ) > 0.5 ).float() __magic_name__ : Union[str, Any] =(torch.rand((self.batch_size, self.num_labels) , device=__snake_case ) > 0.5).long() __magic_name__ : str =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Dict =MaskaFormerConfig( hidden_size=self.hidden_dim , ) __magic_name__ : str =self.num_queries __magic_name__ : Dict =self.num_labels __magic_name__ : int =[1, 1, 1, 1] __magic_name__ : List[str] =self.num_channels __magic_name__ : str =64 __magic_name__ : List[str] =1_28 __magic_name__ : Optional[Any] =self.hidden_dim __magic_name__ : Tuple =self.hidden_dim __magic_name__ : Optional[int] =self.hidden_dim return config def A__ ( self :Any ): '''simple docstring''' __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple =self.prepare_config_and_inputs() __magic_name__ : Optional[Any] ={"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def A__ ( self :Union[str, Any] , __snake_case :Tuple , __snake_case :Dict ): '''simple docstring''' __magic_name__ : int =output.encoder_hidden_states __magic_name__ : List[str] =output.pixel_decoder_hidden_states __magic_name__ : int =output.transformer_decoder_hidden_states self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , config.decoder_layers ) def A__ ( self :List[Any] , __snake_case :Optional[Any] , __snake_case :int , __snake_case :str , __snake_case :str=False ): '''simple docstring''' with torch.no_grad(): __magic_name__ : List[str] =MaskaFormerModel(config=__snake_case ) model.to(__snake_case ) model.eval() __magic_name__ : Union[str, Any] =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : int =model(__snake_case , output_hidden_states=__snake_case ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__snake_case , __snake_case ) def A__ ( self :Optional[Any] , __snake_case :List[str] , __snake_case :List[Any] , __snake_case :int , __snake_case :Any , __snake_case :Union[str, Any] ): '''simple docstring''' __magic_name__ : str =MaskaFormerForUniversalSegmentation(config=__snake_case ) model.to(__snake_case ) model.eval() def comm_check_on_output(__snake_case :List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __magic_name__ : int =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : List[str] =model(__snake_case ) comm_check_on_output(__snake_case ) __magic_name__ : Any =model( pixel_values=__snake_case , pixel_mask=__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) comm_check_on_output(__snake_case ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCamelCase = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def A__ ( self :str ): '''simple docstring''' __magic_name__ : Any =MaskaFormerModelTester(self ) __magic_name__ : Union[str, Any] =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def A__ ( self :Dict ): '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__snake_case ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def A__ ( self :List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def A__ ( self :Dict ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def A__ ( self :Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def A__ ( self :int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def A__ ( self :Tuple ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A__ ( self :Union[str, Any] ): '''simple docstring''' pass def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Tuple =model_class(__snake_case ) __magic_name__ : Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple =[*signature.parameters.keys()] __magic_name__ : Optional[Any] =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) @slow def A__ ( self :Tuple ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __magic_name__ : int =MaskaFormerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =(self.model_tester.min_size,) * 2 __magic_name__ : Union[str, Any] ={ """pixel_values""": torch.randn((2, 3, *size) , device=__snake_case ), """mask_labels""": torch.randn((2, 10, *size) , device=__snake_case ), """class_labels""": torch.zeros(2 , 10 , device=__snake_case ).long(), } __magic_name__ : Optional[Any] =self.model_tester.get_config() __magic_name__ : Dict =MaskaFormerForUniversalSegmentation(__snake_case ).to(__snake_case ) __magic_name__ : Any =model(**__snake_case ) self.assertTrue(outputs.loss is not None ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ , __magic_name__ : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] =model_class(__snake_case ).to(__snake_case ) __magic_name__ : Optional[int] =model(**__snake_case , output_attentions=__snake_case ) self.assertTrue(outputs.attentions is not None ) def A__ ( self :int ): '''simple docstring''' if not self.model_tester.is_training: return __magic_name__ : List[Any] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Dict =model_class(__snake_case ) model.to(__snake_case ) model.train() __magic_name__ : Optional[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ).loss loss.backward() def A__ ( self :int ): '''simple docstring''' __magic_name__ : List[str] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Tuple =True __magic_name__ : Optional[int] =True __magic_name__ : int =model_class(__snake_case ).to(__snake_case ) model.train() __magic_name__ : List[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) __magic_name__ : Optional[int] =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __magic_name__ : Optional[int] =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__snake_case ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase_ : Dict = 1e-4 def lowerCAmelCase_ ( ): __magic_name__ : Dict =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __A ( unittest.TestCase ): @cached_property def A__ ( self :int ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def A__ ( self :int ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__snake_case ) __magic_name__ : int =self.default_image_processor __magic_name__ : List[Any] =prepare_img() __magic_name__ : Any =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Dict =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : List[str] =model(**__snake_case ) __magic_name__ : Any =torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Dict =torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Any =torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Optional[int] =self.default_image_processor __magic_name__ : Tuple =prepare_img() __magic_name__ : List[Any] =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Union[str, Any] =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : str =model(**__snake_case ) # masks_queries_logits __magic_name__ : List[Any] =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __magic_name__ : List[Any] =[ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __magic_name__ : Dict =torch.tensor(__snake_case ).to(__snake_case ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) # class_queries_logits __magic_name__ : Any =outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __magic_name__ : int =torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Any =self.default_image_processor __magic_name__ : Union[str, Any] =image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , ) __magic_name__ : str =inputs["""pixel_values"""].to(__snake_case ) __magic_name__ : Tuple =[el.to(__snake_case ) for el in inputs["""mask_labels"""]] __magic_name__ : Union[str, Any] =[el.to(__snake_case ) for el in inputs["""class_labels"""]] with torch.no_grad(): __magic_name__ : Dict =model(**__snake_case ) self.assertTrue(outputs.loss is not None )
21
1
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : UpperCamelCase = 42 UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""Translation""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def __call__( self :Union[str, Any] ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def A__ ( self :List[Any] ): '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __A : UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""TranslationVariableLanguages""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =sorted(set(self.languages ) ) if self.languages else None __magic_name__ : Optional[int] =len(self.languages ) if self.languages else None def __call__( self :List[str] ): '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def A__ ( self :str , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[int] =set(self.languages ) if self.languages and set(__snake_case ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __magic_name__ : Any =[] for lang, text in translation_dict.items(): if isinstance(__snake_case , __snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __magic_name__ , __magic_name__ : List[str] =zip(*sorted(__snake_case ) ) return {"language": languages, "translation": translations} def A__ ( self :List[Any] ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
21
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __A ( UpperCamelCase__ ): UpperCamelCase = """segformer""" def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ): '''simple docstring''' super().__init__(**__snake_case ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , ) __magic_name__ : Dict =num_channels __magic_name__ : str =num_encoder_blocks __magic_name__ : List[Any] =depths __magic_name__ : Optional[Any] =sr_ratios __magic_name__ : List[str] =hidden_sizes __magic_name__ : List[str] =patch_sizes __magic_name__ : Any =strides __magic_name__ : Optional[Any] =mlp_ratios __magic_name__ : str =num_attention_heads __magic_name__ : int =hidden_act __magic_name__ : List[Any] =hidden_dropout_prob __magic_name__ : Optional[Any] =attention_probs_dropout_prob __magic_name__ : Optional[Any] =classifier_dropout_prob __magic_name__ : List[str] =initializer_range __magic_name__ : List[str] =drop_path_rate __magic_name__ : List[Any] =layer_norm_eps __magic_name__ : List[str] =decoder_hidden_size __magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case ) __magic_name__ : Dict =semantic_loss_ignore_index class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.11""" ) @property def A__ ( self :List[str] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self :Any ): '''simple docstring''' return 1E-4 @property def A__ ( self :int ): '''simple docstring''' return 12
21
1
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class __A ( UpperCamelCase__ ): UpperCamelCase = (IPNDMScheduler,) UpperCamelCase = (("""num_inference_steps""", 50),) def A__ ( self :int , **__snake_case :List[str] ): '''simple docstring''' __magic_name__ : Optional[int] ={"""num_train_timesteps""": 10_00} config.update(**__snake_case ) return config def A__ ( self :int , __snake_case :Any=0 , **__snake_case :List[str] ): '''simple docstring''' __magic_name__ : Optional[int] =dict(self.forward_default_kwargs ) __magic_name__ : List[str] =kwargs.pop("""num_inference_steps""" , __snake_case ) __magic_name__ : str =self.dummy_sample __magic_name__ : Dict =0.1 * sample __magic_name__ : Any =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __magic_name__ : int =self.get_scheduler_config(**__snake_case ) __magic_name__ : Optional[int] =scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals __magic_name__ : List[str] =dummy_past_residuals[:] if time_step is None: __magic_name__ : Dict =scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case ) __magic_name__ : int =scheduler_class.from_pretrained(__snake_case ) new_scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals __magic_name__ : Tuple =dummy_past_residuals[:] __magic_name__ : Optional[int] =scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample __magic_name__ : List[str] =new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __magic_name__ : Union[str, Any] =scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample __magic_name__ : List[str] =new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A__ ( self :List[Any] ): '''simple docstring''' pass def A__ ( self :Optional[int] , __snake_case :Optional[Any]=0 , **__snake_case :Dict ): '''simple docstring''' __magic_name__ : int =dict(self.forward_default_kwargs ) __magic_name__ : Dict =kwargs.pop("""num_inference_steps""" , __snake_case ) __magic_name__ : str =self.dummy_sample __magic_name__ : Optional[Any] =0.1 * sample __magic_name__ : Union[str, Any] =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __magic_name__ : Dict =self.get_scheduler_config() __magic_name__ : Optional[Any] =scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals (must be after setting timesteps) __magic_name__ : Union[str, Any] =dummy_past_residuals[:] if time_step is None: __magic_name__ : Optional[Any] =scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case ) __magic_name__ : List[Any] =scheduler_class.from_pretrained(__snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(__snake_case ) # copy over dummy past residual (must be after setting timesteps) __magic_name__ : Tuple =dummy_past_residuals[:] __magic_name__ : Union[str, Any] =scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample __magic_name__ : Union[str, Any] =new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __magic_name__ : Tuple =scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample __magic_name__ : Optional[Any] =new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A__ ( self :Optional[Any] , **__snake_case :List[Any] ): '''simple docstring''' __magic_name__ : List[Any] =self.scheduler_classes[0] __magic_name__ : List[str] =self.get_scheduler_config(**__snake_case ) __magic_name__ : Tuple =scheduler_class(**__snake_case ) __magic_name__ : List[str] =10 __magic_name__ : Optional[Any] =self.dummy_model() __magic_name__ : Any =self.dummy_sample_deter scheduler.set_timesteps(__snake_case ) for i, t in enumerate(scheduler.timesteps ): __magic_name__ : Union[str, Any] =model(__snake_case , __snake_case ) __magic_name__ : Union[str, Any] =scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample for i, t in enumerate(scheduler.timesteps ): __magic_name__ : Optional[Any] =model(__snake_case , __snake_case ) __magic_name__ : Optional[Any] =scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample return sample def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Optional[int] =dict(self.forward_default_kwargs ) __magic_name__ : str =kwargs.pop("""num_inference_steps""" , __snake_case ) for scheduler_class in self.scheduler_classes: __magic_name__ : Union[str, Any] =self.get_scheduler_config() __magic_name__ : Optional[int] =scheduler_class(**__snake_case ) __magic_name__ : Tuple =self.dummy_sample __magic_name__ : Tuple =0.1 * sample if num_inference_steps is not None and hasattr(__snake_case , """set_timesteps""" ): scheduler.set_timesteps(__snake_case ) elif num_inference_steps is not None and not hasattr(__snake_case , """set_timesteps""" ): __magic_name__ : Dict =num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __magic_name__ : List[str] =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __magic_name__ : str =dummy_past_residuals[:] __magic_name__ : Optional[Any] =scheduler.timesteps[5] __magic_name__ : List[str] =scheduler.timesteps[6] __magic_name__ : Union[str, Any] =scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample __magic_name__ : Tuple =scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __magic_name__ : Optional[Any] =scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample __magic_name__ : Union[str, Any] =scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A__ ( self :Tuple ): '''simple docstring''' for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=__snake_case , time_step=__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=__snake_case , time_step=__snake_case ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Optional[Any] =self.full_loop() __magic_name__ : str =torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 2_54_05_29 ) < 10
21
import heapq def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase , [-1 * len(lowerCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices __magic_name__ : Tuple =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __magic_name__ : Tuple =heapq.heappop(lowerCamelCase )[1][0] chosen_vertices.add(lowerCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __magic_name__ : Tuple =elem[1][1].index(lowerCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
21
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : str = { "configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"], "feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"], "processing_wav2vec2": ["Wav2Vec2Processor"], "tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Wav2Vec2ForAudioFrameClassification", "Wav2Vec2ForCTC", "Wav2Vec2ForMaskedLM", "Wav2Vec2ForPreTraining", "Wav2Vec2ForSequenceClassification", "Wav2Vec2ForXVector", "Wav2Vec2Model", "Wav2Vec2PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ "TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWav2Vec2ForCTC", "TFWav2Vec2Model", "TFWav2Vec2PreTrainedModel", "TFWav2Vec2ForSequenceClassification", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ "FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCAmelCase_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
UpperCAmelCase_ : int = range(2, 20 + 1) UpperCAmelCase_ : Tuple = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =sum(a_i[j] for j in range(lowerCamelCase , len(lowerCamelCase ) ) ) __magic_name__ : Any =sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase ) , lowerCamelCase ) ) ) __magic_name__ , __magic_name__ : Tuple =0, 0 __magic_name__ : Optional[Any] =n - i __magic_name__ : Union[str, Any] =memo.get(lowerCamelCase ) if sub_memo is not None: __magic_name__ : int =sub_memo.get(lowerCamelCase ) if jumps is not None and len(lowerCamelCase ) > 0: # find and make the largest jump without going over __magic_name__ : Dict =-1 for _k in range(len(lowerCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __magic_name__ : Optional[Any] =_k break if max_jump >= 0: __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =jumps[max_jump] # since the difference between jumps is cached, add c __magic_name__ : Tuple =diff + c for j in range(min(lowerCamelCase , len(lowerCamelCase ) ) ): __magic_name__ , __magic_name__ : Tuple =divmod(lowerCamelCase , 10 ) if new_c > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __magic_name__ : str =[] else: __magic_name__ : List[str] ={c: []} __magic_name__ : List[str] =sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __magic_name__ , __magic_name__ : Union[str, Any] =next_term(lowerCamelCase , k - 1 , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __magic_name__ , __magic_name__ : Optional[int] =compute(lowerCamelCase , lowerCamelCase , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped __magic_name__ : Tuple =sub_memo[c] # keep jumps sorted by # of terms skipped __magic_name__ : List[Any] =0 while j < len(lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase , (diff, dn, k) ) return (diff, dn) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if i >= n: return 0, i if k > len(lowerCamelCase ): a_i.extend([0 for _ in range(k - len(lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __magic_name__ : Tuple =i __magic_name__ , __magic_name__ , __magic_name__ : Tuple =0, 0, 0 for j in range(len(lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __magic_name__ : Optional[Any] =ds_c + ds_b diff += addend __magic_name__ : str =0 for j in range(lowerCamelCase ): __magic_name__ : int =a_i[j] + addend __magic_name__ , __magic_name__ : Any =divmod(lowerCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return diff, i - start_i def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for j in range(lowerCamelCase , len(lowerCamelCase ) ): __magic_name__ : Tuple =digits[j] + addend if s >= 10: __magic_name__ , __magic_name__ : int =divmod(lowerCamelCase , 10 ) __magic_name__ : int =addend // 10 + quotient else: __magic_name__ : Dict =s __magic_name__ : Any =addend // 10 if addend == 0: break while addend > 0: __magic_name__ , __magic_name__ : Union[str, Any] =divmod(lowerCamelCase , 10 ) digits.append(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase = 10**15 ): __magic_name__ : List[str] =[1] __magic_name__ : str =1 __magic_name__ : str =0 while True: __magic_name__ , __magic_name__ : List[str] =next_term(lowerCamelCase , 20 , i + dn , lowerCamelCase ) dn += terms_jumped if dn == n - i: break __magic_name__ : int =0 for j in range(len(lowerCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
21
1
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCAmelCase_ : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCAmelCase_ : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCAmelCase_ : set[int] = {ord(char) for char in VALID_CHARS} UpperCAmelCase_ : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : str ="" __magic_name__ : int __magic_name__ : int __magic_name__ : int for keychar, cipherchar in zip(cycle(lowerCamelCase ) , lowerCamelCase ): __magic_name__ : int =cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowerCamelCase ) return decoded def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : list[str] =[] for key in product(lowerCamelCase , repeat=3 ): __magic_name__ : Any =try_key(lowerCamelCase , lowerCamelCase ) if encoded is not None: possibles.append(lowerCamelCase ) return possibles def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return [possible for possible in possibles if common_word in possible.lower()] def lowerCAmelCase_ ( lowerCamelCase = "p059_cipher.txt" ): __magic_name__ : list[int] __magic_name__ : list[str] __magic_name__ : str __magic_name__ : str __magic_name__ : str =Path(lowerCamelCase ).parent.joinpath(lowerCamelCase ).read_text(encoding="""utf-8""" ) __magic_name__ : List[str] =[int(lowerCamelCase ) for number in data.strip().split(""",""" )] __magic_name__ : Any =filter_valid_chars(lowerCamelCase ) for common_word in COMMON_WORDS: __magic_name__ : Any =filter_common_word(lowerCamelCase , lowerCamelCase ) if len(lowerCamelCase ) == 1: break __magic_name__ : Dict =possibles[0] return sum(ord(lowerCamelCase ) for char in decoded_text ) if __name__ == "__main__": print(F"""{solution() = }""")
21
from typing import List from .keymap import KEYMAP, get_character def lowerCAmelCase_ ( lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : str =getattr(lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator def lowerCAmelCase_ ( *lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : Dict =getattr(lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator class __A ( UpperCamelCase__ ): def __new__( cls :Dict , __snake_case :Optional[Any] , __snake_case :Union[str, Any] , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : int =super().__new__(cls , __snake_case , __snake_case , __snake_case ) if not hasattr(__snake_case , """key_handler""" ): setattr(__snake_case , """key_handler""" , {} ) setattr(__snake_case , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __magic_name__ : int =getattr(__snake_case , """handle_key""" , [] ) for key in handled_keys: __magic_name__ : List[str] =value return new_cls @staticmethod def A__ ( cls :Optional[int] ): '''simple docstring''' __magic_name__ : Union[str, Any] =get_character() if char != KEYMAP["undefined"]: __magic_name__ : Optional[int] =ord(__snake_case ) __magic_name__ : int =cls.key_handler.get(__snake_case ) if handler: __magic_name__ : Dict =char return handler(cls ) else: return None def lowerCAmelCase_ ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
21
1
from ..utils import DummyObject, requires_backends class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :int , *__snake_case :Tuple , **__snake_case :Optional[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :int , *__snake_case :Dict , **__snake_case :List[str] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Dict ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :Dict , *__snake_case :Optional[Any] , **__snake_case :Union[str, Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :List[str] , *__snake_case :str , **__snake_case :Union[str, Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :Dict , *__snake_case :List[Any] , **__snake_case :Tuple ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :Tuple , *__snake_case :Any , **__snake_case :Optional[int] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :Union[str, Any] , *__snake_case :List[str] , **__snake_case :List[str] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :List[str] , *__snake_case :Dict , **__snake_case :List[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :Union[str, Any] , *__snake_case :List[Any] , **__snake_case :Union[str, Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :int , *__snake_case :int , **__snake_case :Union[str, Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :Dict , *__snake_case :List[Any] , **__snake_case :Optional[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :Any , *__snake_case :List[str] , **__snake_case :List[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :Dict , *__snake_case :Tuple , **__snake_case :Optional[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :List[Any] , *__snake_case :Optional[int] , **__snake_case :int ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :List[str] , *__snake_case :int , **__snake_case :str ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :Optional[Any] , *__snake_case :Dict , **__snake_case :int ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :str , *__snake_case :Optional[int] , **__snake_case :List[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :Optional[Any] , *__snake_case :Tuple , **__snake_case :List[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :Optional[int] , *__snake_case :List[Any] , **__snake_case :List[str] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :List[Any] , *__snake_case :Any , **__snake_case :List[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :Optional[Any] , *__snake_case :Any , **__snake_case :str ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :Dict , *__snake_case :Tuple , **__snake_case :Dict ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :List[Any] , *__snake_case :Optional[Any] , **__snake_case :str ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :List[Any] , *__snake_case :List[str] , **__snake_case :List[str] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :Dict , *__snake_case :Dict , **__snake_case :str ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :Tuple , *__snake_case :Optional[int] , **__snake_case :str ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :List[Any] , *__snake_case :Dict , **__snake_case :List[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :Dict , *__snake_case :Any , **__snake_case :Dict ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :Union[str, Any] , *__snake_case :Dict , **__snake_case :Union[str, Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=UpperCamelCase__ ): UpperCamelCase = ["""sentencepiece"""] def __init__( self :Union[str, Any] , *__snake_case :Union[str, Any] , **__snake_case :List[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] )
21
import os import jsonlines import numpy as np from tqdm import tqdm UpperCAmelCase_ : Dict = 2048 UpperCAmelCase_ : int = 4096 UpperCAmelCase_ : Any = 42 UpperCAmelCase_ : Optional[int] = os.environ.pop("PROCESS_TRAIN", "false") UpperCAmelCase_ : str = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def lowerCAmelCase_ ( lowerCamelCase ): def choose_first(lowerCamelCase , lowerCamelCase=False ): assert isinstance(lowerCamelCase , lowerCamelCase ) if len(lowerCamelCase ) == 1: __magic_name__ : List[str] =answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __magic_name__ : Tuple ={k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a __magic_name__ : str ={"""id""": example["""id"""]} __magic_name__ : List[Any] =example["""annotations"""] __magic_name__ : List[str] =annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: __magic_name__ : Optional[int] =["""yes"""] if 1 in yes_no_answer else ["""no"""] __magic_name__ : List[str] =[] __magic_name__ : Dict =[] __magic_name__ : str =["""<cls>"""] else: __magic_name__ : Tuple =["""short"""] __magic_name__ : Optional[int] =choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available __magic_name__ : Tuple =["""long"""] __magic_name__ : Tuple =choose_first(annotation["""long_answer"""] , is_long_answer=lowerCamelCase ) __magic_name__ : List[Any] =[] answer.update(lowerCamelCase ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: __magic_name__ : Any =True else: __magic_name__ : List[str] =False __magic_name__ : int =["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , lowerCamelCase ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =_get_single_answer(lowerCamelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : Any =example["""document"""]["""tokens"""] __magic_name__ : str =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __magic_name__ : Dict =["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __magic_name__ : Tuple =example["""document"""]["""tokens"""] __magic_name__ : Optional[int] =answer["""start_token"""] __magic_name__ : List[Any] =answer["""end_token"""] __magic_name__ : Optional[Any] =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __magic_name__ : Optional[int] =""" """.join(context[start_token:end_token] ) # checking above code if assertion: __magic_name__ : List[str] =doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : str =doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : Dict =""" """.join([old[i] for i in range(len(lowerCamelCase ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , lowerCamelCase , end="""\n""" ) print("""Old:""" , lowerCamelCase , end="""\n\n""" ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=True ): # overlap will be of doc_stride - q_len __magic_name__ : Any =get_context_and_ans(lowerCamelCase , assertion=lowerCamelCase ) __magic_name__ : Union[str, Any] =out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __magic_name__ : List[Any] =tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids __magic_name__ : Dict =input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : List[str] =[] __magic_name__ : int =[] __magic_name__ : List[str] =input_ids[:q_len] __magic_name__ : Dict =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Tuple =input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(lowerCamelCase ), "end_token": [-100] * len(lowerCamelCase ), "category": category, }, } __magic_name__ : int =out["""context"""].split() __magic_name__ : Any =splitted_context[answer["""end_token"""]] __magic_name__ : str =len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=lowerCamelCase , ).input_ids ) __magic_name__ : Optional[int] =len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=lowerCamelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __magic_name__ : Union[str, Any] =len(tokenizer(lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __magic_name__ : str =input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive __magic_name__ : Dict =answer["""start_token"""] __magic_name__ : int =answer["""end_token"""] if assertion: __magic_name__ : Any =tokenizer.decode(lowerCamelCase ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , lowerCamelCase , end="""\n\n""" ) if len(lowerCamelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __magic_name__ : Any =input_ids[:q_len] __magic_name__ : Union[str, Any] =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) __magic_name__ : Any =[] __magic_name__ : List[str] =[] __magic_name__ : List[str] =[] __magic_name__ : str =[] # null, yes, no, long, short for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Dict =input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __magic_name__ : List[Any] =start_token - i + q_len __magic_name__ : Optional[Any] =end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: __magic_name__ : Optional[Any] =-100 __magic_name__ : Optional[Any] =-100 answers_category.append("""null""" ) __magic_name__ : Optional[int] =inputs[-1][start_token : end_token + 1] answers_start_token.append(lowerCamelCase ) answers_end_token.append(lowerCamelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(lowerCamelCase ) ) print("""Old:""" , tokenizer.decode(lowerCamelCase ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=False ): __magic_name__ : List[Any] =get_strided_contexts_and_ans( lowerCamelCase , lowerCamelCase , doc_stride=lowerCamelCase , max_length=lowerCamelCase , assertion=lowerCamelCase , ) return example def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): with jsonlines.open(lowerCamelCase , """a""" ) as writer: for example in tqdm(lowerCamelCase , total=len(lowerCamelCase ) , desc="""Saving samples ... """ ): __magic_name__ : int =example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer UpperCAmelCase_ : Optional[int] = load_dataset("natural_questions") UpperCAmelCase_ : Optional[int] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") UpperCAmelCase_ : str = data["train" if PROCESS_TRAIN == "true" else "validation"] UpperCAmelCase_ : Optional[int] = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } UpperCAmelCase_ : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs) UpperCAmelCase_ : Optional[Any] = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) UpperCAmelCase_ : int = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
21
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase_ : str = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __A ( UpperCamelCase__ ): UpperCamelCase = """xlm-roberta-xl""" def __init__( self :Dict , __snake_case :Optional[Any]=25_08_80 , __snake_case :List[Any]=25_60 , __snake_case :Optional[Any]=36 , __snake_case :Any=32 , __snake_case :int=1_02_40 , __snake_case :List[Any]="gelu" , __snake_case :Union[str, Any]=0.1 , __snake_case :Optional[Any]=0.1 , __snake_case :str=5_14 , __snake_case :Union[str, Any]=1 , __snake_case :Optional[int]=0.02 , __snake_case :str=1E-05 , __snake_case :str=1 , __snake_case :int=0 , __snake_case :Tuple=2 , __snake_case :Optional[int]="absolute" , __snake_case :str=True , __snake_case :Any=None , **__snake_case :Dict , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __magic_name__ : List[str] =vocab_size __magic_name__ : List[str] =hidden_size __magic_name__ : Union[str, Any] =num_hidden_layers __magic_name__ : Any =num_attention_heads __magic_name__ : Any =hidden_act __magic_name__ : List[str] =intermediate_size __magic_name__ : Any =hidden_dropout_prob __magic_name__ : Union[str, Any] =attention_probs_dropout_prob __magic_name__ : Any =max_position_embeddings __magic_name__ : Any =type_vocab_size __magic_name__ : List[str] =initializer_range __magic_name__ : Optional[int] =layer_norm_eps __magic_name__ : Dict =position_embedding_type __magic_name__ : Any =use_cache __magic_name__ : Dict =classifier_dropout class __A ( UpperCamelCase__ ): @property def A__ ( self :Dict ): '''simple docstring''' if self.task == "multiple-choice": __magic_name__ : str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: __magic_name__ : Optional[Any] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
21
1
