code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import math def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowerCamelCase ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. UpperCAmelCase_ : Any = "Enter the base and the power separated by a comma: " UpperCAmelCase_ , UpperCAmelCase_ : Any = map(int, input(prompt).split(",")) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. UpperCAmelCase_ : Union[str, Any] = res(xa, ya) UpperCAmelCase_ : List[str] = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
21
from typing import List from .keymap import KEYMAP, get_character def lowerCAmelCase_ ( lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : str =getattr(lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator def lowerCAmelCase_ ( *lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : Dict =getattr(lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator class __A ( UpperCamelCase__ ): def __new__( cls :Dict , __snake_case :Optional[Any] , __snake_case :Union[str, Any] , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : int =super().__new__(cls , __snake_case , __snake_case , __snake_case ) if not hasattr(__snake_case , """key_handler""" ): setattr(__snake_case , """key_handler""" , {} ) setattr(__snake_case , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __magic_name__ : int =getattr(__snake_case , """handle_key""" , [] ) for key in handled_keys: __magic_name__ : List[str] =value return new_cls @staticmethod def A__ ( cls :Optional[int] ): '''simple docstring''' __magic_name__ : Union[str, Any] =get_character() if char != KEYMAP["undefined"]: __magic_name__ : Optional[int] =ord(__snake_case ) __magic_name__ : int =cls.key_handler.get(__snake_case ) if handler: __magic_name__ : Dict =char return handler(cls ) else: return None def lowerCAmelCase_ ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
21
1
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 1 / sqrt(2 ) ): __magic_name__ : Tuple =tau * frequency / samplerate __magic_name__ : int =sin(lowerCamelCase ) __magic_name__ : Optional[Any] =cos(lowerCamelCase ) __magic_name__ : str =_sin / (2 * q_factor) __magic_name__ : Tuple =(1 - _cos) / 2 __magic_name__ : int =1 - _cos __magic_name__ : str =1 + alpha __magic_name__ : int =-2 * _cos __magic_name__ : Dict =1 - alpha __magic_name__ : str =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 1 / sqrt(2 ) ): __magic_name__ : List[Any] =tau * frequency / samplerate __magic_name__ : Tuple =sin(lowerCamelCase ) __magic_name__ : List[str] =cos(lowerCamelCase ) __magic_name__ : Optional[Any] =_sin / (2 * q_factor) __magic_name__ : Optional[Any] =(1 + _cos) / 2 __magic_name__ : List[str] =-1 - _cos __magic_name__ : Any =1 + alpha __magic_name__ : List[Any] =-2 * _cos __magic_name__ : Any =1 - alpha __magic_name__ : Optional[int] =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 1 / sqrt(2 ) ): __magic_name__ : Optional[Any] =tau * frequency / samplerate __magic_name__ : int =sin(lowerCamelCase ) __magic_name__ : Optional[int] =cos(lowerCamelCase ) __magic_name__ : str =_sin / (2 * q_factor) __magic_name__ : Dict =_sin / 2 __magic_name__ : Dict =0 __magic_name__ : Union[str, Any] =-ba __magic_name__ : Union[str, Any] =1 + alpha __magic_name__ : Optional[Any] =-2 * _cos __magic_name__ : Optional[int] =1 - alpha __magic_name__ : Dict =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 1 / sqrt(2 ) ): __magic_name__ : Any =tau * frequency / samplerate __magic_name__ : Tuple =sin(lowerCamelCase ) __magic_name__ : int =cos(lowerCamelCase ) __magic_name__ : Optional[int] =_sin / (2 * q_factor) __magic_name__ : List[Any] =1 - alpha __magic_name__ : Optional[int] =-2 * _cos __magic_name__ : Union[str, Any] =1 + alpha __magic_name__ : Optional[Any] =IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 1 / sqrt(2 ) , ): __magic_name__ : Dict =tau * frequency / samplerate __magic_name__ : List[str] =sin(lowerCamelCase ) __magic_name__ : List[str] =cos(lowerCamelCase ) __magic_name__ : List[Any] =_sin / (2 * q_factor) __magic_name__ : Union[str, Any] =10 ** (gain_db / 40) __magic_name__ : Any =1 + alpha * big_a __magic_name__ : List[Any] =-2 * _cos __magic_name__ : Union[str, Any] =1 - alpha * big_a __magic_name__ : Tuple =1 + alpha / big_a __magic_name__ : List[str] =-2 * _cos __magic_name__ : Dict =1 - alpha / big_a __magic_name__ : int =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 1 / sqrt(2 ) , ): __magic_name__ : Any =tau * frequency / samplerate __magic_name__ : int =sin(lowerCamelCase ) __magic_name__ : Any =cos(lowerCamelCase ) __magic_name__ : Optional[Any] =_sin / (2 * q_factor) __magic_name__ : List[Any] =10 ** (gain_db / 40) __magic_name__ : List[str] =(big_a + 1) - (big_a - 1) * _cos __magic_name__ : Dict =(big_a + 1) + (big_a - 1) * _cos __magic_name__ : List[str] =(big_a - 1) - (big_a + 1) * _cos __magic_name__ : int =(big_a - 1) + (big_a + 1) * _cos __magic_name__ : List[str] =2 * sqrt(lowerCamelCase ) * alpha __magic_name__ : Optional[int] =big_a * (pmc + aaa) __magic_name__ : Any =2 * big_a * mpc __magic_name__ : Optional[int] =big_a * (pmc - aaa) __magic_name__ : str =ppmc + aaa __magic_name__ : Optional[Any] =-2 * pmpc __magic_name__ : Dict =ppmc - aaa __magic_name__ : Dict =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 1 / sqrt(2 ) , ): __magic_name__ : Optional[int] =tau * frequency / samplerate __magic_name__ : Dict =sin(lowerCamelCase ) __magic_name__ : Tuple =cos(lowerCamelCase ) __magic_name__ : Any =_sin / (2 * q_factor) __magic_name__ : Tuple =10 ** (gain_db / 40) __magic_name__ : Optional[int] =(big_a + 1) - (big_a - 1) * _cos __magic_name__ : Optional[int] =(big_a + 1) + (big_a - 1) * _cos __magic_name__ : Dict =(big_a - 1) - (big_a + 1) * _cos __magic_name__ : Optional[int] =(big_a - 1) + (big_a + 1) * _cos __magic_name__ : Dict =2 * sqrt(lowerCamelCase ) * alpha __magic_name__ : int =big_a * (ppmc + aaa) __magic_name__ : Optional[int] =-2 * big_a * pmpc __magic_name__ : Optional[Any] =big_a * (ppmc - aaa) __magic_name__ : int =pmc + aaa __magic_name__ : Union[str, Any] =2 * mpc __magic_name__ : Tuple =pmc - aaa __magic_name__ : List[Any] =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
21
import os import jsonlines import numpy as np from tqdm import tqdm UpperCAmelCase_ : Dict = 2048 UpperCAmelCase_ : int = 4096 UpperCAmelCase_ : Any = 42 UpperCAmelCase_ : Optional[int] = os.environ.pop("PROCESS_TRAIN", "false") UpperCAmelCase_ : str = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def lowerCAmelCase_ ( lowerCamelCase ): def choose_first(lowerCamelCase , lowerCamelCase=False ): assert isinstance(lowerCamelCase , lowerCamelCase ) if len(lowerCamelCase ) == 1: __magic_name__ : List[str] =answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __magic_name__ : Tuple ={k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a __magic_name__ : str ={"""id""": example["""id"""]} __magic_name__ : List[Any] =example["""annotations"""] __magic_name__ : List[str] =annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: __magic_name__ : Optional[int] =["""yes"""] if 1 in yes_no_answer else ["""no"""] __magic_name__ : List[str] =[] __magic_name__ : Dict =[] __magic_name__ : str =["""<cls>"""] else: __magic_name__ : Tuple =["""short"""] __magic_name__ : Optional[int] =choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available __magic_name__ : Tuple =["""long"""] __magic_name__ : Tuple =choose_first(annotation["""long_answer"""] , is_long_answer=lowerCamelCase ) __magic_name__ : List[Any] =[] answer.update(lowerCamelCase ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: __magic_name__ : Any =True else: __magic_name__ : List[str] =False __magic_name__ : int =["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , lowerCamelCase ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =_get_single_answer(lowerCamelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : Any =example["""document"""]["""tokens"""] __magic_name__ : str =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __magic_name__ : Dict =["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __magic_name__ : Tuple =example["""document"""]["""tokens"""] __magic_name__ : Optional[int] =answer["""start_token"""] __magic_name__ : List[Any] =answer["""end_token"""] __magic_name__ : Optional[Any] =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __magic_name__ : Optional[int] =""" """.join(context[start_token:end_token] ) # checking above code if assertion: __magic_name__ : List[str] =doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : str =doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : Dict =""" """.join([old[i] for i in range(len(lowerCamelCase ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , lowerCamelCase , end="""\n""" ) print("""Old:""" , lowerCamelCase , end="""\n\n""" ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=True ): # overlap will be of doc_stride - q_len __magic_name__ : Any =get_context_and_ans(lowerCamelCase , assertion=lowerCamelCase ) __magic_name__ : Union[str, Any] =out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __magic_name__ : List[Any] =tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids __magic_name__ : Dict =input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : List[str] =[] __magic_name__ : int =[] __magic_name__ : List[str] =input_ids[:q_len] __magic_name__ : Dict =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Tuple =input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(lowerCamelCase ), "end_token": [-100] * len(lowerCamelCase ), "category": category, }, } __magic_name__ : int =out["""context"""].split() __magic_name__ : Any =splitted_context[answer["""end_token"""]] __magic_name__ : str =len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=lowerCamelCase , ).input_ids ) __magic_name__ : Optional[int] =len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=lowerCamelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __magic_name__ : Union[str, Any] =len(tokenizer(lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __magic_name__ : str =input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive __magic_name__ : Dict =answer["""start_token"""] __magic_name__ : int =answer["""end_token"""] if assertion: __magic_name__ : Any =tokenizer.decode(lowerCamelCase ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , lowerCamelCase , end="""\n\n""" ) if len(lowerCamelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __magic_name__ : Any =input_ids[:q_len] __magic_name__ : Union[str, Any] =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) __magic_name__ : Any =[] __magic_name__ : List[str] =[] __magic_name__ : List[str] =[] __magic_name__ : str =[] # null, yes, no, long, short for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Dict =input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __magic_name__ : List[Any] =start_token - i + q_len __magic_name__ : Optional[Any] =end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: __magic_name__ : Optional[Any] =-100 __magic_name__ : Optional[Any] =-100 answers_category.append("""null""" ) __magic_name__ : Optional[int] =inputs[-1][start_token : end_token + 1] answers_start_token.append(lowerCamelCase ) answers_end_token.append(lowerCamelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(lowerCamelCase ) ) print("""Old:""" , tokenizer.decode(lowerCamelCase ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=False ): __magic_name__ : List[Any] =get_strided_contexts_and_ans( lowerCamelCase , lowerCamelCase , doc_stride=lowerCamelCase , max_length=lowerCamelCase , assertion=lowerCamelCase , ) return example def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): with jsonlines.open(lowerCamelCase , """a""" ) as writer: for example in tqdm(lowerCamelCase , total=len(lowerCamelCase ) , desc="""Saving samples ... """ ): __magic_name__ : int =example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer UpperCAmelCase_ : Optional[int] = load_dataset("natural_questions") UpperCAmelCase_ : Optional[int] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") UpperCAmelCase_ : str = data["train" if PROCESS_TRAIN == "true" else "validation"] UpperCAmelCase_ : Optional[int] = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } UpperCAmelCase_ : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs) UpperCAmelCase_ : Optional[Any] = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) UpperCAmelCase_ : int = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
21
1
import os import jsonlines import numpy as np from tqdm import tqdm UpperCAmelCase_ : Dict = 2048 UpperCAmelCase_ : int = 4096 UpperCAmelCase_ : Any = 42 UpperCAmelCase_ : Optional[int] = os.environ.pop("PROCESS_TRAIN", "false") UpperCAmelCase_ : str = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def lowerCAmelCase_ ( lowerCamelCase ): def choose_first(lowerCamelCase , lowerCamelCase=False ): assert isinstance(lowerCamelCase , lowerCamelCase ) if len(lowerCamelCase ) == 1: __magic_name__ : List[str] =answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __magic_name__ : Tuple ={k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a __magic_name__ : str ={"""id""": example["""id"""]} __magic_name__ : List[Any] =example["""annotations"""] __magic_name__ : List[str] =annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: __magic_name__ : Optional[int] =["""yes"""] if 1 in yes_no_answer else ["""no"""] __magic_name__ : List[str] =[] __magic_name__ : Dict =[] __magic_name__ : str =["""<cls>"""] else: __magic_name__ : Tuple =["""short"""] __magic_name__ : Optional[int] =choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available __magic_name__ : Tuple =["""long"""] __magic_name__ : Tuple =choose_first(annotation["""long_answer"""] , is_long_answer=lowerCamelCase ) __magic_name__ : List[Any] =[] answer.update(lowerCamelCase ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: __magic_name__ : Any =True else: __magic_name__ : List[str] =False __magic_name__ : int =["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , lowerCamelCase ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =_get_single_answer(lowerCamelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : Any =example["""document"""]["""tokens"""] __magic_name__ : str =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __magic_name__ : Dict =["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __magic_name__ : Tuple =example["""document"""]["""tokens"""] __magic_name__ : Optional[int] =answer["""start_token"""] __magic_name__ : List[Any] =answer["""end_token"""] __magic_name__ : Optional[Any] =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __magic_name__ : Optional[int] =""" """.join(context[start_token:end_token] ) # checking above code if assertion: __magic_name__ : List[str] =doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : str =doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : Dict =""" """.join([old[i] for i in range(len(lowerCamelCase ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , lowerCamelCase , end="""\n""" ) print("""Old:""" , lowerCamelCase , end="""\n\n""" ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=True ): # overlap will be of doc_stride - q_len __magic_name__ : Any =get_context_and_ans(lowerCamelCase , assertion=lowerCamelCase ) __magic_name__ : Union[str, Any] =out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __magic_name__ : List[Any] =tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids __magic_name__ : Dict =input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : List[str] =[] __magic_name__ : int =[] __magic_name__ : List[str] =input_ids[:q_len] __magic_name__ : Dict =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Tuple =input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(lowerCamelCase ), "end_token": [-100] * len(lowerCamelCase ), "category": category, }, } __magic_name__ : int =out["""context"""].split() __magic_name__ : Any =splitted_context[answer["""end_token"""]] __magic_name__ : str =len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=lowerCamelCase , ).input_ids ) __magic_name__ : Optional[int] =len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=lowerCamelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __magic_name__ : Union[str, Any] =len(tokenizer(lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __magic_name__ : str =input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive __magic_name__ : Dict =answer["""start_token"""] __magic_name__ : int =answer["""end_token"""] if assertion: __magic_name__ : Any =tokenizer.decode(lowerCamelCase ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , lowerCamelCase , end="""\n\n""" ) if len(lowerCamelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __magic_name__ : Any =input_ids[:q_len] __magic_name__ : Union[str, Any] =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) __magic_name__ : Any =[] __magic_name__ : List[str] =[] __magic_name__ : List[str] =[] __magic_name__ : str =[] # null, yes, no, long, short for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Dict =input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __magic_name__ : List[Any] =start_token - i + q_len __magic_name__ : Optional[Any] =end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: __magic_name__ : Optional[Any] =-100 __magic_name__ : Optional[Any] =-100 answers_category.append("""null""" ) __magic_name__ : Optional[int] =inputs[-1][start_token : end_token + 1] answers_start_token.append(lowerCamelCase ) answers_end_token.append(lowerCamelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(lowerCamelCase ) ) print("""Old:""" , tokenizer.decode(lowerCamelCase ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=False ): __magic_name__ : List[Any] =get_strided_contexts_and_ans( lowerCamelCase , lowerCamelCase , doc_stride=lowerCamelCase , max_length=lowerCamelCase , assertion=lowerCamelCase , ) return example def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): with jsonlines.open(lowerCamelCase , """a""" ) as writer: for example in tqdm(lowerCamelCase , total=len(lowerCamelCase ) , desc="""Saving samples ... """ ): __magic_name__ : int =example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer UpperCAmelCase_ : Optional[int] = load_dataset("natural_questions") UpperCAmelCase_ : Optional[int] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") UpperCAmelCase_ : str = data["train" if PROCESS_TRAIN == "true" else "validation"] UpperCAmelCase_ : Optional[int] = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } UpperCAmelCase_ : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs) UpperCAmelCase_ : Optional[Any] = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) UpperCAmelCase_ : int = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
21
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __A ( UpperCamelCase__ ): UpperCamelCase = """xlm-roberta-xl""" def __init__( self :Dict , __snake_case :Optional[Any]=25_08_80 , __snake_case :List[Any]=25_60 , __snake_case :Optional[Any]=36 , __snake_case :Any=32 , __snake_case :int=1_02_40 , __snake_case :List[Any]="gelu" , __snake_case :Union[str, Any]=0.1 , __snake_case :Optional[Any]=0.1 , __snake_case :str=5_14 , __snake_case :Union[str, Any]=1 , __snake_case :Optional[int]=0.02 , __snake_case :str=1E-05 , __snake_case :str=1 , __snake_case :int=0 , __snake_case :Tuple=2 , __snake_case :Optional[int]="absolute" , __snake_case :str=True , __snake_case :Any=None , **__snake_case :Dict , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __magic_name__ : List[str] =vocab_size __magic_name__ : List[str] =hidden_size __magic_name__ : Union[str, Any] =num_hidden_layers __magic_name__ : Any =num_attention_heads __magic_name__ : Any =hidden_act __magic_name__ : List[str] =intermediate_size __magic_name__ : Any =hidden_dropout_prob __magic_name__ : Union[str, Any] =attention_probs_dropout_prob __magic_name__ : Any =max_position_embeddings __magic_name__ : Any =type_vocab_size __magic_name__ : List[str] =initializer_range __magic_name__ : Optional[int] =layer_norm_eps __magic_name__ : Dict =position_embedding_type __magic_name__ : Any =use_cache __magic_name__ : Dict =classifier_dropout class __A ( UpperCamelCase__ ): @property def A__ ( self :Dict ): '''simple docstring''' if self.task == "multiple-choice": __magic_name__ : str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: __magic_name__ : Optional[Any] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
21
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "tanreinama/GPTSAN-2.8B-spout_is_uniform": ( "https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json" ), } class __A ( UpperCamelCase__ ): UpperCamelCase = """gptsan-japanese""" UpperCamelCase = [ """past_key_values""", ] UpperCamelCase = { """hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :str , __snake_case :str=3_60_00 , __snake_case :List[Any]=12_80 , __snake_case :Tuple=10_24 , __snake_case :Union[str, Any]=81_92 , __snake_case :Dict=40_96 , __snake_case :Tuple=1_28 , __snake_case :Union[str, Any]=10 , __snake_case :List[Any]=0 , __snake_case :int=16 , __snake_case :Tuple=16 , __snake_case :int=1_28 , __snake_case :Optional[Any]=0.0 , __snake_case :Any=1E-5 , __snake_case :str=False , __snake_case :Dict=0.0 , __snake_case :str="float32" , __snake_case :int=False , __snake_case :int=False , __snake_case :Optional[int]=False , __snake_case :Tuple=0.002 , __snake_case :Any=False , __snake_case :Optional[Any]=True , __snake_case :Optional[int]=3_59_98 , __snake_case :Dict=3_59_95 , __snake_case :Optional[int]=3_59_99 , **__snake_case :Union[str, Any] , ): '''simple docstring''' __magic_name__ : List[str] =vocab_size __magic_name__ : Any =max_position_embeddings __magic_name__ : int =d_model __magic_name__ : Any =d_ff __magic_name__ : Dict =d_ext __magic_name__ : Union[str, Any] =d_spout __magic_name__ : List[Any] =num_switch_layers __magic_name__ : int =num_ext_layers __magic_name__ : Optional[int] =num_switch_layers + num_ext_layers __magic_name__ : Union[str, Any] =num_heads __magic_name__ : Any =num_experts __magic_name__ : Optional[int] =expert_capacity __magic_name__ : Union[str, Any] =dropout_rate __magic_name__ : Any =layer_norm_epsilon __magic_name__ : Union[str, Any] =router_bias __magic_name__ : int =router_jitter_noise __magic_name__ : str =router_dtype __magic_name__ : Optional[int] =router_ignore_padding_tokens __magic_name__ : str =output_hidden_states __magic_name__ : Dict =output_attentions __magic_name__ : Dict =initializer_factor __magic_name__ : List[str] =output_router_logits __magic_name__ : int =use_cache super().__init__( separator_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case , )
21
from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase_ ( lowerCamelCase="ro" , lowerCamelCase="en" , lowerCamelCase="wmt16" , lowerCamelCase=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) __magic_name__ : Dict =F"{src_lang}-{tgt_lang}" print(F"Converting {dataset}-{pair}" ) __magic_name__ : Dict =datasets.load_dataset(lowerCamelCase , lowerCamelCase ) if save_dir is None: __magic_name__ : Optional[int] =F"{dataset}-{pair}" __magic_name__ : int =Path(lowerCamelCase ) save_dir.mkdir(exist_ok=lowerCamelCase ) for split in ds.keys(): print(F"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets __magic_name__ : Dict ="""val""" if split == """validation""" else split __magic_name__ : List[Any] =save_dir.joinpath(F"{fn}.source" ) __magic_name__ : Optional[int] =save_dir.joinpath(F"{fn}.target" ) __magic_name__ : Optional[Any] =src_path.open("""w+""" ) __magic_name__ : List[Any] =tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __magic_name__ : str =x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
21
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __A : def __init__( self :int , __snake_case :List[Any] , __snake_case :List[Any]=2 , __snake_case :Dict=True , __snake_case :Tuple=False , __snake_case :List[str]=10 , __snake_case :List[str]=3 , __snake_case :Union[str, Any]=32 * 8 , __snake_case :Optional[int]=32 * 8 , __snake_case :Any=4 , __snake_case :Union[str, Any]=64 , ): '''simple docstring''' __magic_name__ : Optional[int] =parent __magic_name__ : List[Any] =batch_size __magic_name__ : List[str] =is_training __magic_name__ : List[str] =use_auxiliary_loss __magic_name__ : Union[str, Any] =num_queries __magic_name__ : str =num_channels __magic_name__ : Union[str, Any] =min_size __magic_name__ : Union[str, Any] =max_size __magic_name__ : Optional[int] =num_labels __magic_name__ : Tuple =hidden_dim __magic_name__ : Any =hidden_dim def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __snake_case ) __magic_name__ : List[Any] =torch.ones([self.batch_size, self.min_size, self.max_size] , device=__snake_case ) __magic_name__ : List[str] =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__snake_case ) > 0.5 ).float() __magic_name__ : Union[str, Any] =(torch.rand((self.batch_size, self.num_labels) , device=__snake_case ) > 0.5).long() __magic_name__ : str =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Dict =MaskaFormerConfig( hidden_size=self.hidden_dim , ) __magic_name__ : str =self.num_queries __magic_name__ : Dict =self.num_labels __magic_name__ : int =[1, 1, 1, 1] __magic_name__ : List[str] =self.num_channels __magic_name__ : str =64 __magic_name__ : List[str] =1_28 __magic_name__ : Optional[Any] =self.hidden_dim __magic_name__ : Tuple =self.hidden_dim __magic_name__ : Optional[int] =self.hidden_dim return config def A__ ( self :Any ): '''simple docstring''' __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple =self.prepare_config_and_inputs() __magic_name__ : Optional[Any] ={"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def A__ ( self :Union[str, Any] , __snake_case :Tuple , __snake_case :Dict ): '''simple docstring''' __magic_name__ : int =output.encoder_hidden_states __magic_name__ : List[str] =output.pixel_decoder_hidden_states __magic_name__ : int =output.transformer_decoder_hidden_states self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , config.decoder_layers ) def A__ ( self :List[Any] , __snake_case :Optional[Any] , __snake_case :int , __snake_case :str , __snake_case :str=False ): '''simple docstring''' with torch.no_grad(): __magic_name__ : List[str] =MaskaFormerModel(config=__snake_case ) model.to(__snake_case ) model.eval() __magic_name__ : Union[str, Any] =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : int =model(__snake_case , output_hidden_states=__snake_case ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__snake_case , __snake_case ) def A__ ( self :Optional[Any] , __snake_case :List[str] , __snake_case :List[Any] , __snake_case :int , __snake_case :Any , __snake_case :Union[str, Any] ): '''simple docstring''' __magic_name__ : str =MaskaFormerForUniversalSegmentation(config=__snake_case ) model.to(__snake_case ) model.eval() def comm_check_on_output(__snake_case :List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __magic_name__ : int =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : List[str] =model(__snake_case ) comm_check_on_output(__snake_case ) __magic_name__ : Any =model( pixel_values=__snake_case , pixel_mask=__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) comm_check_on_output(__snake_case ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCamelCase = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def A__ ( self :str ): '''simple docstring''' __magic_name__ : Any =MaskaFormerModelTester(self ) __magic_name__ : Union[str, Any] =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def A__ ( self :Dict ): '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__snake_case ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def A__ ( self :List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def A__ ( self :Dict ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def A__ ( self :Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def A__ ( self :int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def A__ ( self :Tuple ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A__ ( self :Union[str, Any] ): '''simple docstring''' pass def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Tuple =model_class(__snake_case ) __magic_name__ : Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple =[*signature.parameters.keys()] __magic_name__ : Optional[Any] =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) @slow def A__ ( self :Tuple ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __magic_name__ : int =MaskaFormerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =(self.model_tester.min_size,) * 2 __magic_name__ : Union[str, Any] ={ """pixel_values""": torch.randn((2, 3, *size) , device=__snake_case ), """mask_labels""": torch.randn((2, 10, *size) , device=__snake_case ), """class_labels""": torch.zeros(2 , 10 , device=__snake_case ).long(), } __magic_name__ : Optional[Any] =self.model_tester.get_config() __magic_name__ : Dict =MaskaFormerForUniversalSegmentation(__snake_case ).to(__snake_case ) __magic_name__ : Any =model(**__snake_case ) self.assertTrue(outputs.loss is not None ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ , __magic_name__ : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] =model_class(__snake_case ).to(__snake_case ) __magic_name__ : Optional[int] =model(**__snake_case , output_attentions=__snake_case ) self.assertTrue(outputs.attentions is not None ) def A__ ( self :int ): '''simple docstring''' if not self.model_tester.is_training: return __magic_name__ : List[Any] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Dict =model_class(__snake_case ) model.to(__snake_case ) model.train() __magic_name__ : Optional[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ).loss loss.backward() def A__ ( self :int ): '''simple docstring''' __magic_name__ : List[str] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Tuple =True __magic_name__ : Optional[int] =True __magic_name__ : int =model_class(__snake_case ).to(__snake_case ) model.train() __magic_name__ : List[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) __magic_name__ : Optional[int] =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __magic_name__ : Optional[int] =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__snake_case ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase_ : Dict = 1e-4 def lowerCAmelCase_ ( ): __magic_name__ : Dict =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __A ( unittest.TestCase ): @cached_property def A__ ( self :int ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def A__ ( self :int ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__snake_case ) __magic_name__ : int =self.default_image_processor __magic_name__ : List[Any] =prepare_img() __magic_name__ : Any =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Dict =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : List[str] =model(**__snake_case ) __magic_name__ : Any =torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Dict =torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Any =torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Optional[int] =self.default_image_processor __magic_name__ : Tuple =prepare_img() __magic_name__ : List[Any] =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Union[str, Any] =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : str =model(**__snake_case ) # masks_queries_logits __magic_name__ : List[Any] =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __magic_name__ : List[Any] =[ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __magic_name__ : Dict =torch.tensor(__snake_case ).to(__snake_case ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) # class_queries_logits __magic_name__ : Any =outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __magic_name__ : int =torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Any =self.default_image_processor __magic_name__ : Union[str, Any] =image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , ) __magic_name__ : str =inputs["""pixel_values"""].to(__snake_case ) __magic_name__ : Tuple =[el.to(__snake_case ) for el in inputs["""mask_labels"""]] __magic_name__ : Union[str, Any] =[el.to(__snake_case ) for el in inputs["""class_labels"""]] with torch.no_grad(): __magic_name__ : Dict =model(**__snake_case ) self.assertTrue(outputs.loss is not None )
21
from __future__ import annotations from fractions import Fraction def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =[] __magic_name__ : List[Any] =11 __magic_name__ : Tuple =int("""1""" + """0""" * digit_len ) for num in range(lowerCamelCase , lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowerCamelCase , lowerCamelCase ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 __magic_name__ : List[str] =10 return solutions def lowerCAmelCase_ ( lowerCamelCase = 2 ): __magic_name__ : str =1.0 for fraction in fraction_list(lowerCamelCase ): __magic_name__ : int =Fraction(lowerCamelCase ) result *= frac.denominator / frac.numerator return int(lowerCamelCase ) if __name__ == "__main__": print(solution())
21
1
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __A ( UpperCamelCase__ ): UpperCamelCase = 42 UpperCamelCase = None def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=0.9_9_9 , lowerCamelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) __magic_name__ : List[str] =[] for i in range(lowerCamelCase ): __magic_name__ : int =i / num_diffusion_timesteps __magic_name__ : Optional[int] =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase ) / alpha_bar_fn(lowerCamelCase ) , lowerCamelCase ) ) return torch.tensor(lowerCamelCase , dtype=torch.floataa ) class __A ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self :Union[str, Any] , __snake_case :int = 10_00 , __snake_case :str = "fixed_small_log" , __snake_case :bool = True , __snake_case :Optional[float] = 1.0 , __snake_case :str = "epsilon" , __snake_case :str = "squaredcos_cap_v2" , ): '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) __magic_name__ : Optional[int] =betas_for_alpha_bar(__snake_case ) __magic_name__ : Dict =1.0 - self.betas __magic_name__ : Tuple =torch.cumprod(self.alphas , dim=0 ) __magic_name__ : List[str] =torch.tensor(1.0 ) # standard deviation of the initial noise distribution __magic_name__ : Optional[int] =1.0 # setable values __magic_name__ : str =None __magic_name__ : List[str] =torch.from_numpy(np.arange(0 , __snake_case )[::-1].copy() ) __magic_name__ : Dict =variance_type def A__ ( self :List[str] , __snake_case :torch.FloatTensor , __snake_case :Optional[int] = None ): '''simple docstring''' return sample def A__ ( self :str , __snake_case :int , __snake_case :Union[str, torch.device] = None ): '''simple docstring''' __magic_name__ : Tuple =num_inference_steps __magic_name__ : List[str] =(self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __magic_name__ : Dict =(np.arange(0 , __snake_case ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __magic_name__ : Union[str, Any] =torch.from_numpy(__snake_case ).to(__snake_case ) def A__ ( self :List[Any] , __snake_case :str , __snake_case :Any=None , __snake_case :List[Any]=None , __snake_case :Union[str, Any]=None ): '''simple docstring''' if prev_timestep is None: __magic_name__ : List[Any] =t - 1 __magic_name__ : Any =self.alphas_cumprod[t] __magic_name__ : List[str] =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __magic_name__ : int =1 - alpha_prod_t __magic_name__ : str =1 - alpha_prod_t_prev if prev_timestep == t - 1: __magic_name__ : Union[str, Any] =self.betas[t] else: __magic_name__ : Optional[Any] =1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __magic_name__ : Optional[Any] =beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __magic_name__ : Dict =self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __magic_name__ : Optional[int] =torch.log(torch.clamp(__snake_case , min=1E-20 ) ) __magic_name__ : Dict =torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __magic_name__ : str =variance.log() __magic_name__ : str =beta.log() __magic_name__ : List[str] =(predicted_variance + 1) / 2 __magic_name__ : str =frac * max_log + (1 - frac) * min_log return variance def A__ ( self :List[str] , __snake_case :torch.FloatTensor , __snake_case :int , __snake_case :torch.FloatTensor , __snake_case :Optional[int] = None , __snake_case :Dict=None , __snake_case :bool = True , ): '''simple docstring''' __magic_name__ : List[str] =timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __magic_name__ , __magic_name__ : int =torch.split(__snake_case , sample.shape[1] , dim=1 ) else: __magic_name__ : str =None # 1. compute alphas, betas if prev_timestep is None: __magic_name__ : Optional[Any] =t - 1 __magic_name__ : Union[str, Any] =self.alphas_cumprod[t] __magic_name__ : Optional[int] =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __magic_name__ : Dict =1 - alpha_prod_t __magic_name__ : Optional[int] =1 - alpha_prod_t_prev if prev_timestep == t - 1: __magic_name__ : Optional[Any] =self.betas[t] __magic_name__ : Any =self.alphas[t] else: __magic_name__ : List[Any] =1 - alpha_prod_t / alpha_prod_t_prev __magic_name__ : Tuple =1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __magic_name__ : Optional[Any] =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __magic_name__ : str =model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`" """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: __magic_name__ : int =torch.clamp( __snake_case , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ : Optional[Any] =(alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __magic_name__ : Dict =alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ : Any =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __magic_name__ : Any =0 if t > 0: __magic_name__ : str =randn_tensor( model_output.shape , dtype=model_output.dtype , generator=__snake_case , device=model_output.device ) __magic_name__ : Optional[Any] =self._get_variance( __snake_case , predicted_variance=__snake_case , prev_timestep=__snake_case , ) if self.variance_type == "fixed_small_log": __magic_name__ : List[str] =variance elif self.variance_type == "learned_range": __magic_name__ : int =(0.5 * variance).exp() else: raise ValueError( f"variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`" """ for the UnCLIPScheduler.""" ) __magic_name__ : Union[str, Any] =variance * variance_noise __magic_name__ : str =pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__snake_case , pred_original_sample=__snake_case ) def A__ ( self :List[str] , __snake_case :torch.FloatTensor , __snake_case :torch.FloatTensor , __snake_case :torch.IntTensor , ): '''simple docstring''' __magic_name__ : str =self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __magic_name__ : Union[str, Any] =timesteps.to(original_samples.device ) __magic_name__ : List[Any] =alphas_cumprod[timesteps] ** 0.5 __magic_name__ : Dict =sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __magic_name__ : Union[str, Any] =sqrt_alpha_prod.unsqueeze(-1 ) __magic_name__ : List[Any] =(1 - alphas_cumprod[timesteps]) ** 0.5 __magic_name__ : str =sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __magic_name__ : Union[str, Any] =sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __magic_name__ : List[str] =sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
21