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( ): __magic_name__ : Dict =10 __magic_name__ : str =datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) __magic_name__ : Any =datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [97], """text""": ["""1976"""]}] * 10, """id""": list(range(lowerCamelCase ) ), } , features=lowerCamelCase , ) return dataset @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : Optional[int] =str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=lowerCamelCase ) return filename # FILE_CONTENT + files UpperCAmelCase_ : str = "\\n Text data.\n Second line of data." @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[Any] =tmp_path_factory.mktemp("""data""" ) / """file.txt""" __magic_name__ : List[str] =FILE_CONTENT with open(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase ) return filename @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase ): import bza __magic_name__ : int =tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" __magic_name__ : int =bytes(lowerCamelCase , """utf-8""" ) with bza.open(lowerCamelCase , """wb""" ) as f: f.write(lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase ): import gzip __magic_name__ : Tuple =str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) __magic_name__ : int =bytes(lowerCamelCase , """utf-8""" ) with gzip.open(lowerCamelCase , """wb""" ) as f: f.write(lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase ): if datasets.config.LZ4_AVAILABLE: import lza.frame __magic_name__ : Dict =tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" __magic_name__ : List[Any] =bytes(lowerCamelCase , """utf-8""" ) with lza.frame.open(lowerCamelCase , """wb""" ) as f: f.write(lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): if datasets.config.PY7ZR_AVAILABLE: import pyazr __magic_name__ : List[Any] =tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(lowerCamelCase , """w""" ) as archive: archive.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): import tarfile __magic_name__ : Optional[int] =tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(lowerCamelCase , """w""" ) as f: f.add(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase ): import lzma __magic_name__ : Union[str, Any] =tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" __magic_name__ : Dict =bytes(lowerCamelCase , """utf-8""" ) with lzma.open(lowerCamelCase , """wb""" ) as f: f.write(lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): import zipfile __magic_name__ : str =tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __magic_name__ : Optional[int] =tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" __magic_name__ : int =bytes(lowerCamelCase , """utf-8""" ) with zstd.open(lowerCamelCase , """wb""" ) as f: f.write(lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[int] =tmp_path_factory.mktemp("""data""" ) / """file.xml""" __magic_name__ : Union[str, Any] =textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase ) return filename UpperCAmelCase_ : List[Any] = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] UpperCAmelCase_ : str = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] UpperCAmelCase_ : int = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } UpperCAmelCase_ : Any = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] UpperCAmelCase_ : List[Any] = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =datasets.Dataset.from_dict(lowerCamelCase ) __magic_name__ : Optional[int] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(lowerCamelCase ) ) as con: __magic_name__ : List[Any] =con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[int] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(lowerCamelCase , """w""" , newline="""""" ) as f: __magic_name__ : Union[str, Any] =csv.DictWriter(lowerCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[Any] =str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(lowerCamelCase , """w""" , newline="""""" ) as f: __magic_name__ : Optional[Any] =csv.DictWriter(lowerCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): import bza __magic_name__ : Optional[int] =tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(lowerCamelCase , """rb""" ) as f: __magic_name__ : List[Any] =f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowerCamelCase , """wb""" ) as f: f.write(lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Tuple =tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : List[str] =tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(lowerCamelCase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : List[str] =tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCamelCase ) ) ) f.write(lowerCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Any =str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) __magic_name__ : Optional[int] =pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(lowerCamelCase , """wb""" ) as f: __magic_name__ : str =pq.ParquetWriter(lowerCamelCase , schema=lowerCamelCase ) __magic_name__ : Optional[int] =pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowerCamelCase ) )] for k in DATA[0]} , schema=lowerCamelCase ) writer.write_table(lowerCamelCase ) writer.close() return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Any =str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) __magic_name__ : Optional[Any] ={"""data""": DATA} with open(lowerCamelCase , """w""" ) as f: json.dump(lowerCamelCase , lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[int] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) __magic_name__ : int ={"""data""": DATA_DICT_OF_LISTS} with open(lowerCamelCase , """w""" ) as f: json.dump(lowerCamelCase , lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Any =str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(lowerCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(lowerCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : int =str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(lowerCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(lowerCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Tuple =str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(lowerCamelCase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(lowerCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[Any] =str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(lowerCamelCase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(lowerCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): import gzip __magic_name__ : List[str] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(lowerCamelCase , """rb""" ) as orig_file: with gzip.open(lowerCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): import gzip __magic_name__ : str =str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(lowerCamelCase , """rb""" ) as orig_file: with gzip.open(lowerCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : List[str] =tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Optional[int] =tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase , arcname=os.path.join("""nested""" , os.path.basename(lowerCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : List[Any] =tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCamelCase ) ) ) f.write(lowerCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Optional[Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(lowerCamelCase , """w""" ) as f: f.add(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) f.add(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : List[Any] =tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(lowerCamelCase , """w""" ) as f: f.add(lowerCamelCase , arcname=os.path.join("""nested""" , os.path.basename(lowerCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Tuple =["""0""", """1""", """2""", """3"""] __magic_name__ : Union[str, Any] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(lowerCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Tuple =["""0""", """1""", """2""", """3"""] __magic_name__ : Any =str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(lowerCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[Any] =["""0""", """1""", """2""", """3"""] __magic_name__ : Union[str, Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(lowerCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Any =tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : str =tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCamelCase ) ) ) f.write(lowerCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : str =tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(lowerCamelCase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Any ="""\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) __magic_name__ : List[Any] =str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( ): return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( ): return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Dict =tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) return data_dir
21
from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase_ ( lowerCamelCase="ro" , lowerCamelCase="en" , lowerCamelCase="wmt16" , lowerCamelCase=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) __magic_name__ : Dict =F"{src_lang}-{tgt_lang}" print(F"Converting {dataset}-{pair}" ) __magic_name__ : Dict =datasets.load_dataset(lowerCamelCase , lowerCamelCase ) if save_dir is None: __magic_name__ : Optional[int] =F"{dataset}-{pair}" __magic_name__ : int =Path(lowerCamelCase ) save_dir.mkdir(exist_ok=lowerCamelCase ) for split in ds.keys(): print(F"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets __magic_name__ : Dict ="""val""" if split == """validation""" else split __magic_name__ : List[Any] =save_dir.joinpath(F"{fn}.source" ) __magic_name__ : Optional[int] =save_dir.joinpath(F"{fn}.target" ) __magic_name__ : Optional[Any] =src_path.open("""w+""" ) __magic_name__ : List[Any] =tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __magic_name__ : str =x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
21
1
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class __A ( UpperCamelCase__ ): def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Dict =pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def A__ ( self :int ): '''simple docstring''' with self.assertRaises(__snake_case ): __magic_name__ : List[Any] =pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def A__ ( self :Tuple ): '''simple docstring''' with self.assertRaises(__snake_case ): __magic_name__ : str =pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) ) def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : Optional[int] =pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def A__ ( self :str ): '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): __magic_name__ : int =pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Optional[int] =pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Tuple =pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : str =pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def A__ ( self :int ): '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): __magic_name__ : Dict =pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) ) def A__ ( self :int ): '''simple docstring''' __magic_name__ : str =pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : Tuple =pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def A__ ( self :Optional[Any] ): '''simple docstring''' import PIL.Image __magic_name__ : int =PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( """datasets.arrow_writer.cast_to_python_objects""" , side_effect=__snake_case ) as mock_cast_to_python_objects: __magic_name__ : Optional[Any] =pa.array(TypedSequence([{"""path""": None, """bytes""": B"""image_bytes"""}, pil_image] , type=Image() ) ) __magic_name__ , __magic_name__ : List[Any] =mock_cast_to_python_objects.call_args_list[-1] self.assertIn("""optimize_list_casting""" , __snake_case ) self.assertFalse(kwargs["""optimize_list_casting"""] ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : List[Any] =pa.BufferReader(lowerCamelCase ) if isinstance(lowerCamelCase , pa.Buffer ) else pa.memory_map(lowerCamelCase ) __magic_name__ : int =pa.ipc.open_stream(lowerCamelCase ) __magic_name__ : pa.Table =f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : Tuple =pa.BufferOutputStream() __magic_name__ : Any =pa.schema(lowerCamelCase ) if fields else None with ArrowWriter(stream=lowerCamelCase , schema=lowerCamelCase , writer_batch_size=lowerCamelCase ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) __magic_name__ , __magic_name__ : List[Any] =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: __magic_name__ : int ={"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(lowerCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowerCAmelCase_ ( ): __magic_name__ : int =pa.BufferOutputStream() __magic_name__ : int =Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} ) with ArrowWriter(stream=lowerCamelCase , features=lowerCamelCase ) as writer: writer.write({"""labels""": 0} ) writer.write({"""labels""": 1} ) __magic_name__ , __magic_name__ : Union[str, Any] =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata __magic_name__ : List[Any] =pa.BufferReader(output.getvalue() ) __magic_name__ : Any =pa.ipc.open_stream(lowerCamelCase ) __magic_name__ : pa.Table =f.read_all() __magic_name__ : Optional[int] =pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(lowerCamelCase ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[Any] =pa.BufferOutputStream() with ArrowWriter( stream=lowerCamelCase , writer_batch_size=lowerCamelCase , hash_salt="""split_name""" , check_duplicates=lowerCamelCase , ) as writer: with pytest.raises(lowerCamelCase ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=[1, 2] ) __magic_name__ , __magic_name__ : List[str] =writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 10] ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =pa.BufferOutputStream() with ArrowWriter( stream=lowerCamelCase , writer_batch_size=lowerCamelCase , hash_salt="""split_name""" , check_duplicates=lowerCamelCase , ) as writer: with pytest.raises(lowerCamelCase ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=10 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=10 ) __magic_name__ , __magic_name__ : Optional[int] =writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 10] ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =pa.BufferOutputStream() with ArrowWriter( stream=lowerCamelCase , writer_batch_size=lowerCamelCase , hash_salt="""split_name""" , check_duplicates=lowerCamelCase , ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=2 ) __magic_name__ , __magic_name__ : Optional[Any] =writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : str =pa.BufferOutputStream() __magic_name__ : Union[str, Any] =pa.schema(lowerCamelCase ) if fields else None with ArrowWriter(stream=lowerCamelCase , schema=lowerCamelCase , writer_batch_size=lowerCamelCase ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) writer.write_batch({"""col_1""": [], """col_2""": []} ) __magic_name__ , __magic_name__ : List[str] =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: __magic_name__ : Union[str, Any] ={"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(lowerCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : Optional[int] =pa.BufferOutputStream() __magic_name__ : Any =pa.schema(lowerCamelCase ) if fields else None with ArrowWriter(stream=lowerCamelCase , schema=lowerCamelCase , writer_batch_size=lowerCamelCase ) as writer: writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) ) __magic_name__ , __magic_name__ : List[Any] =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: __magic_name__ : int ={"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(lowerCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =pa.BufferOutputStream() __magic_name__ : Union[str, Any] =pa.schema(lowerCamelCase ) if fields else None with ArrowWriter(stream=lowerCamelCase , schema=lowerCamelCase , writer_batch_size=lowerCamelCase ) as writer: writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) ) writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) ) __magic_name__ , __magic_name__ : Dict =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: __magic_name__ : int ={"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(lowerCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowerCAmelCase_ ( ): with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : List[Any] ={"""col_1""": pa.string(), """col_2""": pa.intaa()} __magic_name__ : List[str] =os.path.join(lowerCamelCase , """test.arrow""" ) with ArrowWriter(path=lowerCamelCase , schema=pa.schema(lowerCamelCase ) ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) __magic_name__ , __magic_name__ : List[Any] =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(lowerCamelCase , metadata=writer._schema.metadata ) _check_output(lowerCamelCase , 1 ) def lowerCAmelCase_ ( lowerCamelCase ): if pa.types.is_list(lowerCamelCase ): return get_base_dtype(arr_type.value_type ) else: return arr_type def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): if isinstance(lst[0] , lowerCamelCase ): change_first_primitive_element_in_list(lst[0] , lowerCamelCase ) else: __magic_name__ : Any =value @pytest.mark.parametrize("""optimized_int_type, expected_dtype""" , [(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Optional[Any] =pa.array(TypedSequence(lowerCamelCase , optimized_int_type=lowerCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( """col, expected_dtype""" , [ ("""attention_mask""", pa.inta()), ("""special_tokens_mask""", pa.inta()), ("""token_type_ids""", pa.inta()), ("""input_ids""", pa.intaa()), ("""other""", pa.intaa()), ] , ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): # in range __magic_name__ : int =pa.array(OptimizedTypedSequence(lowerCamelCase , col=lowerCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications __magic_name__ : List[str] =copy.deepcopy(lowerCamelCase ) __magic_name__ : Optional[Any] =np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(lowerCamelCase , lowerCamelCase ) __magic_name__ : Optional[int] =pa.array(OptimizedTypedSequence(lowerCamelCase , col=lowerCamelCase ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("""raise_exception""" , [False, True] ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : Optional[Any] =str(tmp_path / """dataset-train.arrow""" ) try: with ArrowWriter(path=lowerCamelCase ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Dict ="""mock://dataset-train.arrow""" with ArrowWriter(path=lowerCamelCase , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(lowerCamelCase ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) __magic_name__ , __magic_name__ : str =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(lowerCamelCase ) def lowerCAmelCase_ ( ): __magic_name__ : int =pa.BufferOutputStream() with ParquetWriter(stream=lowerCamelCase ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) __magic_name__ , __magic_name__ : List[Any] =writer.finalize() assert num_examples == 2 assert num_bytes > 0 __magic_name__ : str =pa.BufferReader(output.getvalue() ) __magic_name__ : pa.Table =pq.read_table(lowerCamelCase ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("""embed_local_files""" , [False, True] ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): import PIL.Image __magic_name__ : List[Any] =str(tmp_path / """test_image_rgb.jpg""" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(lowerCamelCase , format="""png""" ) __magic_name__ : Tuple =pa.BufferOutputStream() with ParquetWriter( stream=lowerCamelCase , features=Features({"""image""": Image()} ) , embed_local_files=lowerCamelCase ) as writer: writer.write({"""image""": image_path} ) writer.finalize() __magic_name__ : Dict =pa.BufferReader(output.getvalue() ) __magic_name__ : pa.Table =pq.read_table(lowerCamelCase ) __magic_name__ : str =pa_table.to_pydict() if embed_local_files: assert isinstance(out["""image"""][0]["""path"""] , lowerCamelCase ) with open(lowerCamelCase , """rb""" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def lowerCAmelCase_ ( ): __magic_name__ : List[str] =pa.schema([pa.field("""col_1""" , pa.string() , nullable=lowerCamelCase )] ) __magic_name__ : str =pa.BufferOutputStream() with ArrowWriter(stream=lowerCamelCase ) as writer: writer._build_writer(inferred_schema=lowerCamelCase ) assert writer._schema == pa.schema([pa.field("""col_1""" , pa.string() )] )
21
from __future__ import annotations from fractions import Fraction def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =[] __magic_name__ : List[Any] =11 __magic_name__ : Tuple =int("""1""" + """0""" * digit_len ) for num in range(lowerCamelCase , lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowerCamelCase , lowerCamelCase ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 __magic_name__ : List[str] =10 return solutions def lowerCAmelCase_ ( lowerCamelCase = 2 ): __magic_name__ : str =1.0 for fraction in fraction_list(lowerCamelCase ): __magic_name__ : int =Fraction(lowerCamelCase ) result *= frac.denominator / frac.numerator return int(lowerCamelCase ) if __name__ == "__main__": print(solution())
21
1
from typing import Any def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): _validation( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) # Creates data structures and fill initial step __magic_name__ : dict ={} __magic_name__ : dict ={} for state in states_space: __magic_name__ : Optional[int] =observations_space[0] __magic_name__ : List[Any] =( initial_probabilities[state] * emission_probabilities[state][observation] ) __magic_name__ : Any =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowerCamelCase ) ): __magic_name__ : List[str] =observations_space[o] __magic_name__ : Tuple =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __magic_name__ : Union[str, Any] ="""""" __magic_name__ : int =-1 for k_state in states_space: __magic_name__ : Any =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __magic_name__ : Tuple =probability __magic_name__ : List[str] =k_state # Update probabilities and pointers dicts __magic_name__ : Optional[int] =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __magic_name__ : List[str] =arg_max # The final observation __magic_name__ : Optional[Any] =observations_space[len(lowerCamelCase ) - 1] # argmax for given final observation __magic_name__ : List[Any] ="""""" __magic_name__ : List[str] =-1 for k_state in states_space: __magic_name__ : Any =probabilities[(k_state, final_observation)] if probability > max_probability: __magic_name__ : List[str] =probability __magic_name__ : List[str] =k_state __magic_name__ : Tuple =arg_max # Process pointers backwards __magic_name__ : Any =last_state __magic_name__ : List[Any] =[] for o in range(len(lowerCamelCase ) - 1 , -1 , -1 ): result.append(lowerCamelCase ) __magic_name__ : Tuple =pointers[previous, observations_space[o]] result.reverse() return result def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): _validate_not_empty( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) _validate_lists(lowerCamelCase , lowerCamelCase ) _validate_dicts( lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("""There's an empty parameter""" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): _validate_list(lowerCamelCase , """observations_space""" ) _validate_list(lowerCamelCase , """states_space""" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): if not isinstance(_object , lowerCamelCase ): __magic_name__ : Any =F"{var_name} must be a list" raise ValueError(lowerCamelCase ) else: for x in _object: if not isinstance(lowerCamelCase , lowerCamelCase ): __magic_name__ : List[str] =F"{var_name} must be a list of strings" raise ValueError(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , ): _validate_dict(lowerCamelCase , """initial_probabilities""" , lowerCamelCase ) _validate_nested_dict(lowerCamelCase , """transition_probabilities""" ) _validate_nested_dict(lowerCamelCase , """emission_probabilities""" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): _validate_dict(_object , lowerCamelCase , lowerCamelCase ) for x in _object.values(): _validate_dict(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): if not isinstance(_object , lowerCamelCase ): __magic_name__ : int =F"{var_name} must be a dict" raise ValueError(lowerCamelCase ) if not all(isinstance(lowerCamelCase , lowerCamelCase ) for x in _object ): __magic_name__ : Tuple =F"{var_name} all keys must be strings" raise ValueError(lowerCamelCase ) if not all(isinstance(lowerCamelCase , lowerCamelCase ) for x in _object.values() ): __magic_name__ : Tuple ="""nested dictionary """ if nested else """""" __magic_name__ : Any =F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
21
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( lowerCamelCase ): # A local function to see if a dot lands in the circle. def is_in_circle(lowerCamelCase , lowerCamelCase ) -> bool: __magic_name__ : Dict =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __magic_name__ : Union[str, Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. __magic_name__ : List[Any] =proportion * 4 print(F"The estimated value of pi is {pi_estimate}" ) print(F"The numpy value of pi is {pi}" ) print(F"The total error is {abs(pi - pi_estimate )}" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 , ): return mean( function_to_integrate(uniform(lowerCamelCase , lowerCamelCase ) ) for _ in range(lowerCamelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ): def identity_function(lowerCamelCase ) -> float: return x __magic_name__ : Optional[int] =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __magic_name__ : str =(max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {expected_value}" ) print(F"Total error is {abs(estimated_value - expected_value )}" ) print("""******************""" ) def lowerCAmelCase_ ( lowerCamelCase ): def function_to_integrate(lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) __magic_name__ : Dict =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {pi}" ) print(F"Total error is {abs(estimated_value - pi )}" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = CanineTokenizer UpperCamelCase = False def A__ ( self :Tuple ): '''simple docstring''' super().setUp() __magic_name__ : Optional[int] =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A__ ( self :Optional[Any] ): '''simple docstring''' return CanineTokenizer.from_pretrained("""google/canine-s""" ) def A__ ( self :Optional[int] , **__snake_case :Any ): '''simple docstring''' __magic_name__ : Any =self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) __magic_name__ : Optional[int] =10_24 return tokenizer @require_torch def A__ ( self :int ): '''simple docstring''' __magic_name__ : str =self.canine_tokenizer __magic_name__ : Any =["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off __magic_name__ : Optional[int] =[5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __magic_name__ : Dict =tokenizer(__snake_case , padding=__snake_case , return_tensors="""pt""" ) self.assertIsInstance(__snake_case , __snake_case ) __magic_name__ : Optional[int] =list(batch.input_ids.numpy()[0] ) self.assertListEqual(__snake_case , __snake_case ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =self.canine_tokenizer __magic_name__ : Optional[Any] =["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] __magic_name__ : int =tokenizer(__snake_case , padding=__snake_case , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , __snake_case ) self.assertIn("""attention_mask""" , __snake_case ) self.assertIn("""token_type_ids""" , __snake_case ) @require_torch def A__ ( self :int ): '''simple docstring''' __magic_name__ : Dict =self.canine_tokenizer __magic_name__ : List[Any] =[ """What's the weater?""", """It's about 25 degrees.""", ] __magic_name__ : Any =tokenizer( text_target=__snake_case , max_length=32 , padding="""max_length""" , truncation=__snake_case , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Optional[Any] =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __magic_name__ : Tuple =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : Any =tempfile.mkdtemp() __magic_name__ : Union[str, Any] =""" He is very happy, UNwant\u00E9d,running""" __magic_name__ : List[str] =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) tokenizer.save_pretrained(__snake_case ) __magic_name__ : Optional[Any] =tokenizer.__class__.from_pretrained(__snake_case ) __magic_name__ : str =after_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) shutil.rmtree(__snake_case ) __magic_name__ : int =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : str =tempfile.mkdtemp() __magic_name__ : Optional[int] =""" He is very happy, UNwant\u00E9d,running""" __magic_name__ : Optional[Any] =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __magic_name__ : Optional[int] =chr(0xE_0_0_7 ) additional_special_tokens.append(__snake_case ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __magic_name__ : List[Any] =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) tokenizer.save_pretrained(__snake_case ) __magic_name__ : Optional[Any] =tokenizer.__class__.from_pretrained(__snake_case ) __magic_name__ : List[Any] =after_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) self.assertIn(__snake_case , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __magic_name__ : Optional[int] =tokenizer.__class__.from_pretrained(__snake_case , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__snake_case ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[int] =self.get_tokenizers(do_lower_case=__snake_case ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __magic_name__ , __magic_name__ : List[str] =self.get_clean_sequence(__snake_case ) # a special token for Canine can be defined as follows: __magic_name__ : Tuple =0xE_0_0_5 __magic_name__ : Tuple =chr(__snake_case ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) __magic_name__ : Optional[int] =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertEqual(len(__snake_case ) , 1 ) __magic_name__ : Any =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__snake_case ) __magic_name__ : Union[str, Any] =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) __magic_name__ : Optional[int] =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) __magic_name__ : Union[str, Any] =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertEqual(__snake_case , input_encoded + special_token_id ) __magic_name__ : List[str] =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) self.assertTrue(special_token not in decoded ) def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Dict =self.get_tokenizers(do_lower_case=__snake_case ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __magic_name__ : Tuple =chr(0xE_0_0_5 ) __magic_name__ : Union[str, Any] =chr(0xE_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__snake_case ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) __magic_name__ : List[Any] =tokenizer.tokenize(__snake_case ) __magic_name__ : Union[str, Any] =tokenizer.tokenize(__snake_case ) self.assertEqual(len(__snake_case ) , 1 ) self.assertEqual(len(__snake_case ) , 1 ) self.assertEqual(token_a[0] , __snake_case ) self.assertEqual(token_a[0] , __snake_case ) @require_tokenizers def A__ ( self :int ): '''simple docstring''' __magic_name__ : Dict =self.get_tokenizers(do_lower_case=__snake_case ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # a special token for Canine can be defined as follows: __magic_name__ : Dict =0xE_0_0_6 __magic_name__ : Tuple =chr(__snake_case ) __magic_name__ : str =AddedToken(__snake_case , lstrip=__snake_case ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__snake_case ) tokenizer.from_pretrained(__snake_case ) def A__ ( self :int ): '''simple docstring''' __magic_name__ : str =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__snake_case ) with open(os.path.join(__snake_case , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __magic_name__ : List[Any] =json.load(__snake_case ) with open(os.path.join(__snake_case , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __magic_name__ : str =json.load(__snake_case ) # a special token for Canine can be defined as follows: __magic_name__ : int =0xE_0_0_6 __magic_name__ : List[str] =chr(__snake_case ) __magic_name__ : Union[str, Any] =[new_token_a] __magic_name__ : List[Any] =[new_token_a] with open(os.path.join(__snake_case , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__snake_case , __snake_case ) with open(os.path.join(__snake_case , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__snake_case , __snake_case ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __magic_name__ : Union[str, Any] =tokenizer_class.from_pretrained(__snake_case , extra_ids=0 ) self.assertIn(__snake_case , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __magic_name__ : str =0xE_0_0_7 __magic_name__ : Optional[int] =chr(__snake_case ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __magic_name__ : List[Any] =[AddedToken(__snake_case , lstrip=__snake_case )] __magic_name__ : str =tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , extra_ids=0 ) self.assertIn(__snake_case , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def A__ ( self :str ): '''simple docstring''' __magic_name__ : List[str] =self.get_tokenizers(do_lower_case=__snake_case ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __magic_name__ : Dict ="""hello world""" if self.space_between_special_tokens: __magic_name__ : Dict ="""[CLS] hello world [SEP]""" else: __magic_name__ : int =input __magic_name__ : Any =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) __magic_name__ : List[Any] =tokenizer.decode(__snake_case , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__snake_case , [output, output.lower()] ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : str =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __magic_name__ : str =[ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __magic_name__ : Union[str, Any] ="""a""" __magic_name__ : int =ord(__snake_case ) for attr in attributes_list: setattr(__snake_case , attr + """_id""" , __snake_case ) self.assertEqual(getattr(__snake_case , __snake_case ) , __snake_case ) self.assertEqual(getattr(__snake_case , attr + """_id""" ) , __snake_case ) setattr(__snake_case , attr + """_id""" , __snake_case ) self.assertEqual(getattr(__snake_case , __snake_case ) , __snake_case ) self.assertEqual(getattr(__snake_case , attr + """_id""" ) , __snake_case ) setattr(__snake_case , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__snake_case , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__snake_case , """additional_special_tokens_ids""" ) , [] ) __magic_name__ : Optional[int] =0xE_0_0_6 __magic_name__ : Any =chr(__snake_case ) setattr(__snake_case , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(__snake_case , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(__snake_case , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def A__ ( self :int ): '''simple docstring''' pass def A__ ( self :str ): '''simple docstring''' pass def A__ ( self :str ): '''simple docstring''' pass def A__ ( self :Tuple ): '''simple docstring''' pass def A__ ( self :Tuple ): '''simple docstring''' pass def A__ ( self :Any ): '''simple docstring''' pass def A__ ( self :Optional[int] ): '''simple docstring''' pass def A__ ( self :int ): '''simple docstring''' pass
21
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __A ( tf.keras.layers.Layer ): def __init__( self :Optional[int] , __snake_case :Dict[str, int] , __snake_case :List[str] , __snake_case :int = None , __snake_case :int = None ): '''simple docstring''' super().__init__() __magic_name__ : Optional[int] =pad_token_id __magic_name__ : List[Any] =max_length __magic_name__ : Dict =vocab __magic_name__ : int =merges __magic_name__ : Optional[int] =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case ) @classmethod def A__ ( cls :List[Any] , __snake_case :GPTaTokenizer , *__snake_case :int , **__snake_case :Any ): '''simple docstring''' __magic_name__ : List[Any] =[""" """.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()] __magic_name__ : str =tokenizer.get_vocab() return cls(__snake_case , __snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Dict , __snake_case :Union[str, os.PathLike] , *__snake_case :Union[str, Any] , **__snake_case :int ): '''simple docstring''' __magic_name__ : Dict =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case ) return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Optional[Any] , __snake_case :List[Any] ): '''simple docstring''' return cls(**__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def A__ ( self :List[Any] , __snake_case :Dict , __snake_case :int = None ): '''simple docstring''' __magic_name__ : Optional[Any] =self.tf_tokenizer(__snake_case ) __magic_name__ : Tuple =tf.ones_like(__snake_case ) if self.pad_token_id is not None: # pad the tokens up to max length __magic_name__ : Tuple =max_length if max_length is not None else self.max_length if max_length is not None: __magic_name__ , __magic_name__ : Tuple =pad_model_inputs( __snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
21
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ : Optional[Any] = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
import math import tensorflow as tf from packaging import version def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : List[str] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Optional[Any] =tf.cast(math.pi , x.dtype ) __magic_name__ : int =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Any =tf.convert_to_tensor(lowerCamelCase ) return x * tf.tanh(tf.math.softplus(lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[Any] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Union[str, Any] =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Dict =tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCAmelCase_ ( lowerCamelCase ): return tf.clip_by_value(_gelu(lowerCamelCase ) , -10 , 10 ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=-1 ): __magic_name__ , __magic_name__ : List[Any] =tf.split(lowerCamelCase , 2 , axis=lowerCamelCase ) return a * tf.math.sigmoid(lowerCamelCase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowerCAmelCase_ ( lowerCamelCase ): return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase ) UpperCAmelCase_ : List[str] = tf.keras.activations.gelu UpperCAmelCase_ : Dict = approximate_gelu_wrap else: UpperCAmelCase_ : Dict = _gelu UpperCAmelCase_ : str = _gelu_new UpperCAmelCase_ : Any = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowerCAmelCase_ ( lowerCamelCase ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
21
1
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def lowerCAmelCase_ ( lowerCamelCase=None , lowerCamelCase=None ): return field(default_factory=lambda: default , metadata=lowerCamelCase ) @dataclass class __A : UpperCamelCase = list_field( default=[] , metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } , ) UpperCamelCase = list_field( default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) UpperCamelCase = list_field( default=[8, 32, 128, 512] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) UpperCamelCase = field(default=UpperCamelCase__ , metadata={"""help""": """Use FP16 to accelerate inference."""} ) UpperCamelCase = field(default=UpperCamelCase__ , metadata={"""help""": """Benchmark training of model"""} ) UpperCamelCase = field(default=UpperCamelCase__ , metadata={"""help""": """Verbose memory tracing"""} ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } , ) UpperCamelCase = field(default=UpperCamelCase__ , metadata={"""help""": """Trace memory line by line"""} ) UpperCamelCase = field(default=UpperCamelCase__ , metadata={"""help""": """Save result to a CSV file"""} ) UpperCamelCase = field(default=UpperCamelCase__ , metadata={"""help""": """Save all print statements in a log file"""} ) UpperCamelCase = field(default=UpperCamelCase__ , metadata={"""help""": """Whether to print environment information"""} ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } , ) UpperCamelCase = field( default=F"""inference_time_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving time results to csv."""} , ) UpperCamelCase = field( default=F"""inference_memory_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , ) UpperCamelCase = field( default=F"""train_time_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , ) UpperCamelCase = field( default=F"""train_memory_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , ) UpperCamelCase = field( default=F"""env_info_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving environment information."""} , ) UpperCamelCase = field( default=F"""log_{round(time() )}.csv""" , metadata={"""help""": """Log filename used if print statements are saved in log."""} , ) UpperCamelCase = field(default=3 , metadata={"""help""": """Times an experiment will be run."""} ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } , ) def A__ ( self :List[Any] ): '''simple docstring''' warnings.warn( f"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils" """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , __snake_case , ) def A__ ( self :Dict ): '''simple docstring''' return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def A__ ( self :Union[str, Any] ): '''simple docstring''' if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def A__ ( self :Optional[Any] ): '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
21
from collections.abc import Sequence def lowerCAmelCase_ ( lowerCamelCase = None ): if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __magic_name__ : str =nums[0] for i in range(1 , len(lowerCamelCase ) ): __magic_name__ : Any =nums[i] __magic_name__ : Dict =max(lowerCamelCase , ans + num , lowerCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCAmelCase_ : List[str] = int(input("Enter number of elements : ").strip()) UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
21
1
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : List[Any] =XCLIPTextConfig() # derive patch size from model name __magic_name__ : int =model_name.find("""patch""" ) __magic_name__ : str =int(model_name[start_idx + len("""patch""" ) : start_idx + len("""patch""" ) + 2] ) __magic_name__ : Dict =XCLIPVisionConfig(patch_size=lowerCamelCase , num_frames=lowerCamelCase ) if "large" in model_name: __magic_name__ : int =768 __magic_name__ : Tuple =3072 __magic_name__ : str =12 __magic_name__ : Optional[Any] =1024 __magic_name__ : List[str] =4096 __magic_name__ : Union[str, Any] =16 __magic_name__ : Union[str, Any] =24 __magic_name__ : Tuple =768 __magic_name__ : Union[str, Any] =3072 if model_name == "xclip-large-patch14-16-frames": __magic_name__ : Dict =336 __magic_name__ : Any =XCLIPConfig.from_text_vision_configs(lowerCamelCase , lowerCamelCase ) if "large" in model_name: __magic_name__ : int =768 return config def lowerCAmelCase_ ( lowerCamelCase ): # text encoder if name == "token_embedding.weight": __magic_name__ : int =name.replace("""token_embedding.weight""" , """text_model.embeddings.token_embedding.weight""" ) if name == "positional_embedding": __magic_name__ : Union[str, Any] =name.replace("""positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "ln_1" in name: __magic_name__ : Union[str, Any] =name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: __magic_name__ : int =name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: __magic_name__ : Optional[Any] =name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: __magic_name__ : Any =name.replace("""c_proj""" , """fc2""" ) if name.startswith("""transformer.resblocks""" ): __magic_name__ : List[str] =name.replace("""transformer.resblocks""" , """text_model.encoder.layers""" ) if "attn.out_proj" in name and "message" not in name: __magic_name__ : Optional[Any] =name.replace("""attn.out_proj""" , """self_attn.out_proj""" ) if "ln_final" in name: __magic_name__ : str =name.replace("""ln_final""" , """text_model.final_layer_norm""" ) # visual encoder if name == "visual.class_embedding": __magic_name__ : Optional[int] =name.replace("""visual.class_embedding""" , """vision_model.embeddings.class_embedding""" ) if name == "visual.positional_embedding": __magic_name__ : Dict =name.replace("""visual.positional_embedding""" , """vision_model.embeddings.position_embedding.weight""" ) if name.startswith("""visual.transformer.resblocks""" ): __magic_name__ : Optional[int] =name.replace("""visual.transformer.resblocks""" , """vision_model.encoder.layers""" ) if "visual.conv1" in name: __magic_name__ : Any =name.replace("""visual.conv1""" , """vision_model.embeddings.patch_embedding""" ) if "visual.ln_pre" in name: __magic_name__ : Optional[Any] =name.replace("""visual.ln_pre""" , """vision_model.pre_layernorm""" ) if "visual.ln_post" in name: __magic_name__ : Optional[int] =name.replace("""visual.ln_post""" , """vision_model.post_layernorm""" ) if "visual.proj" in name: __magic_name__ : List[Any] =name.replace("""visual.proj""" , """visual_projection.weight""" ) if "text_projection" in name: __magic_name__ : Optional[int] =name.replace("""text_projection""" , """text_projection.weight""" ) # things on top if "prompts_visual_proj" in name: __magic_name__ : Union[str, Any] =name.replace("""prompts_visual_proj""" , """prompts_visual_projection""" ) if "prompts_visual_ln" in name: __magic_name__ : List[Any] =name.replace("""prompts_visual_ln""" , """prompts_visual_layernorm""" ) # mit if name == "mit.positional_embedding": __magic_name__ : Union[str, Any] =name.replace("""positional""" , """position""" ) if name.startswith("""mit.resblocks""" ): __magic_name__ : Union[str, Any] =name.replace("""mit.resblocks""" , """mit.encoder.layers""" ) # prompts generator if name.startswith("""prompts_generator.norm""" ): __magic_name__ : int =name.replace("""prompts_generator.norm""" , """prompts_generator.layernorm""" ) return name def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): for key in orig_state_dict.copy().keys(): __magic_name__ : Dict =orig_state_dict.pop(lowerCamelCase ) if "attn.in_proj" in key: __magic_name__ : Any =key.split(""".""" ) if key.startswith("""visual""" ): __magic_name__ : Tuple =key_split[3] __magic_name__ : Dict =config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: __magic_name__ : Optional[Any] =val[ :dim, : ] __magic_name__ : Optional[Any] =val[ dim : dim * 2, : ] __magic_name__ : Any =val[ -dim:, : ] else: __magic_name__ : Union[str, Any] =val[ :dim ] __magic_name__ : Union[str, Any] =val[ dim : dim * 2 ] __magic_name__ : int =val[ -dim: ] else: if "weight" in key: __magic_name__ : str =val[ :dim, : ] __magic_name__ : Any =val[ dim : dim * 2, : ] __magic_name__ : Any =val[ -dim:, : ] else: __magic_name__ : Any =val[:dim] __magic_name__ : List[str] =val[ dim : dim * 2 ] __magic_name__ : Any =val[-dim:] elif key.startswith("""mit""" ): __magic_name__ : Dict =key_split[2] __magic_name__ : str =config.vision_config.mit_hidden_size if "weight" in key: __magic_name__ : Optional[int] =val[:dim, :] __magic_name__ : Union[str, Any] =val[dim : dim * 2, :] __magic_name__ : int =val[-dim:, :] else: __magic_name__ : List[Any] =val[:dim] __magic_name__ : Tuple =val[dim : dim * 2] __magic_name__ : Any =val[-dim:] else: __magic_name__ : Union[str, Any] =key_split[2] __magic_name__ : int =config.text_config.hidden_size if "weight" in key: __magic_name__ : List[str] =val[:dim, :] __magic_name__ : List[str] =val[ dim : dim * 2, : ] __magic_name__ : List[Any] =val[-dim:, :] else: __magic_name__ : Optional[Any] =val[:dim] __magic_name__ : str =val[ dim : dim * 2 ] __magic_name__ : Optional[int] =val[-dim:] else: __magic_name__ : Optional[int] =rename_key(lowerCamelCase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: __magic_name__ : Any =val.T __magic_name__ : Optional[Any] =val return orig_state_dict def lowerCAmelCase_ ( lowerCamelCase ): if num_frames == 8: __magic_name__ : Union[str, Any] ="""eating_spaghetti_8_frames.npy""" elif num_frames == 16: __magic_name__ : Union[str, Any] ="""eating_spaghetti.npy""" elif num_frames == 32: __magic_name__ : Union[str, Any] ="""eating_spaghetti_32_frames.npy""" __magic_name__ : str =hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename=lowerCamelCase , repo_type="""dataset""" , ) __magic_name__ : Union[str, Any] =np.load(lowerCamelCase ) return list(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=False ): __magic_name__ : Tuple ={ # fully supervised kinetics-400 checkpoints """xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""", """xclip-base-patch32-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth""" ), """xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""", """xclip-base-patch16-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth""" ), """xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb""", """xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f""", # fully supervised kinetics-600 checkpoints """xclip-base-patch16-kinetics-600""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth""" ), """xclip-base-patch16-kinetics-600-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth""" ), """xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be""", # few shot """xclip-base-patch16-hmdb-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth""" ), """xclip-base-patch16-hmdb-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth""" ), """xclip-base-patch16-hmdb-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth""" ), """xclip-base-patch16-hmdb-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth""" ), """xclip-base-patch16-ucf-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth""" ), """xclip-base-patch16-ucf-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth""" ), """xclip-base-patch16-ucf-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth""" ), """xclip-base-patch16-ucf-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth""" ), # zero shot """xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""", } __magic_name__ : List[str] =model_to_url[model_name] __magic_name__ : List[Any] =8 if "16-frames" in model_name: __magic_name__ : Any =16 elif "shot" in model_name: __magic_name__ : Optional[int] =32 __magic_name__ : Union[str, Any] =get_xclip_config(lowerCamelCase , lowerCamelCase ) __magic_name__ : Any =XCLIPModel(lowerCamelCase ) model.eval() if "drive" in checkpoint_url: __magic_name__ : Optional[int] ="""pytorch_model.bin""" gdown.cached_download(lowerCamelCase , lowerCamelCase , quiet=lowerCamelCase ) __magic_name__ : Optional[int] =torch.load(lowerCamelCase , map_location="""cpu""" )["""model"""] else: __magic_name__ : Optional[Any] =torch.hub.load_state_dict_from_url(lowerCamelCase )["""model"""] __magic_name__ : Optional[Any] =convert_state_dict(lowerCamelCase , lowerCamelCase ) __magic_name__ : Any =XCLIPModel(lowerCamelCase ) __magic_name__ , __magic_name__ : Dict =model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() __magic_name__ : str =336 if model_name == """xclip-large-patch14-16-frames""" else 224 __magic_name__ : Union[str, Any] =VideoMAEImageProcessor(size=lowerCamelCase ) __magic_name__ : Any =CLIPTokenizer.from_pretrained("""openai/clip-vit-base-patch32""" ) __magic_name__ : List[str] =CLIPTokenizerFast.from_pretrained("""openai/clip-vit-base-patch32""" ) __magic_name__ : Tuple =XCLIPProcessor(image_processor=lowerCamelCase , tokenizer=lowerCamelCase ) __magic_name__ : str =prepare_video(lowerCamelCase ) __magic_name__ : List[Any] =processor( text=["""playing sports""", """eating spaghetti""", """go shopping"""] , videos=lowerCamelCase , return_tensors="""pt""" , padding=lowerCamelCase ) print("""Shape of pixel values:""" , inputs.pixel_values.shape ) with torch.no_grad(): __magic_name__ : Any =model(**lowerCamelCase ) # Verify outputs __magic_name__ : Dict =outputs.logits_per_video __magic_name__ : Optional[Any] =logits_per_video.softmax(dim=1 ) print("""Probs:""" , lowerCamelCase ) # kinetics-400 if model_name == "xclip-base-patch32": __magic_name__ : Union[str, Any] =torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] ) elif model_name == "xclip-base-patch32-16-frames": __magic_name__ : Tuple =torch.tensor([[7.0_999E-04, 9.9_883E-01, 4.5_580E-04]] ) elif model_name == "xclip-base-patch16": __magic_name__ : str =torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] ) elif model_name == "xclip-base-patch16-16-frames": __magic_name__ : List[Any] =torch.tensor([[7.6_937E-04, 9.9_728E-01, 1.9_473E-03]] ) elif model_name == "xclip-large-patch14": __magic_name__ : Optional[int] =torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] ) elif model_name == "xclip-large-patch14-16-frames": __magic_name__ : Union[str, Any] =torch.tensor([[3.3_877E-04, 9.9_937E-01, 2.8_888E-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": __magic_name__ : Any =torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": __magic_name__ : str =torch.tensor([[3.8_554E-04, 9.9_929E-01, 3.2_754E-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": __magic_name__ : Dict =torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": __magic_name__ : str =torch.tensor([[7.1_890E-06, 9.9_994E-01, 5.6_559E-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": __magic_name__ : Tuple =torch.tensor([[1.0_320E-05, 9.9_993E-01, 6.2_435E-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": __magic_name__ : List[str] =torch.tensor([[4.1_377E-06, 9.9_990E-01, 9.8_386E-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": __magic_name__ : List[str] =torch.tensor([[4.1_347E-05, 9.9_962E-01, 3.3_411E-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": __magic_name__ : Optional[Any] =torch.tensor([[8.5_857E-05, 9.9_928E-01, 6.3_291E-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": __magic_name__ : int =torch.tensor([[8.5_857E-05, 9.9_928E-01, 6.3_291E-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": __magic_name__ : Optional[Any] =torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": __magic_name__ : Any =torch.tensor([[9.8_219E-04, 9.9_593E-01, 3.0_863E-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": __magic_name__ : int =torch.tensor([[3.5_082E-04, 9.9_785E-01, 1.7_966E-03]] ) else: raise ValueError(F"Model name {model_name} not supported" ) assert torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase ) if push_to_hub: print("""Pushing model, processor and slow tokenizer files to the hub...""" ) model.push_to_hub(lowerCamelCase , organization="""nielsr""" ) processor.push_to_hub(lowerCamelCase , organization="""nielsr""" ) slow_tokenizer.push_to_hub(lowerCamelCase , organization="""nielsr""" ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
21
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : UpperCamelCase = 42 UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""Translation""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def __call__( self :Union[str, Any] ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def A__ ( self :List[Any] ): '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __A : UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""TranslationVariableLanguages""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =sorted(set(self.languages ) ) if self.languages else None __magic_name__ : Optional[int] =len(self.languages ) if self.languages else None def __call__( self :List[str] ): '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def A__ ( self :str , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[int] =set(self.languages ) if self.languages and set(__snake_case ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __magic_name__ : Any =[] for lang, text in translation_dict.items(): if isinstance(__snake_case , __snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __magic_name__ , __magic_name__ : List[str] =zip(*sorted(__snake_case ) ) return {"language": languages, "translation": translations} def A__ ( self :List[Any] ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
21
1
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = {"vocab_file": "spiece.model"} UpperCAmelCase_ : List[Any] = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } UpperCAmelCase_ : Optional[Any] = { "AI-Sweden/gpt-sw3-126m": 2048, "AI-Sweden/gpt-sw3-350m": 2048, "AI-Sweden/gpt-sw3-1.6b": 2048, "AI-Sweden/gpt-sw3-6.7b": 2048, "AI-Sweden/gpt-sw3-20b": 2048, } class __A ( UpperCamelCase__ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self :List[Any] , __snake_case :Union[str, Any] , __snake_case :str=False , __snake_case :List[str]=False , __snake_case :str=False , __snake_case :str=None , __snake_case :List[str]=None , __snake_case :Tuple=None , __snake_case :Dict=None , __snake_case :Optional[Dict[str, Any]] = None , **__snake_case :Optional[Any] , ): '''simple docstring''' __magic_name__ : Union[str, Any] ={} if sp_model_kwargs is None else sp_model_kwargs __magic_name__ : List[Any] =kwargs.get("""name_or_path""" ) if name_or_path is None: logger.warning( """name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,""" """ you are testing the model, this can safely be ignored""" ) __magic_name__ : Any ="""None""" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __magic_name__ : Optional[int] ="""<|endoftext|>""" if eos_token is None else eos_token __magic_name__ : List[Any] ="""<unk>""" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __magic_name__ : int =unk_token if pad_token is None else pad_token __magic_name__ : int =eos_token if bos_token is None else bos_token else: __magic_name__ : Optional[Any] ="""<pad>""" if pad_token is None else pad_token __magic_name__ : Optional[int] ="""<s>""" if bos_token is None else bos_token super().__init__( do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) __magic_name__ : Tuple =do_lower_case __magic_name__ : List[str] =remove_space __magic_name__ : Optional[Any] =keep_accents __magic_name__ : int =vocab_file __magic_name__ : str =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__snake_case ) # Used for whitespace normalization in input texts # fmt : off __magic_name__ : List[Any] ={""" """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """""", """„"""} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __magic_name__ : str =re.compile( f"[{''.join(map(__snake_case , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]" ) def __getstate__( self :Dict ): '''simple docstring''' __magic_name__ : Optional[int] =self.__dict__.copy() __magic_name__ : List[str] =None return state def __setstate__( self :List[Any] , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : List[Any] =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __magic_name__ : Dict ={} __magic_name__ : Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def A__ ( self :Any ): '''simple docstring''' return len(self.sp_model ) def A__ ( self :Any , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[int] =self.non_printing_characters_re.sub("""""" , __snake_case ) # Normalize whitespaces __magic_name__ : Union[str, Any] ="""""".join([char if char not in self.whitespaces else """ """ for char in text] ) # NFC Unicode normalization __magic_name__ : List[str] =unicodedata.normalize("""NFC""" , __snake_case ) return text def A__ ( self :Dict , __snake_case :str , **__snake_case :Optional[int] ): '''simple docstring''' __magic_name__ : str =self.preprocess_text(__snake_case ) return self.sp_model.encode(__snake_case , out_type=__snake_case ) def A__ ( self :Union[str, Any] , __snake_case :str ): '''simple docstring''' return self.sp_model.PieceToId(__snake_case ) def A__ ( self :Dict , __snake_case :int ): '''simple docstring''' return self.sp_model.IdToPiece(__snake_case ) @staticmethod def A__ ( __snake_case :str ): '''simple docstring''' return out_string def A__ ( self :Optional[int] , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : Optional[int] =[] __magic_name__ : List[Any] ="""""" __magic_name__ : Union[str, Any] =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__snake_case ) + token __magic_name__ : int =True __magic_name__ : str =[] else: current_sub_tokens.append(__snake_case ) __magic_name__ : List[Any] =False out_string += self.sp_model.decode(__snake_case ) return out_string def A__ ( self :Any ): '''simple docstring''' __magic_name__ : List[Any] ={self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A__ ( self :List[str] , __snake_case :str , __snake_case :Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __magic_name__ : Tuple =os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , """wb""" ) as fi: __magic_name__ : Dict =self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,) def A__ ( self :Dict , __snake_case :Union[str, List[str]] , __snake_case :Union[str, bool] = False ): '''simple docstring''' if isinstance(__snake_case , __snake_case ): __magic_name__ : List[str] =self.preprocess_text(__snake_case ) __magic_name__ : Optional[int] =self.sp_model.encode(__snake_case ) else: __magic_name__ : str =[self.preprocess_text(__snake_case ) for t in text] __magic_name__ : Optional[Any] =self.sp_model.encode(__snake_case ) if return_tensors is True or return_tensors == "pt": __magic_name__ : Any =torch.tensor(__snake_case ) return token_ids def A__ ( self :Tuple , __snake_case :Union[int, List[int]] ): '''simple docstring''' return self.sp_model.decode(__snake_case ) def A__ ( self :Any , __snake_case :"Conversation" ): '''simple docstring''' __magic_name__ : List[str] =[f"User: {text}" if is_user else f"Bot: {text}" for is_user, text in conversation.iter_texts()] __magic_name__ : str =( f"{self.eos_token}{self.bos_token}" + f"{self.bos_token}".join(__snake_case ) + f"{self.bos_token}Bot:" ) return self.encode(text=__snake_case )
21
from sklearn.metrics import matthews_corrcoef import datasets UpperCAmelCase_ : Dict = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCAmelCase_ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCAmelCase_ : Dict = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def A__ ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def A__ ( self :Tuple , __snake_case :str , __snake_case :Tuple , __snake_case :List[str]=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ), }
21
1
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast UpperCAmelCase_ : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class __A ( datasets.BuilderConfig ): UpperCamelCase = 10000 UpperCamelCase = None UpperCamelCase = None class __A ( datasets.ArrowBasedBuilder ): UpperCamelCase = ParquetConfig def A__ ( self :Union[str, Any] ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def A__ ( self :List[Any] , __snake_case :Optional[Any] ): '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) __magic_name__ : Any =dl_manager.download_and_extract(self.config.data_files ) if isinstance(__snake_case , (str, list, tuple) ): __magic_name__ : Optional[Any] =data_files if isinstance(__snake_case , __snake_case ): __magic_name__ : Optional[int] =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __magic_name__ : List[str] =[dl_manager.iter_files(__snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __magic_name__ : Optional[int] =[] for split_name, files in data_files.items(): if isinstance(__snake_case , __snake_case ): __magic_name__ : Optional[Any] =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __magic_name__ : Union[str, Any] =[dl_manager.iter_files(__snake_case ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__snake_case ): with open(__snake_case , """rb""" ) as f: __magic_name__ : List[Any] =datasets.Features.from_arrow_schema(pq.read_schema(__snake_case ) ) break splits.append(datasets.SplitGenerator(name=__snake_case , gen_kwargs={"""files""": files} ) ) return splits def A__ ( self :List[Any] , __snake_case :pa.Table ): '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __magic_name__ : Union[str, Any] =table_cast(__snake_case , self.info.features.arrow_schema ) return pa_table def A__ ( self :Tuple , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[Any] =self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'" ) for file_idx, file in enumerate(itertools.chain.from_iterable(__snake_case ) ): with open(__snake_case , """rb""" ) as f: __magic_name__ : Optional[Any] =pq.ParquetFile(__snake_case ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __magic_name__ : Dict =pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"{file_idx}_{batch_idx}", self._cast_table(__snake_case ) except ValueError as e: logger.error(f"Failed to read file '{file}' with error {type(__snake_case )}: {e}" ) raise
21
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =OmegaConf.load(lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(lowerCamelCase ) ) ) return config def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): if conf_path is None: __magic_name__ : List[str] ="""./model_checkpoints/vqgan_only.yaml""" __magic_name__ : Dict =load_config(lowerCamelCase , display=lowerCamelCase ) __magic_name__ : Tuple =VQModel(**config.model.params ) if ckpt_path is None: __magic_name__ : Optional[Any] ="""./model_checkpoints/vqgan_only.pt""" __magic_name__ : Tuple =torch.load(lowerCamelCase , map_location=lowerCamelCase ) if ".ckpt" in ckpt_path: __magic_name__ : Any =sd["""state_dict"""] model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) model.to(lowerCamelCase ) del sd return model def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =model.encode(lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) __magic_name__ : List[Any] =model.decode(lowerCamelCase ) return xrec def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ , __magic_name__ : Optional[int] =string.rsplit(""".""" , 1 ) if reload: __magic_name__ : Optional[int] =importlib.import_module(lowerCamelCase ) importlib.reload(lowerCamelCase ) return getattr(importlib.import_module(lowerCamelCase , package=lowerCamelCase ) , cls ) def lowerCAmelCase_ ( lowerCamelCase ): if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True ): __magic_name__ : str =instantiate_from_config(lowerCamelCase ) if sd is not None: model.load_state_dict(lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # load the specified checkpoint if ckpt: __magic_name__ : str =torch.load(lowerCamelCase , map_location="""cpu""" ) __magic_name__ : Any =pl_sd["""global_step"""] print(F"loaded model from global step {global_step}." ) else: __magic_name__ : List[Any] ={"""state_dict""": None} __magic_name__ : Optional[Any] =None __magic_name__ : Tuple =load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=lowerCamelCase , eval_mode=lowerCamelCase )["""model"""] return model, global_step
21
1
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self :Optional[int] , __snake_case :int="</s>" , __snake_case :List[Any]="<unk>" , __snake_case :Optional[int]="<pad>" , __snake_case :Any=1_25 , __snake_case :Optional[Any]=None , **__snake_case :Optional[int] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: __magic_name__ : Tuple =[f"<extra_id_{i}>" for i in range(__snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __magic_name__ : List[Any] =len(set(filter(lambda __snake_case : bool("""extra_id""" in str(__snake_case ) ) , __snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" """ provided to ByT5Tokenizer. In this case the additional_special_tokens must include the""" """ extra_ids tokens""" ) __magic_name__ : Tuple =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else pad_token __magic_name__ : List[str] =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else eos_token __magic_name__ : int =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else unk_token super().__init__( eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) __magic_name__ : Union[str, Any] =extra_ids __magic_name__ : Tuple =2**8 # utf is 8 bits # define special tokens dict __magic_name__ : Dict[int, str] ={ self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } __magic_name__ : Optional[int] =len(self.special_tokens_encoder ) __magic_name__ : Any =len(__snake_case ) for i, token in enumerate(__snake_case ): __magic_name__ : Union[str, Any] =self.vocab_size + i - n __magic_name__ : Dict[str, int] ={v: k for k, v in self.special_tokens_encoder.items()} @property def A__ ( self :Optional[Any] ): '''simple docstring''' return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def A__ ( self :Tuple , __snake_case :List[int] , __snake_case :Optional[List[int]] = None , __snake_case :bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(__snake_case )) + [1] return ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1] def A__ ( self :Union[str, Any] , __snake_case :List[int] ): '''simple docstring''' if len(__snake_case ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def A__ ( self :Any , __snake_case :List[int] , __snake_case :Optional[List[int]] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] =[self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def A__ ( self :Union[str, Any] , __snake_case :List[int] , __snake_case :Optional[List[int]] = None ): '''simple docstring''' __magic_name__ : Optional[Any] =self._add_eos_if_not_present(__snake_case ) if token_ids_a is None: return token_ids_a else: __magic_name__ : List[str] =self._add_eos_if_not_present(__snake_case ) return token_ids_a + token_ids_a def A__ ( self :Tuple , __snake_case :str ): '''simple docstring''' __magic_name__ : Dict =[chr(__snake_case ) for i in text.encode("""utf-8""" )] return tokens def A__ ( self :int , __snake_case :List[str] ): '''simple docstring''' if token in self.special_tokens_encoder: __magic_name__ : Dict =self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: __magic_name__ : int =self.added_tokens_encoder[token] elif len(__snake_case ) != 1: __magic_name__ : Optional[Any] =self.unk_token_id else: __magic_name__ : Any =ord(__snake_case ) + self._num_special_tokens return token_id def A__ ( self :Optional[Any] , __snake_case :int ): '''simple docstring''' if index in self.special_tokens_decoder: __magic_name__ : Any =self.special_tokens_decoder[index] else: __magic_name__ : int =chr(index - self._num_special_tokens ) return token def A__ ( self :Union[str, Any] , __snake_case :int ): '''simple docstring''' __magic_name__ : Any =B"""""" for token in tokens: if token in self.special_tokens_decoder: __magic_name__ : int =self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.added_tokens_decoder: __magic_name__ : Union[str, Any] =self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.special_tokens_encoder: __magic_name__ : str =token.encode("""utf-8""" ) elif token in self.added_tokens_encoder: __magic_name__ : Optional[int] =token.encode("""utf-8""" ) else: __magic_name__ : Tuple =bytes([ord(__snake_case )] ) bstring += tok_string __magic_name__ : str =bstring.decode("""utf-8""" , errors="""ignore""" ) return string def A__ ( self :Tuple , __snake_case :str , __snake_case :Optional[str] = None ): '''simple docstring''' return ()