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( lowerCamelCase ): # A local function to see if a dot lands in the circle. def is_in_circle(lowerCamelCase , lowerCamelCase ) -> bool: __magic_name__ : Dict =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __magic_name__ : Union[str, Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. __magic_name__ : List[Any] =proportion * 4 print(F"The estimated value of pi is {pi_estimate}" ) print(F"The numpy value of pi is {pi}" ) print(F"The total error is {abs(pi - pi_estimate )}" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 , ): return mean( function_to_integrate(uniform(lowerCamelCase , lowerCamelCase ) ) for _ in range(lowerCamelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ): def identity_function(lowerCamelCase ) -> float: return x __magic_name__ : Optional[int] =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __magic_name__ : str =(max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {expected_value}" ) print(F"Total error is {abs(estimated_value - expected_value )}" ) print("""******************""" ) def lowerCAmelCase_ ( lowerCamelCase ): def function_to_integrate(lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) __magic_name__ : Dict =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {pi}" ) print(F"Total error is {abs(estimated_value - pi )}" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __A : def __init__( self :List[str] , __snake_case :List[Any] , __snake_case :Any=1_00 , __snake_case :List[Any]=13 , __snake_case :List[str]=30 , __snake_case :List[Any]=2 , __snake_case :str=3 , __snake_case :Optional[int]=True , __snake_case :List[str]=True , __snake_case :Tuple=32 , __snake_case :Optional[Any]=4 , __snake_case :str=4 , __snake_case :Optional[int]=37 , __snake_case :Any="gelu" , __snake_case :Any=0.1 , __snake_case :int=0.1 , __snake_case :Optional[Any]=10 , __snake_case :Dict=0.02 , __snake_case :List[Any]=3 , __snake_case :Union[str, Any]=None , __snake_case :Any=[0, 1, 2, 3] , ): '''simple docstring''' __magic_name__ : Any =parent __magic_name__ : List[str] =1_00 __magic_name__ : str =batch_size __magic_name__ : str =image_size __magic_name__ : Any =patch_size __magic_name__ : int =num_channels __magic_name__ : Union[str, Any] =is_training __magic_name__ : List[str] =use_labels __magic_name__ : Union[str, Any] =hidden_size __magic_name__ : Dict =num_hidden_layers __magic_name__ : str =num_attention_heads __magic_name__ : int =intermediate_size __magic_name__ : Any =hidden_act __magic_name__ : Optional[int] =hidden_dropout_prob __magic_name__ : Any =attention_probs_dropout_prob __magic_name__ : Tuple =type_sequence_label_size __magic_name__ : Dict =initializer_range __magic_name__ : int =scope __magic_name__ : Union[str, Any] =out_indices __magic_name__ : int =num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __magic_name__ : Union[str, Any] =(image_size // patch_size) ** 2 __magic_name__ : Any =num_patches + 1 def A__ ( self :int ): '''simple docstring''' __magic_name__ : List[str] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Optional[Any] =None __magic_name__ : List[Any] =None if self.use_labels: __magic_name__ : Any =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : int =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __magic_name__ : Optional[int] =self.get_config() return config, pixel_values, labels, pixel_labels def A__ ( self :List[str] ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def A__ ( self :Optional[int] , __snake_case :Tuple , __snake_case :Optional[Any] , __snake_case :Dict , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : Tuple =BeitModel(config=__snake_case ) model.to(__snake_case ) model.eval() __magic_name__ : Optional[Any] =model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self :Union[str, Any] , __snake_case :Any , __snake_case :List[Any] , __snake_case :Optional[int] , __snake_case :Optional[Any] ): '''simple docstring''' __magic_name__ : str =BeitForMaskedImageModeling(config=__snake_case ) model.to(__snake_case ) model.eval() __magic_name__ : Dict =model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def A__ ( self :str , __snake_case :List[Any] , __snake_case :Optional[int] , __snake_case :List[Any] , __snake_case :Union[str, Any] ): '''simple docstring''' __magic_name__ : Tuple =self.type_sequence_label_size __magic_name__ : Optional[int] =BeitForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() __magic_name__ : List[Any] =model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : Optional[Any] =1 __magic_name__ : List[Any] =BeitForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() __magic_name__ : List[Any] =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Dict =model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self :List[str] , __snake_case :Optional[Any] , __snake_case :List[str] , __snake_case :List[str] , __snake_case :Union[str, Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =self.num_labels __magic_name__ : str =BeitForSemanticSegmentation(__snake_case ) model.to(__snake_case ) model.eval() __magic_name__ : str =model(__snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __magic_name__ : Optional[int] =model(__snake_case , labels=__snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : int =config_and_inputs __magic_name__ : int ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { """feature-extraction""": BeitModel, """image-classification""": BeitForImageClassification, """image-segmentation""": BeitForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def A__ ( self :str ): '''simple docstring''' __magic_name__ : List[Any] =BeitModelTester(self ) __magic_name__ : Optional[Any] =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def A__ ( self :Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""BEiT does not use inputs_embeds""" ) def A__ ( self :Tuple ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def A__ ( self :str ): '''simple docstring''' pass def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Dict =model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Union[str, Any] =model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ , __magic_name__ : int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Any =model_class(__snake_case ) __magic_name__ : Any =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : List[Any] =[*signature.parameters.keys()] __magic_name__ : List[str] =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def A__ ( self :int ): '''simple docstring''' __magic_name__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def A__ ( self :int ): '''simple docstring''' __magic_name__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' if not self.model_tester.is_training: return __magic_name__ , __magic_name__ : int =self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : int =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__snake_case ), BeitForMaskedImageModeling]: continue __magic_name__ : Tuple =model_class(__snake_case ) model.to(__snake_case ) model.train() __magic_name__ : int =self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) __magic_name__ : Any =model(**__snake_case ).loss loss.backward() def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __magic_name__ : Optional[int] =False __magic_name__ : str =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__snake_case ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __magic_name__ : List[Any] =model_class(__snake_case ) model.gradient_checkpointing_enable() model.to(__snake_case ) model.train() __magic_name__ : str =self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) __magic_name__ : str =model(**__snake_case ).loss loss.backward() def A__ ( self :int ): '''simple docstring''' __magic_name__ , __magic_name__ : Dict =self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : str =_config_zero_init(__snake_case ) for model_class in self.all_model_classes: __magic_name__ : str =model_class(config=__snake_case ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @slow def A__ ( self :List[str] ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Dict =BeitModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def lowerCAmelCase_ ( ): __magic_name__ : List[str] =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __A ( unittest.TestCase ): @cached_property def A__ ( self :Any ): '''simple docstring''' return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Union[str, Any] =BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(__snake_case ) __magic_name__ : List[Any] =self.default_image_processor __magic_name__ : Union[str, Any] =prepare_img() __magic_name__ : Dict =image_processor(images=__snake_case , return_tensors="""pt""" ).pixel_values.to(__snake_case ) # prepare bool_masked_pos __magic_name__ : Any =torch.ones((1, 1_96) , dtype=torch.bool ).to(__snake_case ) # forward pass with torch.no_grad(): __magic_name__ : str =model(pixel_values=__snake_case , bool_masked_pos=__snake_case ) __magic_name__ : Any =outputs.logits # verify the logits __magic_name__ : Dict =torch.Size((1, 1_96, 81_92) ) self.assertEqual(logits.shape , __snake_case ) __magic_name__ : int =torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(__snake_case ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __snake_case , atol=1E-2 ) ) @slow def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Optional[int] =BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(__snake_case ) __magic_name__ : str =self.default_image_processor __magic_name__ : Optional[Any] =prepare_img() __magic_name__ : Tuple =image_processor(images=__snake_case , return_tensors="""pt""" ).to(__snake_case ) # forward pass with torch.no_grad(): __magic_name__ : str =model(**__snake_case ) __magic_name__ : Optional[int] =outputs.logits # verify the logits __magic_name__ : Any =torch.Size((1, 10_00) ) self.assertEqual(logits.shape , __snake_case ) __magic_name__ : List[Any] =torch.tensor([-1.2385, -1.0987, -1.0108] ).to(__snake_case ) self.assertTrue(torch.allclose(logits[0, :3] , __snake_case , atol=1E-4 ) ) __magic_name__ : str =2_81 self.assertEqual(logits.argmax(-1 ).item() , __snake_case ) @slow def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : Any =BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to( __snake_case ) __magic_name__ : str =self.default_image_processor __magic_name__ : str =prepare_img() __magic_name__ : Any =image_processor(images=__snake_case , return_tensors="""pt""" ).to(__snake_case ) # forward pass with torch.no_grad(): __magic_name__ : int =model(**__snake_case ) __magic_name__ : str =outputs.logits # verify the logits __magic_name__ : int =torch.Size((1, 2_18_41) ) self.assertEqual(logits.shape , __snake_case ) __magic_name__ : str =torch.tensor([1.6881, -0.2787, 0.5901] ).to(__snake_case ) self.assertTrue(torch.allclose(logits[0, :3] , __snake_case , atol=1E-4 ) ) __magic_name__ : str =23_96 self.assertEqual(logits.argmax(-1 ).item() , __snake_case ) @slow def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) __magic_name__ : List[Any] =model.to(__snake_case ) __magic_name__ : Dict =BeitImageProcessor(do_resize=__snake_case , size=6_40 , do_center_crop=__snake_case ) __magic_name__ : Optional[int] =load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) __magic_name__ : Optional[int] =Image.open(ds[0]["""file"""] ) __magic_name__ : Dict =image_processor(images=__snake_case , return_tensors="""pt""" ).to(__snake_case ) # forward pass with torch.no_grad(): __magic_name__ : Optional[Any] =model(**__snake_case ) __magic_name__ : Tuple =outputs.logits # verify the logits __magic_name__ : Union[str, Any] =torch.Size((1, 1_50, 1_60, 1_60) ) self.assertEqual(logits.shape , __snake_case ) __magic_name__ : Dict =version.parse(PIL.__version__ ) < version.parse("""9.0.0""" ) if is_pillow_less_than_a: __magic_name__ : Optional[int] =torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=__snake_case , ) else: __magic_name__ : Tuple =torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=__snake_case , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) __magic_name__ : Union[str, Any] =model.to(__snake_case ) __magic_name__ : int =BeitImageProcessor(do_resize=__snake_case , size=6_40 , do_center_crop=__snake_case ) __magic_name__ : Optional[int] =load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) __magic_name__ : Dict =Image.open(ds[0]["""file"""] ) __magic_name__ : int =image_processor(images=__snake_case , return_tensors="""pt""" ).to(__snake_case ) # forward pass with torch.no_grad(): __magic_name__ : Any =model(**__snake_case ) __magic_name__ : List[str] =outputs.logits.detach().cpu() __magic_name__ : Optional[int] =image_processor.post_process_semantic_segmentation(outputs=__snake_case , target_sizes=[(5_00, 3_00)] ) __magic_name__ : Optional[Any] =torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , __snake_case ) __magic_name__ : List[str] =image_processor.post_process_semantic_segmentation(outputs=__snake_case ) __magic_name__ : Union[str, Any] =torch.Size((1_60, 1_60) ) self.assertEqual(segmentation[0].shape , __snake_case )
21
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __A ( tf.keras.layers.Layer ): def __init__( self :Optional[int] , __snake_case :Dict[str, int] , __snake_case :List[str] , __snake_case :int = None , __snake_case :int = None ): '''simple docstring''' super().__init__() __magic_name__ : Optional[int] =pad_token_id __magic_name__ : List[Any] =max_length __magic_name__ : Dict =vocab __magic_name__ : int =merges __magic_name__ : Optional[int] =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case ) @classmethod def A__ ( cls :List[Any] , __snake_case :GPTaTokenizer , *__snake_case :int , **__snake_case :Any ): '''simple docstring''' __magic_name__ : List[Any] =[""" """.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()] __magic_name__ : str =tokenizer.get_vocab() return cls(__snake_case , __snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Dict , __snake_case :Union[str, os.PathLike] , *__snake_case :Union[str, Any] , **__snake_case :int ): '''simple docstring''' __magic_name__ : Dict =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case ) return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Optional[Any] , __snake_case :List[Any] ): '''simple docstring''' return cls(**__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def A__ ( self :List[Any] , __snake_case :Dict , __snake_case :int = None ): '''simple docstring''' __magic_name__ : Optional[Any] =self.tf_tokenizer(__snake_case ) __magic_name__ : Tuple =tf.ones_like(__snake_case ) if self.pad_token_id is not None: # pad the tokens up to max length __magic_name__ : Tuple =max_length if max_length is not None else self.max_length if max_length is not None: __magic_name__ , __magic_name__ : Tuple =pad_model_inputs( __snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
21
1
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class __A : def __init__( self :Any , __snake_case :Optional[Any] , __snake_case :Optional[int] , __snake_case :bool = True , __snake_case :bool = False ): '''simple docstring''' __magic_name__ : Union[str, Any] =scheduler __magic_name__ : Optional[Any] =optimizers if isinstance(__snake_case , (list, tuple) ) else [optimizers] __magic_name__ : Any =split_batches __magic_name__ : List[str] =step_with_optimizer __magic_name__ : Dict =GradientState() def A__ ( self :List[str] , *__snake_case :Optional[Any] , **__snake_case :Any ): '''simple docstring''' if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*__snake_case , **__snake_case ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*__snake_case , **__snake_case ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __magic_name__ : str =AcceleratorState().num_processes for _ in range(__snake_case ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , """total_steps""" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*__snake_case , **__snake_case ) else: self.scheduler.step(*__snake_case , **__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' return self.scheduler.get_last_lr() def A__ ( self :Tuple ): '''simple docstring''' return self.scheduler.state_dict() def A__ ( self :Union[str, Any] , __snake_case :Dict ): '''simple docstring''' self.scheduler.load_state_dict(__snake_case ) def A__ ( self :Tuple ): '''simple docstring''' return self.scheduler.get_lr() def A__ ( self :Any , *__snake_case :int , **__snake_case :Union[str, Any] ): '''simple docstring''' return self.scheduler.print_lr(*__snake_case , **__snake_case )
21
import math import tensorflow as tf from packaging import version def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : List[str] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Optional[Any] =tf.cast(math.pi , x.dtype ) __magic_name__ : int =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Any =tf.convert_to_tensor(lowerCamelCase ) return x * tf.tanh(tf.math.softplus(lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[Any] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Union[str, Any] =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Dict =tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCAmelCase_ ( lowerCamelCase ): return tf.clip_by_value(_gelu(lowerCamelCase ) , -10 , 10 ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=-1 ): __magic_name__ , __magic_name__ : List[Any] =tf.split(lowerCamelCase , 2 , axis=lowerCamelCase ) return a * tf.math.sigmoid(lowerCamelCase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowerCAmelCase_ ( lowerCamelCase ): return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase ) UpperCAmelCase_ : List[str] = tf.keras.activations.gelu UpperCAmelCase_ : Dict = approximate_gelu_wrap else: UpperCAmelCase_ : Dict = _gelu UpperCAmelCase_ : str = _gelu_new UpperCAmelCase_ : Any = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowerCAmelCase_ ( lowerCamelCase ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
21
1
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def lowerCAmelCase_ ( lowerCamelCase = 8 ): __magic_name__ : Optional[Any] =ascii_letters + digits + punctuation return "".join(secrets.choice(lowerCamelCase ) for _ in range(lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(lowerCamelCase ) __magic_name__ : Union[str, Any] =i // 3 __magic_name__ : List[Any] =i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) __magic_name__ : Union[str, Any] =( chars_incl + random(lowerCamelCase , quotient + remainder ) + random(lowerCamelCase , lowerCamelCase ) + random(lowerCamelCase , lowerCamelCase ) ) __magic_name__ : Optional[int] =list(lowerCamelCase ) shuffle(lowerCamelCase ) return "".join(lowerCamelCase ) # random is a generalised function for letters, characters and numbers def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return "".join(secrets.choice(lowerCamelCase ) for _ in range(lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): pass # Put your code here... def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): pass # Put your code here... def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): pass # Put your code here... def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 8 ): if len(lowerCamelCase ) < min_length: # Your Password must be at least 8 characters long return False __magic_name__ : int =any(char in ascii_uppercase for char in password ) __magic_name__ : Optional[int] =any(char in ascii_lowercase for char in password ) __magic_name__ : Any =any(char in digits for char in password ) __magic_name__ : List[Any] =any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def lowerCAmelCase_ ( ): __magic_name__ : str =int(input("""Please indicate the max length of your password: """ ).strip() ) __magic_name__ : int =input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""" , password_generator(lowerCamelCase ) ) print( """Alternative Password generated:""" , alternative_password_generator(lowerCamelCase , lowerCamelCase ) , ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
21
from collections.abc import Sequence def lowerCAmelCase_ ( lowerCamelCase = None ): if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __magic_name__ : str =nums[0] for i in range(1 , len(lowerCamelCase ) ): __magic_name__ : Any =nums[i] __magic_name__ : Dict =max(lowerCamelCase , ans + num , lowerCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCAmelCase_ : List[str] = int(input("Enter number of elements : ").strip()) UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
21
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu UpperCAmelCase_ : Dict = False class __A ( unittest.TestCase ): def A__ ( self :str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self :Optional[int] ): '''simple docstring''' return 12 @property def A__ ( self :Dict ): '''simple docstring''' return 12 @property def A__ ( self :List[str] ): '''simple docstring''' return 32 @property def A__ ( self :Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : str =VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : str =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def A__ ( self :Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Optional[int] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(__snake_case ) @property def A__ ( self :int ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Optional[int] =12 __magic_name__ : str =12 __magic_name__ : Optional[int] ={ """attention_bias""": True, """cross_attention_dim""": 32, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 32, """sample_size""": width, """activation_fn""": """geglu-approximate""", } __magic_name__ : int =TransformeraDModel(**__snake_case ) return model def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Any ="""cpu""" __magic_name__ : List[str] =self.dummy_vqvae __magic_name__ : List[Any] =self.dummy_text_encoder __magic_name__ : List[Any] =self.dummy_tokenizer __magic_name__ : List[Any] =self.dummy_transformer __magic_name__ : Tuple =VQDiffusionScheduler(self.num_embed ) __magic_name__ : Optional[int] =LearnedClassifierFreeSamplingEmbeddings(learnable=__snake_case ) __magic_name__ : List[str] =VQDiffusionPipeline( vqvae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , transformer=__snake_case , scheduler=__snake_case , learned_classifier_free_sampling_embeddings=__snake_case , ) __magic_name__ : int =pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Any ="""teddy bear playing in the pool""" __magic_name__ : List[str] =torch.Generator(device=__snake_case ).manual_seed(0 ) __magic_name__ : Optional[Any] =pipe([prompt] , generator=__snake_case , num_inference_steps=2 , output_type="""np""" ) __magic_name__ : Any =output.images __magic_name__ : List[str] =torch.Generator(device=__snake_case ).manual_seed(0 ) __magic_name__ : Dict =pipe( [prompt] , generator=__snake_case , output_type="""np""" , return_dict=__snake_case , num_inference_steps=2 )[0] __magic_name__ : List[str] =image[0, -3:, -3:, -1] __magic_name__ : int =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __magic_name__ : Optional[int] =np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[int] ="""cpu""" __magic_name__ : Union[str, Any] =self.dummy_vqvae __magic_name__ : str =self.dummy_text_encoder __magic_name__ : Dict =self.dummy_tokenizer __magic_name__ : Optional[Any] =self.dummy_transformer __magic_name__ : Tuple =VQDiffusionScheduler(self.num_embed ) __magic_name__ : int =LearnedClassifierFreeSamplingEmbeddings( learnable=__snake_case , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) __magic_name__ : int =VQDiffusionPipeline( vqvae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , transformer=__snake_case , scheduler=__snake_case , learned_classifier_free_sampling_embeddings=__snake_case , ) __magic_name__ : Dict =pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Optional[Any] ="""teddy bear playing in the pool""" __magic_name__ : Tuple =torch.Generator(device=__snake_case ).manual_seed(0 ) __magic_name__ : Tuple =pipe([prompt] , generator=__snake_case , num_inference_steps=2 , output_type="""np""" ) __magic_name__ : List[str] =output.images __magic_name__ : Optional[Any] =torch.Generator(device=__snake_case ).manual_seed(0 ) __magic_name__ : str =pipe( [prompt] , generator=__snake_case , output_type="""np""" , return_dict=__snake_case , num_inference_steps=2 )[0] __magic_name__ : Any =image[0, -3:, -3:, -1] __magic_name__ : Tuple =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __magic_name__ : Union[str, Any] =np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __A ( unittest.TestCase ): def A__ ( self :Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) __magic_name__ : int =VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) __magic_name__ : Tuple =pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __magic_name__ : int =torch.Generator(device=__snake_case ).manual_seed(0 ) __magic_name__ : Optional[Any] =pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=__snake_case , output_type="""np""" , ) __magic_name__ : Dict =output.images[0] assert image.shape == (2_56, 2_56, 3) assert np.abs(expected_image - image ).max() < 2.0
21
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : UpperCamelCase = 42 UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""Translation""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def __call__( self :Union[str, Any] ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def A__ ( self :List[Any] ): '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __A : UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""TranslationVariableLanguages""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =sorted(set(self.languages ) ) if self.languages else None __magic_name__ : Optional[int] =len(self.languages ) if self.languages else None def __call__( self :List[str] ): '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def A__ ( self :str , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[int] =set(self.languages ) if self.languages and set(__snake_case ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __magic_name__ : Any =[] for lang, text in translation_dict.items(): if isinstance(__snake_case , __snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __magic_name__ , __magic_name__ : List[str] =zip(*sorted(__snake_case ) ) return {"language": languages, "translation": translations} def A__ ( self :List[Any] ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
21
1
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCAmelCase_ : Union[str, Any] = logging.getLogger(__name__) UpperCAmelCase_ : Optional[Any] = 50 # max width of layer names UpperCAmelCase_ : Optional[int] = 70 # max width of quantizer names def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Dict =parser.add_argument_group("""quant_trainer arguments""" ) group.add_argument("""--wprec""" , type=lowerCamelCase , default=8 , help="""weight precision""" ) group.add_argument("""--aprec""" , type=lowerCamelCase , default=8 , help="""activation precision""" ) group.add_argument("""--quant-per-tensor""" , action="""store_true""" , help="""per tensor weight scaling""" ) group.add_argument("""--quant-disable""" , action="""store_true""" , help="""disable all quantizers""" ) group.add_argument("""--quant-disable-embeddings""" , action="""store_true""" , help="""disable all embeddings quantizers""" ) group.add_argument("""--quant-disable-keyword""" , type=lowerCamelCase , nargs="""+""" , help="""disable quantizers by keyword""" ) group.add_argument("""--quant-disable-layer-module""" , type=lowerCamelCase , help="""disable quantizers by keyword under layer.""" ) group.add_argument("""--quant-enable-layer-module""" , type=lowerCamelCase , help="""enable quantizers by keyword under layer""" ) group.add_argument("""--calibrator""" , default="""max""" , help="""which quantization range calibrator to use""" ) group.add_argument("""--percentile""" , default=lowerCamelCase , type=lowerCamelCase , help="""percentile for PercentileCalibrator""" ) group.add_argument("""--fuse-qkv""" , action="""store_true""" , help="""use the same scale factor for qkv""" ) group.add_argument("""--clip-gelu""" , metavar="""N""" , type=lowerCamelCase , help="""clip gelu output maximum value to N""" ) group.add_argument( """--recalibrate-weights""" , action="""store_true""" , help=( """recalibrate weight amaxes by taking the max of the weights.""" """ amaxes will be computed with the current quantization granularity (axis).""" ) , ) def lowerCAmelCase_ ( lowerCamelCase ): if args.calibrator == "max": __magic_name__ : str ="""max""" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("""Specify --percentile when using percentile calibrator""" ) __magic_name__ : str ="""histogram""" elif args.calibrator == "mse": __magic_name__ : Dict ="""histogram""" else: raise ValueError(F"Invalid calibrator {args.calibrator}" ) __magic_name__ : Optional[Any] =QuantDescriptor(num_bits=args.aprec , calib_method=lowerCamelCase ) __magic_name__ : int =QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(lowerCamelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=False , lowerCamelCase=False ): logger.info("""Configuring Model for Quantization""" ) logger.info(F"using quantization package {pytorch_quantization.__file__}" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(lowerCamelCase , ["""embeddings"""] , which="""weight""" , _disabled=lowerCamelCase ) if args.quant_disable: set_quantizer_by_name(lowerCamelCase , [""""""] , _disabled=lowerCamelCase ) if args.quant_disable_keyword: set_quantizer_by_name(lowerCamelCase , args.quant_disable_keyword , _disabled=lowerCamelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(lowerCamelCase , [R"""layer.\d+.""" + args.quant_disable_layer_module] , _disabled=lowerCamelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(lowerCamelCase , [R"""layer.\d+.""" + args.quant_enable_layer_module] , _disabled=lowerCamelCase ) if args.recalibrate_weights: recalibrate_weights(lowerCamelCase ) if args.fuse_qkv: fuse_qkv(lowerCamelCase , lowerCamelCase ) if args.clip_gelu: clip_gelu(lowerCamelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase ): logger.info("""Enabling Calibration""" ) for name, module in model.named_modules(): if name.endswith("""_quantizer""" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"{name:80}: {module}" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): logger.info("""Loading calibrated amax""" ) for name, module in model.named_modules(): if name.endswith("""_quantizer""" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("""percentile""" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): def fusea(lowerCamelCase , lowerCamelCase , lowerCamelCase ): for mod in [qq, qk, qv]: if not hasattr(lowerCamelCase , """_amax""" ): print(""" WARNING: NO AMAX BUFFER""" ) return __magic_name__ : Optional[int] =qq._amax.detach().item() __magic_name__ : List[str] =qk._amax.detach().item() __magic_name__ : List[Any] =qv._amax.detach().item() __magic_name__ : Optional[int] =max(lowerCamelCase , lowerCamelCase , lowerCamelCase ) qq._amax.fill_(lowerCamelCase ) qk._amax.fill_(lowerCamelCase ) qv._amax.fill_(lowerCamelCase ) logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" ) for name, mod in model.named_modules(): if name.endswith(""".attention.self""" ): logger.info(F"FUSE_QKV: {name:{name_width}}" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): for name, mod in model.named_modules(): if name.endswith(""".output.dense""" ) and not name.endswith("""attention.output.dense""" ): __magic_name__ : int =mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=lowerCamelCase ) __magic_name__ : Optional[Any] =mod._input_quantizer._amax.data.detach().item() logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" ) def lowerCAmelCase_ ( lowerCamelCase ): for name, mod in model.named_modules(): if hasattr(lowerCamelCase , """_weight_quantizer""" ) and mod._weight_quantizer.axis is not None: __magic_name__ : int =mod.weight.shape[0] __magic_name__ : int =mod._weight_quantizer._amax.detach() __magic_name__ : Tuple =torch.ones(lowerCamelCase , dtype=amax.dtype , device=amax.device ) * amax print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" ) def lowerCAmelCase_ ( lowerCamelCase ): for name, mod in model.named_modules(): if hasattr(lowerCamelCase , """_weight_quantizer""" ): if not hasattr(mod.weight_quantizer , """_amax""" ): print("""RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER""" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) __magic_name__ : List[str] =set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) __magic_name__ : List[str] =set(range(len(mod.weight.size() ) ) ) - axis_set __magic_name__ : List[str] =pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCamelCase , keepdims=lowerCamelCase ).detach() logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" ) __magic_name__ : Union[str, Any] =amax def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=25 , lowerCamelCase=180 , lowerCamelCase=None ): if ignore is None: __magic_name__ : int =[] elif not isinstance(lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =[ignore] __magic_name__ : Tuple =0 for name, mod in model.named_modules(): if not hasattr(lowerCamelCase , """weight""" ): continue __magic_name__ : Union[str, Any] =max(lowerCamelCase , len(lowerCamelCase ) ) for name, mod in model.named_modules(): __magic_name__ : int =getattr(lowerCamelCase , """_input_quantizer""" , lowerCamelCase ) __magic_name__ : Tuple =getattr(lowerCamelCase , """_weight_quantizer""" , lowerCamelCase ) if not hasattr(lowerCamelCase , """weight""" ): continue if type(lowerCamelCase ) in ignore: continue if [True for s in ignore if type(lowerCamelCase ) is str and s in name]: continue __magic_name__ : List[str] =F"Act:{input_q.extra_repr()}" __magic_name__ : Dict =F"Wgt:{weight_q.extra_repr()}" __magic_name__ : Optional[Any] =F"{name:{name_width}} {act_str} {wgt_str}" if len(lowerCamelCase ) <= line_width: logger.info(lowerCamelCase ) else: logger.info(F"{name:{name_width}} {act_str}" ) logger.info(F"{' ':{name_width}} {wgt_str}" ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Union[str, Any] =0 for name, mod in model.named_modules(): if isinstance(lowerCamelCase , pytorch_quantization.nn.TensorQuantizer ): print(F"{name:80} {mod}" ) count += 1 print(F"{count} TensorQuantizers found in model" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : List[str] =getattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if quantizer_mod is not None: assert hasattr(lowerCamelCase , lowerCamelCase ) setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: logger.warning(F"{name} has no {quantizer}" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase="both" , **lowerCamelCase ): __magic_name__ : str =F"Warning: changing {which} quantizers of {name:{qname_width}}" for k, v in kwargs.items(): s += F" {k}={v}" if which in ["input", "both"]: set_quantizer(lowerCamelCase , lowerCamelCase , """_input_quantizer""" , lowerCamelCase , lowerCamelCase ) if which in ["weight", "both"]: set_quantizer(lowerCamelCase , lowerCamelCase , """_weight_quantizer""" , lowerCamelCase , lowerCamelCase ) logger.info(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , **lowerCamelCase ): for name, mod in model.named_modules(): if hasattr(lowerCamelCase , """_input_quantizer""" ) or hasattr(lowerCamelCase , """_weight_quantizer""" ): for n in names: if re.search(lowerCamelCase , lowerCamelCase ): set_quantizers(lowerCamelCase , lowerCamelCase , **lowerCamelCase ) elif name.endswith("""_quantizer""" ): for n in names: if re.search(lowerCamelCase , lowerCamelCase ): __magic_name__ : Tuple =F"Warning: changing {name:{name_width}}" for k, v in kwargs.items(): s += F" {k}={v}" setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) logger.info(lowerCamelCase )
21
from sklearn.metrics import matthews_corrcoef import datasets UpperCAmelCase_ : Dict = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCAmelCase_ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCAmelCase_ : Dict = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def A__ ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def A__ ( self :Tuple , __snake_case :str , __snake_case :Tuple , __snake_case :List[str]=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ), }
21
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): UpperCamelCase = """encoder-decoder""" UpperCamelCase = True def __init__( self :str , **__snake_case :Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" __magic_name__ : List[Any] =kwargs.pop("""encoder""" ) __magic_name__ : int =encoder_config.pop("""model_type""" ) __magic_name__ : Tuple =kwargs.pop("""decoder""" ) __magic_name__ : Dict =decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig __magic_name__ : Dict =AutoConfig.for_model(__snake_case , **__snake_case ) __magic_name__ : int =AutoConfig.for_model(__snake_case , **__snake_case ) __magic_name__ : Tuple =True @classmethod def A__ ( cls :Tuple , __snake_case :PretrainedConfig , __snake_case :PretrainedConfig , **__snake_case :List[Any] ): '''simple docstring''' logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) __magic_name__ : List[Any] =True __magic_name__ : Union[str, Any] =True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Union[str, Any] =copy.deepcopy(self.__dict__ ) __magic_name__ : str =self.encoder.to_dict() __magic_name__ : str =self.decoder.to_dict() __magic_name__ : int =self.__class__.model_type return output
21
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =OmegaConf.load(lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(lowerCamelCase ) ) ) return config def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): if conf_path is None: __magic_name__ : List[str] ="""./model_checkpoints/vqgan_only.yaml""" __magic_name__ : Dict =load_config(lowerCamelCase , display=lowerCamelCase ) __magic_name__ : Tuple =VQModel(**config.model.params ) if ckpt_path is None: __magic_name__ : Optional[Any] ="""./model_checkpoints/vqgan_only.pt""" __magic_name__ : Tuple =torch.load(lowerCamelCase , map_location=lowerCamelCase ) if ".ckpt" in ckpt_path: __magic_name__ : Any =sd["""state_dict"""] model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) model.to(lowerCamelCase ) del sd return model def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =model.encode(lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) __magic_name__ : List[Any] =model.decode(lowerCamelCase ) return xrec def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ , __magic_name__ : Optional[int] =string.rsplit(""".""" , 1 ) if reload: __magic_name__ : Optional[int] =importlib.import_module(lowerCamelCase ) importlib.reload(lowerCamelCase ) return getattr(importlib.import_module(lowerCamelCase , package=lowerCamelCase ) , cls ) def lowerCAmelCase_ ( lowerCamelCase ): if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True ): __magic_name__ : str =instantiate_from_config(lowerCamelCase ) if sd is not None: model.load_state_dict(lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # load the specified checkpoint if ckpt: __magic_name__ : str =torch.load(lowerCamelCase , map_location="""cpu""" ) __magic_name__ : Any =pl_sd["""global_step"""] print(F"loaded model from global step {global_step}." ) else: __magic_name__ : List[Any] ={"""state_dict""": None} __magic_name__ : Optional[Any] =None __magic_name__ : Tuple =load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=lowerCamelCase , eval_mode=lowerCamelCase )["""model"""] return model, global_step
21
1
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCAmelCase_ ( ): __magic_name__ : List[str] ={ """repo_name""": ["""test_repo1""", """test_repo2""", """test_repo3"""], """path""": ["""test_1.py""", """test_2.py""", """unit_test.py"""], """content""": ["""a """ * 20, """a """ * 30, """b """ * 7], } __magic_name__ : List[Any] =Dataset.from_dict(lowerCamelCase ) return dataset class __A ( UpperCamelCase__ ): def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : List[Any] =get_dataset() __magic_name__ : List[str] =make_duplicate_clusters(__snake_case , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Dict =get_dataset() __magic_name__ , __magic_name__ : List[str] =deduplicate_dataset(__snake_case ) self.assertEqual(len(__snake_case ) , 2 ) print(__snake_case ) self.assertEqual(duplicate_clusters[0][0]["""copies"""] , 2 ) self.assertEqual(duplicate_clusters[0][0]["""is_extreme"""] , __snake_case )
21
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): def A__ ( self :Tuple ): '''simple docstring''' debug_launcher(test_script.main ) def A__ ( self :Dict ): '''simple docstring''' debug_launcher(test_ops.main )
21
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __A ( UpperCamelCase__ ): UpperCamelCase = """xlm-roberta-xl""" def __init__( self :Dict , __snake_case :Optional[Any]=25_08_80 , __snake_case :List[Any]=25_60 , __snake_case :Optional[Any]=36 , __snake_case :Any=32 , __snake_case :int=1_02_40 , __snake_case :List[Any]="gelu" , __snake_case :Union[str, Any]=0.1 , __snake_case :Optional[Any]=0.1 , __snake_case :str=5_14 , __snake_case :Union[str, Any]=1 , __snake_case :Optional[int]=0.02 , __snake_case :str=1E-05 , __snake_case :str=1 , __snake_case :int=0 , __snake_case :Tuple=2 , __snake_case :Optional[int]="absolute" , __snake_case :str=True , __snake_case :Any=None , **__snake_case :Dict , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __magic_name__ : List[str] =vocab_size __magic_name__ : List[str] =hidden_size __magic_name__ : Union[str, Any] =num_hidden_layers __magic_name__ : Any =num_attention_heads __magic_name__ : Any =hidden_act __magic_name__ : List[str] =intermediate_size __magic_name__ : Any =hidden_dropout_prob __magic_name__ : Union[str, Any] =attention_probs_dropout_prob __magic_name__ : Any =max_position_embeddings __magic_name__ : Any =type_vocab_size __magic_name__ : List[str] =initializer_range __magic_name__ : Optional[int] =layer_norm_eps __magic_name__ : Dict =position_embedding_type __magic_name__ : Any =use_cache __magic_name__ : Dict =classifier_dropout class __A ( UpperCamelCase__ ): @property def A__ ( self :Dict ): '''simple docstring''' if self.task == "multiple-choice": __magic_name__ : str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: __magic_name__ : Optional[Any] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
21
UpperCAmelCase_ : Tuple = 0 # The first color of the flag. UpperCAmelCase_ : Any = 1 # The second color of the flag. UpperCAmelCase_ : str = 2 # The third color of the flag. UpperCAmelCase_ : Tuple = (red, white, blue) def lowerCAmelCase_ ( lowerCamelCase ): if not sequence: return [] if len(lowerCamelCase ) == 1: return list(lowerCamelCase ) __magic_name__ : int =0 __magic_name__ : str =len(lowerCamelCase ) - 1 __magic_name__ : Optional[Any] =0 while mid <= high: if sequence[mid] == colors[0]: __magic_name__ , __magic_name__ : Tuple =sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: __magic_name__ , __magic_name__ : Optional[Any] =sequence[high], sequence[mid] high -= 1 else: __magic_name__ : Optional[int] =F"The elements inside the sequence must contains only {colors} values" raise ValueError(lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[Any] = input("Enter numbers separated by commas:\n").strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
21
1
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : int = logging.get_logger(__name__) UpperCAmelCase_ : str = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } UpperCAmelCase_ : Any = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } UpperCAmelCase_ : Optional[Any] = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCAmelCase_ ( ): __magic_name__ : Tuple =( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) __magic_name__ : Dict =bs[:] __magic_name__ : List[Any] =0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase ) cs.append(2**8 + n ) n += 1 __magic_name__ : List[str] =[chr(lowerCamelCase ) for n in cs] return dict(zip(lowerCamelCase , lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Tuple =set() __magic_name__ : Dict =word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ : List[Any] =char return pairs class __A ( UpperCamelCase__ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self :Any , __snake_case :Tuple , __snake_case :str , __snake_case :Union[str, Any]="replace" , __snake_case :Union[str, Any]="<s>" , __snake_case :Optional[int]="</s>" , __snake_case :List[str]="</s>" , __snake_case :Optional[int]="<s>" , __snake_case :int="<unk>" , __snake_case :Optional[Any]="<pad>" , __snake_case :List[Any]="<mask>" , __snake_case :Union[str, Any]=False , **__snake_case :int , ): '''simple docstring''' __magic_name__ : List[str] =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else bos_token __magic_name__ : Dict =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else eos_token __magic_name__ : Tuple =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else sep_token __magic_name__ : List[str] =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else cls_token __magic_name__ : Tuple =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else unk_token __magic_name__ : List[str] =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Optional[int] =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( errors=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , add_prefix_space=__snake_case , **__snake_case , ) with open(__snake_case , encoding="""utf-8""" ) as vocab_handle: __magic_name__ : Tuple =json.load(__snake_case ) __magic_name__ : List[Any] ={v: k for k, v in self.encoder.items()} __magic_name__ : Optional[Any] =errors # how to handle errors in decoding __magic_name__ : List[Any] =bytes_to_unicode() __magic_name__ : Any ={v: k for k, v in self.byte_encoder.items()} with open(__snake_case , encoding="""utf-8""" ) as merges_handle: __magic_name__ : List[str] =merges_handle.read().split("""\n""" )[1:-1] __magic_name__ : Optional[int] =[tuple(merge.split() ) for merge in bpe_merges] __magic_name__ : Union[str, Any] =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __magic_name__ : List[str] ={} __magic_name__ : str =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __magic_name__ : Dict =re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def A__ ( self :Dict ): '''simple docstring''' return len(self.encoder ) def A__ ( self :List[Any] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self :Tuple , __snake_case :Dict ): '''simple docstring''' if token in self.cache: return self.cache[token] __magic_name__ : List[Any] =tuple(__snake_case ) __magic_name__ : Union[str, Any] =get_pairs(__snake_case ) if not pairs: return token while True: __magic_name__ : str =min(__snake_case , key=lambda __snake_case : self.bpe_ranks.get(__snake_case , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ , __magic_name__ : Dict =bigram __magic_name__ : int =[] __magic_name__ : int =0 while i < len(__snake_case ): try: __magic_name__ : Any =word.index(__snake_case , __snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __magic_name__ : Union[str, Any] =j if word[i] == first and i < len(__snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ : List[Any] =tuple(__snake_case ) __magic_name__ : List[str] =new_word if len(__snake_case ) == 1: break else: __magic_name__ : Union[str, Any] =get_pairs(__snake_case ) __magic_name__ : int =""" """.join(__snake_case ) __magic_name__ : Optional[Any] =word return word def A__ ( self :Dict , __snake_case :str ): '''simple docstring''' __magic_name__ : List[str] =[] for token in re.findall(self.pat , __snake_case ): __magic_name__ : str ="""""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__snake_case ).split(""" """ ) ) return bpe_tokens def A__ ( self :List[Any] , __snake_case :List[str] ): '''simple docstring''' return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def A__ ( self :Any , __snake_case :str ): '''simple docstring''' return self.decoder.get(__snake_case ) def A__ ( self :Tuple , __snake_case :Any ): '''simple docstring''' __magic_name__ : int ="""""".join(__snake_case ) __magic_name__ : Any =bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def A__ ( self :Any , __snake_case :str , __snake_case :Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __magic_name__ : Optional[Any] =os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : List[Any] =os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__snake_case , ensure_ascii=__snake_case ) + """\n""" ) __magic_name__ : Union[str, Any] =0 with open(__snake_case , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) __magic_name__ : Tuple =token_index writer.write(""" """.join(__snake_case ) + """\n""" ) index += 1 return vocab_file, merge_file def A__ ( self :Any , __snake_case :List[int] , __snake_case :Optional[List[int]] = None , __snake_case :bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def A__ ( self :Dict , __snake_case :List[int] , __snake_case :Optional[List[int]] = None ): '''simple docstring''' __magic_name__ : List[str] =[self.sep_token_id] __magic_name__ : List[Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self :Any , __snake_case :Union[str, Any] , __snake_case :Union[str, Any]=False , **__snake_case :List[str] ): '''simple docstring''' __magic_name__ : Tuple =kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__snake_case ) > 0 and not text[0].isspace()): __magic_name__ : Dict =""" """ + text return (text, kwargs) def A__ ( self :Optional[int] , __snake_case :List[int] , __snake_case :Optional[List[int]] = None ): '''simple docstring''' return token_ids_a + [self.eos_token_id] def A__ ( self :int , __snake_case :"Conversation" ): '''simple docstring''' __magic_name__ : int =[] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(__snake_case ) __magic_name__ : Optional[Any] =""" """.join(__snake_case ) __magic_name__ : int =self.encode(__snake_case ) if len(__snake_case ) > self.model_max_length: __magic_name__ : Union[str, Any] =input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