21
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): def A__ ( self :Tuple ): '''simple docstring''' debug_launcher(test_script.main ) def A__ ( self :Dict ): '''simple docstring''' debug_launcher(test_ops.main )
21
1
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch UpperCAmelCase_ : Dict = random.Random() def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=1.0 , lowerCamelCase=None , lowerCamelCase=None ): if rng is None: __magic_name__ : Dict =global_rng __magic_name__ : int =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __A ( unittest.TestCase ): def __init__( self :Tuple , __snake_case :List[str] , __snake_case :Union[str, Any]=7 , __snake_case :int=4_00 , __snake_case :Dict=20_00 , __snake_case :Optional[int]=10 , __snake_case :int=1_60 , __snake_case :Union[str, Any]=8 , __snake_case :Any=0.0 , __snake_case :str=40_00 , __snake_case :Dict=False , __snake_case :Optional[Any]=True , ): '''simple docstring''' __magic_name__ : Tuple =parent __magic_name__ : Optional[Any] =batch_size __magic_name__ : Optional[int] =min_seq_length __magic_name__ : Optional[int] =max_seq_length __magic_name__ : int =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __magic_name__ : int =padding_value __magic_name__ : Any =sampling_rate __magic_name__ : Optional[Any] =return_attention_mask __magic_name__ : List[str] =do_normalize __magic_name__ : str =feature_size __magic_name__ : Optional[int] =chunk_length __magic_name__ : Tuple =hop_length def A__ ( self :Any ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def A__ ( self :str , __snake_case :Dict=False , __snake_case :Any=False ): '''simple docstring''' def _flatten(__snake_case :List[str] ): return list(itertools.chain(*__snake_case ) ) if equal_length: __magic_name__ : Tuple =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __magic_name__ : List[Any] =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __magic_name__ : Optional[Any] =[np.asarray(__snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = WhisperFeatureExtractor if is_speech_available() else None def A__ ( self :int ): '''simple docstring''' __magic_name__ : Optional[Any] =WhisperFeatureExtractionTester(self ) def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Optional[Any] =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ : int =feat_extract_first.save_pretrained(__snake_case )[0] check_json_file_has_correct_format(__snake_case ) __magic_name__ : Dict =self.feature_extraction_class.from_pretrained(__snake_case ) __magic_name__ : str =feat_extract_first.to_dict() __magic_name__ : Union[str, Any] =feat_extract_second.to_dict() __magic_name__ : int =feat_extract_first.mel_filters __magic_name__ : List[Any] =feat_extract_second.mel_filters self.assertTrue(np.allclose(__snake_case , __snake_case ) ) self.assertEqual(__snake_case , __snake_case ) def A__ ( self :str ): '''simple docstring''' __magic_name__ : Optional[Any] =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ : str =os.path.join(__snake_case , """feat_extract.json""" ) feat_extract_first.to_json_file(__snake_case ) __magic_name__ : Tuple =self.feature_extraction_class.from_json_file(__snake_case ) __magic_name__ : str =feat_extract_first.to_dict() __magic_name__ : Union[str, Any] =feat_extract_second.to_dict() __magic_name__ : Dict =feat_extract_first.mel_filters __magic_name__ : List[str] =feat_extract_second.mel_filters self.assertTrue(np.allclose(__snake_case , __snake_case ) ) self.assertEqual(__snake_case , __snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __magic_name__ : Dict =[floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __magic_name__ : List[str] =[np.asarray(__snake_case ) for speech_input in speech_inputs] # Test feature size __magic_name__ : Dict =feature_extractor(__snake_case , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __magic_name__ : Optional[int] =feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features __magic_name__ : int =feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(__snake_case , __snake_case , atol=1E-3 ) ) # Test batched __magic_name__ : Union[str, Any] =feature_extractor(__snake_case , return_tensors="""np""" ).input_features __magic_name__ : int =feature_extractor(__snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__snake_case , __snake_case ): self.assertTrue(np.allclose(__snake_case , __snake_case , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __magic_name__ : Optional[Any] =[floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] __magic_name__ : Tuple =np.asarray(__snake_case ) __magic_name__ : List[str] =feature_extractor(__snake_case , return_tensors="""np""" ).input_features __magic_name__ : Dict =feature_extractor(__snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__snake_case , __snake_case ): self.assertTrue(np.allclose(__snake_case , __snake_case , atol=1E-3 ) ) # Test truncation required __magic_name__ : Any =[floats_list((1, x) )[0] for x in range(2_00 , (feature_extractor.n_samples + 5_00) , 2_00 )] __magic_name__ : int =[np.asarray(__snake_case ) for speech_input in speech_inputs] __magic_name__ : List[Any] =[x[: feature_extractor.n_samples] for x in speech_inputs] __magic_name__ : str =[np.asarray(__snake_case ) for speech_input in speech_inputs_truncated] __magic_name__ : Optional[Any] =feature_extractor(__snake_case , return_tensors="""np""" ).input_features __magic_name__ : int =feature_extractor(__snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__snake_case , __snake_case ): self.assertTrue(np.allclose(__snake_case , __snake_case , atol=1E-3 ) ) def A__ ( self :Any ): '''simple docstring''' import torch __magic_name__ : List[str] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __magic_name__ : str =np.random.rand(1_00 , 32 ).astype(np.floataa ) __magic_name__ : int =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __magic_name__ : Dict =feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __magic_name__ : List[str] =feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def A__ ( self :Optional[int] , __snake_case :Tuple ): '''simple docstring''' __magic_name__ : str =load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech __magic_name__ : Any =ds.sort("""id""" ).select(range(__snake_case ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def A__ ( self :Any ): '''simple docstring''' __magic_name__ : int =torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on __magic_name__ : List[Any] =self._load_datasamples(1 ) __magic_name__ : int =WhisperFeatureExtractor() __magic_name__ : Optional[Any] =feature_extractor(__snake_case , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 30_00) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __snake_case , atol=1E-4 ) ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __magic_name__ : Tuple =self._load_datasamples(1 )[0] __magic_name__ : List[str] =((audio - audio.min()) / (audio.max() - audio.min())) * 6_55_35 # Rescale to [0, 65535] to show issue __magic_name__ : List[str] =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__snake_case )[0] self.assertTrue(np.all(np.mean(__snake_case ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__snake_case ) - 1 ) < 1E-3 ) )
21
UpperCAmelCase_ : Tuple = 0 # The first color of the flag. UpperCAmelCase_ : Any = 1 # The second color of the flag. UpperCAmelCase_ : str = 2 # The third color of the flag. UpperCAmelCase_ : Tuple = (red, white, blue) def lowerCAmelCase_ ( lowerCamelCase ): if not sequence: return [] if len(lowerCamelCase ) == 1: return list(lowerCamelCase ) __magic_name__ : int =0 __magic_name__ : str =len(lowerCamelCase ) - 1 __magic_name__ : Optional[Any] =0 while mid <= high: if sequence[mid] == colors[0]: __magic_name__ , __magic_name__ : Tuple =sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: __magic_name__ , __magic_name__ : Optional[Any] =sequence[high], sequence[mid] high -= 1 else: __magic_name__ : Optional[int] =F"The elements inside the sequence must contains only {colors} values" raise ValueError(lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[Any] = input("Enter numbers separated by commas:\n").strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
21
1
class __A : def __init__( self :Any , __snake_case :str = "" , __snake_case :bool = False ): '''simple docstring''' __magic_name__ : dict[str, RadixNode] ={} # A node will be a leaf if the tree contains its word __magic_name__ : Tuple =is_leaf __magic_name__ : Optional[Any] =prefix def A__ ( self :Tuple , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[Any] =0 for q, w in zip(self.prefix , __snake_case ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def A__ ( self :Optional[int] , __snake_case :list[str] ): '''simple docstring''' for word in words: self.insert(__snake_case ) def A__ ( self :List[Any] , __snake_case :str ): '''simple docstring''' if self.prefix == word: __magic_name__ : str =True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: __magic_name__ : Optional[int] =RadixNode(prefix=__snake_case , is_leaf=__snake_case ) else: __magic_name__ : Union[str, Any] =self.nodes[word[0]] __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =incoming_node.match( __snake_case ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(__snake_case ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: __magic_name__ : Tuple =remaining_prefix __magic_name__ : Optional[Any] =self.nodes[matching_string[0]] __magic_name__ : Optional[Any] =RadixNode(__snake_case , __snake_case ) __magic_name__ : int =aux_node if remaining_word == "": __magic_name__ : int =True else: self.nodes[matching_string[0]].insert(__snake_case ) def A__ ( self :Any , __snake_case :str ): '''simple docstring''' __magic_name__ : Union[str, Any] =self.nodes.get(word[0] , __snake_case ) if not incoming_node: return False else: __magic_name__ , __magic_name__ , __magic_name__ : Dict =incoming_node.match( __snake_case ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(__snake_case ) def A__ ( self :Optional[Any] , __snake_case :str ): '''simple docstring''' __magic_name__ : Tuple =self.nodes.get(word[0] , __snake_case ) if not incoming_node: return False else: __magic_name__ , __magic_name__ , __magic_name__ : int =incoming_node.match( __snake_case ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(__snake_case ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: __magic_name__ : List[Any] =list(self.nodes.values() )[0] __magic_name__ : List[str] =merging_node.is_leaf self.prefix += merging_node.prefix __magic_name__ : List[str] =merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: __magic_name__ : str =False # If there is 1 edge, we merge it with its child else: __magic_name__ : Optional[Any] =list(incoming_node.nodes.values() )[0] __magic_name__ : List[Any] =merging_node.is_leaf incoming_node.prefix += merging_node.prefix __magic_name__ : int =merging_node.nodes return True def A__ ( self :Tuple , __snake_case :int = 0 ): '''simple docstring''' if self.prefix != "": print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def lowerCAmelCase_ ( ): __magic_name__ : List[Any] ="""banana bananas bandana band apple all beast""".split() __magic_name__ : Dict =RadixNode() root.insert_many(lowerCamelCase ) assert all(root.find(lowerCamelCase ) for word in words ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def lowerCAmelCase_ ( ): assert test_trie() def lowerCAmelCase_ ( ): __magic_name__ : Optional[int] =RadixNode() __magic_name__ : List[str] ="""banana bananas bandanas bandana band apple all beast""".split() root.insert_many(lowerCamelCase ) print("""Words:""" , lowerCamelCase ) print("""Tree:""" ) root.print_tree() if __name__ == "__main__": main()
21
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __A ( UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = 1 @register_to_config def __init__( self :Any , __snake_case :Tuple=20_00 , __snake_case :Optional[Any]=0.1 , __snake_case :Any=20 , __snake_case :Optional[int]=1E-3 ): '''simple docstring''' __magic_name__ : Dict =None __magic_name__ : List[str] =None __magic_name__ : str =None def A__ ( self :Dict , __snake_case :Optional[int] , __snake_case :Union[str, torch.device] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] =torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case ) def A__ ( self :List[str] , __snake_case :List[str] , __snake_case :int , __snake_case :int , __snake_case :List[str]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __magic_name__ : int =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __magic_name__ : Optional[int] =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __magic_name__ : str =std.flatten() while len(std.shape ) < len(score.shape ): __magic_name__ : List[str] =std.unsqueeze(-1 ) __magic_name__ : Union[str, Any] =-score / std # compute __magic_name__ : Tuple =-1.0 / len(self.timesteps ) __magic_name__ : int =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __magic_name__ : Dict =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __magic_name__ : Any =beta_t.unsqueeze(-1 ) __magic_name__ : Dict =-0.5 * beta_t * x __magic_name__ : Optional[int] =torch.sqrt(__snake_case ) __magic_name__ : int =drift - diffusion**2 * score __magic_name__ : List[str] =x + drift * dt # add noise __magic_name__ : Optional[int] =randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype ) __magic_name__ : Optional[Any] =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self :List[Any] ): '''simple docstring''' return self.config.num_train_timesteps
21
1
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset UpperCAmelCase_ : List[str] = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) UpperCAmelCase_ : Union[str, Any] = dataset.iloc[:, 1:2].values UpperCAmelCase_ : Dict = dataset.iloc[:, 2].values UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = train_test_split(X, y, test_size=0.2, random_state=0) UpperCAmelCase_ : Union[str, Any] = PolynomialFeatures(degree=4) UpperCAmelCase_ : Any = poly_reg.fit_transform(X) UpperCAmelCase_ : Optional[Any] = LinearRegression() pol_reg.fit(X_poly, y) def lowerCAmelCase_ ( ): plt.scatter(lowerCamelCase , lowerCamelCase , color="""red""" ) plt.plot(lowerCamelCase , pol_reg.predict(poly_reg.fit_transform(lowerCamelCase ) ) , color="""blue""" ) plt.title("""Truth or Bluff (Linear Regression)""" ) plt.xlabel("""Position level""" ) plt.ylabel("""Salary""" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
21
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCAmelCase_ : Dict = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__( self :List[str] , __snake_case :int , __snake_case :int , __snake_case :float , **__snake_case :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =feature_size __magic_name__ : Union[str, Any] =sampling_rate __magic_name__ : List[Any] =padding_value __magic_name__ : List[str] =kwargs.pop("""padding_side""" , """right""" ) __magic_name__ : Tuple =kwargs.pop("""return_attention_mask""" , __snake_case ) super().__init__(**__snake_case ) def A__ ( self :Any , __snake_case :Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __snake_case :Union[bool, str, PaddingStrategy] = True , __snake_case :Optional[int] = None , __snake_case :bool = False , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[Union[str, TensorType]] = None , ): '''simple docstring''' if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __magic_name__ : Union[str, Any] ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) __magic_name__ : int =processed_features[self.model_input_names[0]] __magic_name__ : Union[str, Any] =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__snake_case ) == 0: if return_attention_mask: __magic_name__ : List[str] =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __magic_name__ : Optional[int] =required_input[0] if isinstance(__snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __magic_name__ : Optional[Any] =0 while len(required_input[index] ) == 0: index += 1 if index < len(__snake_case ): __magic_name__ : List[str] =required_input[index][0] if return_tensors is None: if is_tf_tensor(__snake_case ): __magic_name__ : int ="""tf""" elif is_torch_tensor(__snake_case ): __magic_name__ : str ="""pt""" elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ): __magic_name__ : List[Any] ="""np""" else: raise ValueError( f"type of {first_element} unknown: {type(__snake_case )}. " """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __magic_name__ : List[str] =to_numpy(__snake_case ) else: __magic_name__ : str =[to_numpy(__snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy __magic_name__ : Dict =self._get_padding_strategies(padding=__snake_case , max_length=__snake_case ) __magic_name__ : Optional[Any] =processed_features[self.model_input_names[0]] __magic_name__ : Dict =len(__snake_case ) if not all(len(__snake_case ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) __magic_name__ : Optional[int] =[] for i in range(__snake_case ): __magic_name__ : Any ={k: v[i] for k, v in processed_features.items()} # truncation __magic_name__ : List[str] =self._truncate( __snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) truncated_inputs.append(__snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __magic_name__ : Optional[int] =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __magic_name__ : Tuple =PaddingStrategy.MAX_LENGTH __magic_name__ : str ={} for i in range(__snake_case ): # padding __magic_name__ : List[str] =self._pad( truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: __magic_name__ : Dict =[] if value.dtype is np.dtype(np.floataa ): __magic_name__ : Optional[int] =value.astype(np.floataa ) batch_outputs[key].append(__snake_case ) return BatchFeature(__snake_case , tensor_type=__snake_case ) def A__ ( self :Any , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' __magic_name__ : Dict =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __magic_name__ : Any =len(__snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : Dict =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : List[Any] =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __magic_name__ : int =np.ones(len(__snake_case ) , dtype=np.intaa ) if needs_to_be_padded: __magic_name__ : List[Any] =max_length - len(__snake_case ) if self.padding_side == "right": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (0, difference) ) __magic_name__ : Tuple =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __magic_name__ : str =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (difference, 0) ) __magic_name__ : Optional[int] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __magic_name__ : List[Any] =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def A__ ( self :Optional[Any] , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) __magic_name__ : Union[str, Any] =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : List[str] =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : Any =len(__snake_case ) > max_length if needs_to_be_truncated: __magic_name__ : List[Any] =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __magic_name__ : List[str] =processed_features["""attention_mask"""][:max_length] return processed_features def A__ ( self :List[Any] , __snake_case :str=False , __snake_case :Optional[int]=None ): '''simple docstring''' if padding is not False: if padding is True: __magic_name__ : Union[str, Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__snake_case , __snake_case ): __magic_name__ : Optional[int] =PaddingStrategy(__snake_case ) elif isinstance(__snake_case , __snake_case ): __magic_name__ : Any =padding else: __magic_name__ : Any =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
21
1
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ , __magic_name__ : Union[str, Any] =analyze_text(lowerCamelCase ) __magic_name__ : List[Any] =list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. __magic_name__ : Union[str, Any] =sum(single_char_strings.values() ) # one length string __magic_name__ : Optional[int] =0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __magic_name__ : str =single_char_strings[ch] __magic_name__ : Dict =my_str / all_sum my_fir_sum += prob * math.loga(lowerCamelCase ) # entropy formula. # print entropy print(F"{round(-1 * my_fir_sum ):.1f}" ) # two len string __magic_name__ : Optional[Any] =sum(two_char_strings.values() ) __magic_name__ : int =0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __magic_name__ : List[str] =cha + cha if sequence in two_char_strings: __magic_name__ : str =two_char_strings[sequence] __magic_name__ : Union[str, Any] =int(lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(lowerCamelCase ) # print second entropy print(F"{round(-1 * my_sec_sum ):.1f}" ) # print the difference between them print(F"{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}" ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Tuple =Counter() # type: ignore __magic_name__ : int =Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCAmelCase_ ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
21
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): def __init__( self :List[Any] ): '''simple docstring''' super().__init__() __magic_name__ : Tuple =nn.Linear(3 , 4 ) __magic_name__ : Union[str, Any] =nn.BatchNormad(4 ) __magic_name__ : List[str] =nn.Linear(4 , 5 ) def A__ ( self :Dict , __snake_case :Tuple ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) ) class __A ( UpperCamelCase__ ): def A__ ( self :Any , __snake_case :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Any ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __A ( UpperCamelCase__ ): def A__ ( self :List[str] , __snake_case :Tuple , __snake_case :Union[str, Any] ): '''simple docstring''' return output + 1 class __A ( unittest.TestCase ): def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : Tuple =ModelHook() add_hook_to_module(__snake_case , __snake_case ) self.assertEqual(test_model._hf_hook , __snake_case ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : List[str] =ModelHook() add_hook_to_module(__snake_case , __snake_case ) add_hook_to_module(__snake_case , __snake_case , append=__snake_case ) self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() __magic_name__ : Any =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(x + 1 ) __magic_name__ : Optional[Any] =test_model(x + 2 ) __magic_name__ : int =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : int =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : str =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : List[str] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Optional[Any] =SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) assert torch.allclose(__snake_case , __snake_case , atol=1E-5 ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() __magic_name__ : Dict =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(__snake_case ) __magic_name__ : Dict =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Optional[int] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Union[str, Any] =SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) assert torch.allclose(__snake_case , output + 2 , atol=1E-5 ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Tuple =ModelForTest() __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Dict =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __magic_name__ : Any =True __magic_name__ : Any =test_model(__snake_case ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[Any] =model(__snake_case ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) ) __magic_name__ : int =torch.randn(2 , 3 ).to(0 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , torch.device(0 ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : int =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : int ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[int] =torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : Union[str, Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __magic_name__ : Tuple ={ """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Tuple =torch.randn(2 , 3 ) __magic_name__ : int =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : str =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Optional[int] =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Dict =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : List[str] =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Any =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
21
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCAmelCase_ ( ): __magic_name__ : List[str] ="""https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg""" __magic_name__ : Dict =Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ).convert("""RGB""" ) return image def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : int =[] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"visual_encoder.blocks.{i}.norm1.weight", F"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm1.bias", F"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.weight", F"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.bias", F"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.qkv.weight", F"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.weight", F"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.bias", F"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.weight", F"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.bias", F"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.weight", F"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.bias", F"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.embeddings.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.embeddings.layernorm.bias""") ) # fmt: on return rename_keys def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Optional[int] =dct.pop(lowerCamelCase ) __magic_name__ : int =val def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __magic_name__ : List[Any] =state_dict.pop(F"visual_encoder.blocks.{i}.attn.q_bias" ) __magic_name__ : Tuple =state_dict.pop(F"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict __magic_name__ : Tuple =torch.cat((q_bias, torch.zeros_like(lowerCamelCase , requires_grad=lowerCamelCase ), v_bias) ) __magic_name__ : Dict =qkv_bias def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : int =364 if """coco""" in model_name else 224 __magic_name__ : Union[str, Any] =InstructBlipVisionConfig(image_size=lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: __magic_name__ : List[Any] =TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __magic_name__ : Dict =TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: __magic_name__ : Union[str, Any] =LlamaConfig.from_pretrained("""decapoda-research/llama-7b-hf""" , vocab_size=32001 ).to_dict() elif "vicuna-13b" in model_name: __magic_name__ : Union[str, Any] =LlamaConfig.from_pretrained("""decapoda-research/llama-13b-hf""" , vocab_size=32001 ).to_dict() else: raise ValueError("""Model name not supported""" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 __magic_name__ : Dict =InstructBlipQFormerConfig(vocab_size=30523 ).to_dict() __magic_name__ : Optional[Any] =InstructBlipConfig(vision_config=lowerCamelCase , text_config=lowerCamelCase , qformer_config=lowerCamelCase ) return config, image_size @torch.no_grad() def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=False ): __magic_name__ : Dict =AutoTokenizer.from_pretrained("""bert-base-uncased""" , truncation_side="""left""" ) qformer_tokenizer.add_special_tokens({"""bos_token""": """[DEC]"""} ) if "t5" in model_name: __magic_name__ : List[str] =TaTokenizerFast.from_pretrained("""google/flan-t5-xl""" , truncation_side="""left""" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) __magic_name__ : Union[str, Any] =LlamaTokenizerFast.from_pretrained( """huggyllama/llama-7b""" , truncation_side="""left""" , bos_token="""</s>""" , unk_token="""</s>""" ) tokenizer.add_special_tokens({"""pad_token""": """[PAD]"""} ) __magic_name__ , __magic_name__ : Union[str, Any] =get_blipa_config(lowerCamelCase ) __magic_name__ : List[Any] =InstructBlipForConditionalGeneration(lowerCamelCase ).eval() __magic_name__ : List[Any] ={ """instructblip-vicuna-7b""": ("""blip2_vicuna_instruct""", """vicuna7b"""), """instructblip-vicuna-13b""": ("""blip2_vicuna_instruct""", """vicuna13b"""), """instructblip-flan-t5-xl""": ("""blip2_t5_instruct""", """flant5xl"""), """instructblip-flan-t5-xxl""": ("""blip2_t5_instruct""", """flant5xxl"""), } __magic_name__ , __magic_name__ : List[str] =model_name_to_original[model_name] # load original model print("""Loading original model...""" ) __magic_name__ : Union[str, Any] ="""cuda:1""" if torch.cuda.is_available() else """cpu""" __magic_name__ : str ="""cuda:2""" if torch.cuda.is_available() else """cpu""" __magic_name__ , __magic_name__ , __magic_name__ : Dict =load_model_and_preprocess( name=lowerCamelCase , model_type=lowerCamelCase , is_eval=lowerCamelCase , device=lowerCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys __magic_name__ : List[str] =original_model.state_dict() __magic_name__ : Dict =create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __magic_name__ : Any =state_dict.pop(lowerCamelCase ) if key.startswith("""Qformer.bert""" ): __magic_name__ : Dict =key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: __magic_name__ : Dict =key.replace("""self""" , """attention""" ) if "llm_proj" in key: __magic_name__ : str =key.replace("""llm_proj""" , """language_projection""" ) if "t5_proj" in key: __magic_name__ : int =key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""llm_model""" ): __magic_name__ : Optional[int] =key.replace("""llm_model""" , """language_model""" ) if key.startswith("""t5""" ): __magic_name__ : int =key.replace("""t5""" , """language""" ) __magic_name__ : Dict =val # read in qv biases read_in_q_v_bias(lowerCamelCase , lowerCamelCase ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) __magic_name__ : Tuple =load_demo_image() __magic_name__ : Any ="""What is unusual about this image?""" # create processor __magic_name__ : int =BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=lowerCamelCase , image_std=lowerCamelCase ) __magic_name__ : Optional[int] =InstructBlipProcessor( image_processor=lowerCamelCase , tokenizer=lowerCamelCase , qformer_tokenizer=lowerCamelCase , ) __magic_name__ : Union[str, Any] =processor(images=lowerCamelCase , text=lowerCamelCase , return_tensors="""pt""" ).to(lowerCamelCase ) # make sure processor creates exact same pixel values __magic_name__ : Optional[int] =vis_processors["""eval"""](lowerCamelCase ).unsqueeze(0 ).to(lowerCamelCase ) __magic_name__ : int =inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , lowerCamelCase ) original_model.to(lowerCamelCase ) hf_model.to(lowerCamelCase ) with torch.no_grad(): if "vicuna" in model_name: __magic_name__ : Dict =original_model({"""image""": original_pixel_values, """text_input""": [prompt]} ).logits __magic_name__ : Tuple =hf_model(**lowerCamelCase ).logits else: __magic_name__ : int =original_model( {"""image""": original_pixel_values, """text_input""": [prompt], """text_output""": ["""\n"""]} ).logits __magic_name__ : Tuple =tokenizer("""\n""" , return_tensors="""pt""" ).input_ids.to(lowerCamelCase ) __magic_name__ : Union[str, Any] =label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) __magic_name__ : Tuple =hf_model(**lowerCamelCase , labels=lowerCamelCase ).logits print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape __magic_name__ : Optional[int] =1E-4 if """vicuna""" in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , lowerCamelCase , atol=lowerCamelCase ) print("""Looks ok!""" ) print("""Generating with original model...""" ) __magic_name__ : Optional[int] =original_model.generate({"""image""": original_pixel_values, """prompt""": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("""Generating with HF model...""" ) __magic_name__ : List[Any] =hf_model.generate( **lowerCamelCase , do_sample=lowerCamelCase , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? __magic_name__ : Optional[Any] =2 print("""Original generation:""" , lowerCamelCase ) __magic_name__ : int =processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase ) __magic_name__ : Any =[text.strip() for text in output_text] print("""HF generation:""" , lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowerCamelCase ) hf_model.save_pretrained(lowerCamelCase ) if push_to_hub: processor.push_to_hub(F"Salesforce/{model_name}" ) hf_model.push_to_hub(F"Salesforce/{model_name}" ) if __name__ == "__main__": UpperCAmelCase_ : Tuple = argparse.ArgumentParser() UpperCAmelCase_ : Dict = [ "instructblip-vicuna-7b", "instructblip-vicuna-13b", "instructblip-flan-t5-xl", "instructblip-flan-t5-xxl", ] parser.add_argument( "--model_name", default="instructblip-flan-t5-xl", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
21
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = KandinskyInpaintPipeline UpperCamelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCamelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCamelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase = False @property def A__ ( self :Union[str, Any] ): '''simple docstring''' return 32 @property def A__ ( self :Optional[Any] ): '''simple docstring''' return 32 @property def A__ ( self :List[Any] ): '''simple docstring''' return self.time_input_dim @property def A__ ( self :Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def A__ ( self :List[Any] ): '''simple docstring''' return 1_00 @property def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Dict =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self :str ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : str =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __magic_name__ : Tuple =MultilingualCLIP(__snake_case ) __magic_name__ : Optional[int] =text_encoder.eval() return text_encoder @property def A__ ( self :Dict ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Optional[Any] ={ """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __magic_name__ : Union[str, Any] =UNetaDConditionModel(**__snake_case ) return model @property def A__ ( self :List[str] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self :Tuple ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Dict =VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[str] =self.dummy_text_encoder __magic_name__ : Optional[Any] =self.dummy_tokenizer __magic_name__ : Optional[Any] =self.dummy_unet __magic_name__ : Tuple =self.dummy_movq __magic_name__ : List[str] =DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , ) __magic_name__ : str ={ """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self :str , __snake_case :Optional[Any] , __snake_case :int=0 ): '''simple docstring''' __magic_name__ : Union[str, Any] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : Dict =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case ) # create init_image __magic_name__ : str =floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : int =image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ : str =Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask __magic_name__ : Dict =np.ones((64, 64) , dtype=np.floataa ) __magic_name__ : Any =0 if str(__snake_case ).startswith("""mps""" ): __magic_name__ : Dict =torch.manual_seed(__snake_case ) else: __magic_name__ : Tuple =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__ : List[Any] ={ """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Tuple ="""cpu""" __magic_name__ : List[Any] =self.get_dummy_components() __magic_name__ : Union[str, Any] =self.pipeline_class(**__snake_case ) __magic_name__ : Tuple =pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Tuple =pipe(**self.get_dummy_inputs(__snake_case ) ) __magic_name__ : List[Any] =output.images __magic_name__ : Any =pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] __magic_name__ : int =image[0, -3:, -3:, -1] __magic_name__ : str =image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) __magic_name__ : Optional[Any] =np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def A__ ( self :Dict ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def A__ ( self :List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : List[str] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) __magic_name__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __magic_name__ : List[Any] =np.ones((7_68, 7_68) , dtype=np.floataa ) __magic_name__ : Any =0 __magic_name__ : int ="""a hat""" __magic_name__ : int =KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) __magic_name__ : Dict =KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) __magic_name__ : int =pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Union[str, Any] =torch.Generator(device="""cpu""" ).manual_seed(0 ) __magic_name__ , __magic_name__ : Dict =pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __magic_name__ : Optional[Any] =pipeline( __snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) __magic_name__ : Optional[int] =output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
21
1
from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase_ ( lowerCamelCase="ro" , lowerCamelCase="en" , lowerCamelCase="wmt16" , lowerCamelCase=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) __magic_name__ : Dict =F"{src_lang}-{tgt_lang}" print(F"Converting {dataset}-{pair}" ) __magic_name__ : Dict =datasets.load_dataset(lowerCamelCase , lowerCamelCase ) if save_dir is None: __magic_name__ : Optional[int] =F"{dataset}-{pair}" __magic_name__ : int =Path(lowerCamelCase ) save_dir.mkdir(exist_ok=lowerCamelCase ) for split in ds.keys(): print(F"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets __magic_name__ : Dict ="""val""" if split == """validation""" else split __magic_name__ : List[Any] =save_dir.joinpath(F"{fn}.source" ) __magic_name__ : Optional[int] =save_dir.joinpath(F"{fn}.target" ) __magic_name__ : Optional[Any] =src_path.open("""w+""" ) __magic_name__ : List[Any] =tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __magic_name__ : str =x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
21
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __A : def __init__( self :int , __snake_case :List[Any] , __snake_case :List[Any]=2 , __snake_case :Dict=True , __snake_case :Tuple=False , __snake_case :List[str]=10 , __snake_case :List[str]=3 , __snake_case :Union[str, Any]=32 * 8 , __snake_case :Optional[int]=32 * 8 , __snake_case :Any=4 , __snake_case :Union[str, Any]=64 , ): '''simple docstring''' __magic_name__ : Optional[int] =parent __magic_name__ : List[Any] =batch_size __magic_name__ : List[str] =is_training __magic_name__ : List[str] =use_auxiliary_loss __magic_name__ : Union[str, Any] =num_queries __magic_name__ : str =num_channels __magic_name__ : Union[str, Any] =min_size __magic_name__ : Union[str, Any] =max_size __magic_name__ : Optional[int] =num_labels __magic_name__ : Tuple =hidden_dim __magic_name__ : Any =hidden_dim def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __snake_case ) __magic_name__ : List[Any] =torch.ones([self.batch_size, self.min_size, self.max_size] , device=__snake_case ) __magic_name__ : List[str] =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__snake_case ) > 0.5 ).float() __magic_name__ : Union[str, Any] =(torch.rand((self.batch_size, self.num_labels) , device=__snake_case ) > 0.5).long() __magic_name__ : str =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Dict =MaskaFormerConfig( hidden_size=self.hidden_dim , ) __magic_name__ : str =self.num_queries __magic_name__ : Dict =self.num_labels __magic_name__ : int =[1, 1, 1, 1] __magic_name__ : List[str] =self.num_channels __magic_name__ : str =64 __magic_name__ : List[str] =1_28 __magic_name__ : Optional[Any] =self.hidden_dim __magic_name__ : Tuple =self.hidden_dim __magic_name__ : Optional[int] =self.hidden_dim return config def A__ ( self :Any ): '''simple docstring''' __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple =self.prepare_config_and_inputs() __magic_name__ : Optional[Any] ={"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def A__ ( self :Union[str, Any] , __snake_case :Tuple , __snake_case :Dict ): '''simple docstring''' __magic_name__ : int =output.encoder_hidden_states __magic_name__ : List[str] =output.pixel_decoder_hidden_states __magic_name__ : int =output.transformer_decoder_hidden_states self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , config.decoder_layers ) def A__ ( self :List[Any] , __snake_case :Optional[Any] , __snake_case :int , __snake_case :str , __snake_case :str=False ): '''simple docstring''' with torch.no_grad(): __magic_name__ : List[str] =MaskaFormerModel(config=__snake_case ) model.to(__snake_case ) model.eval() __magic_name__ : Union[str, Any] =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : int =model(__snake_case , output_hidden_states=__snake_case ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__snake_case , __snake_case ) def A__ ( self :Optional[Any] , __snake_case :List[str] , __snake_case :List[Any] , __snake_case :int , __snake_case :Any , __snake_case :Union[str, Any] ): '''simple docstring''' __magic_name__ : str =MaskaFormerForUniversalSegmentation(config=__snake_case ) model.to(__snake_case ) model.eval() def comm_check_on_output(__snake_case :List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __magic_name__ : int =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : List[str] =model(__snake_case ) comm_check_on_output(__snake_case ) __magic_name__ : Any =model( pixel_values=__snake_case , pixel_mask=__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) comm_check_on_output(__snake_case ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCamelCase = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def A__ ( self :str ): '''simple docstring''' __magic_name__ : Any =MaskaFormerModelTester(self ) __magic_name__ : Union[str, Any] =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def A__ ( self :Dict ): '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__snake_case ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def A__ ( self :List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def A__ ( self :Dict ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def A__ ( self :Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def A__ ( self :int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def A__ ( self :Tuple ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A__ ( self :Union[str, Any] ): '''simple docstring''' pass def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Tuple =model_class(__snake_case ) __magic_name__ : Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple =[*signature.parameters.keys()] __magic_name__ : Optional[Any] =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) @slow def A__ ( self :Tuple ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __magic_name__ : int =MaskaFormerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =(self.model_tester.min_size,) * 2 __magic_name__ : Union[str, Any] ={ """pixel_values""": torch.randn((2, 3, *size) , device=__snake_case ), """mask_labels""": torch.randn((2, 10, *size) , device=__snake_case ), """class_labels""": torch.zeros(2 , 10 , device=__snake_case ).long(), } __magic_name__ : Optional[Any] =self.model_tester.get_config() __magic_name__ : Dict =MaskaFormerForUniversalSegmentation(__snake_case ).to(__snake_case ) __magic_name__ : Any =model(**__snake_case ) self.assertTrue(outputs.loss is not None ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ , __magic_name__ : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] =model_class(__snake_case ).to(__snake_case ) __magic_name__ : Optional[int] =model(**__snake_case , output_attentions=__snake_case ) self.assertTrue(outputs.attentions is not None ) def A__ ( self :int ): '''simple docstring''' if not self.model_tester.is_training: return __magic_name__ : List[Any] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Dict =model_class(__snake_case ) model.to(__snake_case ) model.train() __magic_name__ : Optional[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ).loss loss.backward() def A__ ( self :int ): '''simple docstring''' __magic_name__ : List[str] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Tuple =True __magic_name__ : Optional[int] =True __magic_name__ : int =model_class(__snake_case ).to(__snake_case ) model.train() __magic_name__ : List[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) __magic_name__ : Optional[int] =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __magic_name__ : Optional[int] =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__snake_case ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase_ : Dict = 1e-4 def lowerCAmelCase_ ( ): __magic_name__ : Dict =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __A ( unittest.TestCase ): @cached_property def A__ ( self :int ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def A__ ( self :int ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__snake_case ) __magic_name__ : int =self.default_image_processor __magic_name__ : List[Any] =prepare_img() __magic_name__ : Any =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Dict =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : List[str] =model(**__snake_case ) __magic_name__ : Any =torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Dict =torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Any =torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Optional[int] =self.default_image_processor __magic_name__ : Tuple =prepare_img() __magic_name__ : List[Any] =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Union[str, Any] =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : str =model(**__snake_case ) # masks_queries_logits __magic_name__ : List[Any] =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __magic_name__ : List[Any] =[ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __magic_name__ : Dict =torch.tensor(__snake_case ).to(__snake_case ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) # class_queries_logits __magic_name__ : Any =outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __magic_name__ : int =torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Any =self.default_image_processor __magic_name__ : Union[str, Any] =image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , ) __magic_name__ : str =inputs["""pixel_values"""].to(__snake_case ) __magic_name__ : Tuple =[el.to(__snake_case ) for el in inputs["""mask_labels"""]] __magic_name__ : Union[str, Any] =[el.to(__snake_case ) for el in inputs["""class_labels"""]] with torch.no_grad(): __magic_name__ : Dict =model(**__snake_case ) self.assertTrue(outputs.loss is not None )
21
1
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __A ( unittest.TestCase ): def __init__( self :str , __snake_case :str , __snake_case :Tuple=13 , __snake_case :List[str]=7 , __snake_case :List[str]=True , __snake_case :Dict=True , __snake_case :str=True , __snake_case :Optional[int]=True , __snake_case :Union[str, Any]=99 , __snake_case :List[str]=32 , __snake_case :Tuple=5 , __snake_case :Optional[int]=4 , __snake_case :Any=37 , __snake_case :Any="gelu" , __snake_case :Dict=0.1 , __snake_case :Union[str, Any]=0.1 , __snake_case :Optional[Any]=5_12 , __snake_case :int=16 , __snake_case :List[Any]=2 , __snake_case :str=0.02 , __snake_case :Dict=4 , ): '''simple docstring''' __magic_name__ : int =parent __magic_name__ : Dict =batch_size __magic_name__ : List[str] =seq_length __magic_name__ : Optional[int] =is_training __magic_name__ : Any =use_attention_mask __magic_name__ : List[str] =use_token_type_ids __magic_name__ : Any =use_labels __magic_name__ : List[Any] =vocab_size __magic_name__ : Optional[Any] =hidden_size __magic_name__ : Tuple =num_hidden_layers __magic_name__ : List[str] =num_attention_heads __magic_name__ : int =intermediate_size __magic_name__ : Optional[int] =hidden_act __magic_name__ : str =hidden_dropout_prob __magic_name__ : int =attention_probs_dropout_prob __magic_name__ : str =max_position_embeddings __magic_name__ : List[str] =type_vocab_size __magic_name__ : Tuple =type_sequence_label_size __magic_name__ : List[str] =initializer_range __magic_name__ : Any =num_choices def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Optional[int] =None if self.use_attention_mask: __magic_name__ : str =random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : Union[str, Any] =None if self.use_token_type_ids: __magic_name__ : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : Any =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Dict =self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple =config_and_inputs __magic_name__ : Union[str, Any] ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = True UpperCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : Tuple =FlaxRoFormerModelTester(self ) @slow def A__ ( self :List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: __magic_name__ : Optional[Any] =model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=__snake_case ) __magic_name__ : List[str] =model(np.ones((1, 1) ) ) self.assertIsNotNone(__snake_case ) @require_flax class __A ( unittest.TestCase ): @slow def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Union[str, Any] =FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) __magic_name__ : Tuple =jnp.array([[0, 1, 2, 3, 4, 5]] ) __magic_name__ : str =model(__snake_case )[0] __magic_name__ : int =5_00_00 __magic_name__ : Dict =(1, 6, vocab_size) self.assertEqual(output.shape , __snake_case ) __magic_name__ : List[Any] =jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) )
21
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __A ( UpperCamelCase__ ): UpperCamelCase = """segformer""" def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ): '''simple docstring''' super().__init__(**__snake_case ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , ) __magic_name__ : Dict =num_channels __magic_name__ : str =num_encoder_blocks __magic_name__ : List[Any] =depths __magic_name__ : Optional[Any] =sr_ratios __magic_name__ : List[str] =hidden_sizes __magic_name__ : List[str] =patch_sizes __magic_name__ : Any =strides __magic_name__ : Optional[Any] =mlp_ratios __magic_name__ : str =num_attention_heads __magic_name__ : int =hidden_act __magic_name__ : List[Any] =hidden_dropout_prob __magic_name__ : Optional[Any] =attention_probs_dropout_prob __magic_name__ : Optional[Any] =classifier_dropout_prob __magic_name__ : List[str] =initializer_range __magic_name__ : List[str] =drop_path_rate __magic_name__ : List[Any] =layer_norm_eps __magic_name__ : List[str] =decoder_hidden_size __magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case ) __magic_name__ : Dict =semantic_loss_ignore_index class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.11""" ) @property def A__ ( self :List[str] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self :Any ): '''simple docstring''' return 1E-4 @property def A__ ( self :int ): '''simple docstring''' return 12
21
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class __A ( UpperCamelCase__ ): UpperCamelCase = """roformer""" def __init__( self :str , __snake_case :Tuple=5_00_00 , __snake_case :Optional[Any]=None , __snake_case :Union[str, Any]=7_68 , __snake_case :List[Any]=12 , __snake_case :int=12 , __snake_case :str=30_72 , __snake_case :Union[str, Any]="gelu" , __snake_case :List[str]=0.1 , __snake_case :List[str]=0.1 , __snake_case :Union[str, Any]=15_36 , __snake_case :str=2 , __snake_case :Any=0.02 , __snake_case :Tuple=1E-12 , __snake_case :Dict=0 , __snake_case :Optional[int]=False , __snake_case :Optional[int]=True , **__snake_case :Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , **__snake_case ) __magic_name__ : Dict =vocab_size __magic_name__ : int =hidden_size if embedding_size is None else embedding_size __magic_name__ : str =hidden_size __magic_name__ : Any =num_hidden_layers __magic_name__ : int =num_attention_heads __magic_name__ : List[Any] =hidden_act __magic_name__ : Dict =intermediate_size __magic_name__ : Any =hidden_dropout_prob __magic_name__ : List[str] =attention_probs_dropout_prob __magic_name__ : List[Any] =max_position_embeddings __magic_name__ : Optional[int] =type_vocab_size __magic_name__ : int =initializer_range __magic_name__ : int =layer_norm_eps __magic_name__ : Optional[Any] =rotary_value __magic_name__ : Optional[int] =use_cache class __A ( UpperCamelCase__ ): @property def A__ ( self :List[Any] ): '''simple docstring''' if self.task == "multiple-choice": __magic_name__ : Optional[int] ={0: """batch""", 1: """choice""", 2: """sequence"""} else: __magic_name__ : str ={0: """batch""", 1: """sequence"""} __magic_name__ : List[Any] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
21
import heapq def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase , [-1 * len(lowerCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices __magic_name__ : Tuple =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __magic_name__ : Tuple =heapq.heappop(lowerCamelCase )[1][0] chosen_vertices.add(lowerCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __magic_name__ : Tuple =elem[1][1].index(lowerCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
21
1
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py UpperCAmelCase_ : List[str] = "src/transformers" UpperCAmelCase_ : List[str] = "docs/source/en" UpperCAmelCase_ : str = "." def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): with open(lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __magic_name__ : Optional[int] =f.readlines() # Find the start prompt. __magic_name__ : Dict =0 while not lines[start_index].startswith(lowerCamelCase ): start_index += 1 start_index += 1 __magic_name__ : Union[str, Any] =start_index while not lines[end_index].startswith(lowerCamelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | UpperCAmelCase_ : Any = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. UpperCAmelCase_ : Any = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") UpperCAmelCase_ : Tuple = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. UpperCAmelCase_ : Optional[int] = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase_ : Tuple = direct_transformers_import(TRANSFORMERS_PATH) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : int =re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , lowerCamelCase ) return [m.group(0 ) for m in matches] def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : Any =2 if text == """✅""" or text == """❌""" else len(lowerCamelCase ) __magic_name__ : Optional[Any] =(width - text_length) // 2 __magic_name__ : str =width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCAmelCase_ ( ): __magic_name__ : Union[str, Any] =transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __magic_name__ : Optional[int] ={ name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } __magic_name__ : Union[str, Any] ={name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. __magic_name__ : Any =collections.defaultdict(lowerCamelCase ) __magic_name__ : Union[str, Any] =collections.defaultdict(lowerCamelCase ) __magic_name__ : List[Any] =collections.defaultdict(lowerCamelCase ) __magic_name__ : int =collections.defaultdict(lowerCamelCase ) __magic_name__ : Dict =collections.defaultdict(lowerCamelCase ) # Let's lookup through all transformers object (once). for attr_name in dir(lowerCamelCase ): __magic_name__ : Dict =None if attr_name.endswith("""Tokenizer""" ): __magic_name__ : Optional[Any] =slow_tokenizers __magic_name__ : str =attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): __magic_name__ : Tuple =fast_tokenizers __magic_name__ : Dict =attr_name[:-13] elif _re_tf_models.match(lowerCamelCase ) is not None: __magic_name__ : List[str] =tf_models __magic_name__ : List[str] =_re_tf_models.match(lowerCamelCase ).groups()[0] elif _re_flax_models.match(lowerCamelCase ) is not None: __magic_name__ : Tuple =flax_models __magic_name__ : Tuple =_re_flax_models.match(lowerCamelCase ).groups()[0] elif _re_pt_models.match(lowerCamelCase ) is not None: __magic_name__ : List[Any] =pt_models __magic_name__ : Any =_re_pt_models.match(lowerCamelCase ).groups()[0] if lookup_dict is not None: while len(lowerCamelCase ) > 0: if attr_name in model_name_to_prefix.values(): __magic_name__ : Optional[int] =True break # Try again after removing the last word in the name __magic_name__ : Union[str, Any] ="""""".join(camel_case_split(lowerCamelCase )[:-1] ) # Let's build that table! __magic_name__ : List[str] =list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) __magic_name__ : Union[str, Any] =["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). __magic_name__ : Optional[int] =[len(lowerCamelCase ) + 2 for c in columns] __magic_name__ : int =max([len(lowerCamelCase ) for name in model_names] ) + 2 # Build the table per se __magic_name__ : List[Any] ="""|""" + """|""".join([_center_text(lowerCamelCase , lowerCamelCase ) for c, w in zip(lowerCamelCase , lowerCamelCase )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" __magic_name__ : Optional[int] ={True: """✅""", False: """❌"""} for name in model_names: __magic_name__ : Optional[Any] =model_name_to_prefix[name] __magic_name__ : Optional[Any] =[ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowerCamelCase , lowerCamelCase ) for l, w in zip(lowerCamelCase , lowerCamelCase )] ) + "|\n" return table def lowerCAmelCase_ ( lowerCamelCase=False ): __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =_find_text_in_file( filename=os.path.join(lowerCamelCase , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) __magic_name__ : Any =get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowerCamelCase , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") UpperCAmelCase_ : Dict = parser.parse_args() check_model_table(args.fix_and_overwrite)
21
UpperCAmelCase_ : int = range(2, 20 + 1) UpperCAmelCase_ : Tuple = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =sum(a_i[j] for j in range(lowerCamelCase , len(lowerCamelCase ) ) ) __magic_name__ : Any =sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase ) , lowerCamelCase ) ) ) __magic_name__ , __magic_name__ : Tuple =0, 0 __magic_name__ : Optional[Any] =n - i __magic_name__ : Union[str, Any] =memo.get(lowerCamelCase ) if sub_memo is not None: __magic_name__ : int =sub_memo.get(lowerCamelCase ) if jumps is not None and len(lowerCamelCase ) > 0: # find and make the largest jump without going over __magic_name__ : Dict =-1 for _k in range(len(lowerCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __magic_name__ : Optional[Any] =_k break if max_jump >= 0: __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =jumps[max_jump] # since the difference between jumps is cached, add c __magic_name__ : Tuple =diff + c for j in range(min(lowerCamelCase , len(lowerCamelCase ) ) ): __magic_name__ , __magic_name__ : Tuple =divmod(lowerCamelCase , 10 ) if new_c > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __magic_name__ : str =[] else: __magic_name__ : List[str] ={c: []} __magic_name__ : List[str] =sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __magic_name__ , __magic_name__ : Union[str, Any] =next_term(lowerCamelCase , k - 1 , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __magic_name__ , __magic_name__ : Optional[int] =compute(lowerCamelCase , lowerCamelCase , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped __magic_name__ : Tuple =sub_memo[c] # keep jumps sorted by # of terms skipped __magic_name__ : List[Any] =0 while j < len(lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase , (diff, dn, k) ) return (diff, dn) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if i >= n: return 0, i if k > len(lowerCamelCase ): a_i.extend([0 for _ in range(k - len(lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __magic_name__ : Tuple =i __magic_name__ , __magic_name__ , __magic_name__ : Tuple =0, 0, 0 for j in range(len(lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __magic_name__ : Optional[Any] =ds_c + ds_b diff += addend __magic_name__ : str =0 for j in range(lowerCamelCase ): __magic_name__ : int =a_i[j] + addend __magic_name__ , __magic_name__ : Any =divmod(lowerCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return diff, i - start_i def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for j in range(lowerCamelCase , len(lowerCamelCase ) ): __magic_name__ : Tuple =digits[j] + addend if s >= 10: __magic_name__ , __magic_name__ : int =divmod(lowerCamelCase , 10 ) __magic_name__ : int =addend // 10 + quotient else: __magic_name__ : Dict =s __magic_name__ : Any =addend // 10 if addend == 0: break while addend > 0: __magic_name__ , __magic_name__ : Union[str, Any] =divmod(lowerCamelCase , 10 ) digits.append(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase = 10**15 ): __magic_name__ : List[str] =[1] __magic_name__ : str =1 __magic_name__ : str =0 while True: __magic_name__ , __magic_name__ : List[str] =next_term(lowerCamelCase , 20 , i + dn , lowerCamelCase ) dn += terms_jumped if dn == n - i: break __magic_name__ : int =0 for j in range(len(lowerCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
21
1
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __A ( UpperCamelCase__ ): UpperCamelCase = """""" UpperCamelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) UpperCamelCase = None # compression type in fsspec. ex: "gzip" UpperCamelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self :Any , __snake_case :str = "" , __snake_case :Optional[str] = None , __snake_case :Optional[dict] = None , **__snake_case :Dict ): '''simple docstring''' super().__init__(self , **__snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode __magic_name__ : Any =fsspec.open( __snake_case , mode="""rb""" , protocol=__snake_case , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) __magic_name__ : Union[str, Any] =os.path.basename(self.file.path.split("""::""" )[0] ) __magic_name__ : Optional[int] =( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) __magic_name__ : Optional[Any] =None @classmethod def A__ ( cls :Tuple , __snake_case :str ): '''simple docstring''' return super()._strip_protocol(__snake_case ).lstrip("""/""" ) def A__ ( self :Any ): '''simple docstring''' if self.dir_cache is None: __magic_name__ : Optional[Any] ={**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} __magic_name__ : Optional[Any] ={f["""name"""]: f} def A__ ( self :Any , __snake_case :str ): '''simple docstring''' return self.file.open().read() def A__ ( self :List[Any] , __snake_case :str , __snake_case :str = "rb" , __snake_case :str=None , __snake_case :List[Any]=True , __snake_case :Any=None , **__snake_case :Any , ): '''simple docstring''' __magic_name__ : Tuple =self._strip_protocol(__snake_case ) if mode != "rb": raise ValueError(f"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class __A ( UpperCamelCase__ ): UpperCamelCase = """bz2""" UpperCamelCase = """bz2""" UpperCamelCase = """.bz2""" class __A ( UpperCamelCase__ ): UpperCamelCase = """gzip""" UpperCamelCase = """gzip""" UpperCamelCase = """.gz""" class __A ( UpperCamelCase__ ): UpperCamelCase = """lz4""" UpperCamelCase = """lz4""" UpperCamelCase = """.lz4""" class __A ( UpperCamelCase__ ): UpperCamelCase = """xz""" UpperCamelCase = """xz""" UpperCamelCase = """.xz""" class __A ( UpperCamelCase__ ): UpperCamelCase = """zstd""" UpperCamelCase = """zstd""" UpperCamelCase = """.zst""" def __init__( self :Optional[Any] , __snake_case :str , __snake_case :str = "rb" , __snake_case :Optional[str] = None , __snake_case :Optional[dict] = None , __snake_case :int = DEFAULT_BLOCK_SIZE , **__snake_case :List[Any] , ): '''simple docstring''' super().__init__( fo=__snake_case , mode=__snake_case , target_protocol=__snake_case , target_options=__snake_case , block_size=__snake_case , **__snake_case , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 __magic_name__ : Dict =self.file.__enter__ class __A : def __init__( self :List[Any] , __snake_case :List[Any] ): '''simple docstring''' __magic_name__ : int =file_ def __enter__( self :Dict ): '''simple docstring''' self._file.__enter__() return self def __exit__( self :Dict , *__snake_case :str , **__snake_case :Any ): '''simple docstring''' self._file.__exit__(*__snake_case , **__snake_case ) def __iter__( self :Tuple ): '''simple docstring''' return iter(self._file ) def A__ ( self :Union[str, Any] ): '''simple docstring''' return next(self._file ) def __getattr__( self :Any , __snake_case :Optional[Any] ): '''simple docstring''' return getattr(self._file , __snake_case ) def fixed_enter(*__snake_case :Union[str, Any] , **__snake_case :int ): return WrappedFile(_enter(*__snake_case , **__snake_case ) ) __magic_name__ : List[str] =fixed_enter
21
from typing import List from .keymap import KEYMAP, get_character def lowerCAmelCase_ ( lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : str =getattr(lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator def lowerCAmelCase_ ( *lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : Dict =getattr(lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator class __A ( UpperCamelCase__ ): def __new__( cls :Dict , __snake_case :Optional[Any] , __snake_case :Union[str, Any] , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : int =super().__new__(cls , __snake_case , __snake_case , __snake_case ) if not hasattr(__snake_case , """key_handler""" ): setattr(__snake_case , """key_handler""" , {} ) setattr(__snake_case , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __magic_name__ : int =getattr(__snake_case , """handle_key""" , [] ) for key in handled_keys: __magic_name__ : List[str] =value return new_cls @staticmethod def A__ ( cls :Optional[int] ): '''simple docstring''' __magic_name__ : Union[str, Any] =get_character() if char != KEYMAP["undefined"]: __magic_name__ : Optional[int] =ord(__snake_case ) __magic_name__ : int =cls.key_handler.get(__snake_case ) if handler: __magic_name__ : Dict =char return handler(cls ) else: return None def lowerCAmelCase_ ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
21
1
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def lowerCAmelCase_ ( *lowerCamelCase ): if not isinstance(lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =list(lowerCamelCase ) for i in range(len(lowerCamelCase ) ): __magic_name__ : Dict =None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =[ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(lowerCamelCase , lowerCamelCase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def lowerCAmelCase_ ( lowerCamelCase = None , lowerCamelCase = 128 ): if function is None: return functools.partial(lowerCamelCase , starting_batch_size=lowerCamelCase ) __magic_name__ : List[Any] =starting_batch_size def decorator(*lowerCamelCase , **lowerCamelCase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __magic_name__ : Optional[Any] =list(inspect.signature(lowerCamelCase ).parameters.keys() ) # Guard against user error if len(lowerCamelCase ) < (len(lowerCamelCase ) + 1): __magic_name__ : Optional[int] =""", """.join([F"{arg}={value}" for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F"Batch size was passed into `{function.__name__}` as the first argument when called." F"Remove this as the decorator already does so: `{function.__name__}({arg_str})`" ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) except Exception as e: if should_reduce_batch_size(lowerCamelCase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
21