21
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __A ( UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = 1 @register_to_config def __init__( self :Any , __snake_case :Tuple=20_00 , __snake_case :Optional[Any]=0.1 , __snake_case :Any=20 , __snake_case :Optional[int]=1E-3 ): '''simple docstring''' __magic_name__ : Dict =None __magic_name__ : List[str] =None __magic_name__ : str =None def A__ ( self :Dict , __snake_case :Optional[int] , __snake_case :Union[str, torch.device] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] =torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case ) def A__ ( self :List[str] , __snake_case :List[str] , __snake_case :int , __snake_case :int , __snake_case :List[str]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __magic_name__ : int =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __magic_name__ : Optional[int] =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __magic_name__ : str =std.flatten() while len(std.shape ) < len(score.shape ): __magic_name__ : List[str] =std.unsqueeze(-1 ) __magic_name__ : Union[str, Any] =-score / std # compute __magic_name__ : Tuple =-1.0 / len(self.timesteps ) __magic_name__ : int =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __magic_name__ : Dict =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __magic_name__ : Any =beta_t.unsqueeze(-1 ) __magic_name__ : Dict =-0.5 * beta_t * x __magic_name__ : Optional[int] =torch.sqrt(__snake_case ) __magic_name__ : int =drift - diffusion**2 * score __magic_name__ : List[str] =x + drift * dt # add noise __magic_name__ : Optional[int] =randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype ) __magic_name__ : Optional[Any] =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self :List[Any] ): '''simple docstring''' return self.config.num_train_timesteps
21
1
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = DDIMPipeline UpperCamelCase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """latents""", """callback""", """callback_steps""", } UpperCamelCase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS UpperCamelCase = False def A__ ( self :List[str] ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Optional[Any] =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) __magic_name__ : str =DDIMScheduler() __magic_name__ : str ={"""unet""": unet, """scheduler""": scheduler} return components def A__ ( self :Any , __snake_case :Union[str, Any] , __snake_case :Any=0 ): '''simple docstring''' if str(__snake_case ).startswith("""mps""" ): __magic_name__ : List[str] =torch.manual_seed(__snake_case ) else: __magic_name__ : List[str] =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__ : str ={ """batch_size""": 1, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Any ="""cpu""" __magic_name__ : Tuple =self.get_dummy_components() __magic_name__ : Union[str, Any] =self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__ : str =self.get_dummy_inputs(__snake_case ) __magic_name__ : int =pipe(**__snake_case ).images __magic_name__ : Any =image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) __magic_name__ : List[str] =np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) __magic_name__ : Tuple =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__snake_case , 1E-3 ) def A__ ( self :Tuple ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def A__ ( self :Optional[Any] ): '''simple docstring''' super().test_save_load_local(expected_max_difference=3E-3 ) def A__ ( self :str ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3E-3 ) def A__ ( self :List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def A__ ( self :str ): '''simple docstring''' __magic_name__ : Optional[Any] ="""google/ddpm-cifar10-32""" __magic_name__ : Dict =UNetaDModel.from_pretrained(__snake_case ) __magic_name__ : Dict =DDIMScheduler() __magic_name__ : Optional[int] =DDIMPipeline(unet=__snake_case , scheduler=__snake_case ) ddim.to(__snake_case ) ddim.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Optional[Any] =torch.manual_seed(0 ) __magic_name__ : int =ddim(generator=__snake_case , eta=0.0 , output_type="""numpy""" ).images __magic_name__ : Tuple =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __magic_name__ : List[Any] =np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : Optional[Any] ="""google/ddpm-ema-bedroom-256""" __magic_name__ : str =UNetaDModel.from_pretrained(__snake_case ) __magic_name__ : Any =DDIMScheduler.from_pretrained(__snake_case ) __magic_name__ : Any =DDIMPipeline(unet=__snake_case , scheduler=__snake_case ) ddpm.to(__snake_case ) ddpm.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Union[str, Any] =torch.manual_seed(0 ) __magic_name__ : List[str] =ddpm(generator=__snake_case , output_type="""numpy""" ).images __magic_name__ : Dict =image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __magic_name__ : Union[str, Any] =np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
21
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCAmelCase_ : Dict = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__( self :List[str] , __snake_case :int , __snake_case :int , __snake_case :float , **__snake_case :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =feature_size __magic_name__ : Union[str, Any] =sampling_rate __magic_name__ : List[Any] =padding_value __magic_name__ : List[str] =kwargs.pop("""padding_side""" , """right""" ) __magic_name__ : Tuple =kwargs.pop("""return_attention_mask""" , __snake_case ) super().__init__(**__snake_case ) def A__ ( self :Any , __snake_case :Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __snake_case :Union[bool, str, PaddingStrategy] = True , __snake_case :Optional[int] = None , __snake_case :bool = False , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[Union[str, TensorType]] = None , ): '''simple docstring''' if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __magic_name__ : Union[str, Any] ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) __magic_name__ : int =processed_features[self.model_input_names[0]] __magic_name__ : Union[str, Any] =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__snake_case ) == 0: if return_attention_mask: __magic_name__ : List[str] =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __magic_name__ : Optional[int] =required_input[0] if isinstance(__snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __magic_name__ : Optional[Any] =0 while len(required_input[index] ) == 0: index += 1 if index < len(__snake_case ): __magic_name__ : List[str] =required_input[index][0] if return_tensors is None: if is_tf_tensor(__snake_case ): __magic_name__ : int ="""tf""" elif is_torch_tensor(__snake_case ): __magic_name__ : str ="""pt""" elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ): __magic_name__ : List[Any] ="""np""" else: raise ValueError( f"type of {first_element} unknown: {type(__snake_case )}. " """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __magic_name__ : List[str] =to_numpy(__snake_case ) else: __magic_name__ : str =[to_numpy(__snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy __magic_name__ : Dict =self._get_padding_strategies(padding=__snake_case , max_length=__snake_case ) __magic_name__ : Optional[Any] =processed_features[self.model_input_names[0]] __magic_name__ : Dict =len(__snake_case ) if not all(len(__snake_case ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) __magic_name__ : Optional[int] =[] for i in range(__snake_case ): __magic_name__ : Any ={k: v[i] for k, v in processed_features.items()} # truncation __magic_name__ : List[str] =self._truncate( __snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) truncated_inputs.append(__snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __magic_name__ : Optional[int] =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __magic_name__ : Tuple =PaddingStrategy.MAX_LENGTH __magic_name__ : str ={} for i in range(__snake_case ): # padding __magic_name__ : List[str] =self._pad( truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: __magic_name__ : Dict =[] if value.dtype is np.dtype(np.floataa ): __magic_name__ : Optional[int] =value.astype(np.floataa ) batch_outputs[key].append(__snake_case ) return BatchFeature(__snake_case , tensor_type=__snake_case ) def A__ ( self :Any , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' __magic_name__ : Dict =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __magic_name__ : Any =len(__snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : Dict =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : List[Any] =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __magic_name__ : int =np.ones(len(__snake_case ) , dtype=np.intaa ) if needs_to_be_padded: __magic_name__ : List[Any] =max_length - len(__snake_case ) if self.padding_side == "right": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (0, difference) ) __magic_name__ : Tuple =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __magic_name__ : str =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (difference, 0) ) __magic_name__ : Optional[int] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __magic_name__ : List[Any] =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def A__ ( self :Optional[Any] , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) __magic_name__ : Union[str, Any] =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : List[str] =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : Any =len(__snake_case ) > max_length if needs_to_be_truncated: __magic_name__ : List[Any] =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __magic_name__ : List[str] =processed_features["""attention_mask"""][:max_length] return processed_features def A__ ( self :List[Any] , __snake_case :str=False , __snake_case :Optional[int]=None ): '''simple docstring''' if padding is not False: if padding is True: __magic_name__ : Union[str, Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__snake_case , __snake_case ): __magic_name__ : Optional[int] =PaddingStrategy(__snake_case ) elif isinstance(__snake_case , __snake_case ): __magic_name__ : Any =padding else: __magic_name__ : Any =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
21
1
from __future__ import annotations from fractions import Fraction def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =[] __magic_name__ : List[Any] =11 __magic_name__ : Tuple =int("""1""" + """0""" * digit_len ) for num in range(lowerCamelCase , lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowerCamelCase , lowerCamelCase ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 __magic_name__ : List[str] =10 return solutions def lowerCAmelCase_ ( lowerCamelCase = 2 ): __magic_name__ : str =1.0 for fraction in fraction_list(lowerCamelCase ): __magic_name__ : int =Fraction(lowerCamelCase ) result *= frac.denominator / frac.numerator return int(lowerCamelCase ) if __name__ == "__main__": print(solution())
21
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): def __init__( self :List[Any] ): '''simple docstring''' super().__init__() __magic_name__ : Tuple =nn.Linear(3 , 4 ) __magic_name__ : Union[str, Any] =nn.BatchNormad(4 ) __magic_name__ : List[str] =nn.Linear(4 , 5 ) def A__ ( self :Dict , __snake_case :Tuple ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) ) class __A ( UpperCamelCase__ ): def A__ ( self :Any , __snake_case :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Any ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __A ( UpperCamelCase__ ): def A__ ( self :List[str] , __snake_case :Tuple , __snake_case :Union[str, Any] ): '''simple docstring''' return output + 1 class __A ( unittest.TestCase ): def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : Tuple =ModelHook() add_hook_to_module(__snake_case , __snake_case ) self.assertEqual(test_model._hf_hook , __snake_case ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : List[str] =ModelHook() add_hook_to_module(__snake_case , __snake_case ) add_hook_to_module(__snake_case , __snake_case , append=__snake_case ) self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() __magic_name__ : Any =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(x + 1 ) __magic_name__ : Optional[Any] =test_model(x + 2 ) __magic_name__ : int =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : int =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : str =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : List[str] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Optional[Any] =SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) assert torch.allclose(__snake_case , __snake_case , atol=1E-5 ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() __magic_name__ : Dict =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(__snake_case ) __magic_name__ : Dict =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Optional[int] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Union[str, Any] =SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) assert torch.allclose(__snake_case , output + 2 , atol=1E-5 ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Tuple =ModelForTest() __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Dict =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __magic_name__ : Any =True __magic_name__ : Any =test_model(__snake_case ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[Any] =model(__snake_case ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) ) __magic_name__ : int =torch.randn(2 , 3 ).to(0 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , torch.device(0 ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : int =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : int ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[int] =torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : Union[str, Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __magic_name__ : Tuple ={ """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Tuple =torch.randn(2 , 3 ) __magic_name__ : int =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : str =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Optional[int] =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Dict =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : List[str] =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Any =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
21
1
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Tuple =[] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : List[Any] =[] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[Any] =[] token.append((F"cvt.encoder.stages.{idx}.cls_token", """stage2.cls_token""") ) return token def lowerCAmelCase_ ( ): __magic_name__ : Any =[] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Dict ="""imagenet-1k-id2label.json""" __magic_name__ : Union[str, Any] =1000 __magic_name__ : int ="""huggingface/label-files""" __magic_name__ : Optional[Any] =num_labels __magic_name__ : str =json.load(open(cached_download(hf_hub_url(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) __magic_name__ : Optional[Any] ={int(lowerCamelCase ): v for k, v in idalabel.items()} __magic_name__ : List[str] =idalabel __magic_name__ : Optional[Any] ={v: k for k, v in idalabel.items()} __magic_name__ : Dict =CvtConfig(num_labels=lowerCamelCase , idalabel=lowerCamelCase , labelaid=lowerCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": __magic_name__ : Tuple =[1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": __magic_name__ : Optional[Any] =[1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __magic_name__ : int =[2, 2, 20] __magic_name__ : Tuple =[3, 12, 16] __magic_name__ : Optional[Any] =[192, 768, 1024] __magic_name__ : str =CvtForImageClassification(lowerCamelCase ) __magic_name__ : Dict =AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) __magic_name__ : str =image_size __magic_name__ : List[str] =torch.load(lowerCamelCase , map_location=torch.device("""cpu""" ) ) __magic_name__ : int =OrderedDict() __magic_name__ : Optional[Any] =[] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __magic_name__ : str =list_of_state_dict + cls_token(lowerCamelCase ) __magic_name__ : List[str] =list_of_state_dict + embeddings(lowerCamelCase ) for cnt in range(config.depth[idx] ): __magic_name__ : Optional[Any] =list_of_state_dict + attention(lowerCamelCase , lowerCamelCase ) __magic_name__ : List[Any] =list_of_state_dict + final() for gg in list_of_state_dict: print(lowerCamelCase ) for i in range(len(lowerCamelCase ) ): __magic_name__ : Optional[int] =original_weights[list_of_state_dict[i][1]] model.load_state_dict(lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=R"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
21
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = KandinskyInpaintPipeline UpperCamelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCamelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCamelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase = False @property def A__ ( self :Union[str, Any] ): '''simple docstring''' return 32 @property def A__ ( self :Optional[Any] ): '''simple docstring''' return 32 @property def A__ ( self :List[Any] ): '''simple docstring''' return self.time_input_dim @property def A__ ( self :Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def A__ ( self :List[Any] ): '''simple docstring''' return 1_00 @property def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Dict =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self :str ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : str =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __magic_name__ : Tuple =MultilingualCLIP(__snake_case ) __magic_name__ : Optional[int] =text_encoder.eval() return text_encoder @property def A__ ( self :Dict ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Optional[Any] ={ """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __magic_name__ : Union[str, Any] =UNetaDConditionModel(**__snake_case ) return model @property def A__ ( self :List[str] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self :Tuple ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Dict =VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[str] =self.dummy_text_encoder __magic_name__ : Optional[Any] =self.dummy_tokenizer __magic_name__ : Optional[Any] =self.dummy_unet __magic_name__ : Tuple =self.dummy_movq __magic_name__ : List[str] =DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , ) __magic_name__ : str ={ """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self :str , __snake_case :Optional[Any] , __snake_case :int=0 ): '''simple docstring''' __magic_name__ : Union[str, Any] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : Dict =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case ) # create init_image __magic_name__ : str =floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : int =image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ : str =Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask __magic_name__ : Dict =np.ones((64, 64) , dtype=np.floataa ) __magic_name__ : Any =0 if str(__snake_case ).startswith("""mps""" ): __magic_name__ : Dict =torch.manual_seed(__snake_case ) else: __magic_name__ : Tuple =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__ : List[Any] ={ """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Tuple ="""cpu""" __magic_name__ : List[Any] =self.get_dummy_components() __magic_name__ : Union[str, Any] =self.pipeline_class(**__snake_case ) __magic_name__ : Tuple =pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Tuple =pipe(**self.get_dummy_inputs(__snake_case ) ) __magic_name__ : List[Any] =output.images __magic_name__ : Any =pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] __magic_name__ : int =image[0, -3:, -3:, -1] __magic_name__ : str =image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) __magic_name__ : Optional[Any] =np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def A__ ( self :Dict ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def A__ ( self :List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : List[str] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) __magic_name__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __magic_name__ : List[Any] =np.ones((7_68, 7_68) , dtype=np.floataa ) __magic_name__ : Any =0 __magic_name__ : int ="""a hat""" __magic_name__ : int =KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) __magic_name__ : Dict =KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) __magic_name__ : int =pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Union[str, Any] =torch.Generator(device="""cpu""" ).manual_seed(0 ) __magic_name__ , __magic_name__ : Dict =pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __magic_name__ : Optional[Any] =pipeline( __snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) __magic_name__ : Optional[int] =output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
21
1
UpperCAmelCase_ : Optional[Any] = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" UpperCAmelCase_ : str = [{"type": "code", "content": INSTALL_CONTENT}] UpperCAmelCase_ : Union[str, Any] = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
21
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __A : def __init__( self :int , __snake_case :List[Any] , __snake_case :List[Any]=2 , __snake_case :Dict=True , __snake_case :Tuple=False , __snake_case :List[str]=10 , __snake_case :List[str]=3 , __snake_case :Union[str, Any]=32 * 8 , __snake_case :Optional[int]=32 * 8 , __snake_case :Any=4 , __snake_case :Union[str, Any]=64 , ): '''simple docstring''' __magic_name__ : Optional[int] =parent __magic_name__ : List[Any] =batch_size __magic_name__ : List[str] =is_training __magic_name__ : List[str] =use_auxiliary_loss __magic_name__ : Union[str, Any] =num_queries __magic_name__ : str =num_channels __magic_name__ : Union[str, Any] =min_size __magic_name__ : Union[str, Any] =max_size __magic_name__ : Optional[int] =num_labels __magic_name__ : Tuple =hidden_dim __magic_name__ : Any =hidden_dim def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __snake_case ) __magic_name__ : List[Any] =torch.ones([self.batch_size, self.min_size, self.max_size] , device=__snake_case ) __magic_name__ : List[str] =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__snake_case ) > 0.5 ).float() __magic_name__ : Union[str, Any] =(torch.rand((self.batch_size, self.num_labels) , device=__snake_case ) > 0.5).long() __magic_name__ : str =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Dict =MaskaFormerConfig( hidden_size=self.hidden_dim , ) __magic_name__ : str =self.num_queries __magic_name__ : Dict =self.num_labels __magic_name__ : int =[1, 1, 1, 1] __magic_name__ : List[str] =self.num_channels __magic_name__ : str =64 __magic_name__ : List[str] =1_28 __magic_name__ : Optional[Any] =self.hidden_dim __magic_name__ : Tuple =self.hidden_dim __magic_name__ : Optional[int] =self.hidden_dim return config def A__ ( self :Any ): '''simple docstring''' __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple =self.prepare_config_and_inputs() __magic_name__ : Optional[Any] ={"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def A__ ( self :Union[str, Any] , __snake_case :Tuple , __snake_case :Dict ): '''simple docstring''' __magic_name__ : int =output.encoder_hidden_states __magic_name__ : List[str] =output.pixel_decoder_hidden_states __magic_name__ : int =output.transformer_decoder_hidden_states self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , config.decoder_layers ) def A__ ( self :List[Any] , __snake_case :Optional[Any] , __snake_case :int , __snake_case :str , __snake_case :str=False ): '''simple docstring''' with torch.no_grad(): __magic_name__ : List[str] =MaskaFormerModel(config=__snake_case ) model.to(__snake_case ) model.eval() __magic_name__ : Union[str, Any] =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : int =model(__snake_case , output_hidden_states=__snake_case ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__snake_case , __snake_case ) def A__ ( self :Optional[Any] , __snake_case :List[str] , __snake_case :List[Any] , __snake_case :int , __snake_case :Any , __snake_case :Union[str, Any] ): '''simple docstring''' __magic_name__ : str =MaskaFormerForUniversalSegmentation(config=__snake_case ) model.to(__snake_case ) model.eval() def comm_check_on_output(__snake_case :List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __magic_name__ : int =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : List[str] =model(__snake_case ) comm_check_on_output(__snake_case ) __magic_name__ : Any =model( pixel_values=__snake_case , pixel_mask=__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) comm_check_on_output(__snake_case ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCamelCase = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def A__ ( self :str ): '''simple docstring''' __magic_name__ : Any =MaskaFormerModelTester(self ) __magic_name__ : Union[str, Any] =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def A__ ( self :Dict ): '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__snake_case ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def A__ ( self :List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def A__ ( self :Dict ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def A__ ( self :Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def A__ ( self :int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def A__ ( self :Tuple ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A__ ( self :Union[str, Any] ): '''simple docstring''' pass def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Tuple =model_class(__snake_case ) __magic_name__ : Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple =[*signature.parameters.keys()] __magic_name__ : Optional[Any] =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) @slow def A__ ( self :Tuple ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __magic_name__ : int =MaskaFormerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =(self.model_tester.min_size,) * 2 __magic_name__ : Union[str, Any] ={ """pixel_values""": torch.randn((2, 3, *size) , device=__snake_case ), """mask_labels""": torch.randn((2, 10, *size) , device=__snake_case ), """class_labels""": torch.zeros(2 , 10 , device=__snake_case ).long(), } __magic_name__ : Optional[Any] =self.model_tester.get_config() __magic_name__ : Dict =MaskaFormerForUniversalSegmentation(__snake_case ).to(__snake_case ) __magic_name__ : Any =model(**__snake_case ) self.assertTrue(outputs.loss is not None ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ , __magic_name__ : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] =model_class(__snake_case ).to(__snake_case ) __magic_name__ : Optional[int] =model(**__snake_case , output_attentions=__snake_case ) self.assertTrue(outputs.attentions is not None ) def A__ ( self :int ): '''simple docstring''' if not self.model_tester.is_training: return __magic_name__ : List[Any] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Dict =model_class(__snake_case ) model.to(__snake_case ) model.train() __magic_name__ : Optional[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ).loss loss.backward() def A__ ( self :int ): '''simple docstring''' __magic_name__ : List[str] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Tuple =True __magic_name__ : Optional[int] =True __magic_name__ : int =model_class(__snake_case ).to(__snake_case ) model.train() __magic_name__ : List[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) __magic_name__ : Optional[int] =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __magic_name__ : Optional[int] =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__snake_case ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase_ : Dict = 1e-4 def lowerCAmelCase_ ( ): __magic_name__ : Dict =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __A ( unittest.TestCase ): @cached_property def A__ ( self :int ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def A__ ( self :int ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__snake_case ) __magic_name__ : int =self.default_image_processor __magic_name__ : List[Any] =prepare_img() __magic_name__ : Any =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Dict =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : List[str] =model(**__snake_case ) __magic_name__ : Any =torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Dict =torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Any =torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Optional[int] =self.default_image_processor __magic_name__ : Tuple =prepare_img() __magic_name__ : List[Any] =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Union[str, Any] =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : str =model(**__snake_case ) # masks_queries_logits __magic_name__ : List[Any] =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __magic_name__ : List[Any] =[ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __magic_name__ : Dict =torch.tensor(__snake_case ).to(__snake_case ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) # class_queries_logits __magic_name__ : Any =outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __magic_name__ : int =torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Any =self.default_image_processor __magic_name__ : Union[str, Any] =image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , ) __magic_name__ : str =inputs["""pixel_values"""].to(__snake_case ) __magic_name__ : Tuple =[el.to(__snake_case ) for el in inputs["""mask_labels"""]] __magic_name__ : Union[str, Any] =[el.to(__snake_case ) for el in inputs["""class_labels"""]] with torch.no_grad(): __magic_name__ : Dict =model(**__snake_case ) self.assertTrue(outputs.loss is not None )
21
1
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : Tuple =word.split() def justify(lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: __magic_name__ : Optional[Any] =max_width - width __magic_name__ : Optional[Any] =len(lowerCamelCase ) if len(lowerCamelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: __magic_name__ : List[Any] =words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] __magic_name__ : Any =spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] __magic_name__ : Tuple =( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(lowerCamelCase ): num_spaces_between_words_list[i] += 1 __magic_name__ : Dict =[] for i in range(lowerCamelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(lowerCamelCase ) __magic_name__ : Union[str, Any] =[] __magic_name__ : list[str] =[] __magic_name__ : Any =0 for word in words: if width + len(lowerCamelCase ) + len(lowerCamelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(lowerCamelCase ) width += len(lowerCamelCase ) else: # justify the line and add it to result answer.append(justify(lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) # reset new line and new width __magic_name__ , __magic_name__ : int =[word], len(lowerCamelCase ) __magic_name__ : Optional[int] =max_width - width - len(lowerCamelCase ) answer.append(""" """.join(lowerCamelCase ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
21
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __A ( UpperCamelCase__ ): UpperCamelCase = """segformer""" def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ): '''simple docstring''' super().__init__(**__snake_case ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , ) __magic_name__ : Dict =num_channels __magic_name__ : str =num_encoder_blocks __magic_name__ : List[Any] =depths __magic_name__ : Optional[Any] =sr_ratios __magic_name__ : List[str] =hidden_sizes __magic_name__ : List[str] =patch_sizes __magic_name__ : Any =strides __magic_name__ : Optional[Any] =mlp_ratios __magic_name__ : str =num_attention_heads __magic_name__ : int =hidden_act __magic_name__ : List[Any] =hidden_dropout_prob __magic_name__ : Optional[Any] =attention_probs_dropout_prob __magic_name__ : Optional[Any] =classifier_dropout_prob __magic_name__ : List[str] =initializer_range __magic_name__ : List[str] =drop_path_rate __magic_name__ : List[Any] =layer_norm_eps __magic_name__ : List[str] =decoder_hidden_size __magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case ) __magic_name__ : Dict =semantic_loss_ignore_index class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.11""" ) @property def A__ ( self :List[str] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self :Any ): '''simple docstring''' return 1E-4 @property def A__ ( self :int ): '''simple docstring''' return 12
21
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase_ : Union[str, Any] = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } UpperCAmelCase_ : Any = { "gpt2": 1024, "gpt2-medium": 1024, "gpt2-large": 1024, "gpt2-xl": 1024, "distilgpt2": 1024, } class __A ( UpperCamelCase__ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ["""input_ids""", """attention_mask"""] UpperCamelCase = GPTaTokenizer def __init__( self :Dict , __snake_case :int=None , __snake_case :Union[str, Any]=None , __snake_case :Any=None , __snake_case :List[str]="<|endoftext|>" , __snake_case :int="<|endoftext|>" , __snake_case :Union[str, Any]="<|endoftext|>" , __snake_case :Optional[int]=False , **__snake_case :Optional[Any] , ): '''simple docstring''' super().__init__( __snake_case , __snake_case , tokenizer_file=__snake_case , unk_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , add_prefix_space=__snake_case , **__snake_case , ) __magic_name__ : Union[str, Any] =kwargs.pop("""add_bos_token""" , __snake_case ) __magic_name__ : Dict =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __snake_case ) != add_prefix_space: __magic_name__ : Dict =getattr(__snake_case , pre_tok_state.pop("""type""" ) ) __magic_name__ : Dict =add_prefix_space __magic_name__ : List[str] =pre_tok_class(**__snake_case ) __magic_name__ : Union[str, Any] =add_prefix_space def A__ ( self :Dict , *__snake_case :List[Any] , **__snake_case :Dict ): '''simple docstring''' __magic_name__ : int =kwargs.get("""is_split_into_words""" , __snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__snake_case , **__snake_case ) def A__ ( self :str , *__snake_case :List[str] , **__snake_case :Tuple ): '''simple docstring''' __magic_name__ : Any =kwargs.get("""is_split_into_words""" , __snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*__snake_case , **__snake_case ) def A__ ( self :Dict , __snake_case :str , __snake_case :Optional[str] = None ): '''simple docstring''' __magic_name__ : Tuple =self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case ) def A__ ( self :Optional[Any] , __snake_case :"Conversation" ): '''simple docstring''' __magic_name__ : Dict =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__snake_case , add_special_tokens=__snake_case ) + [self.eos_token_id] ) if len(__snake_case ) > self.model_max_length: __magic_name__ : Union[str, Any] =input_ids[-self.model_max_length :] return input_ids
21
import heapq def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase , [-1 * len(lowerCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices __magic_name__ : Tuple =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __magic_name__ : Tuple =heapq.heappop(lowerCamelCase )[1][0] chosen_vertices.add(lowerCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __magic_name__ : Tuple =elem[1][1].index(lowerCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
21
1
def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[Any] =[0] * len(lowerCamelCase ) __magic_name__ : Optional[Any] =[] __magic_name__ : str =[1] * len(lowerCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowerCamelCase ) ): if indegree[i] == 0: queue.append(lowerCamelCase ) while queue: __magic_name__ : List[str] =queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __magic_name__ : Optional[int] =long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowerCamelCase ) print(max(lowerCamelCase ) ) # Adjacency list of Graph UpperCAmelCase_ : List[Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
21
UpperCAmelCase_ : int = range(2, 20 + 1) UpperCAmelCase_ : Tuple = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =sum(a_i[j] for j in range(lowerCamelCase , len(lowerCamelCase ) ) ) __magic_name__ : Any =sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase ) , lowerCamelCase ) ) ) __magic_name__ , __magic_name__ : Tuple =0, 0 __magic_name__ : Optional[Any] =n - i __magic_name__ : Union[str, Any] =memo.get(lowerCamelCase ) if sub_memo is not None: __magic_name__ : int =sub_memo.get(lowerCamelCase ) if jumps is not None and len(lowerCamelCase ) > 0: # find and make the largest jump without going over __magic_name__ : Dict =-1 for _k in range(len(lowerCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __magic_name__ : Optional[Any] =_k break if max_jump >= 0: __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =jumps[max_jump] # since the difference between jumps is cached, add c __magic_name__ : Tuple =diff + c for j in range(min(lowerCamelCase , len(lowerCamelCase ) ) ): __magic_name__ , __magic_name__ : Tuple =divmod(lowerCamelCase , 10 ) if new_c > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __magic_name__ : str =[] else: __magic_name__ : List[str] ={c: []} __magic_name__ : List[str] =sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __magic_name__ , __magic_name__ : Union[str, Any] =next_term(lowerCamelCase , k - 1 , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __magic_name__ , __magic_name__ : Optional[int] =compute(lowerCamelCase , lowerCamelCase , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped __magic_name__ : Tuple =sub_memo[c] # keep jumps sorted by # of terms skipped __magic_name__ : List[Any] =0 while j < len(lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase , (diff, dn, k) ) return (diff, dn) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if i >= n: return 0, i if k > len(lowerCamelCase ): a_i.extend([0 for _ in range(k - len(lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __magic_name__ : Tuple =i __magic_name__ , __magic_name__ , __magic_name__ : Tuple =0, 0, 0 for j in range(len(lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __magic_name__ : Optional[Any] =ds_c + ds_b diff += addend __magic_name__ : str =0 for j in range(lowerCamelCase ): __magic_name__ : int =a_i[j] + addend __magic_name__ , __magic_name__ : Any =divmod(lowerCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return diff, i - start_i def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for j in range(lowerCamelCase , len(lowerCamelCase ) ): __magic_name__ : Tuple =digits[j] + addend if s >= 10: __magic_name__ , __magic_name__ : int =divmod(lowerCamelCase , 10 ) __magic_name__ : int =addend // 10 + quotient else: __magic_name__ : Dict =s __magic_name__ : Any =addend // 10 if addend == 0: break while addend > 0: __magic_name__ , __magic_name__ : Union[str, Any] =divmod(lowerCamelCase , 10 ) digits.append(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase = 10**15 ): __magic_name__ : List[str] =[1] __magic_name__ : str =1 __magic_name__ : str =0 while True: __magic_name__ , __magic_name__ : List[str] =next_term(lowerCamelCase , 20 , i + dn , lowerCamelCase ) dn += terms_jumped if dn == n - i: break __magic_name__ : int =0 for j in range(len(lowerCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
21
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase_ : Dict = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), }, "tokenizer_file": { "google/bigbird-roberta-base": ( "https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json" ), "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json" ), }, } UpperCAmelCase_ : Optional[int] = { "google/bigbird-roberta-base": 4096, "google/bigbird-roberta-large": 4096, "google/bigbird-base-trivia-itc": 4096, } UpperCAmelCase_ : Any = "▁" class __A ( UpperCamelCase__ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = BigBirdTokenizer UpperCamelCase = ["""input_ids""", """attention_mask"""] UpperCamelCase = [] def __init__( self :List[str] , __snake_case :List[Any]=None , __snake_case :Tuple=None , __snake_case :Dict="<unk>" , __snake_case :Union[str, Any]="<s>" , __snake_case :List[Any]="</s>" , __snake_case :List[Any]="<pad>" , __snake_case :Optional[Any]="[SEP]" , __snake_case :Union[str, Any]="[MASK]" , __snake_case :Dict="[CLS]" , **__snake_case :Tuple , ): '''simple docstring''' __magic_name__ : Dict =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else bos_token __magic_name__ : Dict =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else eos_token __magic_name__ : Optional[Any] =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else unk_token __magic_name__ : Optional[Any] =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else pad_token __magic_name__ : Union[str, Any] =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else cls_token __magic_name__ : str =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Union[str, Any] =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( __snake_case , tokenizer_file=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , **__snake_case , ) __magic_name__ : List[str] =vocab_file __magic_name__ : List[str] =False if not self.vocab_file else True def A__ ( self :Dict , __snake_case :List[int] , __snake_case :Optional[List[int]] = None ): '''simple docstring''' __magic_name__ : Dict =[self.sep_token_id] __magic_name__ : str =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self :int , __snake_case :List[int] , __snake_case :Optional[List[int]] = None , __snake_case :bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1] def A__ ( self :Tuple , __snake_case :List[int] , __snake_case :Optional[List[int]] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] =[self.sep_token_id] __magic_name__ : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self :Dict , __snake_case :str , __snake_case :Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __magic_name__ : Dict =os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
21
from typing import List from .keymap import KEYMAP, get_character def lowerCAmelCase_ ( lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : str =getattr(lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator def lowerCAmelCase_ ( *lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : Dict =getattr(lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator class __A ( UpperCamelCase__ ): def __new__( cls :Dict , __snake_case :Optional[Any] , __snake_case :Union[str, Any] , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : int =super().__new__(cls , __snake_case , __snake_case , __snake_case ) if not hasattr(__snake_case , """key_handler""" ): setattr(__snake_case , """key_handler""" , {} ) setattr(__snake_case , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __magic_name__ : int =getattr(__snake_case , """handle_key""" , [] ) for key in handled_keys: __magic_name__ : List[str] =value return new_cls @staticmethod def A__ ( cls :Optional[int] ): '''simple docstring''' __magic_name__ : Union[str, Any] =get_character() if char != KEYMAP["undefined"]: __magic_name__ : Optional[int] =ord(__snake_case ) __magic_name__ : int =cls.key_handler.get(__snake_case ) if handler: __magic_name__ : Dict =char return handler(cls ) else: return None def lowerCAmelCase_ ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