import os import jsonlines import numpy as np from tqdm import tqdm UpperCAmelCase_ : Dict = 2048 UpperCAmelCase_ : int = 4096 UpperCAmelCase_ : Any = 42 UpperCAmelCase_ : Optional[int] = os.environ.pop("PROCESS_TRAIN", "false") UpperCAmelCase_ : str = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def lowerCAmelCase_ ( lowerCamelCase ): def choose_first(lowerCamelCase , lowerCamelCase=False ): assert isinstance(lowerCamelCase , lowerCamelCase ) if len(lowerCamelCase ) == 1: __magic_name__ : List[str] =answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __magic_name__ : Tuple ={k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a __magic_name__ : str ={"""id""": example["""id"""]} __magic_name__ : List[Any] =example["""annotations"""] __magic_name__ : List[str] =annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: __magic_name__ : Optional[int] =["""yes"""] if 1 in yes_no_answer else ["""no"""] __magic_name__ : List[str] =[] __magic_name__ : Dict =[] __magic_name__ : str =["""<cls>"""] else: __magic_name__ : Tuple =["""short"""] __magic_name__ : Optional[int] =choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available __magic_name__ : Tuple =["""long"""] __magic_name__ : Tuple =choose_first(annotation["""long_answer"""] , is_long_answer=lowerCamelCase ) __magic_name__ : List[Any] =[] answer.update(lowerCamelCase ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: __magic_name__ : Any =True else: __magic_name__ : List[str] =False __magic_name__ : int =["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , lowerCamelCase ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =_get_single_answer(lowerCamelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : Any =example["""document"""]["""tokens"""] __magic_name__ : str =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __magic_name__ : Dict =["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __magic_name__ : Tuple =example["""document"""]["""tokens"""] __magic_name__ : Optional[int] =answer["""start_token"""] __magic_name__ : List[Any] =answer["""end_token"""] __magic_name__ : Optional[Any] =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __magic_name__ : Optional[int] =""" """.join(context[start_token:end_token] ) # checking above code if assertion: __magic_name__ : List[str] =doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : str =doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : Dict =""" """.join([old[i] for i in range(len(lowerCamelCase ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , lowerCamelCase , end="""\n""" ) print("""Old:""" , lowerCamelCase , end="""\n\n""" ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=True ): # overlap will be of doc_stride - q_len __magic_name__ : Any =get_context_and_ans(lowerCamelCase , assertion=lowerCamelCase ) __magic_name__ : Union[str, Any] =out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __magic_name__ : List[Any] =tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids __magic_name__ : Dict =input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : List[str] =[] __magic_name__ : int =[] __magic_name__ : List[str] =input_ids[:q_len] __magic_name__ : Dict =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Tuple =input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(lowerCamelCase ), "end_token": [-100] * len(lowerCamelCase ), "category": category, }, } __magic_name__ : int =out["""context"""].split() __magic_name__ : Any =splitted_context[answer["""end_token"""]] __magic_name__ : str =len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=lowerCamelCase , ).input_ids ) __magic_name__ : Optional[int] =len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=lowerCamelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __magic_name__ : Union[str, Any] =len(tokenizer(lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __magic_name__ : str =input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive __magic_name__ : Dict =answer["""start_token"""] __magic_name__ : int =answer["""end_token"""] if assertion: __magic_name__ : Any =tokenizer.decode(lowerCamelCase ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , lowerCamelCase , end="""\n\n""" ) if len(lowerCamelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __magic_name__ : Any =input_ids[:q_len] __magic_name__ : Union[str, Any] =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) __magic_name__ : Any =[] __magic_name__ : List[str] =[] __magic_name__ : List[str] =[] __magic_name__ : str =[] # null, yes, no, long, short for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Dict =input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __magic_name__ : List[Any] =start_token - i + q_len __magic_name__ : Optional[Any] =end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: __magic_name__ : Optional[Any] =-100 __magic_name__ : Optional[Any] =-100 answers_category.append("""null""" ) __magic_name__ : Optional[int] =inputs[-1][start_token : end_token + 1] answers_start_token.append(lowerCamelCase ) answers_end_token.append(lowerCamelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(lowerCamelCase ) ) print("""Old:""" , tokenizer.decode(lowerCamelCase ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=False ): __magic_name__ : List[Any] =get_strided_contexts_and_ans( lowerCamelCase , lowerCamelCase , doc_stride=lowerCamelCase , max_length=lowerCamelCase , assertion=lowerCamelCase , ) return example def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): with jsonlines.open(lowerCamelCase , """a""" ) as writer: for example in tqdm(lowerCamelCase , total=len(lowerCamelCase ) , desc="""Saving samples ... """ ): __magic_name__ : int =example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer UpperCAmelCase_ : Optional[int] = load_dataset("natural_questions") UpperCAmelCase_ : Optional[int] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") UpperCAmelCase_ : str = data["train" if PROCESS_TRAIN == "true" else "validation"] UpperCAmelCase_ : Optional[int] = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } UpperCAmelCase_ : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs) UpperCAmelCase_ : Optional[Any] = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) UpperCAmelCase_ : int = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
21
1
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : int = logging.get_logger(__name__) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : int =MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) __magic_name__ : Optional[Any] =re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""" , lowerCamelCase ) if matches: __magic_name__ : Dict =float(matches[1] ) __magic_name__ : Tuple =int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __magic_name__ : str =1001 __magic_name__ : Union[str, Any] ="""imagenet-1k-id2label.json""" __magic_name__ : List[str] ="""huggingface/label-files""" __magic_name__ : Optional[Any] =json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __magic_name__ : List[str] ={int(lowerCamelCase ) + 1: v for k, v in idalabel.items()} __magic_name__ : Tuple ="""background""" __magic_name__ : List[Any] =idalabel __magic_name__ : Optional[Any] ={v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( ): __magic_name__ : Dict ="""http://images.cocodataset.org/val2017/000000039769.jpg""" __magic_name__ : Any =Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): __magic_name__ : List[str] =get_mobilenet_va_config(lowerCamelCase ) # Load 🤗 model __magic_name__ : List[str] =MobileNetVaForImageClassification(lowerCamelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __magic_name__ : Optional[int] =MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 32} , ) __magic_name__ : Any =image_processor(images=prepare_img() , return_tensors="""pt""" ) __magic_name__ : Tuple =model(**lowerCamelCase ) __magic_name__ : Dict =outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __magic_name__ : Union[str, Any] =torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __magic_name__ : List[Any] =torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __magic_name__ : Union[str, Any] =None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowerCamelCase , atol=1E-4 ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print("""Pushing to the hub...""" ) __magic_name__ : Tuple ="""google/""" + model_name image_processor.push_to_hub(lowerCamelCase ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCAmelCase_ : Tuple = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
21
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __A ( UpperCamelCase__ ): UpperCamelCase = """xlm-roberta-xl""" def __init__( self :Dict , __snake_case :Optional[Any]=25_08_80 , __snake_case :List[Any]=25_60 , __snake_case :Optional[Any]=36 , __snake_case :Any=32 , __snake_case :int=1_02_40 , __snake_case :List[Any]="gelu" , __snake_case :Union[str, Any]=0.1 , __snake_case :Optional[Any]=0.1 , __snake_case :str=5_14 , __snake_case :Union[str, Any]=1 , __snake_case :Optional[int]=0.02 , __snake_case :str=1E-05 , __snake_case :str=1 , __snake_case :int=0 , __snake_case :Tuple=2 , __snake_case :Optional[int]="absolute" , __snake_case :str=True , __snake_case :Any=None , **__snake_case :Dict , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __magic_name__ : List[str] =vocab_size __magic_name__ : List[str] =hidden_size __magic_name__ : Union[str, Any] =num_hidden_layers __magic_name__ : Any =num_attention_heads __magic_name__ : Any =hidden_act __magic_name__ : List[str] =intermediate_size __magic_name__ : Any =hidden_dropout_prob __magic_name__ : Union[str, Any] =attention_probs_dropout_prob __magic_name__ : Any =max_position_embeddings __magic_name__ : Any =type_vocab_size __magic_name__ : List[str] =initializer_range __magic_name__ : Optional[int] =layer_norm_eps __magic_name__ : Dict =position_embedding_type __magic_name__ : Any =use_cache __magic_name__ : Dict =classifier_dropout class __A ( UpperCamelCase__ ): @property def A__ ( self :Dict ): '''simple docstring''' if self.task == "multiple-choice": __magic_name__ : str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: __magic_name__ : Optional[Any] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
21
1
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __A ( tf.keras.layers.Layer ): def __init__( self :Optional[int] , __snake_case :Dict[str, int] , __snake_case :List[str] , __snake_case :int = None , __snake_case :int = None ): '''simple docstring''' super().__init__() __magic_name__ : Optional[int] =pad_token_id __magic_name__ : List[Any] =max_length __magic_name__ : Dict =vocab __magic_name__ : int =merges __magic_name__ : Optional[int] =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case ) @classmethod def A__ ( cls :List[Any] , __snake_case :GPTaTokenizer , *__snake_case :int , **__snake_case :Any ): '''simple docstring''' __magic_name__ : List[Any] =[""" """.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()] __magic_name__ : str =tokenizer.get_vocab() return cls(__snake_case , __snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Dict , __snake_case :Union[str, os.PathLike] , *__snake_case :Union[str, Any] , **__snake_case :int ): '''simple docstring''' __magic_name__ : Dict =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case ) return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Optional[Any] , __snake_case :List[Any] ): '''simple docstring''' return cls(**__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def A__ ( self :List[Any] , __snake_case :Dict , __snake_case :int = None ): '''simple docstring''' __magic_name__ : Optional[Any] =self.tf_tokenizer(__snake_case ) __magic_name__ : Tuple =tf.ones_like(__snake_case ) if self.pad_token_id is not None: # pad the tokens up to max length __magic_name__ : Tuple =max_length if max_length is not None else self.max_length if max_length is not None: __magic_name__ , __magic_name__ : Tuple =pad_model_inputs( __snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
21
from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase_ ( lowerCamelCase="ro" , lowerCamelCase="en" , lowerCamelCase="wmt16" , lowerCamelCase=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) __magic_name__ : Dict =F"{src_lang}-{tgt_lang}" print(F"Converting {dataset}-{pair}" ) __magic_name__ : Dict =datasets.load_dataset(lowerCamelCase , lowerCamelCase ) if save_dir is None: __magic_name__ : Optional[int] =F"{dataset}-{pair}" __magic_name__ : int =Path(lowerCamelCase ) save_dir.mkdir(exist_ok=lowerCamelCase ) for split in ds.keys(): print(F"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets __magic_name__ : Dict ="""val""" if split == """validation""" else split __magic_name__ : List[Any] =save_dir.joinpath(F"{fn}.source" ) __magic_name__ : Optional[int] =save_dir.joinpath(F"{fn}.target" ) __magic_name__ : Optional[Any] =src_path.open("""w+""" ) __magic_name__ : List[Any] =tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __magic_name__ : str =x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
21
1
def lowerCAmelCase_ ( lowerCamelCase = 1000 ): return sum(e for e in range(3 , lowerCamelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
21
from __future__ import annotations from fractions import Fraction def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =[] __magic_name__ : List[Any] =11 __magic_name__ : Tuple =int("""1""" + """0""" * digit_len ) for num in range(lowerCamelCase , lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowerCamelCase , lowerCamelCase ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 __magic_name__ : List[str] =10 return solutions def lowerCAmelCase_ ( lowerCamelCase = 2 ): __magic_name__ : str =1.0 for fraction in fraction_list(lowerCamelCase ): __magic_name__ : int =Fraction(lowerCamelCase ) result *= frac.denominator / frac.numerator return int(lowerCamelCase ) if __name__ == "__main__": print(solution())
21
1
from functools import reduce UpperCAmelCase_ : Optional[int] = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowerCAmelCase_ ( lowerCamelCase = N ): return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCamelCase , lowerCamelCase : str(int(lowerCamelCase ) * int(lowerCamelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCamelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
21
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( lowerCamelCase ): # A local function to see if a dot lands in the circle. def is_in_circle(lowerCamelCase , lowerCamelCase ) -> bool: __magic_name__ : Dict =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __magic_name__ : Union[str, Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. __magic_name__ : List[Any] =proportion * 4 print(F"The estimated value of pi is {pi_estimate}" ) print(F"The numpy value of pi is {pi}" ) print(F"The total error is {abs(pi - pi_estimate )}" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 , ): return mean( function_to_integrate(uniform(lowerCamelCase , lowerCamelCase ) ) for _ in range(lowerCamelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ): def identity_function(lowerCamelCase ) -> float: return x __magic_name__ : Optional[int] =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __magic_name__ : str =(max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {expected_value}" ) print(F"Total error is {abs(estimated_value - expected_value )}" ) print("""******************""" ) def lowerCAmelCase_ ( lowerCamelCase ): def function_to_integrate(lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) __magic_name__ : Dict =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {pi}" ) print(F"Total error is {abs(estimated_value - pi )}" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCAmelCase_ ( ): __magic_name__ : Optional[int] ="""https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" __magic_name__ : Optional[int] =Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ).convert("""RGB""" ) return image def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[Any] =[] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"visual_encoder.blocks.{i}.norm1.weight", F"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm1.bias", F"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.weight", F"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.bias", F"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.qkv.weight", F"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.weight", F"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.bias", F"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.weight", F"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.bias", F"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.weight", F"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.bias", F"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : List[str] =dct.pop(lowerCamelCase ) __magic_name__ : Optional[int] =val def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __magic_name__ : List[Any] =state_dict.pop(F"visual_encoder.blocks.{i}.attn.q_bias" ) __magic_name__ : List[Any] =state_dict.pop(F"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict __magic_name__ : List[Any] =torch.cat((q_bias, torch.zeros_like(lowerCamelCase , requires_grad=lowerCamelCase ), v_bias) ) __magic_name__ : int =qkv_bias def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : Dict =364 if """coco""" in model_name else 224 __magic_name__ : Dict =BlipaVisionConfig(image_size=lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __magic_name__ : List[Any] =OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: __magic_name__ : int =OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=lowerCamelCase ).to_dict() elif "t5-xl" in model_name: __magic_name__ : Dict =TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __magic_name__ : Union[str, Any] =TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() __magic_name__ : Dict =BlipaConfig(vision_config=lowerCamelCase , text_config=lowerCamelCase ) return config, image_size @torch.no_grad() def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=False ): __magic_name__ : List[Any] =( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) __magic_name__ : List[str] =tokenizer("""\n""" , add_special_tokens=lowerCamelCase ).input_ids[0] __magic_name__ , __magic_name__ : Dict =get_blipa_config(lowerCamelCase , eos_token_id=lowerCamelCase ) __magic_name__ : Union[str, Any] =BlipaForConditionalGeneration(lowerCamelCase ).eval() __magic_name__ : List[Any] ={ """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } __magic_name__ , __magic_name__ : int =model_name_to_original[model_name] # load original model print("""Loading original model...""" ) __magic_name__ : List[str] ="""cuda""" if torch.cuda.is_available() else """cpu""" __magic_name__ , __magic_name__ , __magic_name__ : str =load_model_and_preprocess( name=lowerCamelCase , model_type=lowerCamelCase , is_eval=lowerCamelCase , device=lowerCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys __magic_name__ : Tuple =original_model.state_dict() __magic_name__ : str =create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __magic_name__ : Optional[Any] =state_dict.pop(lowerCamelCase ) if key.startswith("""Qformer.bert""" ): __magic_name__ : Tuple =key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: __magic_name__ : str =key.replace("""self""" , """attention""" ) if "opt_proj" in key: __magic_name__ : Optional[int] =key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: __magic_name__ : Tuple =key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): __magic_name__ : Union[str, Any] =key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): __magic_name__ : List[str] =key.replace("""t5""" , """language""" ) __magic_name__ : List[str] =val # read in qv biases read_in_q_v_bias(lowerCamelCase , lowerCamelCase ) __magic_name__ , __magic_name__ : int =hf_model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert len(lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __magic_name__ : int =load_demo_image() __magic_name__ : Tuple =vis_processors["""eval"""](lowerCamelCase ).unsqueeze(0 ).to(lowerCamelCase ) __magic_name__ : List[Any] =tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(lowerCamelCase ) # create processor __magic_name__ : Union[str, Any] =BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=lowerCamelCase , image_std=lowerCamelCase ) __magic_name__ : Optional[int] =BlipaProcessor(image_processor=lowerCamelCase , tokenizer=lowerCamelCase ) __magic_name__ : Optional[Any] =processor(images=lowerCamelCase , return_tensors="""pt""" ).pixel_values.to(lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(lowerCamelCase , lowerCamelCase ) original_model.to(lowerCamelCase ) hf_model.to(lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: __magic_name__ : List[Any] =original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits __magic_name__ : List[str] =hf_model(lowerCamelCase , lowerCamelCase ).logits else: __magic_name__ : Union[str, Any] =original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits __magic_name__ : Any =input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) __magic_name__ : List[str] =hf_model(lowerCamelCase , lowerCamelCase , labels=lowerCamelCase ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __magic_name__ : Tuple =torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": __magic_name__ : Union[str, Any] =torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=lowerCamelCase ) else: # cast to same type __magic_name__ : Any =logits.dtype assert torch.allclose(original_logits.to(lowerCamelCase ) , lowerCamelCase , atol=1E-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) __magic_name__ : Dict ="""""" __magic_name__ : List[Any] =tokenizer(lowerCamelCase , return_tensors="""pt""" ).input_ids.to(lowerCamelCase ) __magic_name__ : List[str] =original_model.generate({"""image""": original_pixel_values} ) __magic_name__ : int =hf_model.generate( lowerCamelCase , lowerCamelCase , do_sample=lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , lowerCamelCase ) __magic_name__ : List[Any] =input_ids.shape[1] __magic_name__ : int =processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowerCamelCase ) __magic_name__ : int =[text.strip() for text in output_text] print("""HF generation:""" , lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowerCamelCase ) hf_model.save_pretrained(lowerCamelCase ) if push_to_hub: processor.push_to_hub(F"nielsr/{model_name}" ) hf_model.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": UpperCAmelCase_ : Dict = argparse.ArgumentParser() UpperCAmelCase_ : Dict = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
21
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __A ( tf.keras.layers.Layer ): def __init__( self :Optional[int] , __snake_case :Dict[str, int] , __snake_case :List[str] , __snake_case :int = None , __snake_case :int = None ): '''simple docstring''' super().__init__() __magic_name__ : Optional[int] =pad_token_id __magic_name__ : List[Any] =max_length __magic_name__ : Dict =vocab __magic_name__ : int =merges __magic_name__ : Optional[int] =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case ) @classmethod def A__ ( cls :List[Any] , __snake_case :GPTaTokenizer , *__snake_case :int , **__snake_case :Any ): '''simple docstring''' __magic_name__ : List[Any] =[""" """.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()] __magic_name__ : str =tokenizer.get_vocab() return cls(__snake_case , __snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Dict , __snake_case :Union[str, os.PathLike] , *__snake_case :Union[str, Any] , **__snake_case :int ): '''simple docstring''' __magic_name__ : Dict =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case ) return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Optional[Any] , __snake_case :List[Any] ): '''simple docstring''' return cls(**__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def A__ ( self :List[Any] , __snake_case :Dict , __snake_case :int = None ): '''simple docstring''' __magic_name__ : Optional[Any] =self.tf_tokenizer(__snake_case ) __magic_name__ : Tuple =tf.ones_like(__snake_case ) if self.pad_token_id is not None: # pad the tokens up to max length __magic_name__ : Tuple =max_length if max_length is not None else self.max_length if max_length is not None: __magic_name__ , __magic_name__ : Tuple =pad_model_inputs( __snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
21
1
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __A ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self :Optional[Any] , __snake_case :int , __snake_case :int , __snake_case :int , __snake_case :float , __snake_case :int , __snake_case :int , __snake_case :int , __snake_case :int , __snake_case :str , __snake_case :bool = False , ): '''simple docstring''' super().__init__() __magic_name__ : List[str] =nn.Embedding(__snake_case , __snake_case ) __magic_name__ : int =nn.Embedding(__snake_case , __snake_case ) __magic_name__ : Tuple =False __magic_name__ : List[str] =nn.Dropout(p=__snake_case ) __magic_name__ : Union[str, Any] =TaConfig( vocab_size=__snake_case , d_model=__snake_case , num_heads=__snake_case , d_kv=__snake_case , d_ff=__snake_case , dropout_rate=__snake_case , feed_forward_proj=__snake_case , is_decoder=__snake_case , is_encoder_decoder=__snake_case , ) __magic_name__ : List[Any] =nn.ModuleList() for lyr_num in range(__snake_case ): __magic_name__ : Any =TaBlock(__snake_case ) self.encoders.append(__snake_case ) __magic_name__ : Union[str, Any] =TaLayerNorm(__snake_case ) __magic_name__ : str =nn.Dropout(p=__snake_case ) def A__ ( self :List[Any] , __snake_case :Union[str, Any] , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : Dict =self.token_embedder(__snake_case ) __magic_name__ : List[Any] =encoder_input_tokens.shape[1] __magic_name__ : Any =torch.arange(__snake_case , device=encoder_input_tokens.device ) x += self.position_encoding(__snake_case ) __magic_name__ : Optional[int] =self.dropout_pre(__snake_case ) # inverted the attention mask __magic_name__ : Optional[int] =encoder_input_tokens.size() __magic_name__ : Optional[int] =self.get_extended_attention_mask(__snake_case , __snake_case ) for lyr in self.encoders: __magic_name__ : Union[str, Any] =lyr(__snake_case , __snake_case )[0] __magic_name__ : int =self.layer_norm(__snake_case ) return self.dropout_post(__snake_case ), encoder_inputs_mask
21
import math import tensorflow as tf from packaging import version def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : List[str] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Optional[Any] =tf.cast(math.pi , x.dtype ) __magic_name__ : int =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Any =tf.convert_to_tensor(lowerCamelCase ) return x * tf.tanh(tf.math.softplus(lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[Any] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Union[str, Any] =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Dict =tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCAmelCase_ ( lowerCamelCase ): return tf.clip_by_value(_gelu(lowerCamelCase ) , -10 , 10 ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=-1 ): __magic_name__ , __magic_name__ : List[Any] =tf.split(lowerCamelCase , 2 , axis=lowerCamelCase ) return a * tf.math.sigmoid(lowerCamelCase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowerCAmelCase_ ( lowerCamelCase ): return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase ) UpperCAmelCase_ : List[str] = tf.keras.activations.gelu UpperCAmelCase_ : Dict = approximate_gelu_wrap else: UpperCAmelCase_ : Dict = _gelu UpperCAmelCase_ : str = _gelu_new UpperCAmelCase_ : Any = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowerCAmelCase_ ( lowerCamelCase ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
21
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __A ( unittest.TestCase ): def __init__( self :Tuple , __snake_case :str , __snake_case :List[Any]=7 , __snake_case :Optional[int]=3 , __snake_case :List[str]=18 , __snake_case :Optional[int]=30 , __snake_case :str=4_00 , __snake_case :Dict=True , __snake_case :Optional[Any]=None , __snake_case :List[Any]=True , ): '''simple docstring''' __magic_name__ : Tuple =size if size is not None else {"""height""": 18, """width""": 18} __magic_name__ : List[Any] =parent __magic_name__ : Any =batch_size __magic_name__ : str =num_channels __magic_name__ : List[str] =image_size __magic_name__ : str =min_resolution __magic_name__ : Union[str, Any] =max_resolution __magic_name__ : Tuple =do_resize __magic_name__ : Optional[Any] =size __magic_name__ : Dict =apply_ocr def A__ ( self :Any ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : Dict =LayoutLMvaImageProcessingTester(self ) @property def A__ ( self :Dict ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Tuple =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """do_resize""" ) ) self.assertTrue(hasattr(__snake_case , """size""" ) ) self.assertTrue(hasattr(__snake_case , """apply_ocr""" ) ) def A__ ( self :int ): '''simple docstring''' __magic_name__ : Dict =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __magic_name__ : Tuple =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def A__ ( self :str ): '''simple docstring''' pass def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : List[str] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input __magic_name__ : Optional[Any] =image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __snake_case ) self.assertIsInstance(encoding.boxes , __snake_case ) # Test batched __magic_name__ : Optional[int] =image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Optional[int] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input __magic_name__ : str =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Dict =image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Dict =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input __magic_name__ : Optional[Any] =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Union[str, Any] =image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def A__ ( self :int ): '''simple docstring''' __magic_name__ : int =LayoutLMvaImageProcessor() from datasets import load_dataset __magic_name__ : Union[str, Any] =load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) __magic_name__ : Dict =Image.open(ds[0]["""file"""] ).convert("""RGB""" ) __magic_name__ : str =image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __magic_name__ : Tuple =[["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 __magic_name__ : Any =[[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __snake_case ) self.assertListEqual(encoding.boxes , __snake_case ) # with apply_OCR = False __magic_name__ : Dict =LayoutLMvaImageProcessor(apply_ocr=__snake_case ) __magic_name__ : Union[str, Any] =image_processing(__snake_case , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
21
from collections.abc import Sequence def lowerCAmelCase_ ( lowerCamelCase = None ): if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __magic_name__ : str =nums[0] for i in range(1 , len(lowerCamelCase ) ): __magic_name__ : Any =nums[i] __magic_name__ : Dict =max(lowerCamelCase , ans + num , lowerCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCAmelCase_ : List[str] = int(input("Enter number of elements : ").strip()) UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
21
1
UpperCAmelCase_ : List[str] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # Return True if there is node that has not iterated. __magic_name__ : Any =[False] * len(lowerCamelCase ) __magic_name__ : Any =[s] __magic_name__ : Tuple =True while queue: __magic_name__ : Any =queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCamelCase ) __magic_name__ : Tuple =True __magic_name__ : Optional[Any] =u return visited[t] def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : str =[-1] * (len(lowerCamelCase )) __magic_name__ : str =0 __magic_name__ : Any =[] __magic_name__ : Dict =[i[:] for i in graph] # Record original cut, copy. while bfs(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : List[str] =float("""Inf""" ) __magic_name__ : List[Any] =sink while s != source: # Find the minimum value in select path __magic_name__ : Dict =min(lowerCamelCase , graph[parent[s]][s] ) __magic_name__ : int =parent[s] max_flow += path_flow __magic_name__ : Optional[Any] =sink while v != source: __magic_name__ : List[Any] =parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __magic_name__ : List[Any] =parent[v] for i in range(len(lowerCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
21
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : UpperCamelCase = 42 UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""Translation""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def __call__( self :Union[str, Any] ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def A__ ( self :List[Any] ): '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __A : UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""TranslationVariableLanguages""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =sorted(set(self.languages ) ) if self.languages else None __magic_name__ : Optional[int] =len(self.languages ) if self.languages else None def __call__( self :List[str] ): '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def A__ ( self :str , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[int] =set(self.languages ) if self.languages and set(__snake_case ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __magic_name__ : Any =[] for lang, text in translation_dict.items(): if isinstance(__snake_case , __snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __magic_name__ , __magic_name__ : List[str] =zip(*sorted(__snake_case ) ) return {"language": languages, "translation": translations} def A__ ( self :List[Any] ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
21
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Union[str, Any] = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class __A ( UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = """nat""" UpperCamelCase = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :List[Any] , __snake_case :Tuple=4 , __snake_case :int=3 , __snake_case :Union[str, Any]=64 , __snake_case :Optional[Any]=[3, 4, 6, 5] , __snake_case :Tuple=[2, 4, 8, 16] , __snake_case :Optional[int]=7 , __snake_case :Optional[int]=3.0 , __snake_case :int=True , __snake_case :Dict=0.0 , __snake_case :Tuple=0.0 , __snake_case :List[Any]=0.1 , __snake_case :Optional[int]="gelu" , __snake_case :Optional[Any]=0.02 , __snake_case :Optional[int]=1E-5 , __snake_case :List[str]=0.0 , __snake_case :List[str]=None , __snake_case :Optional[int]=None , **__snake_case :List[Any] , ): '''simple docstring''' super().__init__(**__snake_case ) __magic_name__ : Any =patch_size __magic_name__ : Optional[int] =num_channels __magic_name__ : Tuple =embed_dim __magic_name__ : List[Any] =depths __magic_name__ : Union[str, Any] =len(__snake_case ) __magic_name__ : List[Any] =num_heads __magic_name__ : int =kernel_size __magic_name__ : Tuple =mlp_ratio __magic_name__ : Tuple =qkv_bias __magic_name__ : Dict =hidden_dropout_prob __magic_name__ : Dict =attention_probs_dropout_prob __magic_name__ : Union[str, Any] =drop_path_rate __magic_name__ : Union[str, Any] =hidden_act __magic_name__ : Optional[int] =layer_norm_eps __magic_name__ : Union[str, Any] =initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __magic_name__ : List[str] =int(embed_dim * 2 ** (len(__snake_case ) - 1) ) __magic_name__ : List[str] =layer_scale_init_value __magic_name__ : List[Any] =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__snake_case ) + 1 )] __magic_name__ , __magic_name__ : Dict =get_aligned_output_features_output_indices( out_features=__snake_case , out_indices=__snake_case , stage_names=self.stage_names )
21
from sklearn.metrics import matthews_corrcoef import datasets UpperCAmelCase_ : Dict = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCAmelCase_ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCAmelCase_ : Dict = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def A__ ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def A__ ( self :Tuple , __snake_case :str , __snake_case :Tuple , __snake_case :List[str]=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ), }
21
1