21
1
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __A ( unittest.TestCase ): @property def A__ ( self :Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Tuple =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Union[str, Any] =self.dummy_uncond_unet __magic_name__ : Tuple =KarrasVeScheduler() __magic_name__ : List[str] =KarrasVePipeline(unet=__snake_case , scheduler=__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__ : str =torch.manual_seed(0 ) __magic_name__ : int =pipe(num_inference_steps=2 , generator=__snake_case , output_type="""numpy""" ).images __magic_name__ : Optional[Any] =torch.manual_seed(0 ) __magic_name__ : Union[str, Any] =pipe(num_inference_steps=2 , generator=__snake_case , output_type="""numpy""" , return_dict=__snake_case )[0] __magic_name__ : Tuple =image[0, -3:, -3:, -1] __magic_name__ : List[str] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __magic_name__ : List[Any] =np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __A ( unittest.TestCase ): def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Dict ="""google/ncsnpp-celebahq-256""" __magic_name__ : str =UNetaDModel.from_pretrained(__snake_case ) __magic_name__ : int =KarrasVeScheduler() __magic_name__ : List[Any] =KarrasVePipeline(unet=__snake_case , scheduler=__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__ : List[str] =torch.manual_seed(0 ) __magic_name__ : List[str] =pipe(num_inference_steps=20 , generator=__snake_case , output_type="""numpy""" ).images __magic_name__ : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __magic_name__ : str =np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
21
import os import jsonlines import numpy as np from tqdm import tqdm UpperCAmelCase_ : Dict = 2048 UpperCAmelCase_ : int = 4096 UpperCAmelCase_ : Any = 42 UpperCAmelCase_ : Optional[int] = os.environ.pop("PROCESS_TRAIN", "false") UpperCAmelCase_ : str = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def lowerCAmelCase_ ( lowerCamelCase ): def choose_first(lowerCamelCase , lowerCamelCase=False ): assert isinstance(lowerCamelCase , lowerCamelCase ) if len(lowerCamelCase ) == 1: __magic_name__ : List[str] =answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __magic_name__ : Tuple ={k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a __magic_name__ : str ={"""id""": example["""id"""]} __magic_name__ : List[Any] =example["""annotations"""] __magic_name__ : List[str] =annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: __magic_name__ : Optional[int] =["""yes"""] if 1 in yes_no_answer else ["""no"""] __magic_name__ : List[str] =[] __magic_name__ : Dict =[] __magic_name__ : str =["""<cls>"""] else: __magic_name__ : Tuple =["""short"""] __magic_name__ : Optional[int] =choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available __magic_name__ : Tuple =["""long"""] __magic_name__ : Tuple =choose_first(annotation["""long_answer"""] , is_long_answer=lowerCamelCase ) __magic_name__ : List[Any] =[] answer.update(lowerCamelCase ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: __magic_name__ : Any =True else: __magic_name__ : List[str] =False __magic_name__ : int =["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , lowerCamelCase ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =_get_single_answer(lowerCamelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : Any =example["""document"""]["""tokens"""] __magic_name__ : str =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __magic_name__ : Dict =["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __magic_name__ : Tuple =example["""document"""]["""tokens"""] __magic_name__ : Optional[int] =answer["""start_token"""] __magic_name__ : List[Any] =answer["""end_token"""] __magic_name__ : Optional[Any] =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __magic_name__ : Optional[int] =""" """.join(context[start_token:end_token] ) # checking above code if assertion: __magic_name__ : List[str] =doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : str =doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : Dict =""" """.join([old[i] for i in range(len(lowerCamelCase ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , lowerCamelCase , end="""\n""" ) print("""Old:""" , lowerCamelCase , end="""\n\n""" ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=True ): # overlap will be of doc_stride - q_len __magic_name__ : Any =get_context_and_ans(lowerCamelCase , assertion=lowerCamelCase ) __magic_name__ : Union[str, Any] =out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __magic_name__ : List[Any] =tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids __magic_name__ : Dict =input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : List[str] =[] __magic_name__ : int =[] __magic_name__ : List[str] =input_ids[:q_len] __magic_name__ : Dict =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Tuple =input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(lowerCamelCase ), "end_token": [-100] * len(lowerCamelCase ), "category": category, }, } __magic_name__ : int =out["""context"""].split() __magic_name__ : Any =splitted_context[answer["""end_token"""]] __magic_name__ : str =len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=lowerCamelCase , ).input_ids ) __magic_name__ : Optional[int] =len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=lowerCamelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __magic_name__ : Union[str, Any] =len(tokenizer(lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __magic_name__ : str =input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive __magic_name__ : Dict =answer["""start_token"""] __magic_name__ : int =answer["""end_token"""] if assertion: __magic_name__ : Any =tokenizer.decode(lowerCamelCase ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , lowerCamelCase , end="""\n\n""" ) if len(lowerCamelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __magic_name__ : Any =input_ids[:q_len] __magic_name__ : Union[str, Any] =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) __magic_name__ : Any =[] __magic_name__ : List[str] =[] __magic_name__ : List[str] =[] __magic_name__ : str =[] # null, yes, no, long, short for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Dict =input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __magic_name__ : List[Any] =start_token - i + q_len __magic_name__ : Optional[Any] =end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: __magic_name__ : Optional[Any] =-100 __magic_name__ : Optional[Any] =-100 answers_category.append("""null""" ) __magic_name__ : Optional[int] =inputs[-1][start_token : end_token + 1] answers_start_token.append(lowerCamelCase ) answers_end_token.append(lowerCamelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(lowerCamelCase ) ) print("""Old:""" , tokenizer.decode(lowerCamelCase ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=False ): __magic_name__ : List[Any] =get_strided_contexts_and_ans( lowerCamelCase , lowerCamelCase , doc_stride=lowerCamelCase , max_length=lowerCamelCase , assertion=lowerCamelCase , ) return example def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): with jsonlines.open(lowerCamelCase , """a""" ) as writer: for example in tqdm(lowerCamelCase , total=len(lowerCamelCase ) , desc="""Saving samples ... """ ): __magic_name__ : int =example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer UpperCAmelCase_ : Optional[int] = load_dataset("natural_questions") UpperCAmelCase_ : Optional[int] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") UpperCAmelCase_ : str = data["train" if PROCESS_TRAIN == "true" else "validation"] UpperCAmelCase_ : Optional[int] = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } UpperCAmelCase_ : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs) UpperCAmelCase_ : Optional[Any] = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) UpperCAmelCase_ : int = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
21
1
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __A ( UpperCamelCase__ ): UpperCamelCase = (KDPMaDiscreteScheduler,) UpperCamelCase = 10 def A__ ( self :List[str] , **__snake_case :Optional[Any] ): '''simple docstring''' __magic_name__ : List[str] ={ """num_train_timesteps""": 11_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**__snake_case ) return config def A__ ( self :str ): '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__snake_case , beta_end=__snake_case ) def A__ ( self :Dict ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__snake_case ) def A__ ( self :Dict ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__snake_case ) def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : Dict =self.scheduler_classes[0] __magic_name__ : Optional[Any] =self.get_scheduler_config(prediction_type="""v_prediction""" ) __magic_name__ : List[Any] =scheduler_class(**__snake_case ) scheduler.set_timesteps(self.num_inference_steps ) __magic_name__ : List[str] =self.dummy_model() __magic_name__ : Union[str, Any] =self.dummy_sample_deter * scheduler.init_noise_sigma __magic_name__ : Union[str, Any] =sample.to(__snake_case ) for i, t in enumerate(scheduler.timesteps ): __magic_name__ : Tuple =scheduler.scale_model_input(__snake_case , __snake_case ) __magic_name__ : Optional[Any] =model(__snake_case , __snake_case ) __magic_name__ : Tuple =scheduler.step(__snake_case , __snake_case , __snake_case ) __magic_name__ : Any =output.prev_sample __magic_name__ : int =torch.sum(torch.abs(__snake_case ) ) __magic_name__ : Optional[Any] =torch.mean(torch.abs(__snake_case ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def A__ ( self :Dict ): '''simple docstring''' if torch_device == "mps": return __magic_name__ : List[str] =self.scheduler_classes[0] __magic_name__ : Dict =self.get_scheduler_config() __magic_name__ : Any =scheduler_class(**__snake_case ) scheduler.set_timesteps(self.num_inference_steps ) __magic_name__ : Tuple =self.dummy_model() __magic_name__ : List[Any] =self.dummy_sample_deter * scheduler.init_noise_sigma __magic_name__ : Tuple =sample.to(__snake_case ) for i, t in enumerate(scheduler.timesteps ): __magic_name__ : Dict =scheduler.scale_model_input(__snake_case , __snake_case ) __magic_name__ : Union[str, Any] =model(__snake_case , __snake_case ) __magic_name__ : Optional[Any] =scheduler.step(__snake_case , __snake_case , __snake_case ) __magic_name__ : str =output.prev_sample __magic_name__ : List[Any] =torch.sum(torch.abs(__snake_case ) ) __magic_name__ : str =torch.mean(torch.abs(__snake_case ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def A__ ( self :Any ): '''simple docstring''' if torch_device == "mps": return __magic_name__ : Tuple =self.scheduler_classes[0] __magic_name__ : List[str] =self.get_scheduler_config() __magic_name__ : int =scheduler_class(**__snake_case ) scheduler.set_timesteps(self.num_inference_steps , device=__snake_case ) __magic_name__ : str =self.dummy_model() __magic_name__ : Optional[int] =self.dummy_sample_deter.to(__snake_case ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __magic_name__ : Union[str, Any] =scheduler.scale_model_input(__snake_case , __snake_case ) __magic_name__ : Union[str, Any] =model(__snake_case , __snake_case ) __magic_name__ : Tuple =scheduler.step(__snake_case , __snake_case , __snake_case ) __magic_name__ : Optional[Any] =output.prev_sample __magic_name__ : Dict =torch.sum(torch.abs(__snake_case ) ) __magic_name__ : Union[str, Any] =torch.mean(torch.abs(__snake_case ) ) if str(__snake_case ).startswith("""cpu""" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
21
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __A ( UpperCamelCase__ ): UpperCamelCase = """xlm-roberta-xl""" def __init__( self :Dict , __snake_case :Optional[Any]=25_08_80 , __snake_case :List[Any]=25_60 , __snake_case :Optional[Any]=36 , __snake_case :Any=32 , __snake_case :int=1_02_40 , __snake_case :List[Any]="gelu" , __snake_case :Union[str, Any]=0.1 , __snake_case :Optional[Any]=0.1 , __snake_case :str=5_14 , __snake_case :Union[str, Any]=1 , __snake_case :Optional[int]=0.02 , __snake_case :str=1E-05 , __snake_case :str=1 , __snake_case :int=0 , __snake_case :Tuple=2 , __snake_case :Optional[int]="absolute" , __snake_case :str=True , __snake_case :Any=None , **__snake_case :Dict , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __magic_name__ : List[str] =vocab_size __magic_name__ : List[str] =hidden_size __magic_name__ : Union[str, Any] =num_hidden_layers __magic_name__ : Any =num_attention_heads __magic_name__ : Any =hidden_act __magic_name__ : List[str] =intermediate_size __magic_name__ : Any =hidden_dropout_prob __magic_name__ : Union[str, Any] =attention_probs_dropout_prob __magic_name__ : Any =max_position_embeddings __magic_name__ : Any =type_vocab_size __magic_name__ : List[str] =initializer_range __magic_name__ : Optional[int] =layer_norm_eps __magic_name__ : Dict =position_embedding_type __magic_name__ : Any =use_cache __magic_name__ : Dict =classifier_dropout class __A ( UpperCamelCase__ ): @property def A__ ( self :Dict ): '''simple docstring''' if self.task == "multiple-choice": __magic_name__ : str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: __magic_name__ : Optional[Any] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
21
1
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: UpperCAmelCase_ : int = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class __A ( unittest.TestCase ): def __init__( self :Optional[Any] , __snake_case :Dict , __snake_case :List[str]=7 , __snake_case :Union[str, Any]=3 , __snake_case :int=18 , __snake_case :str=30 , __snake_case :int=4_00 , __snake_case :Dict=None , __snake_case :Tuple=True , __snake_case :Any=True , __snake_case :Tuple=None , ): '''simple docstring''' __magic_name__ : str =size if size is not None else {"""height""": 20, """width""": 20} __magic_name__ : Optional[Any] =parent __magic_name__ : Optional[Any] =batch_size __magic_name__ : Optional[int] =num_channels __magic_name__ : List[Any] =image_size __magic_name__ : Optional[Any] =min_resolution __magic_name__ : str =max_resolution __magic_name__ : List[Any] =size __magic_name__ : Any =do_normalize __magic_name__ : int =do_convert_rgb __magic_name__ : Any =[5_12, 10_24, 20_48, 40_96] __magic_name__ : List[Any] =patch_size if patch_size is not None else {"""height""": 16, """width""": 16} def A__ ( self :Dict ): '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] ="""https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg""" __magic_name__ : Any =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ).convert("""RGB""" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = PixaStructImageProcessor if is_vision_available() else None def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =PixaStructImageProcessingTester(self ) @property def A__ ( self :str ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Any =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """do_normalize""" ) ) self.assertTrue(hasattr(__snake_case , """do_convert_rgb""" ) ) def A__ ( self :int ): '''simple docstring''' __magic_name__ : Union[str, Any] =self.image_processor_tester.prepare_dummy_image() __magic_name__ : Dict =self.image_processing_class(**self.image_processor_dict ) __magic_name__ : str =20_48 __magic_name__ : Tuple =image_processor(__snake_case , return_tensors="""pt""" , max_patches=__snake_case ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1E-3 , rtol=1E-3 ) ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : Optional[int] =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input __magic_name__ : Union[str, Any] =( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __magic_name__ : Union[str, Any] =image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __magic_name__ : List[str] =image_processor( __snake_case , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : Any =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input __magic_name__ : str =( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 __magic_name__ : List[Any] =True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__snake_case ): __magic_name__ : Optional[Any] =image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches __magic_name__ : Optional[int] ="""Hello""" __magic_name__ : List[Any] =image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case , header_text=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __magic_name__ : Optional[Any] =image_processor( __snake_case , return_tensors="""pt""" , max_patches=__snake_case , header_text=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Optional[int] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) __magic_name__ : List[Any] =( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __magic_name__ : Optional[Any] =image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __magic_name__ : str =image_processor( __snake_case , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : Dict =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input __magic_name__ : Union[str, Any] =( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __magic_name__ : Tuple =image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __magic_name__ : str =image_processor( __snake_case , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = PixaStructImageProcessor if is_vision_available() else None def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Tuple =PixaStructImageProcessingTester(self , num_channels=4 ) __magic_name__ : Optional[int] =3 @property def A__ ( self :Any ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : Optional[int] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """do_normalize""" ) ) self.assertTrue(hasattr(__snake_case , """do_convert_rgb""" ) ) def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : Optional[int] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input __magic_name__ : str =( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __magic_name__ : Any =image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __magic_name__ : List[Any] =image_processor( __snake_case , return_tensors="""pt""" , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
21
from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase_ ( lowerCamelCase="ro" , lowerCamelCase="en" , lowerCamelCase="wmt16" , lowerCamelCase=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) __magic_name__ : Dict =F"{src_lang}-{tgt_lang}" print(F"Converting {dataset}-{pair}" ) __magic_name__ : Dict =datasets.load_dataset(lowerCamelCase , lowerCamelCase ) if save_dir is None: __magic_name__ : Optional[int] =F"{dataset}-{pair}" __magic_name__ : int =Path(lowerCamelCase ) save_dir.mkdir(exist_ok=lowerCamelCase ) for split in ds.keys(): print(F"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets __magic_name__ : Dict ="""val""" if split == """validation""" else split __magic_name__ : List[Any] =save_dir.joinpath(F"{fn}.source" ) __magic_name__ : Optional[int] =save_dir.joinpath(F"{fn}.target" ) __magic_name__ : Optional[Any] =src_path.open("""w+""" ) __magic_name__ : List[Any] =tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __magic_name__ : str =x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
21
1
import argparse import copy def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Tuple ={} with open(lowerCamelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __magic_name__ : Optional[Any] =[] _list.append([line.split()[1], line.split()[2]] ) __magic_name__ : Dict =_list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __magic_name__ : List[Any] =[] _list.append([line.split()[0], line.split()[2]] ) __magic_name__ : Tuple =_list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): with open(lowerCamelCase ) as f: __magic_name__ : Optional[int] =f.read(1 ) __magic_name__ : Any =start_node __magic_name__ : Union[str, Any] =[] __magic_name__ : Dict =start_node __magic_name__ : List[Any] =0 while visiting not in first_solution: __magic_name__ : Dict =10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCamelCase ) and k[0] not in first_solution: __magic_name__ : Tuple =k[1] __magic_name__ : str =k[0] first_solution.append(lowerCamelCase ) __magic_name__ : Optional[Any] =distance_of_first_solution + int(lowerCamelCase ) __magic_name__ : Tuple =best_node first_solution.append(lowerCamelCase ) __magic_name__ : Optional[Any] =0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __magic_name__ : Union[str, Any] =( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =[] for n in solution[1:-1]: __magic_name__ : Union[str, Any] =solution.index(lowerCamelCase ) for kn in solution[1:-1]: __magic_name__ : Union[str, Any] =solution.index(lowerCamelCase ) if n == kn: continue __magic_name__ : str =copy.deepcopy(lowerCamelCase ) __magic_name__ : List[str] =kn __magic_name__ : List[str] =n __magic_name__ : List[Any] =0 for k in _tmp[:-1]: __magic_name__ : Optional[int] =_tmp[_tmp.index(lowerCamelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __magic_name__ : int =distance + int(i[1] ) _tmp.append(lowerCamelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __magic_name__ : List[str] =len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCamelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : List[str] =1 __magic_name__ : List[str] =first_solution __magic_name__ : int =[] __magic_name__ : Dict =distance_of_first_solution __magic_name__ : Union[str, Any] =solution while count <= iters: __magic_name__ : Dict =find_neighborhood(lowerCamelCase , lowerCamelCase ) __magic_name__ : Any =0 __magic_name__ : Any =neighborhood[index_of_best_solution] __magic_name__ : Optional[Any] =len(lowerCamelCase ) - 1 __magic_name__ : List[str] =False while not found: __magic_name__ : Any =0 while i < len(lowerCamelCase ): if best_solution[i] != solution[i]: __magic_name__ : Any =best_solution[i] __magic_name__ : Optional[Any] =solution[i] break __magic_name__ : int =i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __magic_name__ : Optional[int] =True __magic_name__ : List[str] =best_solution[:-1] __magic_name__ : Optional[Any] =neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __magic_name__ : List[Any] =cost __magic_name__ : List[Any] =solution else: __magic_name__ : Optional[Any] =index_of_best_solution + 1 __magic_name__ : List[str] =neighborhood[index_of_best_solution] if len(lowerCamelCase ) >= size: tabu_list.pop(0 ) __magic_name__ : Optional[int] =count + 1 return best_solution_ever, best_cost def lowerCAmelCase_ ( lowerCamelCase=None ): __magic_name__ : int =generate_neighbours(args.File ) __magic_name__ , __magic_name__ : str =generate_first_solution( args.File , lowerCamelCase ) __magic_name__ , __magic_name__ : List[Any] =tabu_search( lowerCamelCase , lowerCamelCase , lowerCamelCase , args.Iterations , args.Size , ) print(F"Best solution: {best_sol}, with total distance: {best_cost}." ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
21
from __future__ import annotations from fractions import Fraction def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =[] __magic_name__ : List[Any] =11 __magic_name__ : Tuple =int("""1""" + """0""" * digit_len ) for num in range(lowerCamelCase , lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowerCamelCase , lowerCamelCase ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 __magic_name__ : List[str] =10 return solutions def lowerCAmelCase_ ( lowerCamelCase = 2 ): __magic_name__ : str =1.0 for fraction in fraction_list(lowerCamelCase ): __magic_name__ : int =Fraction(lowerCamelCase ) result *= frac.denominator / frac.numerator return int(lowerCamelCase ) if __name__ == "__main__": print(solution())
21
1
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = MgpstrTokenizer UpperCamelCase = False UpperCamelCase = {} UpperCamelCase = False def A__ ( self :Tuple ): '''simple docstring''' super().setUp() # fmt: off __magic_name__ : int =["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __magic_name__ : Union[str, Any] =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __magic_name__ : Optional[int] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__snake_case ) + """\n""" ) def A__ ( self :str , **__snake_case :Tuple ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def A__ ( self :List[str] , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : Optional[int] ="""tester""" __magic_name__ : Any ="""tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def A__ ( self :Dict ): '''simple docstring''' pass def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Tuple =self.get_tokenizers(do_lower_case=__snake_case ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __magic_name__ : Union[str, Any] ="""[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) __magic_name__ : Optional[Any] =tokenizer.encode([special_token] , add_special_tokens=__snake_case ) self.assertEqual(len(__snake_case ) , 1 ) __magic_name__ : int =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) self.assertTrue(special_token not in decoded ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : int =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __magic_name__ , __magic_name__ : List[str] =self.get_input_output_texts(__snake_case ) __magic_name__ : Dict =tokenizer.tokenize(__snake_case ) __magic_name__ : Union[str, Any] =tokenizer.convert_tokens_to_ids(__snake_case ) __magic_name__ : Dict =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __magic_name__ : Tuple =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertNotEqual(len(__snake_case ) , 0 ) __magic_name__ : Optional[Any] =tokenizer.decode(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(text_a.replace(""" """ , """""" ) , __snake_case ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def A__ ( self :Tuple ): '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def A__ ( self :Union[str, Any] ): '''simple docstring''' pass
21
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( lowerCamelCase ): # A local function to see if a dot lands in the circle. def is_in_circle(lowerCamelCase , lowerCamelCase ) -> bool: __magic_name__ : Dict =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __magic_name__ : Union[str, Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. __magic_name__ : List[Any] =proportion * 4 print(F"The estimated value of pi is {pi_estimate}" ) print(F"The numpy value of pi is {pi}" ) print(F"The total error is {abs(pi - pi_estimate )}" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 , ): return mean( function_to_integrate(uniform(lowerCamelCase , lowerCamelCase ) ) for _ in range(lowerCamelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ): def identity_function(lowerCamelCase ) -> float: return x __magic_name__ : Optional[int] =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __magic_name__ : str =(max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {expected_value}" ) print(F"Total error is {abs(estimated_value - expected_value )}" ) print("""******************""" ) def lowerCAmelCase_ ( lowerCamelCase ): def function_to_integrate(lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) __magic_name__ : Dict =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {pi}" ) print(F"Total error is {abs(estimated_value - pi )}" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): try: __magic_name__ : Union[str, Any] =os.environ[key] except KeyError: # KEY isn't set, default to `default`. __magic_name__ : List[str] =default else: # KEY is set, convert it to True or False. try: __magic_name__ : int =strtobool(lowerCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value UpperCAmelCase_ : Dict = parse_flag_from_env("RUN_SLOW", default=False) UpperCAmelCase_ : str = parse_flag_from_env("RUN_REMOTE", default=False) UpperCAmelCase_ : int = parse_flag_from_env("RUN_LOCAL", default=True) UpperCAmelCase_ : Any = parse_flag_from_env("RUN_PACKAGED", default=True) # Compression UpperCAmelCase_ : Any = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="test requires lz4") UpperCAmelCase_ : Tuple = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="test requires py7zr") UpperCAmelCase_ : Optional[int] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="test requires zstandard") # Audio UpperCAmelCase_ : List[Any] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("soundfile") is None or version.parse(importlib_metadata.version("soundfile")) < version.parse("0.12.0"), reason="test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; ", ) # Beam UpperCAmelCase_ : str = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("0.3.2"), reason="test requires apache-beam and a compatible dill version", ) # Dill-cloudpickle compatibility UpperCAmelCase_ : Optional[int] = pytest.mark.skipif( config.DILL_VERSION <= version.parse("0.3.2"), reason="test requires dill>0.3.2 for cloudpickle compatibility", ) # Windows UpperCAmelCase_ : Tuple = pytest.mark.skipif( sys.platform == "win32", reason="test should not be run on Windows", ) def lowerCAmelCase_ ( lowerCamelCase ): try: import faiss # noqa except ImportError: __magic_name__ : List[str] =unittest.skip("""test requires faiss""" )(lowerCamelCase ) return test_case def lowerCAmelCase_ ( lowerCamelCase ): try: import regex # noqa except ImportError: __magic_name__ : Union[str, Any] =unittest.skip("""test requires regex""" )(lowerCamelCase ) return test_case def lowerCAmelCase_ ( lowerCamelCase ): try: import elasticsearch # noqa except ImportError: __magic_name__ : Any =unittest.skip("""test requires elasticsearch""" )(lowerCamelCase ) return test_case def lowerCAmelCase_ ( lowerCamelCase ): try: import sqlalchemy # noqa except ImportError: __magic_name__ : Tuple =unittest.skip("""test requires sqlalchemy""" )(lowerCamelCase ) return test_case def lowerCAmelCase_ ( lowerCamelCase ): if not config.TORCH_AVAILABLE: __magic_name__ : List[Any] =unittest.skip("""test requires PyTorch""" )(lowerCamelCase ) return test_case def lowerCAmelCase_ ( lowerCamelCase ): if not config.TF_AVAILABLE: __magic_name__ : List[str] =unittest.skip("""test requires TensorFlow""" )(lowerCamelCase ) return test_case def lowerCAmelCase_ ( lowerCamelCase ): if not config.JAX_AVAILABLE: __magic_name__ : Union[str, Any] =unittest.skip("""test requires JAX""" )(lowerCamelCase ) return test_case def lowerCAmelCase_ ( lowerCamelCase ): if not config.PIL_AVAILABLE: __magic_name__ : Optional[Any] =unittest.skip("""test requires Pillow""" )(lowerCamelCase ) return test_case def lowerCAmelCase_ ( lowerCamelCase ): try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(lowerCamelCase ) else: return test_case def lowerCAmelCase_ ( lowerCamelCase ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(lowerCamelCase ) else: return test_case def lowerCAmelCase_ ( lowerCamelCase ): try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(lowerCamelCase ) else: return test_case def lowerCAmelCase_ ( lowerCamelCase ): def _require_spacy_model(lowerCamelCase ): try: import spacy # noqa F401 spacy.load(lowerCamelCase ) except ImportError: return unittest.skip("""test requires spacy""" )(lowerCamelCase ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(lowerCamelCase ) )(lowerCamelCase ) else: return test_case return _require_spacy_model def lowerCAmelCase_ ( lowerCamelCase ): try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(lowerCamelCase ) else: return test_case def lowerCAmelCase_ ( lowerCamelCase ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(lowerCamelCase ) else: return test_case def lowerCAmelCase_ ( lowerCamelCase ): if not _run_slow_tests or _run_slow_tests == 0: __magic_name__ : List[str] =unittest.skip("""test is slow""" )(lowerCamelCase ) return test_case def lowerCAmelCase_ ( lowerCamelCase ): if not _run_local_tests or _run_local_tests == 0: __magic_name__ : Any =unittest.skip("""test is local""" )(lowerCamelCase ) return test_case def lowerCAmelCase_ ( lowerCamelCase ): if not _run_packaged_tests or _run_packaged_tests == 0: __magic_name__ : Dict =unittest.skip("""test is packaged""" )(lowerCamelCase ) return test_case def lowerCAmelCase_ ( lowerCamelCase ): if not _run_remote_tests or _run_remote_tests == 0: __magic_name__ : Optional[Any] =unittest.skip("""test requires remote""" )(lowerCamelCase ) return test_case def lowerCAmelCase_ ( *lowerCamelCase ): def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(lowerCamelCase ) and name.startswith("""test""" ): for decorator in decorators: __magic_name__ : Optional[Any] =decorator(lowerCamelCase ) setattr(cls , lowerCamelCase , lowerCamelCase ) return cls return decorate class __A ( UpperCamelCase__ ): pass class __A ( UpperCamelCase__ ): UpperCamelCase = 0 UpperCamelCase = 1 UpperCamelCase = 2 @contextmanager def lowerCAmelCase_ ( lowerCamelCase=OfflineSimulationMode.CONNECTION_FAILS , lowerCamelCase=1E-16 ): __magic_name__ : Union[str, Any] =requests.Session().request def timeout_request(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ): # Change the url to an invalid url so that the connection hangs __magic_name__ : Tuple ="""https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( F"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." ) __magic_name__ : Tuple =timeout try: return online_request(lowerCamelCase , lowerCamelCase , **lowerCamelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __magic_name__ : Tuple =url __magic_name__ : List[str] =e.args[0] __magic_name__ : Optional[int] =(max_retry_error.args[0].replace("""10.255.255.1""" , F"OfflineMock[{url}]" ),) __magic_name__ : Union[str, Any] =(max_retry_error,) raise def raise_connection_error(lowerCamelCase , lowerCamelCase , **lowerCamelCase ): raise requests.ConnectionError("""Offline mode is enabled.""" , request=lowerCamelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" , lowerCamelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" , lowerCamelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowerCamelCase ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def lowerCAmelCase_ ( *lowerCamelCase , **lowerCamelCase ): __magic_name__ : Any =str(Path().resolve() ) with tempfile.TemporaryDirectory(*lowerCamelCase , **lowerCamelCase ) as tmp_dir: try: os.chdir(lowerCamelCase ) yield finally: os.chdir(lowerCamelCase ) @contextmanager def lowerCAmelCase_ ( ): import gc gc.collect() __magic_name__ : int =pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def lowerCAmelCase_ ( ): import gc gc.collect() __magic_name__ : List[str] =pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return deepcopy(lowerCamelCase ).integers(0 , 100 , 10 ).tolist() == deepcopy(lowerCamelCase ).integers(0 , 100 , 10 ).tolist() def lowerCAmelCase_ ( lowerCamelCase ): import decorator from requests.exceptions import HTTPError def _wrapper(lowerCamelCase , *lowerCamelCase , **lowerCamelCase ): try: return func(*lowerCamelCase , **lowerCamelCase ) except HTTPError as err: if str(lowerCamelCase ).startswith("""500""" ) or str(lowerCamelCase ).startswith("""502""" ): pytest.xfail(str(lowerCamelCase ) ) raise err return decorator.decorator(_wrapper , lowerCamelCase ) class __A : def __init__( self :Any , __snake_case :List[str] , __snake_case :List[Any] , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[Any] =returncode __magic_name__ : Any =stdout __magic_name__ : Any =stderr async def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): while True: __magic_name__ : Any =await stream.readline() if line: callback(lowerCamelCase ) else: break async def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=False , lowerCamelCase=False ): if echo: print("""\nRunning: """ , """ """.join(lowerCamelCase ) ) __magic_name__ : Optional[int] =await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __magic_name__ : Tuple =[] __magic_name__ : int =[] def tee(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase="" ): __magic_name__ : Tuple =line.decode("""utf-8""" ).rstrip() sink.append(lowerCamelCase ) if not quiet: print(lowerCamelCase , lowerCamelCase , file=lowerCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda lowerCamelCase : tee(lowerCamelCase , lowerCamelCase , sys.stdout , label="""stdout:""" ) ), _read_stream(p.stderr , lambda lowerCamelCase : tee(lowerCamelCase , lowerCamelCase , sys.stderr , label="""stderr:""" ) ), ] , timeout=lowerCamelCase , ) return _RunOutput(await p.wait() , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=180 , lowerCamelCase=False , lowerCamelCase=True ): __magic_name__ : Tuple =asyncio.get_event_loop() __magic_name__ : Any =loop.run_until_complete( _stream_subprocess(lowerCamelCase , env=lowerCamelCase , stdin=lowerCamelCase , timeout=lowerCamelCase , quiet=lowerCamelCase , echo=lowerCamelCase ) ) __magic_name__ : Optional[int] =""" """.join(lowerCamelCase ) if result.returncode > 0: __magic_name__ : List[str] ="""\n""".join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"'{cmd_str}' produced no output." ) return result def lowerCAmelCase_ ( ): __magic_name__ : Dict =os.environ.get("""PYTEST_XDIST_WORKER""" , """gw0""" ) __magic_name__ : str =re.sub(R"""^gw""" , """""" , lowerCamelCase , 0 , re.M ) return int(lowerCamelCase ) def lowerCAmelCase_ ( ): __magic_name__ : Optional[int] =29500 __magic_name__ : int =pytest_xdist_worker_id() return port + uniq_delta
21
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __A ( tf.keras.layers.Layer ): def __init__( self :Optional[int] , __snake_case :Dict[str, int] , __snake_case :List[str] , __snake_case :int = None , __snake_case :int = None ): '''simple docstring''' super().__init__() __magic_name__ : Optional[int] =pad_token_id __magic_name__ : List[Any] =max_length __magic_name__ : Dict =vocab __magic_name__ : int =merges __magic_name__ : Optional[int] =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case ) @classmethod def A__ ( cls :List[Any] , __snake_case :GPTaTokenizer , *__snake_case :int , **__snake_case :Any ): '''simple docstring''' __magic_name__ : List[Any] =[""" """.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()] __magic_name__ : str =tokenizer.get_vocab() return cls(__snake_case , __snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Dict , __snake_case :Union[str, os.PathLike] , *__snake_case :Union[str, Any] , **__snake_case :int ): '''simple docstring''' __magic_name__ : Dict =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case ) return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Optional[Any] , __snake_case :List[Any] ): '''simple docstring''' return cls(**__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def A__ ( self :List[Any] , __snake_case :Dict , __snake_case :int = None ): '''simple docstring''' __magic_name__ : Optional[Any] =self.tf_tokenizer(__snake_case ) __magic_name__ : Tuple =tf.ones_like(__snake_case ) if self.pad_token_id is not None: # pad the tokens up to max length __magic_name__ : Tuple =max_length if max_length is not None else self.max_length if max_length is not None: __magic_name__ , __magic_name__ : Tuple =pad_model_inputs( __snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
21
1
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) # TODO Update this UpperCAmelCase_ : Optional[int] = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class __A ( UpperCamelCase__ ): UpperCamelCase = """esm""" def __init__( self :List[Any] , __snake_case :int=None , __snake_case :List[Any]=None , __snake_case :Tuple=None , __snake_case :List[str]=7_68 , __snake_case :str=12 , __snake_case :int=12 , __snake_case :str=30_72 , __snake_case :int=0.1 , __snake_case :Optional[Any]=0.1 , __snake_case :Optional[Any]=10_26 , __snake_case :Dict=0.02 , __snake_case :List[str]=1E-12 , __snake_case :Any="absolute" , __snake_case :Tuple=True , __snake_case :Any=None , __snake_case :Dict=False , __snake_case :List[str]=False , __snake_case :Tuple=None , __snake_case :List[str]=None , **__snake_case :Any , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , mask_token_id=__snake_case , **__snake_case ) __magic_name__ : Dict =vocab_size __magic_name__ : Optional[Any] =hidden_size __magic_name__ : Any =num_hidden_layers __magic_name__ : int =num_attention_heads __magic_name__ : Any =intermediate_size __magic_name__ : List[Any] =hidden_dropout_prob __magic_name__ : str =attention_probs_dropout_prob __magic_name__ : Union[str, Any] =max_position_embeddings __magic_name__ : List[str] =initializer_range __magic_name__ : Optional[Any] =layer_norm_eps __magic_name__ : Optional[int] =position_embedding_type __magic_name__ : int =use_cache __magic_name__ : Any =emb_layer_norm_before __magic_name__ : List[str] =token_dropout __magic_name__ : List[str] =is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) __magic_name__ : Tuple =EsmFoldConfig() elif isinstance(__snake_case , __snake_case ): __magic_name__ : Any =EsmFoldConfig(**__snake_case ) __magic_name__ : Dict =esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) __magic_name__ : List[Any] =get_default_vocab_list() else: __magic_name__ : Any =vocab_list else: __magic_name__ : Optional[Any] =None __magic_name__ : Optional[Any] =None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , __snake_case ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =super().to_dict() if isinstance(self.esmfold_config , __snake_case ): __magic_name__ : str =self.esmfold_config.to_dict() return output @dataclass class __A : UpperCamelCase = None UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = 0 UpperCamelCase = True UpperCamelCase = False UpperCamelCase = 128 UpperCamelCase = None def A__ ( self :Union[str, Any] ): '''simple docstring''' if self.trunk is None: __magic_name__ : Dict =TrunkConfig() elif isinstance(self.trunk , __snake_case ): __magic_name__ : Optional[int] =TrunkConfig(**self.trunk ) def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : List[Any] =asdict(self ) __magic_name__ : str =self.trunk.to_dict() return output @dataclass class __A : UpperCamelCase = 48 UpperCamelCase = 1024 UpperCamelCase = 128 UpperCamelCase = 32 UpperCamelCase = 32 UpperCamelCase = 32 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = False UpperCamelCase = 4 UpperCamelCase = 128 UpperCamelCase = None def A__ ( self :Optional[Any] ): '''simple docstring''' if self.structure_module is None: __magic_name__ : Dict =StructureModuleConfig() elif isinstance(self.structure_module , __snake_case ): __magic_name__ : int =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) __magic_name__ : Union[str, Any] =self.sequence_state_dim // self.sequence_head_width __magic_name__ : str =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : Dict =asdict(self ) __magic_name__ : Union[str, Any] =self.structure_module.to_dict() return output @dataclass class __A : UpperCamelCase = 384 UpperCamelCase = 128 UpperCamelCase = 16 UpperCamelCase = 128 UpperCamelCase = 12 UpperCamelCase = 4 UpperCamelCase = 8 UpperCamelCase = 0.1 UpperCamelCase = 8 UpperCamelCase = 1 UpperCamelCase = 2 UpperCamelCase = 7 UpperCamelCase = 10 UpperCamelCase = 1e-8 UpperCamelCase = 1e5 def A__ ( self :Optional[int] ): '''simple docstring''' return asdict(self ) def lowerCAmelCase_ ( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
21
import math import tensorflow as tf from packaging import version def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : List[str] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Optional[Any] =tf.cast(math.pi , x.dtype ) __magic_name__ : int =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Any =tf.convert_to_tensor(lowerCamelCase ) return x * tf.tanh(tf.math.softplus(lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[Any] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Union[str, Any] =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Dict =tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCAmelCase_ ( lowerCamelCase ): return tf.clip_by_value(_gelu(lowerCamelCase ) , -10 , 10 ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=-1 ): __magic_name__ , __magic_name__ : List[Any] =tf.split(lowerCamelCase , 2 , axis=lowerCamelCase ) return a * tf.math.sigmoid(lowerCamelCase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowerCAmelCase_ ( lowerCamelCase ): return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase ) UpperCAmelCase_ : List[str] = tf.keras.activations.gelu UpperCAmelCase_ : Dict = approximate_gelu_wrap else: UpperCAmelCase_ : Dict = _gelu UpperCAmelCase_ : str = _gelu_new UpperCAmelCase_ : Any = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowerCAmelCase_ ( lowerCamelCase ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
21
1
import math import tensorflow as tf from packaging import version def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : List[str] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Optional[Any] =tf.cast(math.pi , x.dtype ) __magic_name__ : int =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Any =tf.convert_to_tensor(lowerCamelCase ) return x * tf.tanh(tf.math.softplus(lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[Any] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Union[str, Any] =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Dict =tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCAmelCase_ ( lowerCamelCase ): return tf.clip_by_value(_gelu(lowerCamelCase ) , -10 , 10 ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=-1 ): __magic_name__ , __magic_name__ : List[Any] =tf.split(lowerCamelCase , 2 , axis=lowerCamelCase ) return a * tf.math.sigmoid(lowerCamelCase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowerCAmelCase_ ( lowerCamelCase ): return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase ) UpperCAmelCase_ : List[str] = tf.keras.activations.gelu UpperCAmelCase_ : Dict = approximate_gelu_wrap else: UpperCAmelCase_ : Dict = _gelu UpperCAmelCase_ : str = _gelu_new UpperCAmelCase_ : Any = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowerCAmelCase_ ( lowerCamelCase ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
21
from collections.abc import Sequence def lowerCAmelCase_ ( lowerCamelCase = None ): if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __magic_name__ : str =nums[0] for i in range(1 , len(lowerCamelCase ) ): __magic_name__ : Any =nums[i] __magic_name__ : Dict =max(lowerCamelCase , ans + num , lowerCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCAmelCase_ : List[str] = int(input("Enter number of elements : ").strip()) UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
21
1
def lowerCAmelCase_ ( lowerCamelCase ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : UpperCamelCase = 42 UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""Translation""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def __call__( self :Union[str, Any] ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def A__ ( self :List[Any] ): '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __A : UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""TranslationVariableLanguages""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =sorted(set(self.languages ) ) if self.languages else None __magic_name__ : Optional[int] =len(self.languages ) if self.languages else None def __call__( self :List[str] ): '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def A__ ( self :str , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[int] =set(self.languages ) if self.languages and set(__snake_case ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __magic_name__ : Any =[] for lang, text in translation_dict.items(): if isinstance(__snake_case , __snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __magic_name__ , __magic_name__ : List[str] =zip(*sorted(__snake_case ) ) return {"language": languages, "translation": translations} def A__ ( self :List[Any] ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
21
1
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } UpperCAmelCase_ : str = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } UpperCAmelCase_ : Union[str, Any] = { "ctrl": 256, } UpperCAmelCase_ : Optional[Any] = { "Pregnancy": 168629, "Christianity": 7675, "Explain": 106423, "Fitness": 63440, "Saving": 63163, "Ask": 27171, "Ass": 95985, "Joke": 163509, "Questions": 45622, "Thoughts": 49605, "Retail": 52342, "Feminism": 164338, "Writing": 11992, "Atheism": 192263, "Netflix": 48616, "Computing": 39639, "Opinion": 43213, "Alone": 44967, "Funny": 58917, "Gaming": 40358, "Human": 4088, "India": 1331, "Joker": 77138, "Diet": 36206, "Legal": 11859, "Norman": 4939, "Tip": 72689, "Weight": 52343, "Movies": 46273, "Running": 23425, "Science": 2090, "Horror": 37793, "Confession": 60572, "Finance": 12250, "Politics": 16360, "Scary": 191985, "Support": 12654, "Technologies": 32516, "Teenage": 66160, "Event": 32769, "Learned": 67460, "Notion": 182770, "Wikipedia": 37583, "Books": 6665, "Extract": 76050, "Confessions": 102701, "Conspiracy": 75932, "Links": 63674, "Narcissus": 150425, "Relationship": 54766, "Relationships": 134796, "Reviews": 41671, "News": 4256, "Translation": 26820, "multilingual": 128406, } def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Tuple =set() __magic_name__ : Dict =word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ : List[str] =char __magic_name__ : List[Any] =set(lowerCamelCase ) return pairs class __A ( UpperCamelCase__ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = CONTROL_CODES def __init__( self :List[Any] , __snake_case :Dict , __snake_case :int , __snake_case :Optional[int]="<unk>" , **__snake_case :int ): '''simple docstring''' super().__init__(unk_token=__snake_case , **__snake_case ) with open(__snake_case , encoding="""utf-8""" ) as vocab_handle: __magic_name__ : List[str] =json.load(__snake_case ) __magic_name__ : Any ={v: k for k, v in self.encoder.items()} with open(__snake_case , encoding="""utf-8""" ) as merges_handle: __magic_name__ : Optional[int] =merges_handle.read().split("""\n""" )[1:-1] __magic_name__ : Tuple =[tuple(merge.split() ) for merge in merges] __magic_name__ : Union[str, Any] =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __magic_name__ : str ={} @property def A__ ( self :Dict ): '''simple docstring''' return len(self.encoder ) def A__ ( self :Optional[int] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self :List[str] , __snake_case :Tuple ): '''simple docstring''' if token in self.cache: return self.cache[token] __magic_name__ : Any =tuple(__snake_case ) __magic_name__ : List[str] =tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) __magic_name__ : Tuple =get_pairs(__snake_case ) if not pairs: return token while True: __magic_name__ : List[Any] =min(__snake_case , key=lambda __snake_case : self.bpe_ranks.get(__snake_case , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ , __magic_name__ : List[Any] =bigram __magic_name__ : Any =[] __magic_name__ : Union[str, Any] =0 while i < len(__snake_case ): try: __magic_name__ : Union[str, Any] =word.index(__snake_case , __snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __magic_name__ : int =j if word[i] == first and i < len(__snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ : Tuple =tuple(__snake_case ) __magic_name__ : List[str] =new_word if len(__snake_case ) == 1: break else: __magic_name__ : Any =get_pairs(__snake_case ) __magic_name__ : Any ="""@@ """.join(__snake_case ) __magic_name__ : Optional[Any] =word[:-4] __magic_name__ : Union[str, Any] =word return word def A__ ( self :Optional[int] , __snake_case :Dict ): '''simple docstring''' __magic_name__ : str =[] __magic_name__ : Union[str, Any] =re.findall(r"""\S+\n?""" , __snake_case ) for token in words: split_tokens.extend(list(self.bpe(__snake_case ).split(""" """ ) ) ) return split_tokens def A__ ( self :Tuple , __snake_case :str ): '''simple docstring''' return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def A__ ( self :Optional[int] , __snake_case :Optional[Any] ): '''simple docstring''' return self.decoder.get(__snake_case , self.unk_token ) def A__ ( self :Dict , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : List[str] =""" """.join(__snake_case ).replace("""@@ """ , """""" ).strip() return out_string def A__ ( self :Any , __snake_case :str , __snake_case :Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __magic_name__ : str =os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : int =os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__snake_case , ensure_ascii=__snake_case ) + """\n""" ) __magic_name__ : int =0 with open(__snake_case , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) __magic_name__ : List[str] =token_index writer.write(""" """.join(__snake_case ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
21
from sklearn.metrics import matthews_corrcoef import datasets UpperCAmelCase_ : Dict = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCAmelCase_ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCAmelCase_ : Dict = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def A__ ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def A__ ( self :Tuple , __snake_case :str , __snake_case :Tuple , __snake_case :List[str]=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ), }
21
1
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = False ): if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3317044064679887385961981 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis __magic_name__ : Optional[Any] =[ 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 1, 3825123056546413051, 1, 1, 318665857834031151167461, 3317044064679887385961981, ] __magic_name__ : Dict =[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(lowerCamelCase , 1 ): if n < _p: # then we have our last prime to check __magic_name__ : Union[str, Any] =primes[:idx] break __magic_name__ , __magic_name__ : Tuple =n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: __magic_name__ : Tuple =False for r in range(lowerCamelCase ): __magic_name__ : int =pow(lowerCamelCase , d * 2**r , lowerCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): __magic_name__ : Optional[int] =True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def lowerCAmelCase_ ( ): assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838201 ) assert miller_rabin(838207 ) # 1_373_653 assert not miller_rabin(17316001 ) assert miller_rabin(17316017 ) # 25_326_001 assert not miller_rabin(3078386641 ) assert miller_rabin(3078386653 ) # 3_215_031_751 assert not miller_rabin(1713045574801 ) assert miller_rabin(1713045574819 ) # 2_152_302_898_747 assert not miller_rabin(2779799728307 ) assert miller_rabin(2779799728327 ) # 3_474_749_660_383 assert not miller_rabin(113850023909441 ) assert miller_rabin(113850023909527 ) # 341_550_071_728_321 assert not miller_rabin(1275041018848804351 ) assert miller_rabin(1275041018848804391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79666464458507787791867 ) assert miller_rabin(79666464458507787791951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552840677446647897660333 ) assert miller_rabin(552840677446647897660359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
21
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =OmegaConf.load(lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(lowerCamelCase ) ) ) return config def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): if conf_path is None: __magic_name__ : List[str] ="""./model_checkpoints/vqgan_only.yaml""" __magic_name__ : Dict =load_config(lowerCamelCase , display=lowerCamelCase ) __magic_name__ : Tuple =VQModel(**config.model.params ) if ckpt_path is None: __magic_name__ : Optional[Any] ="""./model_checkpoints/vqgan_only.pt""" __magic_name__ : Tuple =torch.load(lowerCamelCase , map_location=lowerCamelCase ) if ".ckpt" in ckpt_path: __magic_name__ : Any =sd["""state_dict"""] model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) model.to(lowerCamelCase ) del sd return model def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =model.encode(lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) __magic_name__ : List[Any] =model.decode(lowerCamelCase ) return xrec def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ , __magic_name__ : Optional[int] =string.rsplit(""".""" , 1 ) if reload: __magic_name__ : Optional[int] =importlib.import_module(lowerCamelCase ) importlib.reload(lowerCamelCase ) return getattr(importlib.import_module(lowerCamelCase , package=lowerCamelCase ) , cls ) def lowerCAmelCase_ ( lowerCamelCase ): if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True ): __magic_name__ : str =instantiate_from_config(lowerCamelCase ) if sd is not None: model.load_state_dict(lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # load the specified checkpoint if ckpt: __magic_name__ : str =torch.load(lowerCamelCase , map_location="""cpu""" ) __magic_name__ : Any =pl_sd["""global_step"""] print(F"loaded model from global step {global_step}." ) else: __magic_name__ : List[Any] ={"""state_dict""": None} __magic_name__ : Optional[Any] =None __magic_name__ : Tuple =load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=lowerCamelCase , eval_mode=lowerCamelCase )["""model"""] return model, global_step
21
1
from __future__ import annotations def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): if b == 0: return (1, 0) ((__magic_name__) , (__magic_name__)) : Optional[int] =extended_euclid(lowerCamelCase , a % b ) __magic_name__ : Optional[Any] =a // b return (y, x - k * y) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): ((__magic_name__) , (__magic_name__)) : int =extended_euclid(lowerCamelCase , lowerCamelCase ) __magic_name__ : List[str] =na * na __magic_name__ : Optional[int] =ra * x * na + ra * y * na return (n % m + m) % m def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): ((__magic_name__) , (__magic_name__)) : Optional[int] =extended_euclid(lowerCamelCase , lowerCamelCase ) if b < 0: __magic_name__ : str =(b % n + n) % n return b def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ , __magic_name__ : Dict =invert_modulo(lowerCamelCase , lowerCamelCase ), invert_modulo(lowerCamelCase , lowerCamelCase ) __magic_name__ : Dict =na * na __magic_name__ : List[Any] =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
21
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): def A__ ( self :Tuple ): '''simple docstring''' debug_launcher(test_script.main ) def A__ ( self :Dict ): '''simple docstring''' debug_launcher(test_ops.main )
21
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart UpperCAmelCase_ : Any = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } UpperCAmelCase_ : List[str] = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class __A ( UpperCamelCase__ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ["""input_ids""", """attention_mask"""] UpperCamelCase = BartTokenizer def __init__( self :List[Any] , __snake_case :str=None , __snake_case :List[Any]=None , __snake_case :Optional[int]=None , __snake_case :Union[str, Any]="replace" , __snake_case :List[str]="<s>" , __snake_case :List[str]="</s>" , __snake_case :Optional[Any]="</s>" , __snake_case :List[str]="<s>" , __snake_case :Optional[Any]="<unk>" , __snake_case :Dict="<pad>" , __snake_case :Union[str, Any]="<mask>" , __snake_case :Optional[Any]=False , __snake_case :int=True , **__snake_case :str , ): '''simple docstring''' super().__init__( __snake_case , __snake_case , tokenizer_file=__snake_case , errors=__snake_case , bos_token=__snake_case , eos_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , add_prefix_space=__snake_case , trim_offsets=__snake_case , **__snake_case , ) __magic_name__ : List[str] =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __snake_case ) != add_prefix_space: __magic_name__ : Dict =getattr(__snake_case , pre_tok_state.pop("""type""" ) ) __magic_name__ : List[Any] =add_prefix_space __magic_name__ : Any =pre_tok_class(**__snake_case ) __magic_name__ : Tuple =add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __magic_name__ : List[str] ="""post_processor""" __magic_name__ : Tuple =getattr(self.backend_tokenizer , __snake_case , __snake_case ) if tokenizer_component_instance: __magic_name__ : Optional[Any] =json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __magic_name__ : int =tuple(state["""sep"""] ) if "cls" in state: __magic_name__ : Tuple =tuple(state["""cls"""] ) __magic_name__ : Union[str, Any] =False if state.get("""add_prefix_space""" , __snake_case ) != add_prefix_space: __magic_name__ : Tuple =add_prefix_space __magic_name__ : Union[str, Any] =True if state.get("""trim_offsets""" , __snake_case ) != trim_offsets: __magic_name__ : Dict =trim_offsets __magic_name__ : Optional[Any] =True if changes_to_apply: __magic_name__ : Optional[Any] =getattr(__snake_case , state.pop("""type""" ) ) __magic_name__ : List[str] =component_class(**__snake_case ) setattr(self.backend_tokenizer , __snake_case , __snake_case ) @property def A__ ( self :int ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def A__ ( self :str , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[Any] =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else value __magic_name__ : Dict =value def A__ ( self :Union[str, Any] , *__snake_case :Tuple , **__snake_case :List[Any] ): '''simple docstring''' __magic_name__ : List[Any] =kwargs.get("""is_split_into_words""" , __snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__snake_case , **__snake_case ) def A__ ( self :str , *__snake_case :Optional[Any] , **__snake_case :Dict ): '''simple docstring''' __magic_name__ : Dict =kwargs.get("""is_split_into_words""" , __snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__snake_case , **__snake_case ) def A__ ( self :Optional[Any] , __snake_case :str , __snake_case :Optional[str] = None ): '''simple docstring''' __magic_name__ : int =self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case ) def A__ ( self :List[Any] , __snake_case :Optional[int] , __snake_case :List[str]=None ): '''simple docstring''' __magic_name__ : Any =[self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ ( self :List[Any] , __snake_case :List[int] , __snake_case :Optional[List[int]] = None ): '''simple docstring''' __magic_name__ : Optional[int] =[self.sep_token_id] __magic_name__ : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
21
UpperCAmelCase_ : Tuple = 0 # The first color of the flag. UpperCAmelCase_ : Any = 1 # The second color of the flag. UpperCAmelCase_ : str = 2 # The third color of the flag. UpperCAmelCase_ : Tuple = (red, white, blue) def lowerCAmelCase_ ( lowerCamelCase ): if not sequence: return [] if len(lowerCamelCase ) == 1: return list(lowerCamelCase ) __magic_name__ : int =0 __magic_name__ : str =len(lowerCamelCase ) - 1 __magic_name__ : Optional[Any] =0 while mid <= high: if sequence[mid] == colors[0]: __magic_name__ , __magic_name__ : Tuple =sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: __magic_name__ , __magic_name__ : Optional[Any] =sequence[high], sequence[mid] high -= 1 else: __magic_name__ : Optional[int] =F"The elements inside the sequence must contains only {colors} values" raise ValueError(lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[Any] = input("Enter numbers separated by commas:\n").strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
21
1
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __A : UpperCamelCase = BlenderbotConfig UpperCamelCase = {} UpperCamelCase = """gelu""" def __init__( self :Union[str, Any] , __snake_case :Union[str, Any] , __snake_case :Union[str, Any]=13 , __snake_case :Optional[Any]=7 , __snake_case :Optional[int]=True , __snake_case :Optional[Any]=False , __snake_case :Dict=99 , __snake_case :List[str]=32 , __snake_case :List[str]=2 , __snake_case :List[str]=4 , __snake_case :List[str]=37 , __snake_case :Any=0.1 , __snake_case :List[str]=0.1 , __snake_case :Union[str, Any]=20 , __snake_case :int=2 , __snake_case :Dict=1 , __snake_case :Any=0 , ): '''simple docstring''' __magic_name__ : Dict =parent __magic_name__ : Dict =batch_size __magic_name__ : Dict =seq_length __magic_name__ : Union[str, Any] =is_training __magic_name__ : int =use_labels __magic_name__ : str =vocab_size __magic_name__ : Optional[int] =hidden_size __magic_name__ : List[Any] =num_hidden_layers __magic_name__ : str =num_attention_heads __magic_name__ : Dict =intermediate_size __magic_name__ : int =hidden_dropout_prob __magic_name__ : Tuple =attention_probs_dropout_prob __magic_name__ : Union[str, Any] =max_position_embeddings __magic_name__ : int =eos_token_id __magic_name__ : Optional[int] =pad_token_id __magic_name__ : Optional[Any] =bos_token_id def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : int =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __magic_name__ : Tuple =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __magic_name__ : Tuple =tf.concat([input_ids, eos_tensor] , axis=1 ) __magic_name__ : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Dict =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __magic_name__ : List[str] =prepare_blenderbot_inputs_dict(__snake_case , __snake_case , __snake_case ) return config, inputs_dict def A__ ( self :List[str] , __snake_case :Optional[Any] , __snake_case :Dict ): '''simple docstring''' __magic_name__ : List[str] =TFBlenderbotModel(config=__snake_case ).get_decoder() __magic_name__ : Union[str, Any] =inputs_dict["""input_ids"""] __magic_name__ : Any =input_ids[:1, :] __magic_name__ : List[str] =inputs_dict["""attention_mask"""][:1, :] __magic_name__ : Dict =inputs_dict["""head_mask"""] __magic_name__ : Optional[Any] =1 # first forward pass __magic_name__ : Tuple =model(__snake_case , attention_mask=__snake_case , head_mask=__snake_case , use_cache=__snake_case ) __magic_name__ , __magic_name__ : List[str] =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __magic_name__ : Any =ids_tensor((self.batch_size, 3) , config.vocab_size ) __magic_name__ : int =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __magic_name__ : Any =tf.concat([input_ids, next_tokens] , axis=-1 ) __magic_name__ : Optional[Any] =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __magic_name__ : Optional[int] =model(__snake_case , attention_mask=__snake_case )[0] __magic_name__ : Dict =model(__snake_case , attention_mask=__snake_case , past_key_values=__snake_case )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __magic_name__ : Union[str, Any] =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __magic_name__ : Any =output_from_no_past[:, -3:, random_slice_idx] __magic_name__ : Union[str, Any] =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__snake_case , __snake_case , rtol=1E-3 ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ): if attention_mask is None: __magic_name__ : Optional[int] =tf.cast(tf.math.not_equal(lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __magic_name__ : List[Any] =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __magic_name__ : Optional[Any] =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __magic_name__ : Tuple =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __magic_name__ : Any =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () UpperCamelCase = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () UpperCamelCase = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : str =TFBlenderbotModelTester(self ) __magic_name__ : Dict =ConfigTester(self , config_class=__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__snake_case ) @require_tokenizers @require_tf class __A ( unittest.TestCase ): UpperCamelCase = ["""My friends are cool but they eat too many carbs."""] UpperCamelCase = """facebook/blenderbot-400M-distill""" @cached_property def A__ ( self :List[str] ): '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Tuple =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : int =self.tokenizer(self.src_text , return_tensors="""tf""" ) __magic_name__ : Optional[int] =self.model.generate( model_inputs.input_ids , ) __magic_name__ : Union[str, Any] =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__snake_case )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
21
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __A ( UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = 1 @register_to_config def __init__( self :Any , __snake_case :Tuple=20_00 , __snake_case :Optional[Any]=0.1 , __snake_case :Any=20 , __snake_case :Optional[int]=1E-3 ): '''simple docstring''' __magic_name__ : Dict =None __magic_name__ : List[str] =None __magic_name__ : str =None def A__ ( self :Dict , __snake_case :Optional[int] , __snake_case :Union[str, torch.device] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] =torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case ) def A__ ( self :List[str] , __snake_case :List[str] , __snake_case :int , __snake_case :int , __snake_case :List[str]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __magic_name__ : int =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __magic_name__ : Optional[int] =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __magic_name__ : str =std.flatten() while len(std.shape ) < len(score.shape ): __magic_name__ : List[str] =std.unsqueeze(-1 ) __magic_name__ : Union[str, Any] =-score / std # compute __magic_name__ : Tuple =-1.0 / len(self.timesteps ) __magic_name__ : int =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __magic_name__ : Dict =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __magic_name__ : Any =beta_t.unsqueeze(-1 ) __magic_name__ : Dict =-0.5 * beta_t * x __magic_name__ : Optional[int] =torch.sqrt(__snake_case ) __magic_name__ : int =drift - diffusion**2 * score __magic_name__ : List[str] =x + drift * dt # add noise __magic_name__ : Optional[int] =randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype ) __magic_name__ : Optional[Any] =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self :List[Any] ): '''simple docstring''' return self.config.num_train_timesteps
21
1
import os from typing import Dict, List, Tuple, TypeVar, Union UpperCAmelCase_ : str = TypeVar("T") UpperCAmelCase_ : Optional[int] = Union[List[T], Tuple[T, ...]] UpperCAmelCase_ : Dict = Union[T, List[T], Dict[str, T]] UpperCAmelCase_ : Any = Union[str, bytes, os.PathLike]
21
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCAmelCase_ : Dict = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__( self :List[str] , __snake_case :int , __snake_case :int , __snake_case :float , **__snake_case :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =feature_size __magic_name__ : Union[str, Any] =sampling_rate __magic_name__ : List[Any] =padding_value __magic_name__ : List[str] =kwargs.pop("""padding_side""" , """right""" ) __magic_name__ : Tuple =kwargs.pop("""return_attention_mask""" , __snake_case ) super().__init__(**__snake_case ) def A__ ( self :Any , __snake_case :Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __snake_case :Union[bool, str, PaddingStrategy] = True , __snake_case :Optional[int] = None , __snake_case :bool = False , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[Union[str, TensorType]] = None , ): '''simple docstring''' if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __magic_name__ : Union[str, Any] ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) __magic_name__ : int =processed_features[self.model_input_names[0]] __magic_name__ : Union[str, Any] =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__snake_case ) == 0: if return_attention_mask: __magic_name__ : List[str] =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __magic_name__ : Optional[int] =required_input[0] if isinstance(__snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __magic_name__ : Optional[Any] =0 while len(required_input[index] ) == 0: index += 1 if index < len(__snake_case ): __magic_name__ : List[str] =required_input[index][0] if return_tensors is None: if is_tf_tensor(__snake_case ): __magic_name__ : int ="""tf""" elif is_torch_tensor(__snake_case ): __magic_name__ : str ="""pt""" elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ): __magic_name__ : List[Any] ="""np""" else: raise ValueError( f"type of {first_element} unknown: {type(__snake_case )}. " """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __magic_name__ : List[str] =to_numpy(__snake_case ) else: __magic_name__ : str =[to_numpy(__snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy __magic_name__ : Dict =self._get_padding_strategies(padding=__snake_case , max_length=__snake_case ) __magic_name__ : Optional[Any] =processed_features[self.model_input_names[0]] __magic_name__ : Dict =len(__snake_case ) if not all(len(__snake_case ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) __magic_name__ : Optional[int] =[] for i in range(__snake_case ): __magic_name__ : Any ={k: v[i] for k, v in processed_features.items()} # truncation __magic_name__ : List[str] =self._truncate( __snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) truncated_inputs.append(__snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __magic_name__ : Optional[int] =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __magic_name__ : Tuple =PaddingStrategy.MAX_LENGTH __magic_name__ : str ={} for i in range(__snake_case ): # padding __magic_name__ : List[str] =self._pad( truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: __magic_name__ : Dict =[] if value.dtype is np.dtype(np.floataa ): __magic_name__ : Optional[int] =value.astype(np.floataa ) batch_outputs[key].append(__snake_case ) return BatchFeature(__snake_case , tensor_type=__snake_case ) def A__ ( self :Any , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' __magic_name__ : Dict =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __magic_name__ : Any =len(__snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : Dict =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : List[Any] =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __magic_name__ : int =np.ones(len(__snake_case ) , dtype=np.intaa ) if needs_to_be_padded: __magic_name__ : List[Any] =max_length - len(__snake_case ) if self.padding_side == "right": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (0, difference) ) __magic_name__ : Tuple =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __magic_name__ : str =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (difference, 0) ) __magic_name__ : Optional[int] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __magic_name__ : List[Any] =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def A__ ( self :Optional[Any] , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) __magic_name__ : Union[str, Any] =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : List[str] =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : Any =len(__snake_case ) > max_length if needs_to_be_truncated: __magic_name__ : List[Any] =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __magic_name__ : List[str] =processed_features["""attention_mask"""][:max_length] return processed_features def A__ ( self :List[Any] , __snake_case :str=False , __snake_case :Optional[int]=None ): '''simple docstring''' if padding is not False: if padding is True: __magic_name__ : Union[str, Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__snake_case , __snake_case ): __magic_name__ : Optional[int] =PaddingStrategy(__snake_case ) elif isinstance(__snake_case , __snake_case ): __magic_name__ : Any =padding else: __magic_name__ : Any =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
21
1
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets UpperCAmelCase_ : List[Any] = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" UpperCAmelCase_ : int = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" UpperCAmelCase_ : Union[str, Any] = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def lowerCAmelCase_ ( lowerCamelCase ): def remove_articles(lowerCamelCase ): __magic_name__ : Optional[Any] =re.compile(R"""\b(a|an|the)\b""" , re.UNICODE ) return re.sub(lowerCamelCase , """ """ , lowerCamelCase ) def white_space_fix(lowerCamelCase ): return " ".join(text.split() ) def remove_punc(lowerCamelCase ): __magic_name__ : int =set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCamelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase ) ) ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return int(normalize_answer(lowerCamelCase ) == normalize_answer(lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : int =[any(compute_exact(lowerCamelCase , lowerCamelCase ) for ref in refs ) for pred, refs in zip(lowerCamelCase , lowerCamelCase )] return (sum(lowerCamelCase ) / len(lowerCamelCase )) * 100 def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Any =[rgram for rgrams in rgramslist for rgram in rgrams] __magic_name__ : Optional[Any] =Counter(lowerCamelCase ) __magic_name__ : Optional[int] =Counter(lowerCamelCase ) __magic_name__ : List[str] =Counter() for sgram, scount in sgramcounter.items(): __magic_name__ : Optional[Any] =scount * numref __magic_name__ : List[str] =Counter(lowerCamelCase ) __magic_name__ : List[Any] =Counter() for cgram, ccount in cgramcounter.items(): __magic_name__ : Optional[Any] =ccount * numref # KEEP __magic_name__ : List[Any] =sgramcounter_rep & cgramcounter_rep __magic_name__ : Tuple =keepgramcounter_rep & rgramcounter __magic_name__ : List[str] =sgramcounter_rep & rgramcounter __magic_name__ : Optional[Any] =0 __magic_name__ : Union[str, Any] =0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __magic_name__ : str =1 __magic_name__ : Dict =1 if len(lowerCamelCase ) > 0: __magic_name__ : List[Any] =keeptmpscorea / len(lowerCamelCase ) if len(lowerCamelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) __magic_name__ : List[str] =keeptmpscorea / sum(keepgramcounterall_rep.values() ) __magic_name__ : List[str] =0 if keepscore_precision > 0 or keepscore_recall > 0: __magic_name__ : List[Any] =2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION __magic_name__ : Optional[int] =sgramcounter_rep - cgramcounter_rep __magic_name__ : str =delgramcounter_rep - rgramcounter __magic_name__ : str =sgramcounter_rep - rgramcounter __magic_name__ : List[str] =0 __magic_name__ : str =0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __magic_name__ : Dict =1 if len(lowerCamelCase ) > 0: __magic_name__ : Union[str, Any] =deltmpscorea / len(lowerCamelCase ) # ADDITION __magic_name__ : List[str] =set(lowerCamelCase ) - set(lowerCamelCase ) __magic_name__ : Optional[int] =set(lowerCamelCase ) & set(lowerCamelCase ) __magic_name__ : Dict =set(lowerCamelCase ) - set(lowerCamelCase ) __magic_name__ : Any =0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __magic_name__ : str =1 __magic_name__ : str =1 if len(lowerCamelCase ) > 0: __magic_name__ : Optional[Any] =addtmpscore / len(lowerCamelCase ) if len(lowerCamelCase ) > 0: __magic_name__ : Any =addtmpscore / len(lowerCamelCase ) __magic_name__ : Optional[int] =0 if addscore_precision > 0 or addscore_recall > 0: __magic_name__ : int =2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : List[str] =len(lowerCamelCase ) __magic_name__ : Optional[Any] =ssent.split(""" """ ) __magic_name__ : int =csent.split(""" """ ) __magic_name__ : Any =[] __magic_name__ : Any =[] __magic_name__ : List[str] =[] __magic_name__ : Any =[] __magic_name__ : List[str] =[] __magic_name__ : Optional[int] =[] __magic_name__ : Optional[Any] =[] __magic_name__ : Any =[] __magic_name__ : Optional[int] =[] __magic_name__ : Any =[] for rsent in rsents: __magic_name__ : Any =rsent.split(""" """ ) __magic_name__ : Tuple =[] __magic_name__ : Dict =[] __magic_name__ : List[str] =[] ragramslist.append(lowerCamelCase ) for i in range(0 , len(lowerCamelCase ) - 1 ): if i < len(lowerCamelCase ) - 1: __magic_name__ : int =ragrams[i] + """ """ + ragrams[i + 1] ragrams.append(lowerCamelCase ) if i < len(lowerCamelCase ) - 2: __magic_name__ : Dict =ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] ragrams.append(lowerCamelCase ) if i < len(lowerCamelCase ) - 3: __magic_name__ : int =ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] + """ """ + ragrams[i + 3] ragrams.append(lowerCamelCase ) ragramslist.append(lowerCamelCase ) ragramslist.append(lowerCamelCase ) ragramslist.append(lowerCamelCase ) for i in range(0 , len(lowerCamelCase ) - 1 ): if i < len(lowerCamelCase ) - 1: __magic_name__ : List[str] =sagrams[i] + """ """ + sagrams[i + 1] sagrams.append(lowerCamelCase ) if i < len(lowerCamelCase ) - 2: __magic_name__ : Any =sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] sagrams.append(lowerCamelCase ) if i < len(lowerCamelCase ) - 3: __magic_name__ : Union[str, Any] =sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] + """ """ + sagrams[i + 3] sagrams.append(lowerCamelCase ) for i in range(0 , len(lowerCamelCase ) - 1 ): if i < len(lowerCamelCase ) - 1: __magic_name__ : List[str] =cagrams[i] + """ """ + cagrams[i + 1] cagrams.append(lowerCamelCase ) if i < len(lowerCamelCase ) - 2: __magic_name__ : List[str] =cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] cagrams.append(lowerCamelCase ) if i < len(lowerCamelCase ) - 3: __magic_name__ : List[Any] =cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] + """ """ + cagrams[i + 3] cagrams.append(lowerCamelCase ) ((__magic_name__) , (__magic_name__) , (__magic_name__)) : Any =SARIngram(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ((__magic_name__) , (__magic_name__) , (__magic_name__)) : List[str] =SARIngram(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ((__magic_name__) , (__magic_name__) , (__magic_name__)) : Tuple =SARIngram(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ((__magic_name__) , (__magic_name__) , (__magic_name__)) : Union[str, Any] =SARIngram(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __magic_name__ : Any =sum([keepascore, keepascore, keepascore, keepascore] ) / 4 __magic_name__ : Tuple =sum([delascore, delascore, delascore, delascore] ) / 4 __magic_name__ : Dict =sum([addascore, addascore, addascore, addascore] ) / 4 __magic_name__ : int =(avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = True , lowerCamelCase = "13a" , lowerCamelCase = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: __magic_name__ : Optional[Any] =sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: __magic_name__ : Union[str, Any] =sacrebleu.metrics.bleu._get_tokenizer(lowerCamelCase )()(lowerCamelCase ) else: __magic_name__ : List[Any] =sacrebleu.TOKENIZERS[tokenizer]()(lowerCamelCase ) elif tokenizer == "moses": __magic_name__ : Dict =sacremoses.MosesTokenizer().tokenize(lowerCamelCase , return_str=lowerCamelCase , escape=lowerCamelCase ) elif tokenizer == "penn": __magic_name__ : Any =sacremoses.MosesTokenizer().penn_tokenize(lowerCamelCase , return_str=lowerCamelCase ) else: __magic_name__ : Tuple =sentence if not return_str: __magic_name__ : Optional[Any] =normalized_sent.split() return normalized_sent def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): if not (len(lowerCamelCase ) == len(lowerCamelCase ) == len(lowerCamelCase )): raise ValueError("""Sources length must match predictions and references lengths.""" ) __magic_name__ : List[Any] =0 for src, pred, refs in zip(lowerCamelCase , lowerCamelCase , lowerCamelCase ): sari_score += SARIsent(normalize(lowerCamelCase ) , normalize(lowerCamelCase ) , [normalize(lowerCamelCase ) for sent in refs] ) __magic_name__ : Any =sari_score / len(lowerCamelCase ) return 100 * sari_score def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase="exp" , lowerCamelCase=None , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=False , ): __magic_name__ : Tuple =len(references[0] ) if any(len(lowerCamelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) __magic_name__ : int =[[refs[i] for refs in references] for i in range(lowerCamelCase )] __magic_name__ : Any =sacrebleu.corpus_bleu( lowerCamelCase , lowerCamelCase , smooth_method=lowerCamelCase , smooth_value=lowerCamelCase , force=lowerCamelCase , lowercase=lowerCamelCase , use_effective_order=lowerCamelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def A__ ( self :Tuple ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=[ """https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py""", """https://github.com/cocoxu/simplification/blob/master/SARI.py""", """https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py""", """https://github.com/mjpost/sacreBLEU""", ] , reference_urls=[ """https://www.aclweb.org/anthology/Q16-1029.pdf""", """https://github.com/mjpost/sacreBLEU""", """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def A__ ( self :List[str] , __snake_case :str , __snake_case :Dict , __snake_case :Any ): '''simple docstring''' __magic_name__ : Optional[Any] ={} result.update({"""sari""": compute_sari(sources=__snake_case , predictions=__snake_case , references=__snake_case )} ) result.update({"""sacrebleu""": compute_sacrebleu(predictions=__snake_case , references=__snake_case )} ) result.update({"""exact""": compute_em(predictions=__snake_case , references=__snake_case )} ) return result
21
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): def __init__( self :List[Any] ): '''simple docstring''' super().__init__() __magic_name__ : Tuple =nn.Linear(3 , 4 ) __magic_name__ : Union[str, Any] =nn.BatchNormad(4 ) __magic_name__ : List[str] =nn.Linear(4 , 5 ) def A__ ( self :Dict , __snake_case :Tuple ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) ) class __A ( UpperCamelCase__ ): def A__ ( self :Any , __snake_case :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Any ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __A ( UpperCamelCase__ ): def A__ ( self :List[str] , __snake_case :Tuple , __snake_case :Union[str, Any] ): '''simple docstring''' return output + 1 class __A ( unittest.TestCase ): def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : Tuple =ModelHook() add_hook_to_module(__snake_case , __snake_case ) self.assertEqual(test_model._hf_hook , __snake_case ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : List[str] =ModelHook() add_hook_to_module(__snake_case , __snake_case ) add_hook_to_module(__snake_case , __snake_case , append=__snake_case ) self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() __magic_name__ : Any =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(x + 1 ) __magic_name__ : Optional[Any] =test_model(x + 2 ) __magic_name__ : int =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : int =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : str =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : List[str] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Optional[Any] =SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) assert torch.allclose(__snake_case , __snake_case , atol=1E-5 ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() __magic_name__ : Dict =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(__snake_case ) __magic_name__ : Dict =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Optional[int] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Union[str, Any] =SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) assert torch.allclose(__snake_case , output + 2 , atol=1E-5 ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Tuple =ModelForTest() __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Dict =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __magic_name__ : Any =True __magic_name__ : Any =test_model(__snake_case ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[Any] =model(__snake_case ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) ) __magic_name__ : int =torch.randn(2 , 3 ).to(0 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , torch.device(0 ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : int =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : int ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[int] =torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : Union[str, Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __magic_name__ : Tuple ={ """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Tuple =torch.randn(2 , 3 ) __magic_name__ : int =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : str =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Optional[int] =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Dict =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : List[str] =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Any =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