from __future__ import annotations import math import random from typing import Any class __A : def __init__( self :Dict ): '''simple docstring''' __magic_name__ : list[Any] =[] __magic_name__ : int =0 __magic_name__ : int =0 def A__ ( self :int ): '''simple docstring''' return self.head == self.tail def A__ ( self :Optional[Any] , __snake_case :Any ): '''simple docstring''' self.data.append(__snake_case ) __magic_name__ : Optional[int] =self.tail + 1 def A__ ( self :int ): '''simple docstring''' __magic_name__ : Union[str, Any] =self.data[self.head] __magic_name__ : Any =self.head + 1 return ret def A__ ( self :Dict ): '''simple docstring''' return self.tail - self.head def A__ ( self :Any ): '''simple docstring''' print(self.data ) print("""**************""" ) print(self.data[self.head : self.tail] ) class __A : def __init__( self :Tuple , __snake_case :Any ): '''simple docstring''' __magic_name__ : Optional[Any] =data __magic_name__ : MyNode | None =None __magic_name__ : MyNode | None =None __magic_name__ : int =1 def A__ ( self :Any ): '''simple docstring''' return self.data def A__ ( self :int ): '''simple docstring''' return self.left def A__ ( self :int ): '''simple docstring''' return self.right def A__ ( self :str ): '''simple docstring''' return self.height def A__ ( self :Tuple , __snake_case :Any ): '''simple docstring''' __magic_name__ : int =data def A__ ( self :Dict , __snake_case :MyNode | None ): '''simple docstring''' __magic_name__ : Any =node def A__ ( self :str , __snake_case :MyNode | None ): '''simple docstring''' __magic_name__ : Tuple =node def A__ ( self :Optional[Any] , __snake_case :int ): '''simple docstring''' __magic_name__ : Union[str, Any] =height def lowerCAmelCase_ ( lowerCamelCase ): if node is None: return 0 return node.get_height() def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): if a > b: return a return b def lowerCAmelCase_ ( lowerCamelCase ): print("""left rotation node:""" , node.get_data() ) __magic_name__ : Any =node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(lowerCamelCase ) __magic_name__ : Optional[int] =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCamelCase ) __magic_name__ : List[str] =my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCamelCase ) return ret def lowerCAmelCase_ ( lowerCamelCase ): print("""right rotation node:""" , node.get_data() ) __magic_name__ : List[str] =node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(lowerCamelCase ) __magic_name__ : Tuple =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCamelCase ) __magic_name__ : str =my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCamelCase ) return ret def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Dict =node.get_left() assert left_child is not None node.set_left(left_rotation(lowerCamelCase ) ) return right_rotation(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : int =node.get_right() assert right_child is not None node.set_right(right_rotation(lowerCamelCase ) ) return left_rotation(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): if node is None: return MyNode(lowerCamelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , lowerCamelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected __magic_name__ : int =node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child __magic_name__ : Tuple =right_rotation(lowerCamelCase ) else: __magic_name__ : int =lr_rotation(lowerCamelCase ) else: node.set_right(insert_node(node.get_right() , lowerCamelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: __magic_name__ : List[Any] =node.get_right() assert right_child is not None if data < right_child.get_data(): __magic_name__ : Tuple =rl_rotation(lowerCamelCase ) else: __magic_name__ : Optional[Any] =left_rotation(lowerCamelCase ) __magic_name__ : Optional[int] =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCamelCase ) return node def lowerCAmelCase_ ( lowerCamelCase ): while True: __magic_name__ : str =root.get_right() if right_child is None: break __magic_name__ : List[Any] =right_child return root.get_data() def lowerCAmelCase_ ( lowerCamelCase ): while True: __magic_name__ : List[Any] =root.get_left() if left_child is None: break __magic_name__ : Optional[int] =left_child return root.get_data() def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : str =root.get_left() __magic_name__ : Union[str, Any] =root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: __magic_name__ : Union[str, Any] =get_left_most(lowerCamelCase ) root.set_data(lowerCamelCase ) root.set_right(del_node(lowerCamelCase , lowerCamelCase ) ) elif left_child is not None: __magic_name__ : Any =left_child elif right_child is not None: __magic_name__ : Tuple =right_child else: return None elif root.get_data() > data: if left_child is None: print("""No such data""" ) return root else: root.set_left(del_node(lowerCamelCase , lowerCamelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(lowerCamelCase , lowerCamelCase ) ) if get_height(lowerCamelCase ) - get_height(lowerCamelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): __magic_name__ : Optional[Any] =left_rotation(lowerCamelCase ) else: __magic_name__ : Union[str, Any] =rl_rotation(lowerCamelCase ) elif get_height(lowerCamelCase ) - get_height(lowerCamelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): __magic_name__ : Any =right_rotation(lowerCamelCase ) else: __magic_name__ : Optional[int] =lr_rotation(lowerCamelCase ) __magic_name__ : Dict =my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(lowerCamelCase ) return root class __A : def __init__( self :List[Any] ): '''simple docstring''' __magic_name__ : MyNode | None =None def A__ ( self :str ): '''simple docstring''' return get_height(self.root ) def A__ ( self :Tuple , __snake_case :Any ): '''simple docstring''' print("""insert:""" + str(__snake_case ) ) __magic_name__ : Optional[int] =insert_node(self.root , __snake_case ) def A__ ( self :Tuple , __snake_case :Any ): '''simple docstring''' print("""delete:""" + str(__snake_case ) ) if self.root is None: print("""Tree is empty!""" ) return __magic_name__ : str =del_node(self.root , __snake_case ) def __str__( self :List[str] , ): # a level traversale, gives a more intuitive look on the tree '''simple docstring''' __magic_name__ : str ="""""" __magic_name__ : List[Any] =MyQueue() q.push(self.root ) __magic_name__ : str =self.get_height() if layer == 0: return output __magic_name__ : List[Any] =0 while not q.is_empty(): __magic_name__ : Any =q.pop() __magic_name__ : str =""" """ * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(__snake_case ) q.push(__snake_case ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space __magic_name__ : Optional[Any] =cnt + 1 for i in range(1_00 ): if cnt == math.pow(2 , __snake_case ) - 1: __magic_name__ : str =layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def lowerCAmelCase_ ( ): import doctest doctest.testmod() if __name__ == "__main__": _test() UpperCAmelCase_ : int = AVLtree() UpperCAmelCase_ : Dict = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
21
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =OmegaConf.load(lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(lowerCamelCase ) ) ) return config def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): if conf_path is None: __magic_name__ : List[str] ="""./model_checkpoints/vqgan_only.yaml""" __magic_name__ : Dict =load_config(lowerCamelCase , display=lowerCamelCase ) __magic_name__ : Tuple =VQModel(**config.model.params ) if ckpt_path is None: __magic_name__ : Optional[Any] ="""./model_checkpoints/vqgan_only.pt""" __magic_name__ : Tuple =torch.load(lowerCamelCase , map_location=lowerCamelCase ) if ".ckpt" in ckpt_path: __magic_name__ : Any =sd["""state_dict"""] model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) model.to(lowerCamelCase ) del sd return model def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =model.encode(lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) __magic_name__ : List[Any] =model.decode(lowerCamelCase ) return xrec def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ , __magic_name__ : Optional[int] =string.rsplit(""".""" , 1 ) if reload: __magic_name__ : Optional[int] =importlib.import_module(lowerCamelCase ) importlib.reload(lowerCamelCase ) return getattr(importlib.import_module(lowerCamelCase , package=lowerCamelCase ) , cls ) def lowerCAmelCase_ ( lowerCamelCase ): if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True ): __magic_name__ : str =instantiate_from_config(lowerCamelCase ) if sd is not None: model.load_state_dict(lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # load the specified checkpoint if ckpt: __magic_name__ : str =torch.load(lowerCamelCase , map_location="""cpu""" ) __magic_name__ : Any =pl_sd["""global_step"""] print(F"loaded model from global step {global_step}." ) else: __magic_name__ : List[Any] ={"""state_dict""": None} __magic_name__ : Optional[Any] =None __magic_name__ : Tuple =load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=lowerCamelCase , eval_mode=lowerCamelCase )["""model"""] return model, global_step
21
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class __A ( UpperCamelCase__ ): UpperCamelCase = """blenderbot-small""" UpperCamelCase = ["""past_key_values"""] UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :Any , __snake_case :Optional[int]=5_02_65 , __snake_case :Any=5_12 , __snake_case :Tuple=8 , __snake_case :Optional[Any]=20_48 , __snake_case :List[Any]=16 , __snake_case :Any=8 , __snake_case :Union[str, Any]=20_48 , __snake_case :Any=16 , __snake_case :List[str]=0.0 , __snake_case :Dict=0.0 , __snake_case :str=True , __snake_case :Optional[int]=True , __snake_case :Optional[int]="gelu" , __snake_case :Dict=5_12 , __snake_case :Optional[Any]=0.1 , __snake_case :Tuple=0.0 , __snake_case :Optional[Any]=0.0 , __snake_case :Optional[int]=0.02 , __snake_case :Optional[int]=1 , __snake_case :str=False , __snake_case :List[Any]=0 , __snake_case :int=1 , __snake_case :List[Any]=2 , __snake_case :Optional[Any]=2 , **__snake_case :str , ): '''simple docstring''' __magic_name__ : int =vocab_size __magic_name__ : Optional[Any] =max_position_embeddings __magic_name__ : Optional[Any] =d_model __magic_name__ : str =encoder_ffn_dim __magic_name__ : Tuple =encoder_layers __magic_name__ : List[str] =encoder_attention_heads __magic_name__ : Union[str, Any] =decoder_ffn_dim __magic_name__ : int =decoder_layers __magic_name__ : Tuple =decoder_attention_heads __magic_name__ : Tuple =dropout __magic_name__ : List[str] =attention_dropout __magic_name__ : int =activation_dropout __magic_name__ : Union[str, Any] =activation_function __magic_name__ : Any =init_std __magic_name__ : Any =encoder_layerdrop __magic_name__ : Optional[int] =decoder_layerdrop __magic_name__ : int =use_cache __magic_name__ : Dict =encoder_layers __magic_name__ : Tuple =scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) class __A ( UpperCamelCase__ ): @property def A__ ( self :Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __magic_name__ : List[Any] =OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __magic_name__ : Tuple ={0: """batch"""} __magic_name__ : Tuple ={0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __magic_name__ : Optional[Any] ={0: """batch""", 1: """decoder_sequence"""} __magic_name__ : Union[str, Any] ={0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(__snake_case , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. __magic_name__ : Optional[Any] =OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __magic_name__ , __magic_name__ : List[Any] =self.num_layers for i in range(__snake_case ): __magic_name__ : Optional[int] ={0: """batch""", 2: """past_sequence + sequence"""} __magic_name__ : str ={0: """batch""", 2: """past_sequence + sequence"""} else: __magic_name__ : Dict =OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def A__ ( self :Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __magic_name__ : List[Any] =super().outputs else: __magic_name__ : Optional[Any] =super(__snake_case , self ).outputs if self.use_past: __magic_name__ , __magic_name__ : int =self.num_layers for i in range(__snake_case ): __magic_name__ : Optional[int] ={0: """batch""", 2: """past_sequence + sequence"""} __magic_name__ : str ={0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def A__ ( self :List[Any] , __snake_case :PreTrainedTokenizer , __snake_case :int = -1 , __snake_case :int = -1 , __snake_case :bool = False , __snake_case :Optional[TensorType] = None , ): '''simple docstring''' __magic_name__ : str =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Generate decoder inputs __magic_name__ : List[str] =seq_length if not self.use_past else 1 __magic_name__ : Any =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) __magic_name__ : Any ={f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __magic_name__ : List[str] =dict(**__snake_case , **__snake_case ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __magic_name__ , __magic_name__ : int =common_inputs["""input_ids"""].shape __magic_name__ : Any =common_inputs["""decoder_input_ids"""].shape[1] __magic_name__ , __magic_name__ : Optional[int] =self.num_attention_heads __magic_name__ : int =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __magic_name__ : List[Any] =decoder_seq_length + 3 __magic_name__ : List[Any] =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __magic_name__ : Any =torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(__snake_case , __snake_case )] , dim=1 ) __magic_name__ : Optional[Any] =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered __magic_name__ , __magic_name__ : Dict =self.num_layers __magic_name__ : List[Any] =min(__snake_case , __snake_case ) __magic_name__ : List[Any] =max(__snake_case , __snake_case ) - min_num_layers __magic_name__ : Optional[Any] ="""encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(__snake_case ): common_inputs["past_key_values"].append( ( torch.zeros(__snake_case ), torch.zeros(__snake_case ), torch.zeros(__snake_case ), torch.zeros(__snake_case ), ) ) # TODO: test this. __magic_name__ : int =encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(__snake_case , __snake_case ): common_inputs["past_key_values"].append((torch.zeros(__snake_case ), torch.zeros(__snake_case )) ) return common_inputs def A__ ( self :List[str] , __snake_case :PreTrainedTokenizer , __snake_case :int = -1 , __snake_case :int = -1 , __snake_case :bool = False , __snake_case :Optional[TensorType] = None , ): '''simple docstring''' __magic_name__ : Optional[Any] =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __magic_name__ , __magic_name__ : int =common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __magic_name__ : int =seqlen + 2 __magic_name__ , __magic_name__ : Tuple =self.num_layers __magic_name__ , __magic_name__ : List[str] =self.num_attention_heads __magic_name__ : List[Any] =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __magic_name__ : Union[str, Any] =common_inputs["""attention_mask"""].dtype __magic_name__ : int =torch.cat( [common_inputs["""attention_mask"""], torch.ones(__snake_case , __snake_case , dtype=__snake_case )] , dim=1 ) __magic_name__ : Dict =[ (torch.zeros(__snake_case ), torch.zeros(__snake_case )) for _ in range(__snake_case ) ] return common_inputs def A__ ( self :Any , __snake_case :PreTrainedTokenizer , __snake_case :int = -1 , __snake_case :int = -1 , __snake_case :bool = False , __snake_case :Optional[TensorType] = None , ): '''simple docstring''' __magic_name__ : Tuple =compute_effective_axis_dimension( __snake_case , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __magic_name__ : Any =tokenizer.num_special_tokens_to_add(__snake_case ) __magic_name__ : Optional[Any] =compute_effective_axis_dimension( __snake_case , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__snake_case ) # Generate dummy inputs according to compute batch and sequence __magic_name__ : List[str] =[""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size __magic_name__ : int =dict(tokenizer(__snake_case , return_tensors=__snake_case ) ) return common_inputs def A__ ( self :Optional[Any] , __snake_case :PreTrainedTokenizer , __snake_case :int = -1 , __snake_case :int = -1 , __snake_case :bool = False , __snake_case :Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __magic_name__ : Any =self._generate_dummy_inputs_for_default_and_seqaseq_lm( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) elif self.task == "causal-lm": __magic_name__ : List[Any] =self._generate_dummy_inputs_for_causal_lm( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) else: __magic_name__ : int =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) return common_inputs def A__ ( self :List[str] , __snake_case :Any , __snake_case :Dict , __snake_case :Any , __snake_case :Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __magic_name__ : Union[str, Any] =super()._flatten_past_key_values_(__snake_case , __snake_case , __snake_case , __snake_case ) else: __magic_name__ : Optional[Any] =super(__snake_case , self )._flatten_past_key_values_( __snake_case , __snake_case , __snake_case , __snake_case )
21
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): def A__ ( self :Tuple ): '''simple docstring''' debug_launcher(test_script.main ) def A__ ( self :Dict ): '''simple docstring''' debug_launcher(test_ops.main )
21
1
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): __magic_name__ : Optional[Any] =[redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: __magic_name__ : List[Any] =1 - (matter_density + radiation_density + dark_energy) __magic_name__ : str =( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) __magic_name__ : List[Any] =hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation UpperCAmelCase_ : Union[str, Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
21
UpperCAmelCase_ : Tuple = 0 # The first color of the flag. UpperCAmelCase_ : Any = 1 # The second color of the flag. UpperCAmelCase_ : str = 2 # The third color of the flag. UpperCAmelCase_ : Tuple = (red, white, blue) def lowerCAmelCase_ ( lowerCamelCase ): if not sequence: return [] if len(lowerCamelCase ) == 1: return list(lowerCamelCase ) __magic_name__ : int =0 __magic_name__ : str =len(lowerCamelCase ) - 1 __magic_name__ : Optional[Any] =0 while mid <= high: if sequence[mid] == colors[0]: __magic_name__ , __magic_name__ : Tuple =sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: __magic_name__ , __magic_name__ : Optional[Any] =sequence[high], sequence[mid] high -= 1 else: __magic_name__ : Optional[int] =F"The elements inside the sequence must contains only {colors} values" raise ValueError(lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[Any] = input("Enter numbers separated by commas:\n").strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
21
1
UpperCAmelCase_ : int = range(2, 20 + 1) UpperCAmelCase_ : Tuple = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =sum(a_i[j] for j in range(lowerCamelCase , len(lowerCamelCase ) ) ) __magic_name__ : Any =sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase ) , lowerCamelCase ) ) ) __magic_name__ , __magic_name__ : Tuple =0, 0 __magic_name__ : Optional[Any] =n - i __magic_name__ : Union[str, Any] =memo.get(lowerCamelCase ) if sub_memo is not None: __magic_name__ : int =sub_memo.get(lowerCamelCase ) if jumps is not None and len(lowerCamelCase ) > 0: # find and make the largest jump without going over __magic_name__ : Dict =-1 for _k in range(len(lowerCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __magic_name__ : Optional[Any] =_k break if max_jump >= 0: __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =jumps[max_jump] # since the difference between jumps is cached, add c __magic_name__ : Tuple =diff + c for j in range(min(lowerCamelCase , len(lowerCamelCase ) ) ): __magic_name__ , __magic_name__ : Tuple =divmod(lowerCamelCase , 10 ) if new_c > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __magic_name__ : str =[] else: __magic_name__ : List[str] ={c: []} __magic_name__ : List[str] =sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __magic_name__ , __magic_name__ : Union[str, Any] =next_term(lowerCamelCase , k - 1 , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __magic_name__ , __magic_name__ : Optional[int] =compute(lowerCamelCase , lowerCamelCase , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped __magic_name__ : Tuple =sub_memo[c] # keep jumps sorted by # of terms skipped __magic_name__ : List[Any] =0 while j < len(lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase , (diff, dn, k) ) return (diff, dn) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if i >= n: return 0, i if k > len(lowerCamelCase ): a_i.extend([0 for _ in range(k - len(lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __magic_name__ : Tuple =i __magic_name__ , __magic_name__ , __magic_name__ : Tuple =0, 0, 0 for j in range(len(lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __magic_name__ : Optional[Any] =ds_c + ds_b diff += addend __magic_name__ : str =0 for j in range(lowerCamelCase ): __magic_name__ : int =a_i[j] + addend __magic_name__ , __magic_name__ : Any =divmod(lowerCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return diff, i - start_i def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for j in range(lowerCamelCase , len(lowerCamelCase ) ): __magic_name__ : Tuple =digits[j] + addend if s >= 10: __magic_name__ , __magic_name__ : int =divmod(lowerCamelCase , 10 ) __magic_name__ : int =addend // 10 + quotient else: __magic_name__ : Dict =s __magic_name__ : Any =addend // 10 if addend == 0: break while addend > 0: __magic_name__ , __magic_name__ : Union[str, Any] =divmod(lowerCamelCase , 10 ) digits.append(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase = 10**15 ): __magic_name__ : List[str] =[1] __magic_name__ : str =1 __magic_name__ : str =0 while True: __magic_name__ , __magic_name__ : List[str] =next_term(lowerCamelCase , 20 , i + dn , lowerCamelCase ) dn += terms_jumped if dn == n - i: break __magic_name__ : int =0 for j in range(len(lowerCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
21
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __A ( UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = 1 @register_to_config def __init__( self :Any , __snake_case :Tuple=20_00 , __snake_case :Optional[Any]=0.1 , __snake_case :Any=20 , __snake_case :Optional[int]=1E-3 ): '''simple docstring''' __magic_name__ : Dict =None __magic_name__ : List[str] =None __magic_name__ : str =None def A__ ( self :Dict , __snake_case :Optional[int] , __snake_case :Union[str, torch.device] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] =torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case ) def A__ ( self :List[str] , __snake_case :List[str] , __snake_case :int , __snake_case :int , __snake_case :List[str]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __magic_name__ : int =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __magic_name__ : Optional[int] =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __magic_name__ : str =std.flatten() while len(std.shape ) < len(score.shape ): __magic_name__ : List[str] =std.unsqueeze(-1 ) __magic_name__ : Union[str, Any] =-score / std # compute __magic_name__ : Tuple =-1.0 / len(self.timesteps ) __magic_name__ : int =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __magic_name__ : Dict =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __magic_name__ : Any =beta_t.unsqueeze(-1 ) __magic_name__ : Dict =-0.5 * beta_t * x __magic_name__ : Optional[int] =torch.sqrt(__snake_case ) __magic_name__ : int =drift - diffusion**2 * score __magic_name__ : List[str] =x + drift * dt # add noise __magic_name__ : Optional[int] =randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype ) __magic_name__ : Optional[Any] =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self :List[Any] ): '''simple docstring''' return self.config.num_train_timesteps
21
1
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCAmelCase_ : int = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__( self :Tuple , *__snake_case :str , **__snake_case :List[Any] ): '''simple docstring''' warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
21
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCAmelCase_ : Dict = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__( self :List[str] , __snake_case :int , __snake_case :int , __snake_case :float , **__snake_case :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =feature_size __magic_name__ : Union[str, Any] =sampling_rate __magic_name__ : List[Any] =padding_value __magic_name__ : List[str] =kwargs.pop("""padding_side""" , """right""" ) __magic_name__ : Tuple =kwargs.pop("""return_attention_mask""" , __snake_case ) super().__init__(**__snake_case ) def A__ ( self :Any , __snake_case :Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __snake_case :Union[bool, str, PaddingStrategy] = True , __snake_case :Optional[int] = None , __snake_case :bool = False , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[Union[str, TensorType]] = None , ): '''simple docstring''' if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __magic_name__ : Union[str, Any] ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) __magic_name__ : int =processed_features[self.model_input_names[0]] __magic_name__ : Union[str, Any] =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__snake_case ) == 0: if return_attention_mask: __magic_name__ : List[str] =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __magic_name__ : Optional[int] =required_input[0] if isinstance(__snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __magic_name__ : Optional[Any] =0 while len(required_input[index] ) == 0: index += 1 if index < len(__snake_case ): __magic_name__ : List[str] =required_input[index][0] if return_tensors is None: if is_tf_tensor(__snake_case ): __magic_name__ : int ="""tf""" elif is_torch_tensor(__snake_case ): __magic_name__ : str ="""pt""" elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ): __magic_name__ : List[Any] ="""np""" else: raise ValueError( f"type of {first_element} unknown: {type(__snake_case )}. " """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __magic_name__ : List[str] =to_numpy(__snake_case ) else: __magic_name__ : str =[to_numpy(__snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy __magic_name__ : Dict =self._get_padding_strategies(padding=__snake_case , max_length=__snake_case ) __magic_name__ : Optional[Any] =processed_features[self.model_input_names[0]] __magic_name__ : Dict =len(__snake_case ) if not all(len(__snake_case ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) __magic_name__ : Optional[int] =[] for i in range(__snake_case ): __magic_name__ : Any ={k: v[i] for k, v in processed_features.items()} # truncation __magic_name__ : List[str] =self._truncate( __snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) truncated_inputs.append(__snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __magic_name__ : Optional[int] =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __magic_name__ : Tuple =PaddingStrategy.MAX_LENGTH __magic_name__ : str ={} for i in range(__snake_case ): # padding __magic_name__ : List[str] =self._pad( truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: __magic_name__ : Dict =[] if value.dtype is np.dtype(np.floataa ): __magic_name__ : Optional[int] =value.astype(np.floataa ) batch_outputs[key].append(__snake_case ) return BatchFeature(__snake_case , tensor_type=__snake_case ) def A__ ( self :Any , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' __magic_name__ : Dict =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __magic_name__ : Any =len(__snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : Dict =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : List[Any] =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __magic_name__ : int =np.ones(len(__snake_case ) , dtype=np.intaa ) if needs_to_be_padded: __magic_name__ : List[Any] =max_length - len(__snake_case ) if self.padding_side == "right": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (0, difference) ) __magic_name__ : Tuple =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __magic_name__ : str =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (difference, 0) ) __magic_name__ : Optional[int] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __magic_name__ : List[Any] =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def A__ ( self :Optional[Any] , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) __magic_name__ : Union[str, Any] =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : List[str] =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : Any =len(__snake_case ) > max_length if needs_to_be_truncated: __magic_name__ : List[Any] =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __magic_name__ : List[str] =processed_features["""attention_mask"""][:max_length] return processed_features def A__ ( self :List[Any] , __snake_case :str=False , __snake_case :Optional[int]=None ): '''simple docstring''' if padding is not False: if padding is True: __magic_name__ : Union[str, Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__snake_case , __snake_case ): __magic_name__ : Optional[int] =PaddingStrategy(__snake_case ) elif isinstance(__snake_case , __snake_case ): __magic_name__ : Any =padding else: __magic_name__ : Any =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
21
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class __A ( UpperCamelCase__ ): UpperCamelCase = """mvp""" UpperCamelCase = ["""past_key_values"""] UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :List[str] , __snake_case :List[Any]=5_02_67 , __snake_case :List[str]=10_24 , __snake_case :Optional[int]=12 , __snake_case :Union[str, Any]=40_96 , __snake_case :List[Any]=16 , __snake_case :Union[str, Any]=12 , __snake_case :int=40_96 , __snake_case :Optional[int]=16 , __snake_case :List[Any]=0.0 , __snake_case :Union[str, Any]=0.0 , __snake_case :Any="gelu" , __snake_case :int=10_24 , __snake_case :Tuple=0.1 , __snake_case :Optional[Any]=0.0 , __snake_case :Tuple=0.0 , __snake_case :Optional[int]=0.02 , __snake_case :Dict=0.0 , __snake_case :Union[str, Any]=False , __snake_case :List[str]=True , __snake_case :List[str]=1 , __snake_case :Optional[int]=0 , __snake_case :Optional[Any]=2 , __snake_case :int=True , __snake_case :List[str]=2 , __snake_case :Any=2 , __snake_case :Union[str, Any]=False , __snake_case :int=1_00 , __snake_case :Optional[Any]=8_00 , **__snake_case :Optional[int] , ): '''simple docstring''' __magic_name__ : Tuple =vocab_size __magic_name__ : str =max_position_embeddings __magic_name__ : Dict =d_model __magic_name__ : Any =encoder_ffn_dim __magic_name__ : str =encoder_layers __magic_name__ : Tuple =encoder_attention_heads __magic_name__ : int =decoder_ffn_dim __magic_name__ : Dict =decoder_layers __magic_name__ : Tuple =decoder_attention_heads __magic_name__ : Dict =dropout __magic_name__ : str =attention_dropout __magic_name__ : Tuple =activation_dropout __magic_name__ : List[Any] =activation_function __magic_name__ : List[Any] =init_std __magic_name__ : List[Any] =encoder_layerdrop __magic_name__ : Optional[Any] =decoder_layerdrop __magic_name__ : List[Any] =classifier_dropout __magic_name__ : Dict =use_cache __magic_name__ : Optional[int] =encoder_layers __magic_name__ : Optional[Any] =scale_embedding # scale factor will be sqrt(d_model) if True __magic_name__ : Any =use_prompt __magic_name__ : Tuple =prompt_length __magic_name__ : List[Any] =prompt_mid_dim super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __snake_case ): __magic_name__ : Optional[int] =self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " """The config can simply be saved and uploaded again to be fixed.""" )
21
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): def __init__( self :List[Any] ): '''simple docstring''' super().__init__() __magic_name__ : Tuple =nn.Linear(3 , 4 ) __magic_name__ : Union[str, Any] =nn.BatchNormad(4 ) __magic_name__ : List[str] =nn.Linear(4 , 5 ) def A__ ( self :Dict , __snake_case :Tuple ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) ) class __A ( UpperCamelCase__ ): def A__ ( self :Any , __snake_case :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Any ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __A ( UpperCamelCase__ ): def A__ ( self :List[str] , __snake_case :Tuple , __snake_case :Union[str, Any] ): '''simple docstring''' return output + 1 class __A ( unittest.TestCase ): def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : Tuple =ModelHook() add_hook_to_module(__snake_case , __snake_case ) self.assertEqual(test_model._hf_hook , __snake_case ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : List[str] =ModelHook() add_hook_to_module(__snake_case , __snake_case ) add_hook_to_module(__snake_case , __snake_case , append=__snake_case ) self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() __magic_name__ : Any =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(x + 1 ) __magic_name__ : Optional[Any] =test_model(x + 2 ) __magic_name__ : int =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : int =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : str =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : List[str] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Optional[Any] =SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) assert torch.allclose(__snake_case , __snake_case , atol=1E-5 ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() __magic_name__ : Dict =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(__snake_case ) __magic_name__ : Dict =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Optional[int] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Union[str, Any] =SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) assert torch.allclose(__snake_case , output + 2 , atol=1E-5 ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Tuple =ModelForTest() __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Dict =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __magic_name__ : Any =True __magic_name__ : Any =test_model(__snake_case ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[Any] =model(__snake_case ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) ) __magic_name__ : int =torch.randn(2 , 3 ).to(0 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , torch.device(0 ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : int =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : int ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[int] =torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : Union[str, Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __magic_name__ : Tuple ={ """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Tuple =torch.randn(2 , 3 ) __magic_name__ : int =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : str =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Optional[int] =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Dict =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : List[str] =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Any =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
21
1