21
1
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class __A ( UpperCamelCase__ ): UpperCamelCase = """autoformer""" UpperCamelCase = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self :List[Any] , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :str = "student_t" , __snake_case :str = "nll" , __snake_case :int = 1 , __snake_case :List[int] = [1, 2, 3, 4, 5, 6, 7] , __snake_case :bool = True , __snake_case :int = 0 , __snake_case :int = 0 , __snake_case :int = 0 , __snake_case :int = 0 , __snake_case :Optional[List[int]] = None , __snake_case :Optional[List[int]] = None , __snake_case :int = 64 , __snake_case :int = 2 , __snake_case :int = 2 , __snake_case :int = 2 , __snake_case :int = 2 , __snake_case :int = 32 , __snake_case :int = 32 , __snake_case :str = "gelu" , __snake_case :float = 0.1 , __snake_case :float = 0.1 , __snake_case :float = 0.1 , __snake_case :float = 0.1 , __snake_case :float = 0.1 , __snake_case :int = 1_00 , __snake_case :float = 0.02 , __snake_case :bool = True , __snake_case :List[Any]=True , __snake_case :int = 10 , __snake_case :int = 25 , __snake_case :int = 3 , **__snake_case :int , ): '''simple docstring''' __magic_name__ : Tuple =prediction_length __magic_name__ : Any =context_length if context_length is not None else prediction_length __magic_name__ : Union[str, Any] =distribution_output __magic_name__ : int =loss __magic_name__ : Dict =input_size __magic_name__ : int =num_time_features __magic_name__ : List[Any] =lags_sequence __magic_name__ : Optional[int] =scaling __magic_name__ : Optional[int] =num_dynamic_real_features __magic_name__ : str =num_static_real_features __magic_name__ : Optional[Any] =num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__snake_case ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) __magic_name__ : List[Any] =cardinality else: __magic_name__ : Optional[int] =[0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__snake_case ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) __magic_name__ : Any =embedding_dimension else: __magic_name__ : List[str] =[min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __magic_name__ : Any =num_parallel_samples # Transformer architecture configuration __magic_name__ : Union[str, Any] =input_size * len(self.lags_sequence ) + self._number_of_features __magic_name__ : str =d_model __magic_name__ : Optional[int] =encoder_attention_heads __magic_name__ : Tuple =decoder_attention_heads __magic_name__ : int =encoder_ffn_dim __magic_name__ : List[str] =decoder_ffn_dim __magic_name__ : List[Any] =encoder_layers __magic_name__ : Dict =decoder_layers __magic_name__ : str =dropout __magic_name__ : str =attention_dropout __magic_name__ : Optional[int] =activation_dropout __magic_name__ : int =encoder_layerdrop __magic_name__ : Optional[int] =decoder_layerdrop __magic_name__ : List[str] =activation_function __magic_name__ : str =init_std __magic_name__ : Optional[int] =use_cache # Autoformer __magic_name__ : Any =label_length __magic_name__ : Tuple =moving_average __magic_name__ : Dict =autocorrelation_factor super().__init__(is_encoder_decoder=__snake_case , **__snake_case ) @property def A__ ( self :List[Any] ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
21
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = KandinskyInpaintPipeline UpperCamelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCamelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCamelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase = False @property def A__ ( self :Union[str, Any] ): '''simple docstring''' return 32 @property def A__ ( self :Optional[Any] ): '''simple docstring''' return 32 @property def A__ ( self :List[Any] ): '''simple docstring''' return self.time_input_dim @property def A__ ( self :Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def A__ ( self :List[Any] ): '''simple docstring''' return 1_00 @property def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Dict =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self :str ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : str =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __magic_name__ : Tuple =MultilingualCLIP(__snake_case ) __magic_name__ : Optional[int] =text_encoder.eval() return text_encoder @property def A__ ( self :Dict ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Optional[Any] ={ """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __magic_name__ : Union[str, Any] =UNetaDConditionModel(**__snake_case ) return model @property def A__ ( self :List[str] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self :Tuple ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Dict =VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[str] =self.dummy_text_encoder __magic_name__ : Optional[Any] =self.dummy_tokenizer __magic_name__ : Optional[Any] =self.dummy_unet __magic_name__ : Tuple =self.dummy_movq __magic_name__ : List[str] =DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , ) __magic_name__ : str ={ """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self :str , __snake_case :Optional[Any] , __snake_case :int=0 ): '''simple docstring''' __magic_name__ : Union[str, Any] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : Dict =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case ) # create init_image __magic_name__ : str =floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : int =image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ : str =Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask __magic_name__ : Dict =np.ones((64, 64) , dtype=np.floataa ) __magic_name__ : Any =0 if str(__snake_case ).startswith("""mps""" ): __magic_name__ : Dict =torch.manual_seed(__snake_case ) else: __magic_name__ : Tuple =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__ : List[Any] ={ """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Tuple ="""cpu""" __magic_name__ : List[Any] =self.get_dummy_components() __magic_name__ : Union[str, Any] =self.pipeline_class(**__snake_case ) __magic_name__ : Tuple =pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Tuple =pipe(**self.get_dummy_inputs(__snake_case ) ) __magic_name__ : List[Any] =output.images __magic_name__ : Any =pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] __magic_name__ : int =image[0, -3:, -3:, -1] __magic_name__ : str =image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) __magic_name__ : Optional[Any] =np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def A__ ( self :Dict ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def A__ ( self :List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : List[str] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) __magic_name__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __magic_name__ : List[Any] =np.ones((7_68, 7_68) , dtype=np.floataa ) __magic_name__ : Any =0 __magic_name__ : int ="""a hat""" __magic_name__ : int =KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) __magic_name__ : Dict =KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) __magic_name__ : int =pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Union[str, Any] =torch.Generator(device="""cpu""" ).manual_seed(0 ) __magic_name__ , __magic_name__ : Dict =pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __magic_name__ : Optional[Any] =pipeline( __snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) __magic_name__ : Optional[int] =output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
21
1
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase_ : Optional[Any] = logging.getLogger(__name__) UpperCAmelCase_ : Union[str, Any] = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase_ : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __A : UpperCamelCase = field( default=UpperCamelCase__ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCamelCase__ )} , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) UpperCamelCase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def A__ ( self :Union[str, Any] ): '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can't be used in combination with --config_name or --model_name_or_path""" ) @dataclass class __A : UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCamelCase = field(default=UpperCamelCase__ , metadata={"""help""": """The input training data file (a text file)."""} ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) UpperCamelCase = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) UpperCamelCase = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def A__ ( self :Optional[int] ): '''simple docstring''' if self.train_file is not None: __magic_name__ : Dict =self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __magic_name__ : Union[str, Any] =self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): with open(lowerCamelCase , """r""" , encoding="""utf-8""" ) as f: __magic_name__ : Any =[json.loads(lowerCamelCase ) for line in f.read().splitlines() if (len(lowerCamelCase ) > 0 and not line.isspace())] assert len(lowerCamelCase ) == len(lowerCamelCase ) __magic_name__ : Optional[Any] ={c: dataset[c] for c in dataset.column_names} __magic_name__ : List[str] =refs return Dataset.from_dict(lowerCamelCase ) def lowerCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __magic_name__ : str =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __magic_name__ , __magic_name__ , __magic_name__ : int =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =parser.parse_args_into_dataclasses() # Detecting last checkpoint. __magic_name__ : List[str] =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __magic_name__ : Optional[int] =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __magic_name__ : Union[str, Any] =load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): __magic_name__ : int =load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) __magic_name__ : Optional[Any] =load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: __magic_name__ : str ={} if data_args.train_file is not None: __magic_name__ : List[Any] =data_args.train_file if data_args.validation_file is not None: __magic_name__ : str =data_args.validation_file __magic_name__ : List[Any] =data_args.train_file.split(""".""" )[-1] if extension == "txt": __magic_name__ : List[str] ="""text""" __magic_name__ : Optional[Any] =load_dataset(lowerCamelCase , data_files=lowerCamelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __magic_name__ : List[Any] ={ """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: __magic_name__ : Tuple =AutoConfig.from_pretrained(model_args.config_name , **lowerCamelCase ) elif model_args.model_name_or_path: __magic_name__ : int =AutoConfig.from_pretrained(model_args.model_name_or_path , **lowerCamelCase ) else: __magic_name__ : Any =CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) __magic_name__ : Any ={ """cache_dir""": model_args.cache_dir, """use_fast""": model_args.use_fast_tokenizer, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __magic_name__ : List[str] =AutoTokenizer.from_pretrained(model_args.tokenizer_name , **lowerCamelCase ) elif model_args.model_name_or_path: __magic_name__ : Dict =AutoTokenizer.from_pretrained(model_args.model_name_or_path , **lowerCamelCase ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: __magic_name__ : List[str] =AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) __magic_name__ : List[str] =AutoModelForMaskedLM.from_config(lowerCamelCase ) model.resize_token_embeddings(len(lowerCamelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __magic_name__ : Union[str, Any] =datasets["""train"""].column_names else: __magic_name__ : List[str] =datasets["""validation"""].column_names __magic_name__ : Optional[Any] ="""text""" if """text""" in column_names else column_names[0] __magic_name__ : Union[str, Any] ="""max_length""" if data_args.pad_to_max_length else False def tokenize_function(lowerCamelCase ): # Remove empty lines __magic_name__ : Tuple =[line for line in examples["""text"""] if len(lowerCamelCase ) > 0 and not line.isspace()] return tokenizer(examples["""text"""] , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=data_args.max_seq_length ) __magic_name__ : List[Any] =datasets.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: __magic_name__ : str =add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: __magic_name__ : List[Any] =add_chinese_references( tokenized_datasets["""validation"""] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __magic_name__ : str =data_args.train_ref_file or data_args.validation_ref_file if has_ref: __magic_name__ : Optional[Any] =False # Data collator # This one will take care of randomly masking the tokens. __magic_name__ : Any =DataCollatorForWholeWordMask(tokenizer=lowerCamelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __magic_name__ : Tuple =Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: __magic_name__ : str =last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __magic_name__ : Union[str, Any] =model_args.model_name_or_path else: __magic_name__ : int =None __magic_name__ : Dict =trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __magic_name__ : List[str] =os.path.join(training_args.output_dir , """train_results.txt""" ) if trainer.is_world_process_zero(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # Evaluation __magic_name__ : Dict ={} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __magic_name__ : Tuple =trainer.evaluate() __magic_name__ : Optional[int] =math.exp(eval_output["""eval_loss"""] ) __magic_name__ : List[Any] =perplexity __magic_name__ : Optional[int] =os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def lowerCAmelCase_ ( lowerCamelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
21
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __A : def __init__( self :int , __snake_case :List[Any] , __snake_case :List[Any]=2 , __snake_case :Dict=True , __snake_case :Tuple=False , __snake_case :List[str]=10 , __snake_case :List[str]=3 , __snake_case :Union[str, Any]=32 * 8 , __snake_case :Optional[int]=32 * 8 , __snake_case :Any=4 , __snake_case :Union[str, Any]=64 , ): '''simple docstring''' __magic_name__ : Optional[int] =parent __magic_name__ : List[Any] =batch_size __magic_name__ : List[str] =is_training __magic_name__ : List[str] =use_auxiliary_loss __magic_name__ : Union[str, Any] =num_queries __magic_name__ : str =num_channels __magic_name__ : Union[str, Any] =min_size __magic_name__ : Union[str, Any] =max_size __magic_name__ : Optional[int] =num_labels __magic_name__ : Tuple =hidden_dim __magic_name__ : Any =hidden_dim def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __snake_case ) __magic_name__ : List[Any] =torch.ones([self.batch_size, self.min_size, self.max_size] , device=__snake_case ) __magic_name__ : List[str] =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__snake_case ) > 0.5 ).float() __magic_name__ : Union[str, Any] =(torch.rand((self.batch_size, self.num_labels) , device=__snake_case ) > 0.5).long() __magic_name__ : str =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Dict =MaskaFormerConfig( hidden_size=self.hidden_dim , ) __magic_name__ : str =self.num_queries __magic_name__ : Dict =self.num_labels __magic_name__ : int =[1, 1, 1, 1] __magic_name__ : List[str] =self.num_channels __magic_name__ : str =64 __magic_name__ : List[str] =1_28 __magic_name__ : Optional[Any] =self.hidden_dim __magic_name__ : Tuple =self.hidden_dim __magic_name__ : Optional[int] =self.hidden_dim return config def A__ ( self :Any ): '''simple docstring''' __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple =self.prepare_config_and_inputs() __magic_name__ : Optional[Any] ={"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def A__ ( self :Union[str, Any] , __snake_case :Tuple , __snake_case :Dict ): '''simple docstring''' __magic_name__ : int =output.encoder_hidden_states __magic_name__ : List[str] =output.pixel_decoder_hidden_states __magic_name__ : int =output.transformer_decoder_hidden_states self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , config.decoder_layers ) def A__ ( self :List[Any] , __snake_case :Optional[Any] , __snake_case :int , __snake_case :str , __snake_case :str=False ): '''simple docstring''' with torch.no_grad(): __magic_name__ : List[str] =MaskaFormerModel(config=__snake_case ) model.to(__snake_case ) model.eval() __magic_name__ : Union[str, Any] =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : int =model(__snake_case , output_hidden_states=__snake_case ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__snake_case , __snake_case ) def A__ ( self :Optional[Any] , __snake_case :List[str] , __snake_case :List[Any] , __snake_case :int , __snake_case :Any , __snake_case :Union[str, Any] ): '''simple docstring''' __magic_name__ : str =MaskaFormerForUniversalSegmentation(config=__snake_case ) model.to(__snake_case ) model.eval() def comm_check_on_output(__snake_case :List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __magic_name__ : int =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : List[str] =model(__snake_case ) comm_check_on_output(__snake_case ) __magic_name__ : Any =model( pixel_values=__snake_case , pixel_mask=__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) comm_check_on_output(__snake_case ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCamelCase = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def A__ ( self :str ): '''simple docstring''' __magic_name__ : Any =MaskaFormerModelTester(self ) __magic_name__ : Union[str, Any] =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def A__ ( self :Dict ): '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__snake_case ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def A__ ( self :List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def A__ ( self :Dict ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def A__ ( self :Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def A__ ( self :int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def A__ ( self :Tuple ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A__ ( self :Union[str, Any] ): '''simple docstring''' pass def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Tuple =model_class(__snake_case ) __magic_name__ : Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple =[*signature.parameters.keys()] __magic_name__ : Optional[Any] =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) @slow def A__ ( self :Tuple ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __magic_name__ : int =MaskaFormerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =(self.model_tester.min_size,) * 2 __magic_name__ : Union[str, Any] ={ """pixel_values""": torch.randn((2, 3, *size) , device=__snake_case ), """mask_labels""": torch.randn((2, 10, *size) , device=__snake_case ), """class_labels""": torch.zeros(2 , 10 , device=__snake_case ).long(), } __magic_name__ : Optional[Any] =self.model_tester.get_config() __magic_name__ : Dict =MaskaFormerForUniversalSegmentation(__snake_case ).to(__snake_case ) __magic_name__ : Any =model(**__snake_case ) self.assertTrue(outputs.loss is not None ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ , __magic_name__ : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] =model_class(__snake_case ).to(__snake_case ) __magic_name__ : Optional[int] =model(**__snake_case , output_attentions=__snake_case ) self.assertTrue(outputs.attentions is not None ) def A__ ( self :int ): '''simple docstring''' if not self.model_tester.is_training: return __magic_name__ : List[Any] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Dict =model_class(__snake_case ) model.to(__snake_case ) model.train() __magic_name__ : Optional[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ).loss loss.backward() def A__ ( self :int ): '''simple docstring''' __magic_name__ : List[str] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Tuple =True __magic_name__ : Optional[int] =True __magic_name__ : int =model_class(__snake_case ).to(__snake_case ) model.train() __magic_name__ : List[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) __magic_name__ : Optional[int] =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __magic_name__ : Optional[int] =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__snake_case ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase_ : Dict = 1e-4 def lowerCAmelCase_ ( ): __magic_name__ : Dict =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __A ( unittest.TestCase ): @cached_property def A__ ( self :int ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def A__ ( self :int ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__snake_case ) __magic_name__ : int =self.default_image_processor __magic_name__ : List[Any] =prepare_img() __magic_name__ : Any =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Dict =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : List[str] =model(**__snake_case ) __magic_name__ : Any =torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Dict =torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Any =torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Optional[int] =self.default_image_processor __magic_name__ : Tuple =prepare_img() __magic_name__ : List[Any] =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Union[str, Any] =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : str =model(**__snake_case ) # masks_queries_logits __magic_name__ : List[Any] =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __magic_name__ : List[Any] =[ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __magic_name__ : Dict =torch.tensor(__snake_case ).to(__snake_case ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) # class_queries_logits __magic_name__ : Any =outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __magic_name__ : int =torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Any =self.default_image_processor __magic_name__ : Union[str, Any] =image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , ) __magic_name__ : str =inputs["""pixel_values"""].to(__snake_case ) __magic_name__ : Tuple =[el.to(__snake_case ) for el in inputs["""mask_labels"""]] __magic_name__ : Union[str, Any] =[el.to(__snake_case ) for el in inputs["""class_labels"""]] with torch.no_grad(): __magic_name__ : Dict =model(**__snake_case ) self.assertTrue(outputs.loss is not None )
21
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): UpperCamelCase = ["""input_features""", """is_longer"""] def __init__( self :Dict , __snake_case :Union[str, Any]=64 , __snake_case :Optional[Any]=4_80_00 , __snake_case :Union[str, Any]=4_80 , __snake_case :int=10 , __snake_case :Union[str, Any]=10_24 , __snake_case :Optional[Any]=0.0 , __snake_case :Union[str, Any]=False , __snake_case :float = 0 , __snake_case :float = 1_40_00 , __snake_case :int = None , __snake_case :str = "fusion" , __snake_case :str = "repeatpad" , **__snake_case :List[str] , ): '''simple docstring''' super().__init__( feature_size=__snake_case , sampling_rate=__snake_case , padding_value=__snake_case , return_attention_mask=__snake_case , **__snake_case , ) __magic_name__ : Tuple =top_db __magic_name__ : List[str] =truncation __magic_name__ : Tuple =padding __magic_name__ : List[str] =fft_window_size __magic_name__ : Dict =(fft_window_size >> 1) + 1 __magic_name__ : Any =hop_length __magic_name__ : Optional[Any] =max_length_s __magic_name__ : List[Any] =max_length_s * sampling_rate __magic_name__ : Dict =sampling_rate __magic_name__ : int =frequency_min __magic_name__ : int =frequency_max __magic_name__ : Dict =mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__snake_case , min_frequency=__snake_case , max_frequency=__snake_case , sampling_rate=__snake_case , norm=__snake_case , mel_scale="""htk""" , ) __magic_name__ : List[Any] =mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__snake_case , min_frequency=__snake_case , max_frequency=__snake_case , sampling_rate=__snake_case , norm="""slaney""" , mel_scale="""slaney""" , ) def A__ ( self :int ): '''simple docstring''' __magic_name__ : Optional[int] =copy.deepcopy(self.__dict__ ) __magic_name__ : Union[str, Any] =self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def A__ ( self :Union[str, Any] , __snake_case :np.array , __snake_case :Optional[np.array] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] =spectrogram( __snake_case , window_function(self.fft_window_size , """hann""" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=__snake_case , log_mel="""dB""" , ) return log_mel_spectrogram.T def A__ ( self :str , __snake_case :int , __snake_case :Optional[Any] , __snake_case :List[Any] ): '''simple docstring''' __magic_name__ : str =np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk __magic_name__ : int =[0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk __magic_name__ : Dict =[0] # randomly choose index for each part __magic_name__ : Tuple =np.random.choice(ranges[0] ) __magic_name__ : int =np.random.choice(ranges[1] ) __magic_name__ : Optional[int] =np.random.choice(ranges[2] ) __magic_name__ : int =mel[idx_front : idx_front + chunk_frames, :] __magic_name__ : List[Any] =mel[idx_middle : idx_middle + chunk_frames, :] __magic_name__ : List[str] =mel[idx_back : idx_back + chunk_frames, :] __magic_name__ : Dict =torch.tensor(mel[None, None, :] ) __magic_name__ : List[str] =torch.nn.functional.interpolate( __snake_case , size=[chunk_frames, 64] , mode="""bilinear""" , align_corners=__snake_case ) __magic_name__ : Dict =mel_shrink[0][0].numpy() __magic_name__ : Optional[Any] =np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def A__ ( self :str , __snake_case :np.array , __snake_case :Any , __snake_case :Union[str, Any] , __snake_case :Tuple ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": __magic_name__ : Dict =True # random crop to max_length (for compatibility) -> this should be handled by self.pad __magic_name__ : Any =len(__snake_case ) - max_length __magic_name__ : Any =np.random.randint(0 , overflow + 1 ) __magic_name__ : Union[str, Any] =waveform[idx : idx + max_length] __magic_name__ : Any =self._np_extract_fbank_features(__snake_case , self.mel_filters_slaney )[None, :] elif truncation == "fusion": __magic_name__ : Any =self._np_extract_fbank_features(__snake_case , self.mel_filters ) __magic_name__ : Dict =max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __magic_name__ : Union[str, Any] =mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __magic_name__ : List[Any] =np.stack([mel, mel, mel, mel] , axis=0 ) __magic_name__ : int =False else: __magic_name__ : Any =self._random_mel_fusion(__snake_case , __snake_case , __snake_case ) __magic_name__ : List[str] =True else: raise NotImplementedError(f"data_truncating {truncation} not implemented" ) else: __magic_name__ : Dict =False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __magic_name__ : List[Any] =int(max_length / len(__snake_case ) ) __magic_name__ : List[str] =np.stack(np.tile(__snake_case , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": __magic_name__ : str =int(max_length / len(__snake_case ) ) __magic_name__ : List[str] =np.stack(np.tile(__snake_case , __snake_case ) ) __magic_name__ : Optional[Any] =np.pad(__snake_case , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0 ) if truncation == "fusion": __magic_name__ : Any =self._np_extract_fbank_features(__snake_case , self.mel_filters ) __magic_name__ : Tuple =np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: __magic_name__ : Optional[Any] =self._np_extract_fbank_features(__snake_case , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self :Optional[Any] , __snake_case :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __snake_case :str = None , __snake_case :Optional[str] = None , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :Optional[Union[str, TensorType]] = None , **__snake_case :List[Any] , ): '''simple docstring''' __magic_name__ : Any =truncation if truncation is not None else self.truncation __magic_name__ : str =padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" f" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __magic_name__ : Tuple =isinstance(__snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) __magic_name__ : List[Any] =is_batched_numpy or ( isinstance(__snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __magic_name__ : Optional[Any] =[np.asarray(__snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__snake_case , np.ndarray ): __magic_name__ : Optional[int] =np.asarray(__snake_case , dtype=np.floataa ) elif isinstance(__snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __magic_name__ : Any =raw_speech.astype(np.floataa ) # always return batch if not is_batched: __magic_name__ : Tuple =[np.asarray(__snake_case )] # convert to mel spectrogram, truncate and pad if needed. __magic_name__ : List[Any] =[ self._get_input_mel(__snake_case , max_length if max_length else self.nb_max_samples , __snake_case , __snake_case ) for waveform in raw_speech ] __magic_name__ : Optional[int] =[] __magic_name__ : str =[] for mel, longer in padded_inputs: input_mel.append(__snake_case ) is_longer.append(__snake_case ) if truncation == "fusion" and sum(__snake_case ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __magic_name__ : List[Any] =np.random.randint(0 , len(__snake_case ) ) __magic_name__ : List[str] =True if isinstance(input_mel[0] , __snake_case ): __magic_name__ : Dict =[np.asarray(__snake_case , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool __magic_name__ : Tuple =[[longer] for longer in is_longer] __magic_name__ : Tuple ={"""input_features""": input_mel, """is_longer""": is_longer} __magic_name__ : str =BatchFeature(__snake_case ) if return_tensors is not None: __magic_name__ : Union[str, Any] =input_features.convert_to_tensors(__snake_case ) return input_features
21
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __A ( UpperCamelCase__ ): UpperCamelCase = """segformer""" def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ): '''simple docstring''' super().__init__(**__snake_case ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , ) __magic_name__ : Dict =num_channels __magic_name__ : str =num_encoder_blocks __magic_name__ : List[Any] =depths __magic_name__ : Optional[Any] =sr_ratios __magic_name__ : List[str] =hidden_sizes __magic_name__ : List[str] =patch_sizes __magic_name__ : Any =strides __magic_name__ : Optional[Any] =mlp_ratios __magic_name__ : str =num_attention_heads __magic_name__ : int =hidden_act __magic_name__ : List[Any] =hidden_dropout_prob __magic_name__ : Optional[Any] =attention_probs_dropout_prob __magic_name__ : Optional[Any] =classifier_dropout_prob __magic_name__ : List[str] =initializer_range __magic_name__ : List[str] =drop_path_rate __magic_name__ : List[Any] =layer_norm_eps __magic_name__ : List[str] =decoder_hidden_size __magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case ) __magic_name__ : Dict =semantic_loss_ignore_index class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.11""" ) @property def A__ ( self :List[str] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self :Any ): '''simple docstring''' return 1E-4 @property def A__ ( self :int ): '''simple docstring''' return 12
21
1
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def lowerCAmelCase_ ( lowerCamelCase ): return (data["data"], data["target"]) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : Optional[Any] =XGBClassifier() classifier.fit(lowerCamelCase , lowerCamelCase ) return classifier def lowerCAmelCase_ ( ): __magic_name__ : Dict =load_iris() __magic_name__ , __magic_name__ : Union[str, Any] =data_handling(lowerCamelCase ) __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =train_test_split( lowerCamelCase , lowerCamelCase , test_size=0.2_5 ) __magic_name__ : Any =iris["""target_names"""] # Create an XGBoost Classifier from the training data __magic_name__ : Union[str, Any] =xgboost(lowerCamelCase , lowerCamelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowerCamelCase , lowerCamelCase , lowerCamelCase , display_labels=lowerCamelCase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
21
import heapq def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase , [-1 * len(lowerCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices __magic_name__ : Tuple =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __magic_name__ : Tuple =heapq.heappop(lowerCamelCase )[1][0] chosen_vertices.add(lowerCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __magic_name__ : Tuple =elem[1][1].index(lowerCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
21
1
from scipy.stats import spearmanr import datasets UpperCAmelCase_ : Optional[Any] = "\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n" UpperCAmelCase_ : Tuple = "\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {'spearmanr': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results['spearmanr'])\n -0.7\n >>> print(round(results['spearmanr_pvalue'], 2))\n 0.19\n" UpperCAmelCase_ : List[Any] = R"\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def A__ ( self :Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def A__ ( self :Union[str, Any] , __snake_case :str , __snake_case :Optional[int] , __snake_case :str=False ): '''simple docstring''' __magic_name__ : Any =spearmanr(__snake_case , __snake_case ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
21
UpperCAmelCase_ : int = range(2, 20 + 1) UpperCAmelCase_ : Tuple = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =sum(a_i[j] for j in range(lowerCamelCase , len(lowerCamelCase ) ) ) __magic_name__ : Any =sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase ) , lowerCamelCase ) ) ) __magic_name__ , __magic_name__ : Tuple =0, 0 __magic_name__ : Optional[Any] =n - i __magic_name__ : Union[str, Any] =memo.get(lowerCamelCase ) if sub_memo is not None: __magic_name__ : int =sub_memo.get(lowerCamelCase ) if jumps is not None and len(lowerCamelCase ) > 0: # find and make the largest jump without going over __magic_name__ : Dict =-1 for _k in range(len(lowerCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __magic_name__ : Optional[Any] =_k break if max_jump >= 0: __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =jumps[max_jump] # since the difference between jumps is cached, add c __magic_name__ : Tuple =diff + c for j in range(min(lowerCamelCase , len(lowerCamelCase ) ) ): __magic_name__ , __magic_name__ : Tuple =divmod(lowerCamelCase , 10 ) if new_c > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __magic_name__ : str =[] else: __magic_name__ : List[str] ={c: []} __magic_name__ : List[str] =sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __magic_name__ , __magic_name__ : Union[str, Any] =next_term(lowerCamelCase , k - 1 , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __magic_name__ , __magic_name__ : Optional[int] =compute(lowerCamelCase , lowerCamelCase , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped __magic_name__ : Tuple =sub_memo[c] # keep jumps sorted by # of terms skipped __magic_name__ : List[Any] =0 while j < len(lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase , (diff, dn, k) ) return (diff, dn) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if i >= n: return 0, i if k > len(lowerCamelCase ): a_i.extend([0 for _ in range(k - len(lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __magic_name__ : Tuple =i __magic_name__ , __magic_name__ , __magic_name__ : Tuple =0, 0, 0 for j in range(len(lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __magic_name__ : Optional[Any] =ds_c + ds_b diff += addend __magic_name__ : str =0 for j in range(lowerCamelCase ): __magic_name__ : int =a_i[j] + addend __magic_name__ , __magic_name__ : Any =divmod(lowerCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return diff, i - start_i def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for j in range(lowerCamelCase , len(lowerCamelCase ) ): __magic_name__ : Tuple =digits[j] + addend if s >= 10: __magic_name__ , __magic_name__ : int =divmod(lowerCamelCase , 10 ) __magic_name__ : int =addend // 10 + quotient else: __magic_name__ : Dict =s __magic_name__ : Any =addend // 10 if addend == 0: break while addend > 0: __magic_name__ , __magic_name__ : Union[str, Any] =divmod(lowerCamelCase , 10 ) digits.append(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase = 10**15 ): __magic_name__ : List[str] =[1] __magic_name__ : str =1 __magic_name__ : str =0 while True: __magic_name__ , __magic_name__ : List[str] =next_term(lowerCamelCase , 20 , i + dn , lowerCamelCase ) dn += terms_jumped if dn == n - i: break __magic_name__ : int =0 for j in range(len(lowerCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
21
1
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Tuple =[False] * len(lowerCamelCase ) __magic_name__ : Any =[-1] * len(lowerCamelCase ) def dfs(lowerCamelCase , lowerCamelCase ): __magic_name__ : str =True __magic_name__ : Optional[int] =c for u in graph[v]: if not visited[u]: dfs(lowerCamelCase , 1 - c ) for i in range(len(lowerCamelCase ) ): if not visited[i]: dfs(lowerCamelCase , 0 ) for i in range(len(lowerCamelCase ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph UpperCAmelCase_ : List[str] = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
21
from typing import List from .keymap import KEYMAP, get_character def lowerCAmelCase_ ( lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : str =getattr(lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator def lowerCAmelCase_ ( *lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : Dict =getattr(lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator class __A ( UpperCamelCase__ ): def __new__( cls :Dict , __snake_case :Optional[Any] , __snake_case :Union[str, Any] , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : int =super().__new__(cls , __snake_case , __snake_case , __snake_case ) if not hasattr(__snake_case , """key_handler""" ): setattr(__snake_case , """key_handler""" , {} ) setattr(__snake_case , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __magic_name__ : int =getattr(__snake_case , """handle_key""" , [] ) for key in handled_keys: __magic_name__ : List[str] =value return new_cls @staticmethod def A__ ( cls :Optional[int] ): '''simple docstring''' __magic_name__ : Union[str, Any] =get_character() if char != KEYMAP["undefined"]: __magic_name__ : Optional[int] =ord(__snake_case ) __magic_name__ : int =cls.key_handler.get(__snake_case ) if handler: __magic_name__ : Dict =char return handler(cls ) else: return None def lowerCAmelCase_ ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
21
1
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase_ : List[str] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } UpperCAmelCase_ : int = {"allegro/herbert-base-cased": 514} UpperCAmelCase_ : int = {} class __A ( UpperCamelCase__ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_INIT_CONFIGURATION UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = HerbertTokenizer def __init__( self :int , __snake_case :Any=None , __snake_case :str=None , __snake_case :Any=None , __snake_case :Any="<s>" , __snake_case :List[Any]="<unk>" , __snake_case :str="<pad>" , __snake_case :List[str]="<mask>" , __snake_case :Tuple="</s>" , **__snake_case :Union[str, Any] , ): '''simple docstring''' super().__init__( __snake_case , __snake_case , tokenizer_file=__snake_case , cls_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sep_token=__snake_case , **__snake_case , ) def A__ ( self :str , __snake_case :List[int] , __snake_case :Optional[List[int]] = None ): '''simple docstring''' __magic_name__ : Optional[Any] =[self.cls_token_id] __magic_name__ : Optional[Any] =[self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self :Optional[int] , __snake_case :List[int] , __snake_case :Optional[List[int]] = None , __snake_case :bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1] def A__ ( self :List[str] , __snake_case :List[int] , __snake_case :Optional[List[int]] = None ): '''simple docstring''' __magic_name__ : Optional[Any] =[self.sep_token_id] __magic_name__ : Tuple =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self :Union[str, Any] , __snake_case :str , __snake_case :Optional[str] = None ): '''simple docstring''' __magic_name__ : List[Any] =self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case )
21
import os import jsonlines import numpy as np from tqdm import tqdm UpperCAmelCase_ : Dict = 2048 UpperCAmelCase_ : int = 4096 UpperCAmelCase_ : Any = 42 UpperCAmelCase_ : Optional[int] = os.environ.pop("PROCESS_TRAIN", "false") UpperCAmelCase_ : str = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def lowerCAmelCase_ ( lowerCamelCase ): def choose_first(lowerCamelCase , lowerCamelCase=False ): assert isinstance(lowerCamelCase , lowerCamelCase ) if len(lowerCamelCase ) == 1: __magic_name__ : List[str] =answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __magic_name__ : Tuple ={k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a __magic_name__ : str ={"""id""": example["""id"""]} __magic_name__ : List[Any] =example["""annotations"""] __magic_name__ : List[str] =annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: __magic_name__ : Optional[int] =["""yes"""] if 1 in yes_no_answer else ["""no"""] __magic_name__ : List[str] =[] __magic_name__ : Dict =[] __magic_name__ : str =["""<cls>"""] else: __magic_name__ : Tuple =["""short"""] __magic_name__ : Optional[int] =choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available __magic_name__ : Tuple =["""long"""] __magic_name__ : Tuple =choose_first(annotation["""long_answer"""] , is_long_answer=lowerCamelCase ) __magic_name__ : List[Any] =[] answer.update(lowerCamelCase ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: __magic_name__ : Any =True else: __magic_name__ : List[str] =False __magic_name__ : int =["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , lowerCamelCase ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =_get_single_answer(lowerCamelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : Any =example["""document"""]["""tokens"""] __magic_name__ : str =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __magic_name__ : Dict =["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __magic_name__ : Tuple =example["""document"""]["""tokens"""] __magic_name__ : Optional[int] =answer["""start_token"""] __magic_name__ : List[Any] =answer["""end_token"""] __magic_name__ : Optional[Any] =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __magic_name__ : Optional[int] =""" """.join(context[start_token:end_token] ) # checking above code if assertion: __magic_name__ : List[str] =doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : str =doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : Dict =""" """.join([old[i] for i in range(len(lowerCamelCase ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , lowerCamelCase , end="""\n""" ) print("""Old:""" , lowerCamelCase , end="""\n\n""" ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=True ): # overlap will be of doc_stride - q_len __magic_name__ : Any =get_context_and_ans(lowerCamelCase , assertion=lowerCamelCase ) __magic_name__ : Union[str, Any] =out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __magic_name__ : List[Any] =tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids __magic_name__ : Dict =input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : List[str] =[] __magic_name__ : int =[] __magic_name__ : List[str] =input_ids[:q_len] __magic_name__ : Dict =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Tuple =input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(lowerCamelCase ), "end_token": [-100] * len(lowerCamelCase ), "category": category, }, } __magic_name__ : int =out["""context"""].split() __magic_name__ : Any =splitted_context[answer["""end_token"""]] __magic_name__ : str =len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=lowerCamelCase , ).input_ids ) __magic_name__ : Optional[int] =len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=lowerCamelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __magic_name__ : Union[str, Any] =len(tokenizer(lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __magic_name__ : str =input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive __magic_name__ : Dict =answer["""start_token"""] __magic_name__ : int =answer["""end_token"""] if assertion: __magic_name__ : Any =tokenizer.decode(lowerCamelCase ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , lowerCamelCase , end="""\n\n""" ) if len(lowerCamelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __magic_name__ : Any =input_ids[:q_len] __magic_name__ : Union[str, Any] =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) __magic_name__ : Any =[] __magic_name__ : List[str] =[] __magic_name__ : List[str] =[] __magic_name__ : str =[] # null, yes, no, long, short for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Dict =input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __magic_name__ : List[Any] =start_token - i + q_len __magic_name__ : Optional[Any] =end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: __magic_name__ : Optional[Any] =-100 __magic_name__ : Optional[Any] =-100 answers_category.append("""null""" ) __magic_name__ : Optional[int] =inputs[-1][start_token : end_token + 1] answers_start_token.append(lowerCamelCase ) answers_end_token.append(lowerCamelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(lowerCamelCase ) ) print("""Old:""" , tokenizer.decode(lowerCamelCase ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=False ): __magic_name__ : List[Any] =get_strided_contexts_and_ans( lowerCamelCase , lowerCamelCase , doc_stride=lowerCamelCase , max_length=lowerCamelCase , assertion=lowerCamelCase , ) return example def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): with jsonlines.open(lowerCamelCase , """a""" ) as writer: for example in tqdm(lowerCamelCase , total=len(lowerCamelCase ) , desc="""Saving samples ... """ ): __magic_name__ : int =example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer UpperCAmelCase_ : Optional[int] = load_dataset("natural_questions") UpperCAmelCase_ : Optional[int] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") UpperCAmelCase_ : str = data["train" if PROCESS_TRAIN == "true" else "validation"] UpperCAmelCase_ : Optional[int] = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } UpperCAmelCase_ : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs) UpperCAmelCase_ : Optional[Any] = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) UpperCAmelCase_ : int = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