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) UpperCAmelCase_ : List[str] = logging.getLogger(__name__) UpperCAmelCase_ : str = tf.data.AUTOTUNE def lowerCAmelCase_ ( ): __magic_name__ : Tuple =argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" , type=lowerCamelCase , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , ) parser.add_argument( """--tokenizer""" , type=lowerCamelCase , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , ) parser.add_argument( """--per_replica_batch_size""" , type=lowerCamelCase , default=8 , help="""Batch size per TPU core.""" , ) parser.add_argument( """--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , ) parser.add_argument( """--tpu_name""" , type=lowerCamelCase , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , ) parser.add_argument( """--tpu_zone""" , type=lowerCamelCase , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , ) parser.add_argument( """--gcp_project""" , type=lowerCamelCase , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , ) parser.add_argument( """--train_dataset""" , type=lowerCamelCase , help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--shuffle_buffer_size""" , type=lowerCamelCase , default=2**18 , help="""Size of the shuffle buffer (in samples)""" , ) parser.add_argument( """--eval_dataset""" , type=lowerCamelCase , help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCamelCase , default=1 , help="""Number of epochs to train for.""" , ) parser.add_argument( """--learning_rate""" , type=lowerCamelCase , default=1E-4 , help="""Learning rate to use for training.""" , ) parser.add_argument( """--weight_decay_rate""" , type=lowerCamelCase , default=1E-3 , help="""Weight decay rate to use for training.""" , ) parser.add_argument( """--max_length""" , type=lowerCamelCase , default=512 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , ) parser.add_argument( """--mlm_probability""" , type=lowerCamelCase , default=0.1_5 , help="""Fraction of tokens to mask during training.""" , ) parser.add_argument("""--output_dir""" , type=lowerCamelCase , required=lowerCamelCase , help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" , type=lowerCamelCase , help="""Model ID to upload to on the Hugging Face Hub.""" ) __magic_name__ : List[Any] =parser.parse_args() return args def lowerCAmelCase_ ( lowerCamelCase ): try: if args.tpu_name: __magic_name__ : List[str] =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: __magic_name__ : List[str] =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(lowerCamelCase ) tf.tpu.experimental.initialize_tpu_system(lowerCamelCase ) return tpu def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[Any] =0 for file in file_list: __magic_name__ : str =file.split("""/""" )[-1] __magic_name__ : Tuple =re.search(R"""-\d+-(\d+)\.tfrecord""" , lowerCamelCase ).group(1 ) __magic_name__ : int =int(lowerCamelCase ) num_samples += sample_count return num_samples def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None ): __magic_name__ : Optional[Any] =count_samples(lowerCamelCase ) __magic_name__ : Optional[int] =tf.data.Dataset.from_tensor_slices(lowerCamelCase ) if shuffle: __magic_name__ : Union[str, Any] =dataset.shuffle(len(lowerCamelCase ) ) __magic_name__ : List[str] =tf.data.TFRecordDataset(lowerCamelCase , num_parallel_reads=lowerCamelCase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here __magic_name__ : Union[str, Any] =dataset.apply(tf.data.experimental.assert_cardinality(lowerCamelCase ) ) __magic_name__ : Dict =dataset.map(lowerCamelCase , num_parallel_calls=lowerCamelCase ) if shuffle: assert shuffle_buffer_size is not None __magic_name__ : Tuple =dataset.shuffle(args.shuffle_buffer_size ) __magic_name__ : Optional[int] =dataset.batch(lowerCamelCase , drop_remainder=lowerCamelCase ) __magic_name__ : Any =dataset.map(lowerCamelCase , num_parallel_calls=lowerCamelCase ) __magic_name__ : int =dataset.prefetch(lowerCamelCase ) return dataset def lowerCAmelCase_ ( lowerCamelCase ): if not args.no_tpu: __magic_name__ : Optional[int] =initialize_tpu(lowerCamelCase ) __magic_name__ : str =tf.distribute.TPUStrategy(lowerCamelCase ) else: __magic_name__ : Optional[Any] =tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) __magic_name__ : List[str] =AutoTokenizer.from_pretrained(args.tokenizer ) __magic_name__ : Tuple =AutoConfig.from_pretrained(args.pretrained_model_config ) __magic_name__ : Union[str, Any] =tokenizer.vocab_size __magic_name__ : str =tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) ) if not training_records: raise ValueError(F"No .tfrecord files found in {args.train_dataset}." ) __magic_name__ : int =tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) ) if not eval_records: raise ValueError(F"No .tfrecord files found in {args.eval_dataset}." ) __magic_name__ : Tuple =count_samples(lowerCamelCase ) __magic_name__ : Any =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) __magic_name__ : Any =steps_per_epoch * args.num_epochs with strategy.scope(): __magic_name__ : Optional[Any] =TFAutoModelForMaskedLM.from_config(lowerCamelCase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built __magic_name__ , __magic_name__ : Dict =create_optimizer( num_train_steps=lowerCamelCase , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowerCamelCase , metrics=["""accuracy"""] ) def decode_fn(lowerCamelCase ): __magic_name__ : Optional[int] ={ """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowerCamelCase , lowerCamelCase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. __magic_name__ : Optional[Any] =DataCollatorForLanguageModeling( tokenizer=lowerCamelCase , mlm_probability=args.mlm_probability , mlm=lowerCamelCase , return_tensors="""tf""" ) def mask_with_collator(lowerCamelCase ): # TF really needs an isin() function __magic_name__ : Dict =( ~tf.cast(batch["""attention_mask"""] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) __magic_name__ , __magic_name__ : Union[str, Any] =data_collator.tf_mask_tokens( batch["""input_ids"""] , vocab_size=len(lowerCamelCase ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowerCamelCase , ) return batch __magic_name__ : Optional[Any] =args.per_replica_batch_size * strategy.num_replicas_in_sync __magic_name__ : Dict =prepare_dataset( lowerCamelCase , decode_fn=lowerCamelCase , mask_fn=lowerCamelCase , batch_size=lowerCamelCase , shuffle=lowerCamelCase , shuffle_buffer_size=args.shuffle_buffer_size , ) __magic_name__ : List[str] =prepare_dataset( lowerCamelCase , decode_fn=lowerCamelCase , mask_fn=lowerCamelCase , batch_size=lowerCamelCase , shuffle=lowerCamelCase , ) __magic_name__ : Optional[int] =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowerCamelCase ) ) model.fit( lowerCamelCase , validation_data=lowerCamelCase , epochs=args.num_epochs , callbacks=lowerCamelCase , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": UpperCAmelCase_ : Tuple = parse_args() main(args)
21
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = KandinskyInpaintPipeline UpperCamelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCamelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCamelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase = False @property def A__ ( self :Union[str, Any] ): '''simple docstring''' return 32 @property def A__ ( self :Optional[Any] ): '''simple docstring''' return 32 @property def A__ ( self :List[Any] ): '''simple docstring''' return self.time_input_dim @property def A__ ( self :Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def A__ ( self :List[Any] ): '''simple docstring''' return 1_00 @property def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Dict =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self :str ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : str =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __magic_name__ : Tuple =MultilingualCLIP(__snake_case ) __magic_name__ : Optional[int] =text_encoder.eval() return text_encoder @property def A__ ( self :Dict ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Optional[Any] ={ """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __magic_name__ : Union[str, Any] =UNetaDConditionModel(**__snake_case ) return model @property def A__ ( self :List[str] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self :Tuple ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Dict =VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[str] =self.dummy_text_encoder __magic_name__ : Optional[Any] =self.dummy_tokenizer __magic_name__ : Optional[Any] =self.dummy_unet __magic_name__ : Tuple =self.dummy_movq __magic_name__ : List[str] =DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , ) __magic_name__ : str ={ """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self :str , __snake_case :Optional[Any] , __snake_case :int=0 ): '''simple docstring''' __magic_name__ : Union[str, Any] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : Dict =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case ) # create init_image __magic_name__ : str =floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : int =image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ : str =Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask __magic_name__ : Dict =np.ones((64, 64) , dtype=np.floataa ) __magic_name__ : Any =0 if str(__snake_case ).startswith("""mps""" ): __magic_name__ : Dict =torch.manual_seed(__snake_case ) else: __magic_name__ : Tuple =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__ : List[Any] ={ """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Tuple ="""cpu""" __magic_name__ : List[Any] =self.get_dummy_components() __magic_name__ : Union[str, Any] =self.pipeline_class(**__snake_case ) __magic_name__ : Tuple =pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Tuple =pipe(**self.get_dummy_inputs(__snake_case ) ) __magic_name__ : List[Any] =output.images __magic_name__ : Any =pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] __magic_name__ : int =image[0, -3:, -3:, -1] __magic_name__ : str =image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) __magic_name__ : Optional[Any] =np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def A__ ( self :Dict ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def A__ ( self :List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : List[str] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) __magic_name__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __magic_name__ : List[Any] =np.ones((7_68, 7_68) , dtype=np.floataa ) __magic_name__ : Any =0 __magic_name__ : int ="""a hat""" __magic_name__ : int =KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) __magic_name__ : Dict =KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) __magic_name__ : int =pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Union[str, Any] =torch.Generator(device="""cpu""" ).manual_seed(0 ) __magic_name__ , __magic_name__ : Dict =pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __magic_name__ : Optional[Any] =pipeline( __snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) __magic_name__ : Optional[int] =output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
21
1
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser( description=( "Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="bert", choices=["bert"]) parser.add_argument("--model_name", default="bert-base-uncased", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_bert-base-uncased_0247911.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") UpperCAmelCase_ : str = parser.parse_args() if args.model_type == "bert": UpperCAmelCase_ : List[str] = BertForMaskedLM.from_pretrained(args.model_name) UpperCAmelCase_ : List[Any] = "bert" else: raise ValueError("args.model_type should be \"bert\".") UpperCAmelCase_ : Optional[Any] = model.state_dict() UpperCAmelCase_ : List[str] = {} for w in ["word_embeddings", "position_embeddings"]: UpperCAmelCase_ : str = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: UpperCAmelCase_ : Tuple = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] UpperCAmelCase_ : Any = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: UpperCAmelCase_ : List[Any] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] UpperCAmelCase_ : List[str] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] UpperCAmelCase_ : int = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] UpperCAmelCase_ : Optional[Any] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] UpperCAmelCase_ : Union[str, Any] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] UpperCAmelCase_ : List[str] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] UpperCAmelCase_ : str = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] UpperCAmelCase_ : Dict = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 UpperCAmelCase_ : Any = state_dict["cls.predictions.decoder.weight"] UpperCAmelCase_ : Tuple = state_dict["cls.predictions.bias"] if args.vocab_transform: for w in ["weight", "bias"]: UpperCAmelCase_ : int = state_dict[F"""cls.predictions.transform.dense.{w}"""] UpperCAmelCase_ : Optional[Any] = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
21
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __A : def __init__( self :int , __snake_case :List[Any] , __snake_case :List[Any]=2 , __snake_case :Dict=True , __snake_case :Tuple=False , __snake_case :List[str]=10 , __snake_case :List[str]=3 , __snake_case :Union[str, Any]=32 * 8 , __snake_case :Optional[int]=32 * 8 , __snake_case :Any=4 , __snake_case :Union[str, Any]=64 , ): '''simple docstring''' __magic_name__ : Optional[int] =parent __magic_name__ : List[Any] =batch_size __magic_name__ : List[str] =is_training __magic_name__ : List[str] =use_auxiliary_loss __magic_name__ : Union[str, Any] =num_queries __magic_name__ : str =num_channels __magic_name__ : Union[str, Any] =min_size __magic_name__ : Union[str, Any] =max_size __magic_name__ : Optional[int] =num_labels __magic_name__ : Tuple =hidden_dim __magic_name__ : Any =hidden_dim def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __snake_case ) __magic_name__ : List[Any] =torch.ones([self.batch_size, self.min_size, self.max_size] , device=__snake_case ) __magic_name__ : List[str] =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__snake_case ) > 0.5 ).float() __magic_name__ : Union[str, Any] =(torch.rand((self.batch_size, self.num_labels) , device=__snake_case ) > 0.5).long() __magic_name__ : str =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Dict =MaskaFormerConfig( hidden_size=self.hidden_dim , ) __magic_name__ : str =self.num_queries __magic_name__ : Dict =self.num_labels __magic_name__ : int =[1, 1, 1, 1] __magic_name__ : List[str] =self.num_channels __magic_name__ : str =64 __magic_name__ : List[str] =1_28 __magic_name__ : Optional[Any] =self.hidden_dim __magic_name__ : Tuple =self.hidden_dim __magic_name__ : Optional[int] =self.hidden_dim return config def A__ ( self :Any ): '''simple docstring''' __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple =self.prepare_config_and_inputs() __magic_name__ : Optional[Any] ={"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def A__ ( self :Union[str, Any] , __snake_case :Tuple , __snake_case :Dict ): '''simple docstring''' __magic_name__ : int =output.encoder_hidden_states __magic_name__ : List[str] =output.pixel_decoder_hidden_states __magic_name__ : int =output.transformer_decoder_hidden_states self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , config.decoder_layers ) def A__ ( self :List[Any] , __snake_case :Optional[Any] , __snake_case :int , __snake_case :str , __snake_case :str=False ): '''simple docstring''' with torch.no_grad(): __magic_name__ : List[str] =MaskaFormerModel(config=__snake_case ) model.to(__snake_case ) model.eval() __magic_name__ : Union[str, Any] =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : int =model(__snake_case , output_hidden_states=__snake_case ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__snake_case , __snake_case ) def A__ ( self :Optional[Any] , __snake_case :List[str] , __snake_case :List[Any] , __snake_case :int , __snake_case :Any , __snake_case :Union[str, Any] ): '''simple docstring''' __magic_name__ : str =MaskaFormerForUniversalSegmentation(config=__snake_case ) model.to(__snake_case ) model.eval() def comm_check_on_output(__snake_case :List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __magic_name__ : int =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : List[str] =model(__snake_case ) comm_check_on_output(__snake_case ) __magic_name__ : Any =model( pixel_values=__snake_case , pixel_mask=__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) comm_check_on_output(__snake_case ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCamelCase = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def A__ ( self :str ): '''simple docstring''' __magic_name__ : Any =MaskaFormerModelTester(self ) __magic_name__ : Union[str, Any] =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def A__ ( self :Dict ): '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__snake_case ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def A__ ( self :List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def A__ ( self :Dict ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def A__ ( self :Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def A__ ( self :int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def A__ ( self :Tuple ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A__ ( self :Union[str, Any] ): '''simple docstring''' pass def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Tuple =model_class(__snake_case ) __magic_name__ : Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple =[*signature.parameters.keys()] __magic_name__ : Optional[Any] =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) @slow def A__ ( self :Tuple ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __magic_name__ : int =MaskaFormerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =(self.model_tester.min_size,) * 2 __magic_name__ : Union[str, Any] ={ """pixel_values""": torch.randn((2, 3, *size) , device=__snake_case ), """mask_labels""": torch.randn((2, 10, *size) , device=__snake_case ), """class_labels""": torch.zeros(2 , 10 , device=__snake_case ).long(), } __magic_name__ : Optional[Any] =self.model_tester.get_config() __magic_name__ : Dict =MaskaFormerForUniversalSegmentation(__snake_case ).to(__snake_case ) __magic_name__ : Any =model(**__snake_case ) self.assertTrue(outputs.loss is not None ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ , __magic_name__ : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] =model_class(__snake_case ).to(__snake_case ) __magic_name__ : Optional[int] =model(**__snake_case , output_attentions=__snake_case ) self.assertTrue(outputs.attentions is not None ) def A__ ( self :int ): '''simple docstring''' if not self.model_tester.is_training: return __magic_name__ : List[Any] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Dict =model_class(__snake_case ) model.to(__snake_case ) model.train() __magic_name__ : Optional[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ).loss loss.backward() def A__ ( self :int ): '''simple docstring''' __magic_name__ : List[str] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Tuple =True __magic_name__ : Optional[int] =True __magic_name__ : int =model_class(__snake_case ).to(__snake_case ) model.train() __magic_name__ : List[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) __magic_name__ : Optional[int] =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __magic_name__ : Optional[int] =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__snake_case ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase_ : Dict = 1e-4 def lowerCAmelCase_ ( ): __magic_name__ : Dict =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __A ( unittest.TestCase ): @cached_property def A__ ( self :int ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def A__ ( self :int ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__snake_case ) __magic_name__ : int =self.default_image_processor __magic_name__ : List[Any] =prepare_img() __magic_name__ : Any =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Dict =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : List[str] =model(**__snake_case ) __magic_name__ : Any =torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Dict =torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Any =torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Optional[int] =self.default_image_processor __magic_name__ : Tuple =prepare_img() __magic_name__ : List[Any] =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Union[str, Any] =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : str =model(**__snake_case ) # masks_queries_logits __magic_name__ : List[Any] =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __magic_name__ : List[Any] =[ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __magic_name__ : Dict =torch.tensor(__snake_case ).to(__snake_case ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) # class_queries_logits __magic_name__ : Any =outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __magic_name__ : int =torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Any =self.default_image_processor __magic_name__ : Union[str, Any] =image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , ) __magic_name__ : str =inputs["""pixel_values"""].to(__snake_case ) __magic_name__ : Tuple =[el.to(__snake_case ) for el in inputs["""mask_labels"""]] __magic_name__ : Union[str, Any] =[el.to(__snake_case ) for el in inputs["""class_labels"""]] with torch.no_grad(): __magic_name__ : Dict =model(**__snake_case ) self.assertTrue(outputs.loss is not None )
21
1
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : str =np.array([[1, item, train_mtch[i]] for i, item in enumerate(lowerCamelCase )] ) __magic_name__ : str =np.array(lowerCamelCase ) __magic_name__ : Union[str, Any] =np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , lowerCamelCase ) ) , x.transpose() ) , lowerCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : int =(1, 2, 1) __magic_name__ : Tuple =(1, 1, 0, 7) __magic_name__ : int =SARIMAX( lowerCamelCase , exog=lowerCamelCase , order=lowerCamelCase , seasonal_order=lowerCamelCase ) __magic_name__ : Optional[Any] =model.fit(disp=lowerCamelCase , maxiter=600 , method="""nm""" ) __magic_name__ : Any =model_fit.predict(1 , len(lowerCamelCase ) , exog=[test_match] ) return result[0] def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : str =SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(lowerCamelCase , lowerCamelCase ) __magic_name__ : List[str] =regressor.predict(lowerCamelCase ) return y_pred[0] def lowerCAmelCase_ ( lowerCamelCase ): train_user.sort() __magic_name__ : List[Any] =np.percentile(lowerCamelCase , 25 ) __magic_name__ : Dict =np.percentile(lowerCamelCase , 75 ) __magic_name__ : int =qa - qa __magic_name__ : List[Any] =qa - (iqr * 0.1) return low_lim def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : str =0 __magic_name__ : Any =0 for i in list_vote: if i > actual_result: __magic_name__ : List[str] =not_safe + 1 else: if abs(abs(lowerCamelCase ) - abs(lowerCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) UpperCAmelCase_ : Tuple = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]] UpperCAmelCase_ : str = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) UpperCAmelCase_ : Tuple = Normalizer().fit_transform(data_input_df.values) # split data UpperCAmelCase_ : Dict = normalize_df[:, 2].tolist() UpperCAmelCase_ : List[str] = normalize_df[:, 0].tolist() UpperCAmelCase_ : List[Any] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) UpperCAmelCase_ : List[Any] = normalize_df[:, [1, 2]].tolist() UpperCAmelCase_ : List[Any] = x[: len(x) - 1] UpperCAmelCase_ : Tuple = x[len(x) - 1 :] # for linear regression & sarimax UpperCAmelCase_ : Dict = total_date[: len(total_date) - 1] UpperCAmelCase_ : Optional[Any] = total_user[: len(total_user) - 1] UpperCAmelCase_ : int = total_match[: len(total_match) - 1] UpperCAmelCase_ : int = total_date[len(total_date) - 1 :] UpperCAmelCase_ : Dict = total_user[len(total_user) - 1 :] UpperCAmelCase_ : Optional[int] = total_match[len(total_match) - 1 :] # voting system with forecasting UpperCAmelCase_ : Union[str, Any] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data UpperCAmelCase_ : Optional[Any] = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
21
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __A ( UpperCamelCase__ ): UpperCamelCase = """segformer""" def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ): '''simple docstring''' super().__init__(**__snake_case ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , ) __magic_name__ : Dict =num_channels __magic_name__ : str =num_encoder_blocks __magic_name__ : List[Any] =depths __magic_name__ : Optional[Any] =sr_ratios __magic_name__ : List[str] =hidden_sizes __magic_name__ : List[str] =patch_sizes __magic_name__ : Any =strides __magic_name__ : Optional[Any] =mlp_ratios __magic_name__ : str =num_attention_heads __magic_name__ : int =hidden_act __magic_name__ : List[Any] =hidden_dropout_prob __magic_name__ : Optional[Any] =attention_probs_dropout_prob __magic_name__ : Optional[Any] =classifier_dropout_prob __magic_name__ : List[str] =initializer_range __magic_name__ : List[str] =drop_path_rate __magic_name__ : List[Any] =layer_norm_eps __magic_name__ : List[str] =decoder_hidden_size __magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case ) __magic_name__ : Dict =semantic_loss_ignore_index class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.11""" ) @property def A__ ( self :List[str] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self :Any ): '''simple docstring''' return 1E-4 @property def A__ ( self :int ): '''simple docstring''' return 12
21
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = XGLMTokenizer UpperCamelCase = XGLMTokenizerFast UpperCamelCase = True UpperCamelCase = True def A__ ( self :Tuple ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __magic_name__ : Optional[Any] =XGLMTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Tuple ="""<pad>""" __magic_name__ : Tuple =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : List[Any] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(__snake_case ) , 10_08 ) def A__ ( self :Union[str, Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_08 ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Dict =XGLMTokenizer(__snake_case , keep_accents=__snake_case ) __magic_name__ : Any =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__snake_case , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __magic_name__ : List[Any] =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __magic_name__ : Optional[Any] =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __magic_name__ : Tuple =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def A__ ( self :str ): '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def A__ ( self :int ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__snake_case , f.name ) __magic_name__ : Tuple =XGLMTokenizer(f.name , keep_accents=__snake_case ) __magic_name__ : Optional[Any] =pickle.dumps(__snake_case ) pickle.loads(__snake_case ) def A__ ( self :Dict ): '''simple docstring''' if not self.test_rust_tokenizer: return __magic_name__ : List[str] =self.get_tokenizer() __magic_name__ : Dict =self.get_rust_tokenizer() __magic_name__ : Tuple ="""I was born in 92000, and this is falsé.""" __magic_name__ : List[str] =tokenizer.tokenize(__snake_case ) __magic_name__ : Tuple =rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __magic_name__ : List[str] =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) __magic_name__ : Optional[Any] =rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __magic_name__ : Dict =self.get_rust_tokenizer() __magic_name__ : Dict =tokenizer.encode(__snake_case ) __magic_name__ : List[str] =rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @slow def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Any ="""Hello World!""" __magic_name__ : List[Any] =[2, 3_12_27, 44_47, 35] self.assertListEqual(__snake_case , self.big_tokenizer.encode(__snake_case ) ) @slow def A__ ( self :int ): '''simple docstring''' __magic_name__ : Union[str, Any] =( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off __magic_name__ : Tuple =[2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(__snake_case , self.big_tokenizer.encode(__snake_case ) ) @slow def A__ ( self :int ): '''simple docstring''' __magic_name__ : int ={ """input_ids""": [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name="""facebook/xglm-564M""" , padding=__snake_case , )
21
import heapq def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase , [-1 * len(lowerCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices __magic_name__ : Tuple =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __magic_name__ : Tuple =heapq.heappop(lowerCamelCase )[1][0] chosen_vertices.add(lowerCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __magic_name__ : Tuple =elem[1][1].index(lowerCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
21
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : str = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class __A ( UpperCamelCase__ ): UpperCamelCase = """nllb-moe""" UpperCamelCase = ["""past_key_values"""] UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :str , __snake_case :str=12_81_12 , __snake_case :str=10_24 , __snake_case :List[Any]=12 , __snake_case :Union[str, Any]=40_96 , __snake_case :Any=16 , __snake_case :Union[str, Any]=12 , __snake_case :int=40_96 , __snake_case :List[Any]=16 , __snake_case :Optional[int]=0.05 , __snake_case :Tuple=0.05 , __snake_case :Dict=True , __snake_case :Optional[int]=True , __snake_case :str="relu" , __snake_case :List[str]=10_24 , __snake_case :Union[str, Any]=0.1 , __snake_case :List[Any]=0.1 , __snake_case :int=0.0 , __snake_case :int=0.02 , __snake_case :Union[str, Any]=2 , __snake_case :Union[str, Any]=True , __snake_case :Optional[int]=False , __snake_case :Any="float32" , __snake_case :Union[str, Any]=False , __snake_case :Tuple=1_28 , __snake_case :str=64 , __snake_case :Dict=4 , __snake_case :Tuple=4 , __snake_case :Optional[Any]=0.001 , __snake_case :Optional[Any]=0.001 , __snake_case :List[Any]="all" , __snake_case :int=False , __snake_case :List[Any]=False , __snake_case :Optional[int]=1.0 , __snake_case :List[str]=0.2 , __snake_case :int=1 , __snake_case :Dict=0 , __snake_case :List[str]=2 , __snake_case :Dict=False , **__snake_case :Optional[Any] , ): '''simple docstring''' __magic_name__ : Tuple =vocab_size __magic_name__ : Optional[Any] =max_position_embeddings __magic_name__ : List[Any] =d_model __magic_name__ : Union[str, Any] =encoder_ffn_dim __magic_name__ : List[Any] =encoder_layers __magic_name__ : Optional[int] =encoder_attention_heads __magic_name__ : Optional[Any] =decoder_ffn_dim __magic_name__ : List[str] =decoder_layers __magic_name__ : Any =decoder_attention_heads __magic_name__ : int =dropout __magic_name__ : Any =attention_dropout __magic_name__ : Optional[Any] =activation_dropout __magic_name__ : int =activation_function __magic_name__ : str =init_std __magic_name__ : Optional[int] =encoder_layerdrop __magic_name__ : str =decoder_layerdrop __magic_name__ : Optional[int] =use_cache __magic_name__ : Union[str, Any] =encoder_layers __magic_name__ : int =scale_embedding # scale factor will be sqrt(d_model) if True __magic_name__ : Any =router_z_loss_coef __magic_name__ : Tuple =router_aux_loss_coef __magic_name__ : Optional[Any] =decoder_sparse_step __magic_name__ : Dict =encoder_sparse_step __magic_name__ : List[Any] =num_experts __magic_name__ : Tuple =expert_capacity __magic_name__ : Union[str, Any] =router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __magic_name__ : str =router_dtype __magic_name__ : Union[str, Any] =router_ignore_padding_tokens __magic_name__ : Dict =batch_prioritized_routing __magic_name__ : Optional[Any] =second_expert_policy __magic_name__ : Tuple =normalize_router_prob_before_dropping __magic_name__ : Any =moe_eval_capacity_token_fraction __magic_name__ : List[str] =moe_token_dropout __magic_name__ : str =output_router_logits super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , **__snake_case , )
21
UpperCAmelCase_ : int = range(2, 20 + 1) UpperCAmelCase_ : Tuple = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =sum(a_i[j] for j in range(lowerCamelCase , len(lowerCamelCase ) ) ) __magic_name__ : Any =sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase ) , lowerCamelCase ) ) ) __magic_name__ , __magic_name__ : Tuple =0, 0 __magic_name__ : Optional[Any] =n - i __magic_name__ : Union[str, Any] =memo.get(lowerCamelCase ) if sub_memo is not None: __magic_name__ : int =sub_memo.get(lowerCamelCase ) if jumps is not None and len(lowerCamelCase ) > 0: # find and make the largest jump without going over __magic_name__ : Dict =-1 for _k in range(len(lowerCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __magic_name__ : Optional[Any] =_k break if max_jump >= 0: __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =jumps[max_jump] # since the difference between jumps is cached, add c __magic_name__ : Tuple =diff + c for j in range(min(lowerCamelCase , len(lowerCamelCase ) ) ): __magic_name__ , __magic_name__ : Tuple =divmod(lowerCamelCase , 10 ) if new_c > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __magic_name__ : str =[] else: __magic_name__ : List[str] ={c: []} __magic_name__ : List[str] =sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __magic_name__ , __magic_name__ : Union[str, Any] =next_term(lowerCamelCase , k - 1 , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __magic_name__ , __magic_name__ : Optional[int] =compute(lowerCamelCase , lowerCamelCase , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped __magic_name__ : Tuple =sub_memo[c] # keep jumps sorted by # of terms skipped __magic_name__ : List[Any] =0 while j < len(lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase , (diff, dn, k) ) return (diff, dn) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if i >= n: return 0, i if k > len(lowerCamelCase ): a_i.extend([0 for _ in range(k - len(lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __magic_name__ : Tuple =i __magic_name__ , __magic_name__ , __magic_name__ : Tuple =0, 0, 0 for j in range(len(lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __magic_name__ : Optional[Any] =ds_c + ds_b diff += addend __magic_name__ : str =0 for j in range(lowerCamelCase ): __magic_name__ : int =a_i[j] + addend __magic_name__ , __magic_name__ : Any =divmod(lowerCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return diff, i - start_i def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for j in range(lowerCamelCase , len(lowerCamelCase ) ): __magic_name__ : Tuple =digits[j] + addend if s >= 10: __magic_name__ , __magic_name__ : int =divmod(lowerCamelCase , 10 ) __magic_name__ : int =addend // 10 + quotient else: __magic_name__ : Dict =s __magic_name__ : Any =addend // 10 if addend == 0: break while addend > 0: __magic_name__ , __magic_name__ : Union[str, Any] =divmod(lowerCamelCase , 10 ) digits.append(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase = 10**15 ): __magic_name__ : List[str] =[1] __magic_name__ : str =1 __magic_name__ : str =0 while True: __magic_name__ , __magic_name__ : List[str] =next_term(lowerCamelCase , 20 , i + dn , lowerCamelCase ) dn += terms_jumped if dn == n - i: break __magic_name__ : int =0 for j in range(len(lowerCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
21
1