21
1
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration UpperCAmelCase_ : List[str] = 500000 UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = os.path.split(__file__) UpperCAmelCase_ : Any = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def lowerCAmelCase_ ( lowerCamelCase , **lowerCamelCase ): __magic_name__ : Tuple =dataset.map(**lowerCamelCase ) @get_duration def lowerCAmelCase_ ( lowerCamelCase , **lowerCamelCase ): __magic_name__ : List[str] =dataset.filter(**lowerCamelCase ) def lowerCAmelCase_ ( ): __magic_name__ : Optional[int] ={"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : str =datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) __magic_name__ : str =generate_example_dataset( os.path.join(lowerCamelCase , """dataset.arrow""" ) , lowerCamelCase , num_examples=lowerCamelCase ) __magic_name__ : Dict =transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=lowerCamelCase ) def tokenize(lowerCamelCase ): return tokenizer(examples["""text"""] ) __magic_name__ : Union[str, Any] =map(lowerCamelCase ) __magic_name__ : List[Any] =map(lowerCamelCase , batched=lowerCamelCase ) __magic_name__ : Optional[int] =map(lowerCamelCase , function=lambda lowerCamelCase : None , batched=lowerCamelCase ) with dataset.formatted_as(type="""numpy""" ): __magic_name__ : Optional[Any] =map(lowerCamelCase , function=lambda lowerCamelCase : None , batched=lowerCamelCase ) with dataset.formatted_as(type="""pandas""" ): __magic_name__ : int =map(lowerCamelCase , function=lambda lowerCamelCase : None , batched=lowerCamelCase ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): __magic_name__ : List[Any] =map(lowerCamelCase , function=lambda lowerCamelCase : None , batched=lowerCamelCase ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): __magic_name__ : Optional[Any] =map(lowerCamelCase , function=lambda lowerCamelCase : None , batched=lowerCamelCase ) __magic_name__ : Optional[Any] =map(lowerCamelCase , function=lowerCamelCase , batched=lowerCamelCase ) __magic_name__ : Optional[int] =filter(lowerCamelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase , """wb""" ) as f: f.write(json.dumps(lowerCamelCase ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
21
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __A ( UpperCamelCase__ ): UpperCamelCase = """xlm-roberta-xl""" def __init__( self :Dict , __snake_case :Optional[Any]=25_08_80 , __snake_case :List[Any]=25_60 , __snake_case :Optional[Any]=36 , __snake_case :Any=32 , __snake_case :int=1_02_40 , __snake_case :List[Any]="gelu" , __snake_case :Union[str, Any]=0.1 , __snake_case :Optional[Any]=0.1 , __snake_case :str=5_14 , __snake_case :Union[str, Any]=1 , __snake_case :Optional[int]=0.02 , __snake_case :str=1E-05 , __snake_case :str=1 , __snake_case :int=0 , __snake_case :Tuple=2 , __snake_case :Optional[int]="absolute" , __snake_case :str=True , __snake_case :Any=None , **__snake_case :Dict , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __magic_name__ : List[str] =vocab_size __magic_name__ : List[str] =hidden_size __magic_name__ : Union[str, Any] =num_hidden_layers __magic_name__ : Any =num_attention_heads __magic_name__ : Any =hidden_act __magic_name__ : List[str] =intermediate_size __magic_name__ : Any =hidden_dropout_prob __magic_name__ : Union[str, Any] =attention_probs_dropout_prob __magic_name__ : Any =max_position_embeddings __magic_name__ : Any =type_vocab_size __magic_name__ : List[str] =initializer_range __magic_name__ : Optional[int] =layer_norm_eps __magic_name__ : Dict =position_embedding_type __magic_name__ : Any =use_cache __magic_name__ : Dict =classifier_dropout class __A ( UpperCamelCase__ ): @property def A__ ( self :Dict ): '''simple docstring''' if self.task == "multiple-choice": __magic_name__ : str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: __magic_name__ : Optional[Any] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
21
1
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __A ( unittest.TestCase ): def __init__( self :Optional[int] , __snake_case :Dict , __snake_case :Union[str, Any]=13 , __snake_case :Dict=7 , __snake_case :Dict=True , __snake_case :Dict=True , __snake_case :Union[str, Any]=True , __snake_case :Any=True , __snake_case :List[Any]=99 , __snake_case :Dict=32 , __snake_case :Union[str, Any]=5 , __snake_case :List[Any]=4 , __snake_case :Optional[Any]=37 , __snake_case :List[str]="gelu" , __snake_case :str=0.1 , __snake_case :Tuple=0.1 , __snake_case :Optional[Any]=5_12 , __snake_case :Union[str, Any]=16 , __snake_case :Optional[Any]=2 , __snake_case :Optional[int]=0.02 , __snake_case :Optional[int]=4 , ): '''simple docstring''' __magic_name__ : str =parent __magic_name__ : Optional[int] =batch_size __magic_name__ : List[Any] =seq_length __magic_name__ : List[str] =is_training __magic_name__ : List[Any] =use_attention_mask __magic_name__ : List[str] =use_token_type_ids __magic_name__ : Any =use_labels __magic_name__ : List[str] =vocab_size __magic_name__ : List[str] =hidden_size __magic_name__ : Tuple =num_hidden_layers __magic_name__ : Optional[Any] =num_attention_heads __magic_name__ : Tuple =intermediate_size __magic_name__ : Optional[Any] =hidden_act __magic_name__ : Any =hidden_dropout_prob __magic_name__ : List[str] =attention_probs_dropout_prob __magic_name__ : List[str] =max_position_embeddings __magic_name__ : Tuple =type_vocab_size __magic_name__ : Optional[int] =type_sequence_label_size __magic_name__ : Any =initializer_range __magic_name__ : Any =num_choices def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Dict =None if self.use_attention_mask: __magic_name__ : Optional[int] =random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : str =None if self.use_token_type_ids: __magic_name__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : Dict =RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : int =self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Dict =config_and_inputs __magic_name__ : Optional[int] ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Union[str, Any] =self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Dict =config_and_inputs __magic_name__ : int =True __magic_name__ : int =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __magic_name__ : int =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = True UpperCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Optional[int] =FlaxRobertaPreLayerNormModelTester(self ) @slow def A__ ( self :Tuple ): '''simple docstring''' for model_class_name in self.all_model_classes: __magic_name__ : List[str] =model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=__snake_case ) __magic_name__ : Any =model(np.ones((1, 1) ) ) self.assertIsNotNone(__snake_case ) @require_flax class __A ( unittest.TestCase ): @slow def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : List[Any] =FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=__snake_case ) __magic_name__ : int =np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) __magic_name__ : Optional[int] =model(__snake_case )[0] __magic_name__ : str =[1, 11, 5_02_65] self.assertEqual(list(output.shape ) , __snake_case ) # compare the actual values for a slice. __magic_name__ : List[Any] =np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Optional[int] =FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=__snake_case ) __magic_name__ : int =np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) __magic_name__ : List[Any] =model(__snake_case )[0] # compare the actual values for a slice. __magic_name__ : List[Any] =np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) )
21
from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase_ ( lowerCamelCase="ro" , lowerCamelCase="en" , lowerCamelCase="wmt16" , lowerCamelCase=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) __magic_name__ : Dict =F"{src_lang}-{tgt_lang}" print(F"Converting {dataset}-{pair}" ) __magic_name__ : Dict =datasets.load_dataset(lowerCamelCase , lowerCamelCase ) if save_dir is None: __magic_name__ : Optional[int] =F"{dataset}-{pair}" __magic_name__ : int =Path(lowerCamelCase ) save_dir.mkdir(exist_ok=lowerCamelCase ) for split in ds.keys(): print(F"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets __magic_name__ : Dict ="""val""" if split == """validation""" else split __magic_name__ : List[Any] =save_dir.joinpath(F"{fn}.source" ) __magic_name__ : Optional[int] =save_dir.joinpath(F"{fn}.target" ) __magic_name__ : Optional[Any] =src_path.open("""w+""" ) __magic_name__ : List[Any] =tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __magic_name__ : str =x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
21
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Union[str, Any] = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __A ( UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = """swin""" UpperCamelCase = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :List[Any] , __snake_case :Optional[int]=2_24 , __snake_case :str=4 , __snake_case :Tuple=3 , __snake_case :Any=96 , __snake_case :Any=[2, 2, 6, 2] , __snake_case :Union[str, Any]=[3, 6, 12, 24] , __snake_case :Optional[int]=7 , __snake_case :str=4.0 , __snake_case :Optional[Any]=True , __snake_case :Any=0.0 , __snake_case :int=0.0 , __snake_case :int=0.1 , __snake_case :Optional[int]="gelu" , __snake_case :Any=False , __snake_case :Union[str, Any]=0.02 , __snake_case :Dict=1E-5 , __snake_case :Dict=32 , __snake_case :Any=None , __snake_case :List[str]=None , **__snake_case :Union[str, Any] , ): '''simple docstring''' super().__init__(**__snake_case ) __magic_name__ : List[Any] =image_size __magic_name__ : Dict =patch_size __magic_name__ : Tuple =num_channels __magic_name__ : Union[str, Any] =embed_dim __magic_name__ : Union[str, Any] =depths __magic_name__ : Optional[int] =len(__snake_case ) __magic_name__ : Any =num_heads __magic_name__ : List[str] =window_size __magic_name__ : List[Any] =mlp_ratio __magic_name__ : Optional[int] =qkv_bias __magic_name__ : Dict =hidden_dropout_prob __magic_name__ : str =attention_probs_dropout_prob __magic_name__ : List[Any] =drop_path_rate __magic_name__ : Tuple =hidden_act __magic_name__ : Tuple =use_absolute_embeddings __magic_name__ : int =layer_norm_eps __magic_name__ : Optional[int] =initializer_range __magic_name__ : List[Any] =encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __magic_name__ : Union[str, Any] =int(embed_dim * 2 ** (len(__snake_case ) - 1) ) __magic_name__ : Tuple =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__snake_case ) + 1 )] __magic_name__ , __magic_name__ : Tuple =get_aligned_output_features_output_indices( out_features=__snake_case , out_indices=__snake_case , stage_names=self.stage_names ) class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.11""" ) @property def A__ ( self :Optional[Any] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self :List[Any] ): '''simple docstring''' return 1E-4
21
from __future__ import annotations from fractions import Fraction def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =[] __magic_name__ : List[Any] =11 __magic_name__ : Tuple =int("""1""" + """0""" * digit_len ) for num in range(lowerCamelCase , lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowerCamelCase , lowerCamelCase ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 __magic_name__ : List[str] =10 return solutions def lowerCAmelCase_ ( lowerCamelCase = 2 ): __magic_name__ : str =1.0 for fraction in fraction_list(lowerCamelCase ): __magic_name__ : int =Fraction(lowerCamelCase ) result *= frac.denominator / frac.numerator return int(lowerCamelCase ) if __name__ == "__main__": print(solution())
21
1
def lowerCAmelCase_ ( lowerCamelCase = 10 ): if not isinstance(lowerCamelCase , lowerCamelCase ) or n < 0: raise ValueError("""Invalid input""" ) __magic_name__ : List[Any] =10**n __magic_name__ : List[str] =28433 * (pow(2 , 7830457 , lowerCamelCase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
21
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( lowerCamelCase ): # A local function to see if a dot lands in the circle. def is_in_circle(lowerCamelCase , lowerCamelCase ) -> bool: __magic_name__ : Dict =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __magic_name__ : Union[str, Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. __magic_name__ : List[Any] =proportion * 4 print(F"The estimated value of pi is {pi_estimate}" ) print(F"The numpy value of pi is {pi}" ) print(F"The total error is {abs(pi - pi_estimate )}" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 , ): return mean( function_to_integrate(uniform(lowerCamelCase , lowerCamelCase ) ) for _ in range(lowerCamelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ): def identity_function(lowerCamelCase ) -> float: return x __magic_name__ : Optional[int] =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __magic_name__ : str =(max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {expected_value}" ) print(F"Total error is {abs(estimated_value - expected_value )}" ) print("""******************""" ) def lowerCAmelCase_ ( lowerCamelCase ): def function_to_integrate(lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) __magic_name__ : Dict =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {pi}" ) print(F"Total error is {abs(estimated_value - pi )}" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __A ( UpperCamelCase__ ): UpperCamelCase = (PNDMScheduler,) UpperCamelCase = (("""num_inference_steps""", 50),) def A__ ( self :str , **__snake_case :Tuple ): '''simple docstring''' __magic_name__ : int ={ """num_train_timesteps""": 10_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**__snake_case ) return config def A__ ( self :List[Any] , __snake_case :Union[str, Any]=0 , **__snake_case :Optional[int] ): '''simple docstring''' __magic_name__ : Any =dict(self.forward_default_kwargs ) __magic_name__ : str =kwargs.pop("""num_inference_steps""" , __snake_case ) __magic_name__ : int =self.dummy_sample __magic_name__ : Dict =0.1 * sample __magic_name__ : Tuple =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __magic_name__ : Optional[int] =self.get_scheduler_config(**__snake_case ) __magic_name__ : Dict =scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals __magic_name__ : Tuple =dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case ) __magic_name__ : int =scheduler_class.from_pretrained(__snake_case ) new_scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals __magic_name__ : Union[str, Any] =dummy_past_residuals[:] __magic_name__ : int =scheduler.step_prk(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample __magic_name__ : Tuple =new_scheduler.step_prk(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __magic_name__ : Tuple =scheduler.step_plms(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample __magic_name__ : str =new_scheduler.step_plms(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A__ ( self :Tuple ): '''simple docstring''' pass def A__ ( self :Dict , __snake_case :Optional[int]=0 , **__snake_case :List[Any] ): '''simple docstring''' __magic_name__ : List[str] =dict(self.forward_default_kwargs ) __magic_name__ : Optional[int] =kwargs.pop("""num_inference_steps""" , __snake_case ) __magic_name__ : List[Any] =self.dummy_sample __magic_name__ : Optional[Any] =0.1 * sample __magic_name__ : Optional[int] =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __magic_name__ : List[str] =self.get_scheduler_config() __magic_name__ : int =scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals (must be after setting timesteps) __magic_name__ : Union[str, Any] =dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case ) __magic_name__ : Optional[int] =scheduler_class.from_pretrained(__snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(__snake_case ) # copy over dummy past residual (must be after setting timesteps) __magic_name__ : Any =dummy_past_residuals[:] __magic_name__ : List[str] =scheduler.step_prk(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample __magic_name__ : Tuple =new_scheduler.step_prk(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __magic_name__ : Any =scheduler.step_plms(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample __magic_name__ : List[Any] =new_scheduler.step_plms(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A__ ( self :Any , **__snake_case :int ): '''simple docstring''' __magic_name__ : Union[str, Any] =self.scheduler_classes[0] __magic_name__ : Dict =self.get_scheduler_config(**__snake_case ) __magic_name__ : Tuple =scheduler_class(**__snake_case ) __magic_name__ : int =10 __magic_name__ : Tuple =self.dummy_model() __magic_name__ : Dict =self.dummy_sample_deter scheduler.set_timesteps(__snake_case ) for i, t in enumerate(scheduler.prk_timesteps ): __magic_name__ : Optional[int] =model(__snake_case , __snake_case ) __magic_name__ : List[str] =scheduler.step_prk(__snake_case , __snake_case , __snake_case ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): __magic_name__ : Optional[Any] =model(__snake_case , __snake_case ) __magic_name__ : Union[str, Any] =scheduler.step_plms(__snake_case , __snake_case , __snake_case ).prev_sample return sample def A__ ( self :str ): '''simple docstring''' __magic_name__ : Optional[Any] =dict(self.forward_default_kwargs ) __magic_name__ : Tuple =kwargs.pop("""num_inference_steps""" , __snake_case ) for scheduler_class in self.scheduler_classes: __magic_name__ : str =self.get_scheduler_config() __magic_name__ : Dict =scheduler_class(**__snake_case ) __magic_name__ : Optional[int] =self.dummy_sample __magic_name__ : int =0.1 * sample if num_inference_steps is not None and hasattr(__snake_case , """set_timesteps""" ): scheduler.set_timesteps(__snake_case ) elif num_inference_steps is not None and not hasattr(__snake_case , """set_timesteps""" ): __magic_name__ : List[str] =num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __magic_name__ : List[str] =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __magic_name__ : int =dummy_past_residuals[:] __magic_name__ : Union[str, Any] =scheduler.step_prk(__snake_case , 0 , __snake_case , **__snake_case ).prev_sample __magic_name__ : int =scheduler.step_prk(__snake_case , 1 , __snake_case , **__snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __magic_name__ : List[Any] =scheduler.step_plms(__snake_case , 0 , __snake_case , **__snake_case ).prev_sample __magic_name__ : str =scheduler.step_plms(__snake_case , 1 , __snake_case , **__snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A__ ( self :Tuple ): '''simple docstring''' for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=__snake_case ) def A__ ( self :int ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__snake_case ) __magic_name__ : str =self.scheduler_classes[0] __magic_name__ : Tuple =self.get_scheduler_config(steps_offset=1 ) __magic_name__ : Tuple =scheduler_class(**__snake_case ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def A__ ( self :Optional[int] ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=__snake_case , beta_end=__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__snake_case ) def A__ ( self :str ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__snake_case ) def A__ ( self :Tuple ): '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=__snake_case ) def A__ ( self :Optional[Any] ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=__snake_case ) def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : str =27 for scheduler_class in self.scheduler_classes: __magic_name__ : Union[str, Any] =self.dummy_sample __magic_name__ : str =0.1 * sample __magic_name__ : List[str] =self.get_scheduler_config() __magic_name__ : Optional[int] =scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): __magic_name__ : Dict =scheduler.step_prk(__snake_case , __snake_case , __snake_case ).prev_sample def A__ ( self :List[Any] ): '''simple docstring''' with self.assertRaises(__snake_case ): __magic_name__ : List[Any] =self.scheduler_classes[0] __magic_name__ : Optional[Any] =self.get_scheduler_config() __magic_name__ : List[str] =scheduler_class(**__snake_case ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Any =self.full_loop() __magic_name__ : int =torch.sum(torch.abs(__snake_case ) ) __magic_name__ : Optional[Any] =torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : List[Any] =self.full_loop(prediction_type="""v_prediction""" ) __magic_name__ : List[str] =torch.sum(torch.abs(__snake_case ) ) __magic_name__ : List[str] =torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Tuple =self.full_loop(set_alpha_to_one=__snake_case , beta_start=0.01 ) __magic_name__ : Tuple =torch.sum(torch.abs(__snake_case ) ) __magic_name__ : List[Any] =torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Any =self.full_loop(set_alpha_to_one=__snake_case , beta_start=0.01 ) __magic_name__ : Union[str, Any] =torch.sum(torch.abs(__snake_case ) ) __magic_name__ : Any =torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
21
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __A ( tf.keras.layers.Layer ): def __init__( self :Optional[int] , __snake_case :Dict[str, int] , __snake_case :List[str] , __snake_case :int = None , __snake_case :int = None ): '''simple docstring''' super().__init__() __magic_name__ : Optional[int] =pad_token_id __magic_name__ : List[Any] =max_length __magic_name__ : Dict =vocab __magic_name__ : int =merges __magic_name__ : Optional[int] =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case ) @classmethod def A__ ( cls :List[Any] , __snake_case :GPTaTokenizer , *__snake_case :int , **__snake_case :Any ): '''simple docstring''' __magic_name__ : List[Any] =[""" """.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()] __magic_name__ : str =tokenizer.get_vocab() return cls(__snake_case , __snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Dict , __snake_case :Union[str, os.PathLike] , *__snake_case :Union[str, Any] , **__snake_case :int ): '''simple docstring''' __magic_name__ : Dict =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case ) return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Optional[Any] , __snake_case :List[Any] ): '''simple docstring''' return cls(**__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def A__ ( self :List[Any] , __snake_case :Dict , __snake_case :int = None ): '''simple docstring''' __magic_name__ : Optional[Any] =self.tf_tokenizer(__snake_case ) __magic_name__ : Tuple =tf.ones_like(__snake_case ) if self.pad_token_id is not None: # pad the tokens up to max length __magic_name__ : Tuple =max_length if max_length is not None else self.max_length if max_length is not None: __magic_name__ , __magic_name__ : Tuple =pad_model_inputs( __snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
21
1
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCAmelCase_ : List[Any] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : str = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} UpperCAmelCase_ : Tuple = [ { "type": "header", "text": { "type": "plain_text", "text": F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", "emoji": True, }, } ] UpperCAmelCase_ : Optional[Any] = 0 for log in Path().glob("*.log"): UpperCAmelCase_ : Tuple = 0 with open(log, "r") as f: for line in f: UpperCAmelCase_ : Optional[Any] = json.loads(line) if line.get("nodeid", "") != "": UpperCAmelCase_ : List[Any] = line["nodeid"] if line.get("duration", None) is not None: UpperCAmelCase_ : Any = F"""{line["duration"]:.4f}""" if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCAmelCase_ : Optional[Any] = [] log.unlink() UpperCAmelCase_ : List[str] = "" UpperCAmelCase_ : Any = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : List[str] = {} for test in failed_tests: UpperCAmelCase_ : int = test[0].split("::") UpperCAmelCase_ : str = data[0].split("/")[-1] if data[0] not in filesafailed: UpperCAmelCase_ : Tuple = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCAmelCase_ : List[str] = [test[0] for test in failed_table] UpperCAmelCase_ : int = list(set(files)) # Count number of instances in failed_tests UpperCAmelCase_ : int = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCAmelCase_ : List[Any] = tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: UpperCAmelCase_ : str = "Too many failed tests, please see the full report in the Action results." UpperCAmelCase_ : Dict = len(err) + 10 UpperCAmelCase_ : List[Any] = message[: 3000 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: UpperCAmelCase_ : str = "No failed tests! 🤗" print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient UpperCAmelCase_ : str = WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": UpperCAmelCase_ : Tuple = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) UpperCAmelCase_ : Any = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCAmelCase_ : Optional[int] = { "type": "context", "elements": [ { "type": "plain_text", "text": F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCAmelCase_ : Tuple = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) UpperCAmelCase_ : List[Any] = response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCAmelCase_ : List[str] = "" for i, row in enumerate(test_failures): if row[0] != test_class: UpperCAmelCase_ : str = row[0] else: UpperCAmelCase_ : List[Any] = "" UpperCAmelCase_ : Dict = { "type": "section", "text": { "type": "mrkdwn", "text": F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
21
import math import tensorflow as tf from packaging import version def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : List[str] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Optional[Any] =tf.cast(math.pi , x.dtype ) __magic_name__ : int =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Any =tf.convert_to_tensor(lowerCamelCase ) return x * tf.tanh(tf.math.softplus(lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[Any] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Union[str, Any] =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Dict =tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCAmelCase_ ( lowerCamelCase ): return tf.clip_by_value(_gelu(lowerCamelCase ) , -10 , 10 ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=-1 ): __magic_name__ , __magic_name__ : List[Any] =tf.split(lowerCamelCase , 2 , axis=lowerCamelCase ) return a * tf.math.sigmoid(lowerCamelCase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowerCAmelCase_ ( lowerCamelCase ): return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase ) UpperCAmelCase_ : List[str] = tf.keras.activations.gelu UpperCAmelCase_ : Dict = approximate_gelu_wrap else: UpperCAmelCase_ : Dict = _gelu UpperCAmelCase_ : str = _gelu_new UpperCAmelCase_ : Any = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowerCAmelCase_ ( lowerCamelCase ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
21
1
import requests UpperCAmelCase_ : List[str] = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def lowerCAmelCase_ ( lowerCamelCase ): # fetching a list of articles in json format __magic_name__ : List[Any] =requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["""articles"""] , 1 ): print(F"{i}.) {article['title']}" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
21
from collections.abc import Sequence def lowerCAmelCase_ ( lowerCamelCase = None ): if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __magic_name__ : str =nums[0] for i in range(1 , len(lowerCamelCase ) ): __magic_name__ : Any =nums[i] __magic_name__ : Dict =max(lowerCamelCase , ans + num , lowerCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCAmelCase_ : List[str] = int(input("Enter number of elements : ").strip()) UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
21
1
from sklearn.metrics import matthews_corrcoef import datasets UpperCAmelCase_ : Dict = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCAmelCase_ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCAmelCase_ : Dict = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def A__ ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def A__ ( self :Tuple , __snake_case :str , __snake_case :Tuple , __snake_case :List[str]=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ), }
21
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : UpperCamelCase = 42 UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""Translation""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def __call__( self :Union[str, Any] ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def A__ ( self :List[Any] ): '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __A : UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""TranslationVariableLanguages""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =sorted(set(self.languages ) ) if self.languages else None __magic_name__ : Optional[int] =len(self.languages ) if self.languages else None def __call__( self :List[str] ): '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def A__ ( self :str , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[int] =set(self.languages ) if self.languages and set(__snake_case ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __magic_name__ : Any =[] for lang, text in translation_dict.items(): if isinstance(__snake_case , __snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __magic_name__ , __magic_name__ : List[str] =zip(*sorted(__snake_case ) ) return {"language": languages, "translation": translations} def A__ ( self :List[Any] ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
21
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase__ ) class __A ( UpperCamelCase__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization UpperCamelCase = field(default="""text-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) UpperCamelCase = Features({"""text""": Value("""string""" )} ) UpperCamelCase = Features({"""labels""": ClassLabel} ) UpperCamelCase = "text" UpperCamelCase = "labels" def A__ ( self :Any , __snake_case :Tuple ): '''simple docstring''' if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , __snake_case ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) __magic_name__ : Union[str, Any] =copy.deepcopy(self ) __magic_name__ : str =self.label_schema.copy() __magic_name__ : str =features[self.label_column] __magic_name__ : str =label_schema return task_template @property def A__ ( self :Optional[Any] ): '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
21
from sklearn.metrics import matthews_corrcoef import datasets UpperCAmelCase_ : Dict = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCAmelCase_ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCAmelCase_ : Dict = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def A__ ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def A__ ( self :Tuple , __snake_case :str , __snake_case :Tuple , __snake_case :List[str]=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ), }
21
1
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __A ( unittest.TestCase ): @slow def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Union[str, Any] =FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) __magic_name__ : Optional[Any] =AutoTokenizer.from_pretrained("""google/mt5-small""" ) __magic_name__ : List[str] =tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids __magic_name__ : Tuple =tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids __magic_name__ : List[str] =shift_tokens_right(__snake_case , model.config.pad_token_id , model.config.decoder_start_token_id ) __magic_name__ : Tuple =model(__snake_case , decoder_input_ids=__snake_case ).logits __magic_name__ : Union[str, Any] =optax.softmax_cross_entropy(__snake_case , onehot(__snake_case , logits.shape[-1] ) ).mean() __magic_name__ : Union[str, Any] =-(labels.shape[-1] * loss.item()) __magic_name__ : List[Any] =-84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
21
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =OmegaConf.load(lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(lowerCamelCase ) ) ) return config def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): if conf_path is None: __magic_name__ : List[str] ="""./model_checkpoints/vqgan_only.yaml""" __magic_name__ : Dict =load_config(lowerCamelCase , display=lowerCamelCase ) __magic_name__ : Tuple =VQModel(**config.model.params ) if ckpt_path is None: __magic_name__ : Optional[Any] ="""./model_checkpoints/vqgan_only.pt""" __magic_name__ : Tuple =torch.load(lowerCamelCase , map_location=lowerCamelCase ) if ".ckpt" in ckpt_path: __magic_name__ : Any =sd["""state_dict"""] model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) model.to(lowerCamelCase ) del sd return model def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =model.encode(lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) __magic_name__ : List[Any] =model.decode(lowerCamelCase ) return xrec def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ , __magic_name__ : Optional[int] =string.rsplit(""".""" , 1 ) if reload: __magic_name__ : Optional[int] =importlib.import_module(lowerCamelCase ) importlib.reload(lowerCamelCase ) return getattr(importlib.import_module(lowerCamelCase , package=lowerCamelCase ) , cls ) def lowerCAmelCase_ ( lowerCamelCase ): if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True ): __magic_name__ : str =instantiate_from_config(lowerCamelCase ) if sd is not None: model.load_state_dict(lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # load the specified checkpoint if ckpt: __magic_name__ : str =torch.load(lowerCamelCase , map_location="""cpu""" ) __magic_name__ : Any =pl_sd["""global_step"""] print(F"loaded model from global step {global_step}." ) else: __magic_name__ : List[Any] ={"""state_dict""": None} __magic_name__ : Optional[Any] =None __magic_name__ : Tuple =load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=lowerCamelCase , eval_mode=lowerCamelCase )["""model"""] return model, global_step
21
1
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : int =[ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[Any] =list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: __magic_name__ : List[Any] =s_dict.pop(lowerCamelCase ) elif "subsample" in key: __magic_name__ : Any =s_dict.pop(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ , __magic_name__ : Union[str, Any] =emb.weight.shape __magic_name__ : int =nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) __magic_name__ : int =emb.weight.data return lin_layer def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : int =torch.load(lowerCamelCase , map_location="""cpu""" ) __magic_name__ : Optional[Any] =mam_aaa["""args"""] __magic_name__ : List[str] =mam_aaa["""model"""] __magic_name__ : str =state_dict["""decoder.output_projection.weight"""] remove_ignore_keys_(lowerCamelCase ) rename_keys(lowerCamelCase ) __magic_name__ : Tuple =state_dict["""decoder.embed_tokens.weight"""].shape[0] __magic_name__ : int =args.share_decoder_input_output_embed __magic_name__ : List[Any] =[int(lowerCamelCase ) for i in args.conv_kernel_sizes.split(""",""" )] __magic_name__ : Union[str, Any] =SpeechaTextConfig( vocab_size=lowerCamelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , num_conv_layers=len(lowerCamelCase ) , conv_channels=args.conv_channels , conv_kernel_sizes=lowerCamelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=lowerCamelCase , num_beams=5 , max_length=200 , use_cache=lowerCamelCase , decoder_start_token_id=2 , early_stopping=lowerCamelCase , ) __magic_name__ : List[Any] =SpeechaTextForConditionalGeneration(lowerCamelCase ) __magic_name__ , __magic_name__ : Dict =model.model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) if len(lowerCamelCase ) > 0 and not set(lowerCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" F" but all the following weights are missing {missing}" ) if tie_embeds: __magic_name__ : Optional[int] =make_linear_from_emb(model.model.decoder.embed_tokens ) else: __magic_name__ : Tuple =lm_head_weights model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase_ : List[Any] = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
21
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): def A__ ( self :Tuple ): '''simple docstring''' debug_launcher(test_script.main ) def A__ ( self :Dict ): '''simple docstring''' debug_launcher(test_ops.main )
21
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ : int = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys UpperCAmelCase_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
UpperCAmelCase_ : Tuple = 0 # The first color of the flag. UpperCAmelCase_ : Any = 1 # The second color of the flag. UpperCAmelCase_ : str = 2 # The third color of the flag. UpperCAmelCase_ : Tuple = (red, white, blue) def lowerCAmelCase_ ( lowerCamelCase ): if not sequence: return [] if len(lowerCamelCase ) == 1: return list(lowerCamelCase ) __magic_name__ : int =0 __magic_name__ : str =len(lowerCamelCase ) - 1 __magic_name__ : Optional[Any] =0 while mid <= high: if sequence[mid] == colors[0]: __magic_name__ , __magic_name__ : Tuple =sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: __magic_name__ , __magic_name__ : Optional[Any] =sequence[high], sequence[mid] high -= 1 else: __magic_name__ : Optional[int] =F"The elements inside the sequence must contains only {colors} values" raise ValueError(lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[Any] = input("Enter numbers separated by commas:\n").strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
21
1
def lowerCAmelCase_ ( lowerCamelCase ): return "".join([hex(lowerCamelCase )[2:].zfill(2 ).upper() for byte in list(lowerCamelCase )] ) def lowerCAmelCase_ ( lowerCamelCase ): # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCamelCase ) % 2) != 0: raise ValueError( """Base16 encoded data is invalid: Data does not have an even number of hex digits.""" ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCamelCase ) <= set("""0123456789ABCDEF""" ): raise ValueError( """Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.""" ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCamelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __A ( UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = 1 @register_to_config def __init__( self :Any , __snake_case :Tuple=20_00 , __snake_case :Optional[Any]=0.1 , __snake_case :Any=20 , __snake_case :Optional[int]=1E-3 ): '''simple docstring''' __magic_name__ : Dict =None __magic_name__ : List[str] =None __magic_name__ : str =None def A__ ( self :Dict , __snake_case :Optional[int] , __snake_case :Union[str, torch.device] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] =torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case ) def A__ ( self :List[str] , __snake_case :List[str] , __snake_case :int , __snake_case :int , __snake_case :List[str]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __magic_name__ : int =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __magic_name__ : Optional[int] =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __magic_name__ : str =std.flatten() while len(std.shape ) < len(score.shape ): __magic_name__ : List[str] =std.unsqueeze(-1 ) __magic_name__ : Union[str, Any] =-score / std # compute __magic_name__ : Tuple =-1.0 / len(self.timesteps ) __magic_name__ : int =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __magic_name__ : Dict =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __magic_name__ : Any =beta_t.unsqueeze(-1 ) __magic_name__ : Dict =-0.5 * beta_t * x __magic_name__ : Optional[int] =torch.sqrt(__snake_case ) __magic_name__ : int =drift - diffusion**2 * score __magic_name__ : List[str] =x + drift * dt # add noise __magic_name__ : Optional[int] =randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype ) __magic_name__ : Optional[Any] =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self :List[Any] ): '''simple docstring''' return self.config.num_train_timesteps
21
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class __A ( unittest.TestCase ): def A__ ( self :List[str] , __snake_case :List[str] ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): __magic_name__ : str =model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Dict ="""sshleifer/tiny-gpt2""" __magic_name__ : Optional[int] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__snake_case , multi_process=__snake_case , ) __magic_name__ : List[str] =TensorFlowBenchmark(__snake_case ) __magic_name__ : List[Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[int] ="""sgugger/tiny-distilbert-classification""" __magic_name__ : List[str] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , only_pretrain_model=__snake_case , ) __magic_name__ : Dict =TensorFlowBenchmark(__snake_case ) __magic_name__ : List[Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : str ="""sshleifer/tiny-gpt2""" __magic_name__ : List[Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , ) __magic_name__ : int =TensorFlowBenchmark(__snake_case ) __magic_name__ : List[Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : int ="""sshleifer/tiny-gpt2""" __magic_name__ : Optional[int] =AutoConfig.from_pretrained(__snake_case ) __magic_name__ : Optional[int] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__snake_case , multi_process=__snake_case , ) __magic_name__ : str =TensorFlowBenchmark(__snake_case , [config] ) __magic_name__ : List[Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : List[Any] ="""sshleifer/tiny-gpt2""" __magic_name__ : Tuple =AutoConfig.from_pretrained(__snake_case ) __magic_name__ : Dict =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , ) __magic_name__ : Union[str, Any] =TensorFlowBenchmark(__snake_case , [config] ) __magic_name__ : str =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : Optional[int] ="""sshleifer/tiny-gpt2""" __magic_name__ : Optional[int] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , ) __magic_name__ : Optional[Any] =TensorFlowBenchmark(__snake_case ) __magic_name__ : Any =benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] ="""sshleifer/tiny-gpt2""" __magic_name__ : Tuple =AutoConfig.from_pretrained(__snake_case ) __magic_name__ : str =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , ) __magic_name__ : Optional[Any] =TensorFlowBenchmark(__snake_case , [config] ) __magic_name__ : int =benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : List[str] ="""patrickvonplaten/t5-tiny-random""" __magic_name__ : Optional[Any] =AutoConfig.from_pretrained(__snake_case ) __magic_name__ : str =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , ) __magic_name__ : List[Any] =TensorFlowBenchmark(__snake_case , configs=[config] ) __magic_name__ : Union[str, Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , """Cannot do xla on CPU.""" ) def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : List[Any] ="""sshleifer/tiny-gpt2""" __magic_name__ : List[Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__snake_case , multi_process=__snake_case , ) __magic_name__ : List[str] =TensorFlowBenchmark(__snake_case ) __magic_name__ : Optional[Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : int ="""sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Tuple =TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__snake_case , save_to_csv=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__snake_case , """inf_time.csv""" ) , inference_memory_csv_file=os.path.join(__snake_case , """inf_mem.csv""" ) , env_info_csv_file=os.path.join(__snake_case , """env.csv""" ) , multi_process=__snake_case , ) __magic_name__ : Optional[Any] =TensorFlowBenchmark(__snake_case ) benchmark.run() self.assertTrue(Path(os.path.join(__snake_case , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(__snake_case , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(__snake_case , """env.csv""" ) ).exists() ) def A__ ( self :str ): '''simple docstring''' __magic_name__ : int ="""sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(__snake_case :Dict ): self.assertTrue(hasattr(__snake_case , """sequential""" ) ) self.assertTrue(hasattr(__snake_case , """cumulative""" ) ) self.assertTrue(hasattr(__snake_case , """current""" ) ) self.assertTrue(hasattr(__snake_case , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : List[Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__snake_case , """log.txt""" ) , log_print=__snake_case , trace_memory_line_by_line=__snake_case , eager_mode=__snake_case , multi_process=__snake_case , ) __magic_name__ : List[Any] =TensorFlowBenchmark(__snake_case ) __magic_name__ : Optional[int] =benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__snake_case , """log.txt""" ) ).exists() )
21
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCAmelCase_ : Dict = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__( self :List[str] , __snake_case :int , __snake_case :int , __snake_case :float , **__snake_case :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =feature_size __magic_name__ : Union[str, Any] =sampling_rate __magic_name__ : List[Any] =padding_value __magic_name__ : List[str] =kwargs.pop("""padding_side""" , """right""" ) __magic_name__ : Tuple =kwargs.pop("""return_attention_mask""" , __snake_case ) super().__init__(**__snake_case ) def A__ ( self :Any , __snake_case :Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __snake_case :Union[bool, str, PaddingStrategy] = True , __snake_case :Optional[int] = None , __snake_case :bool = False , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[Union[str, TensorType]] = None , ): '''simple docstring''' if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __magic_name__ : Union[str, Any] ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) __magic_name__ : int =processed_features[self.model_input_names[0]] __magic_name__ : Union[str, Any] =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__snake_case ) == 0: if return_attention_mask: __magic_name__ : List[str] =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __magic_name__ : Optional[int] =required_input[0] if isinstance(__snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __magic_name__ : Optional[Any] =0 while len(required_input[index] ) == 0: index += 1 if index < len(__snake_case ): __magic_name__ : List[str] =required_input[index][0] if return_tensors is None: if is_tf_tensor(__snake_case ): __magic_name__ : int ="""tf""" elif is_torch_tensor(__snake_case ): __magic_name__ : str ="""pt""" elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ): __magic_name__ : List[Any] ="""np""" else: raise ValueError( f"type of {first_element} unknown: {type(__snake_case )}. " """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __magic_name__ : List[str] =to_numpy(__snake_case ) else: __magic_name__ : str =[to_numpy(__snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy __magic_name__ : Dict =self._get_padding_strategies(padding=__snake_case , max_length=__snake_case ) __magic_name__ : Optional[Any] =processed_features[self.model_input_names[0]] __magic_name__ : Dict =len(__snake_case ) if not all(len(__snake_case ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) __magic_name__ : Optional[int] =[] for i in range(__snake_case ): __magic_name__ : Any ={k: v[i] for k, v in processed_features.items()} # truncation __magic_name__ : List[str] =self._truncate( __snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) truncated_inputs.append(__snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __magic_name__ : Optional[int] =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __magic_name__ : Tuple =PaddingStrategy.MAX_LENGTH __magic_name__ : str ={} for i in range(__snake_case ): # padding __magic_name__ : List[str] =self._pad( truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: __magic_name__ : Dict =[] if value.dtype is np.dtype(np.floataa ): __magic_name__ : Optional[int] =value.astype(np.floataa ) batch_outputs[key].append(__snake_case ) return BatchFeature(__snake_case , tensor_type=__snake_case ) def A__ ( self :Any , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' __magic_name__ : Dict =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __magic_name__ : Any =len(__snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : Dict =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : List[Any] =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __magic_name__ : int =np.ones(len(__snake_case ) , dtype=np.intaa ) if needs_to_be_padded: __magic_name__ : List[Any] =max_length - len(__snake_case ) if self.padding_side == "right": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (0, difference) ) __magic_name__ : Tuple =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __magic_name__ : str =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (difference, 0) ) __magic_name__ : Optional[int] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __magic_name__ : List[Any] =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def A__ ( self :Optional[Any] , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) __magic_name__ : Union[str, Any] =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : List[str] =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : Any =len(__snake_case ) > max_length if needs_to_be_truncated: __magic_name__ : List[Any] =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __magic_name__ : List[str] =processed_features["""attention_mask"""][:max_length] return processed_features def A__ ( self :List[Any] , __snake_case :str=False , __snake_case :Optional[int]=None ): '''simple docstring''' if padding is not False: if padding is True: __magic_name__ : Union[str, Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__snake_case , __snake_case ): __magic_name__ : Optional[int] =PaddingStrategy(__snake_case ) elif isinstance(__snake_case , __snake_case ): __magic_name__ : Any =padding else: __magic_name__ : Any =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
21
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : Any = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys UpperCAmelCase_ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): def __init__( self :List[Any] ): '''simple docstring''' super().__init__() __magic_name__ : Tuple =nn.Linear(3 , 4 ) __magic_name__ : Union[str, Any] =nn.BatchNormad(4 ) __magic_name__ : List[str] =nn.Linear(4 , 5 ) def A__ ( self :Dict , __snake_case :Tuple ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) ) class __A ( UpperCamelCase__ ): def A__ ( self :Any , __snake_case :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Any ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __A ( UpperCamelCase__ ): def A__ ( self :List[str] , __snake_case :Tuple , __snake_case :Union[str, Any] ): '''simple docstring''' return output + 1 class __A ( unittest.TestCase ): def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : Tuple =ModelHook() add_hook_to_module(__snake_case , __snake_case ) self.assertEqual(test_model._hf_hook , __snake_case ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : List[str] =ModelHook() add_hook_to_module(__snake_case , __snake_case ) add_hook_to_module(__snake_case , __snake_case , append=__snake_case ) self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() __magic_name__ : Any =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(x + 1 ) __magic_name__ : Optional[Any] =test_model(x + 2 ) __magic_name__ : int =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : int =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : str =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : List[str] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Optional[Any] =SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) assert torch.allclose(__snake_case , __snake_case , atol=1E-5 ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() __magic_name__ : Dict =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(__snake_case ) __magic_name__ : Dict =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Optional[int] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Union[str, Any] =SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) assert torch.allclose(__snake_case , output + 2 , atol=1E-5 ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Tuple =ModelForTest() __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Dict =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __magic_name__ : Any =True __magic_name__ : Any =test_model(__snake_case ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[Any] =model(__snake_case ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) ) __magic_name__ : int =torch.randn(2 , 3 ).to(0 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , torch.device(0 ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : int =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : int ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[int] =torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : Union[str, Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __magic_name__ : Tuple ={ """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Tuple =torch.randn(2 , 3 ) __magic_name__ : int =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : str =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Optional[int] =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Dict =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : List[str] =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Any =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
21
1
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __A ( UpperCamelCase__ , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class __A ( unittest.TestCase ): @property def A__ ( self :int ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : int =ort.SessionOptions() __magic_name__ : int =False return options def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Optional[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) __magic_name__ : Any =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) __magic_name__ : Union[str, Any] =OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=__snake_case , feature_extractor=__snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Tuple ="""A red cat sitting on a park bench""" __magic_name__ : int =np.random.RandomState(0 ) __magic_name__ : List[str] =pipe( prompt=__snake_case , image=__snake_case , mask_image=__snake_case , guidance_scale=7.5 , num_inference_steps=10 , generator=__snake_case , output_type="""np""" , ) __magic_name__ : Union[str, Any] =output.images __magic_name__ : str =images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __magic_name__ : Tuple =np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Tuple =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) __magic_name__ : Tuple =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) __magic_name__ : Optional[int] =LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""" ) __magic_name__ : Optional[Any] =OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=__snake_case , safety_checker=__snake_case , feature_extractor=__snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__ : str ="""A red cat sitting on a park bench""" __magic_name__ : Optional[int] =np.random.RandomState(0 ) __magic_name__ : Optional[int] =pipe( prompt=__snake_case , image=__snake_case , mask_image=__snake_case , guidance_scale=7.5 , num_inference_steps=20 , generator=__snake_case , output_type="""np""" , ) __magic_name__ : Union[str, Any] =output.images __magic_name__ : Union[str, Any] =images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __magic_name__ : Any =np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
21
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = KandinskyInpaintPipeline UpperCamelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCamelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCamelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase = False @property def A__ ( self :Union[str, Any] ): '''simple docstring''' return 32 @property def A__ ( self :Optional[Any] ): '''simple docstring''' return 32 @property def A__ ( self :List[Any] ): '''simple docstring''' return self.time_input_dim @property def A__ ( self :Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def A__ ( self :List[Any] ): '''simple docstring''' return 1_00 @property def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Dict =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self :str ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : str =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __magic_name__ : Tuple =MultilingualCLIP(__snake_case ) __magic_name__ : Optional[int] =text_encoder.eval() return text_encoder @property def A__ ( self :Dict ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Optional[Any] ={ """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __magic_name__ : Union[str, Any] =UNetaDConditionModel(**__snake_case ) return model @property def A__ ( self :List[str] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self :Tuple ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Dict =VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[str] =self.dummy_text_encoder __magic_name__ : Optional[Any] =self.dummy_tokenizer __magic_name__ : Optional[Any] =self.dummy_unet __magic_name__ : Tuple =self.dummy_movq __magic_name__ : List[str] =DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , ) __magic_name__ : str ={ """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self :str , __snake_case :Optional[Any] , __snake_case :int=0 ): '''simple docstring''' __magic_name__ : Union[str, Any] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : Dict =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case ) # create init_image __magic_name__ : str =floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : int =image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ : str =Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask __magic_name__ : Dict =np.ones((64, 64) , dtype=np.floataa ) __magic_name__ : Any =0 if str(__snake_case ).startswith("""mps""" ): __magic_name__ : Dict =torch.manual_seed(__snake_case ) else: __magic_name__ : Tuple =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__ : List[Any] ={ """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Tuple ="""cpu""" __magic_name__ : List[Any] =self.get_dummy_components() __magic_name__ : Union[str, Any] =self.pipeline_class(**__snake_case ) __magic_name__ : Tuple =pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Tuple =pipe(**self.get_dummy_inputs(__snake_case ) ) __magic_name__ : List[Any] =output.images __magic_name__ : Any =pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] __magic_name__ : int =image[0, -3:, -3:, -1] __magic_name__ : str =image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) __magic_name__ : Optional[Any] =np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def A__ ( self :Dict ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def A__ ( self :List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : List[str] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) __magic_name__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __magic_name__ : List[Any] =np.ones((7_68, 7_68) , dtype=np.floataa ) __magic_name__ : Any =0 __magic_name__ : int ="""a hat""" __magic_name__ : int =KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) __magic_name__ : Dict =KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) __magic_name__ : int =pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Union[str, Any] =torch.Generator(device="""cpu""" ).manual_seed(0 ) __magic_name__ , __magic_name__ : Dict =pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __magic_name__ : Optional[Any] =pipeline( __snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) __magic_name__ : Optional[int] =output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
21
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : Dict = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys UpperCAmelCase_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __A : def __init__( self :int , __snake_case :List[Any] , __snake_case :List[Any]=2 , __snake_case :Dict=True , __snake_case :Tuple=False , __snake_case :List[str]=10 , __snake_case :List[str]=3 , __snake_case :Union[str, Any]=32 * 8 , __snake_case :Optional[int]=32 * 8 , __snake_case :Any=4 , __snake_case :Union[str, Any]=64 , ): '''simple docstring''' __magic_name__ : Optional[int] =parent __magic_name__ : List[Any] =batch_size __magic_name__ : List[str] =is_training __magic_name__ : List[str] =use_auxiliary_loss __magic_name__ : Union[str, Any] =num_queries __magic_name__ : str =num_channels __magic_name__ : Union[str, Any] =min_size __magic_name__ : Union[str, Any] =max_size __magic_name__ : Optional[int] =num_labels __magic_name__ : Tuple =hidden_dim __magic_name__ : Any =hidden_dim def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __snake_case ) __magic_name__ : List[Any] =torch.ones([self.batch_size, self.min_size, self.max_size] , device=__snake_case ) __magic_name__ : List[str] =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__snake_case ) > 0.5 ).float() __magic_name__ : Union[str, Any] =(torch.rand((self.batch_size, self.num_labels) , device=__snake_case ) > 0.5).long() __magic_name__ : str =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Dict =MaskaFormerConfig( hidden_size=self.hidden_dim , ) __magic_name__ : str =self.num_queries __magic_name__ : Dict =self.num_labels __magic_name__ : int =[1, 1, 1, 1] __magic_name__ : List[str] =self.num_channels __magic_name__ : str =64 __magic_name__ : List[str] =1_28 __magic_name__ : Optional[Any] =self.hidden_dim __magic_name__ : Tuple =self.hidden_dim __magic_name__ : Optional[int] =self.hidden_dim return config def A__ ( self :Any ): '''simple docstring''' __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple =self.prepare_config_and_inputs() __magic_name__ : Optional[Any] ={"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def A__ ( self :Union[str, Any] , __snake_case :Tuple , __snake_case :Dict ): '''simple docstring''' __magic_name__ : int =output.encoder_hidden_states __magic_name__ : List[str] =output.pixel_decoder_hidden_states __magic_name__ : int =output.transformer_decoder_hidden_states self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , config.decoder_layers ) def A__ ( self :List[Any] , __snake_case :Optional[Any] , __snake_case :int , __snake_case :str , __snake_case :str=False ): '''simple docstring''' with torch.no_grad(): __magic_name__ : List[str] =MaskaFormerModel(config=__snake_case ) model.to(__snake_case ) model.eval() __magic_name__ : Union[str, Any] =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : int =model(__snake_case , output_hidden_states=__snake_case ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__snake_case , __snake_case ) def A__ ( self :Optional[Any] , __snake_case :List[str] , __snake_case :List[Any] , __snake_case :int , __snake_case :Any , __snake_case :Union[str, Any] ): '''simple docstring''' __magic_name__ : str =MaskaFormerForUniversalSegmentation(config=__snake_case ) model.to(__snake_case ) model.eval() def comm_check_on_output(__snake_case :List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __magic_name__ : int =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : List[str] =model(__snake_case ) comm_check_on_output(__snake_case ) __magic_name__ : Any =model( pixel_values=__snake_case , pixel_mask=__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) comm_check_on_output(__snake_case ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCamelCase = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def A__ ( self :str ): '''simple docstring''' __magic_name__ : Any =MaskaFormerModelTester(self ) __magic_name__ : Union[str, Any] =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def A__ ( self :Dict ): '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__snake_case ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def A__ ( self :List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def A__ ( self :Dict ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def A__ ( self :Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def A__ ( self :int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def A__ ( self :Tuple ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A__ ( self :Union[str, Any] ): '''simple docstring''' pass def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Tuple =model_class(__snake_case ) __magic_name__ : Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple =[*signature.parameters.keys()] __magic_name__ : Optional[Any] =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) @slow def A__ ( self :Tuple ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __magic_name__ : int =MaskaFormerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =(self.model_tester.min_size,) * 2 __magic_name__ : Union[str, Any] ={ """pixel_values""": torch.randn((2, 3, *size) , device=__snake_case ), """mask_labels""": torch.randn((2, 10, *size) , device=__snake_case ), """class_labels""": torch.zeros(2 , 10 , device=__snake_case ).long(), } __magic_name__ : Optional[Any] =self.model_tester.get_config() __magic_name__ : Dict =MaskaFormerForUniversalSegmentation(__snake_case ).to(__snake_case ) __magic_name__ : Any =model(**__snake_case ) self.assertTrue(outputs.loss is not None ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ , __magic_name__ : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] =model_class(__snake_case ).to(__snake_case ) __magic_name__ : Optional[int] =model(**__snake_case , output_attentions=__snake_case ) self.assertTrue(outputs.attentions is not None ) def A__ ( self :int ): '''simple docstring''' if not self.model_tester.is_training: return __magic_name__ : List[Any] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Dict =model_class(__snake_case ) model.to(__snake_case ) model.train() __magic_name__ : Optional[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ).loss loss.backward() def A__ ( self :int ): '''simple docstring''' __magic_name__ : List[str] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Tuple =True __magic_name__ : Optional[int] =True __magic_name__ : int =model_class(__snake_case ).to(__snake_case ) model.train() __magic_name__ : List[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) __magic_name__ : Optional[int] =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __magic_name__ : Optional[int] =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__snake_case ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase_ : Dict = 1e-4 def lowerCAmelCase_ ( ): __magic_name__ : Dict =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __A ( unittest.TestCase ): @cached_property def A__ ( self :int ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def A__ ( self :int ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__snake_case ) __magic_name__ : int =self.default_image_processor __magic_name__ : List[Any] =prepare_img() __magic_name__ : Any =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Dict =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : List[str] =model(**__snake_case ) __magic_name__ : Any =torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Dict =torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Any =torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Optional[int] =self.default_image_processor __magic_name__ : Tuple =prepare_img() __magic_name__ : List[Any] =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Union[str, Any] =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : str =model(**__snake_case ) # masks_queries_logits __magic_name__ : List[Any] =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __magic_name__ : List[Any] =[ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __magic_name__ : Dict =torch.tensor(__snake_case ).to(__snake_case ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) # class_queries_logits __magic_name__ : Any =outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __magic_name__ : int =torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Any =self.default_image_processor __magic_name__ : Union[str, Any] =image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , ) __magic_name__ : str =inputs["""pixel_values"""].to(__snake_case ) __magic_name__ : Tuple =[el.to(__snake_case ) for el in inputs["""mask_labels"""]] __magic_name__ : Union[str, Any] =[el.to(__snake_case ) for el in inputs["""class_labels"""]] with torch.no_grad(): __magic_name__ : Dict =model(**__snake_case ) self.assertTrue(outputs.loss is not None )
21
1
UpperCAmelCase_ : int = "Input must be a string of 8 numbers plus letter" UpperCAmelCase_ : Tuple = "TRWAGMYFPDXBNJZSQVHLCKE" def lowerCAmelCase_ ( lowerCamelCase ): if not isinstance(lowerCamelCase , lowerCamelCase ): __magic_name__ : Optional[Any] =F"Expected string as input, found {type(lowerCamelCase ).__name__}" raise TypeError(lowerCamelCase ) __magic_name__ : str =spanish_id.replace("""-""" , """""" ).upper() if len(lowerCamelCase ) != 9: raise ValueError(lowerCamelCase ) try: __magic_name__ : Union[str, Any] =int(spanish_id_clean[0:8] ) __magic_name__ : int =spanish_id_clean[8] except ValueError as ex: raise ValueError(lowerCamelCase ) from ex if letter.isdigit(): raise ValueError(lowerCamelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
21
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __A ( UpperCamelCase__ ): UpperCamelCase = """segformer""" def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ): '''simple docstring''' super().__init__(**__snake_case ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , ) __magic_name__ : Dict =num_channels __magic_name__ : str =num_encoder_blocks __magic_name__ : List[Any] =depths __magic_name__ : Optional[Any] =sr_ratios __magic_name__ : List[str] =hidden_sizes __magic_name__ : List[str] =patch_sizes __magic_name__ : Any =strides __magic_name__ : Optional[Any] =mlp_ratios __magic_name__ : str =num_attention_heads __magic_name__ : int =hidden_act __magic_name__ : List[Any] =hidden_dropout_prob __magic_name__ : Optional[Any] =attention_probs_dropout_prob __magic_name__ : Optional[Any] =classifier_dropout_prob __magic_name__ : List[str] =initializer_range __magic_name__ : List[str] =drop_path_rate __magic_name__ : List[Any] =layer_norm_eps __magic_name__ : List[str] =decoder_hidden_size __magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case ) __magic_name__ : Dict =semantic_loss_ignore_index class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.11""" ) @property def A__ ( self :List[str] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self :Any ): '''simple docstring''' return 1E-4 @property def A__ ( self :int ): '''simple docstring''' return 12
21
1
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) @dataclass class __A : UpperCamelCase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) UpperCamelCase = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) UpperCamelCase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : List[Any] =self.task_name.lower() class __A ( UpperCamelCase__ ): UpperCamelCase = """train""" UpperCamelCase = """dev""" UpperCamelCase = """test""" class __A ( UpperCamelCase__ ): UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self :Optional[Any] , __snake_case :GlueDataTrainingArguments , __snake_case :PreTrainedTokenizerBase , __snake_case :Optional[int] = None , __snake_case :Union[str, Split] = Split.train , __snake_case :Optional[str] = None , ): '''simple docstring''' warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , __snake_case , ) __magic_name__ : Tuple =args __magic_name__ : List[str] =glue_processors[args.task_name]() __magic_name__ : Optional[int] =glue_output_modes[args.task_name] if isinstance(__snake_case , __snake_case ): try: __magic_name__ : List[Any] =Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file __magic_name__ : Optional[Any] =os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}" , ) __magic_name__ : List[str] =self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __magic_name__ , __magic_name__ : int =label_list[2], label_list[1] __magic_name__ : str =label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __magic_name__ : Tuple =cached_features_file + """.lock""" with FileLock(__snake_case ): if os.path.exists(__snake_case ) and not args.overwrite_cache: __magic_name__ : str =time.time() __magic_name__ : Optional[int] =torch.load(__snake_case ) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) else: logger.info(f"Creating features from dataset file at {args.data_dir}" ) if mode == Split.dev: __magic_name__ : Optional[Any] =self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __magic_name__ : Any =self.processor.get_test_examples(args.data_dir ) else: __magic_name__ : int =self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __magic_name__ : Optional[int] =examples[:limit_length] __magic_name__ : Any =glue_convert_examples_to_features( __snake_case , __snake_case , max_length=args.max_seq_length , label_list=__snake_case , output_mode=self.output_mode , ) __magic_name__ : str =time.time() torch.save(self.features , __snake_case ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self :Tuple ): '''simple docstring''' return len(self.features ) def __getitem__( self :List[Any] , __snake_case :Tuple ): '''simple docstring''' return self.features[i] def A__ ( self :int ): '''simple docstring''' return self.label_list
21
import heapq def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase , [-1 * len(lowerCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices __magic_name__ : Tuple =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __magic_name__ : Tuple =heapq.heappop(lowerCamelCase )[1][0] chosen_vertices.add(lowerCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __magic_name__ : Tuple =elem[1][1].index(lowerCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
21
1
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = RoFormerTokenizer UpperCamelCase = RoFormerTokenizerFast UpperCamelCase = True UpperCamelCase = True def A__ ( self :List[str] ): '''simple docstring''' super().setUp() def A__ ( self :List[str] , **__snake_case :str ): '''simple docstring''' return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **__snake_case ) def A__ ( self :str , **__snake_case :Dict ): '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **__snake_case ) def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : List[str] ="""永和服装饰品有限公司,今天天气非常好""" __magic_name__ : Any ="""永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Optional[Any] =self.get_tokenizer() __magic_name__ , __magic_name__ : Optional[int] =self.get_chinese_input_output_texts() __magic_name__ : Any =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , output_text.split() ) __magic_name__ : Any =tokens + [tokenizer.unk_token] __magic_name__ : Union[str, Any] =[2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : str =self.get_rust_tokenizer() __magic_name__ , __magic_name__ : Any =self.get_chinese_input_output_texts() __magic_name__ : Any =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , output_text.split() ) __magic_name__ : Optional[int] =tokens + [tokenizer.unk_token] __magic_name__ : Any =[2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def A__ ( self :Tuple ): '''simple docstring''' pass def A__ ( self :Dict ): '''simple docstring''' pass def A__ ( self :Tuple ): '''simple docstring''' pass
21
UpperCAmelCase_ : int = range(2, 20 + 1) UpperCAmelCase_ : Tuple = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =sum(a_i[j] for j in range(lowerCamelCase , len(lowerCamelCase ) ) ) __magic_name__ : Any =sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase ) , lowerCamelCase ) ) ) __magic_name__ , __magic_name__ : Tuple =0, 0 __magic_name__ : Optional[Any] =n - i __magic_name__ : Union[str, Any] =memo.get(lowerCamelCase ) if sub_memo is not None: __magic_name__ : int =sub_memo.get(lowerCamelCase ) if jumps is not None and len(lowerCamelCase ) > 0: # find and make the largest jump without going over __magic_name__ : Dict =-1 for _k in range(len(lowerCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __magic_name__ : Optional[Any] =_k break if max_jump >= 0: __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =jumps[max_jump] # since the difference between jumps is cached, add c __magic_name__ : Tuple =diff + c for j in range(min(lowerCamelCase , len(lowerCamelCase ) ) ): __magic_name__ , __magic_name__ : Tuple =divmod(lowerCamelCase , 10 ) if new_c > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __magic_name__ : str =[] else: __magic_name__ : List[str] ={c: []} __magic_name__ : List[str] =sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __magic_name__ , __magic_name__ : Union[str, Any] =next_term(lowerCamelCase , k - 1 , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __magic_name__ , __magic_name__ : Optional[int] =compute(lowerCamelCase , lowerCamelCase , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped __magic_name__ : Tuple =sub_memo[c] # keep jumps sorted by # of terms skipped __magic_name__ : List[Any] =0 while j < len(lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase , (diff, dn, k) ) return (diff, dn) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if i >= n: return 0, i if k > len(lowerCamelCase ): a_i.extend([0 for _ in range(k - len(lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __magic_name__ : Tuple =i __magic_name__ , __magic_name__ , __magic_name__ : Tuple =0, 0, 0 for j in range(len(lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __magic_name__ : Optional[Any] =ds_c + ds_b diff += addend __magic_name__ : str =0 for j in range(lowerCamelCase ): __magic_name__ : int =a_i[j] + addend __magic_name__ , __magic_name__ : Any =divmod(lowerCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return diff, i - start_i def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for j in range(lowerCamelCase , len(lowerCamelCase ) ): __magic_name__ : Tuple =digits[j] + addend if s >= 10: __magic_name__ , __magic_name__ : int =divmod(lowerCamelCase , 10 ) __magic_name__ : int =addend // 10 + quotient else: __magic_name__ : Dict =s __magic_name__ : Any =addend // 10 if addend == 0: break while addend > 0: __magic_name__ , __magic_name__ : Union[str, Any] =divmod(lowerCamelCase , 10 ) digits.append(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase = 10**15 ): __magic_name__ : List[str] =[1] __magic_name__ : str =1 __magic_name__ : str =0 while True: __magic_name__ , __magic_name__ : List[str] =next_term(lowerCamelCase , 20 , i + dn , lowerCamelCase ) dn += terms_jumped if dn == n - i: break __magic_name__ : int =0 for j in range(len(lowerCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
21
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) UpperCAmelCase_ : int = parser.parse_args() UpperCAmelCase_ : Dict = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCAmelCase_ : Optional[Any] = CLIPImageProcessor() UpperCAmelCase_ : Tuple = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") UpperCAmelCase_ : Optional[int] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
21
from typing import List from .keymap import KEYMAP, get_character def lowerCAmelCase_ ( lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : str =getattr(lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator def lowerCAmelCase_ ( *lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : Dict =getattr(lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator class __A ( UpperCamelCase__ ): def __new__( cls :Dict , __snake_case :Optional[Any] , __snake_case :Union[str, Any] , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : int =super().__new__(cls , __snake_case , __snake_case , __snake_case ) if not hasattr(__snake_case , """key_handler""" ): setattr(__snake_case , """key_handler""" , {} ) setattr(__snake_case , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __magic_name__ : int =getattr(__snake_case , """handle_key""" , [] ) for key in handled_keys: __magic_name__ : List[str] =value return new_cls @staticmethod def A__ ( cls :Optional[int] ): '''simple docstring''' __magic_name__ : Union[str, Any] =get_character() if char != KEYMAP["undefined"]: __magic_name__ : Optional[int] =ord(__snake_case ) __magic_name__ : int =cls.key_handler.get(__snake_case ) if handler: __magic_name__ : Dict =char return handler(cls ) else: return None def lowerCAmelCase_ ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
21
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Dict = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class __A ( UpperCamelCase__ ): UpperCamelCase = """longformer""" def __init__( self :Optional[int] , __snake_case :Union[List[int], int] = 5_12 , __snake_case :int = 2 , __snake_case :int = 1 , __snake_case :int = 0 , __snake_case :int = 2 , __snake_case :int = 3_05_22 , __snake_case :int = 7_68 , __snake_case :int = 12 , __snake_case :int = 12 , __snake_case :int = 30_72 , __snake_case :str = "gelu" , __snake_case :float = 0.1 , __snake_case :float = 0.1 , __snake_case :int = 5_12 , __snake_case :int = 2 , __snake_case :float = 0.02 , __snake_case :float = 1E-12 , __snake_case :bool = False , **__snake_case :List[str] , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , **__snake_case ) __magic_name__ : int =attention_window __magic_name__ : Dict =sep_token_id __magic_name__ : Dict =bos_token_id __magic_name__ : Tuple =eos_token_id __magic_name__ : List[str] =vocab_size __magic_name__ : Dict =hidden_size __magic_name__ : Any =num_hidden_layers __magic_name__ : Union[str, Any] =num_attention_heads __magic_name__ : int =hidden_act __magic_name__ : int =intermediate_size __magic_name__ : List[Any] =hidden_dropout_prob __magic_name__ : List[str] =attention_probs_dropout_prob __magic_name__ : Optional[int] =max_position_embeddings __magic_name__ : Dict =type_vocab_size __magic_name__ : int =initializer_range __magic_name__ : Optional[Any] =layer_norm_eps __magic_name__ : int =onnx_export class __A ( UpperCamelCase__ ): def __init__( self :Optional[Any] , __snake_case :"PretrainedConfig" , __snake_case :str = "default" , __snake_case :"List[PatchingSpec]" = None ): '''simple docstring''' super().__init__(__snake_case , __snake_case , __snake_case ) __magic_name__ : Optional[Any] =True @property def A__ ( self :Union[str, Any] ): '''simple docstring''' if self.task == "multiple-choice": __magic_name__ : Dict ={0: """batch""", 1: """choice""", 2: """sequence"""} else: __magic_name__ : List[str] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Optional[Any] =super().outputs if self.task == "default": __magic_name__ : List[str] ={0: """batch"""} return outputs @property def A__ ( self :Dict ): '''simple docstring''' return 1E-4 @property def A__ ( self :Optional[int] ): '''simple docstring''' return max(super().default_onnx_opset , 14 ) def A__ ( self :int , __snake_case :"PreTrainedTokenizerBase" , __snake_case :int = -1 , __snake_case :int = -1 , __snake_case :bool = False , __snake_case :Optional[TensorType] = None , ): '''simple docstring''' __magic_name__ : Dict =super().generate_dummy_inputs( preprocessor=__snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly __magic_name__ : List[Any] =torch.zeros_like(inputs["""input_ids"""] ) # make every second token global __magic_name__ : Optional[int] =1 return inputs
21
import os import jsonlines import numpy as np from tqdm import tqdm UpperCAmelCase_ : Dict = 2048 UpperCAmelCase_ : int = 4096 UpperCAmelCase_ : Any = 42 UpperCAmelCase_ : Optional[int] = os.environ.pop("PROCESS_TRAIN", "false") UpperCAmelCase_ : str = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def lowerCAmelCase_ ( lowerCamelCase ): def choose_first(lowerCamelCase , lowerCamelCase=False ): assert isinstance(lowerCamelCase , lowerCamelCase ) if len(lowerCamelCase ) == 1: __magic_name__ : List[str] =answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __magic_name__ : Tuple ={k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a __magic_name__ : str ={"""id""": example["""id"""]} __magic_name__ : List[Any] =example["""annotations"""] __magic_name__ : List[str] =annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: __magic_name__ : Optional[int] =["""yes"""] if 1 in yes_no_answer else ["""no"""] __magic_name__ : List[str] =[] __magic_name__ : Dict =[] __magic_name__ : str =["""<cls>"""] else: __magic_name__ : Tuple =["""short"""] __magic_name__ : Optional[int] =choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available __magic_name__ : Tuple =["""long"""] __magic_name__ : Tuple =choose_first(annotation["""long_answer"""] , is_long_answer=lowerCamelCase ) __magic_name__ : List[Any] =[] answer.update(lowerCamelCase ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: __magic_name__ : Any =True else: __magic_name__ : List[str] =False __magic_name__ : int =["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , lowerCamelCase ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =_get_single_answer(lowerCamelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : Any =example["""document"""]["""tokens"""] __magic_name__ : str =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __magic_name__ : Dict =["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __magic_name__ : Tuple =example["""document"""]["""tokens"""] __magic_name__ : Optional[int] =answer["""start_token"""] __magic_name__ : List[Any] =answer["""end_token"""] __magic_name__ : Optional[Any] =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __magic_name__ : Optional[int] =""" """.join(context[start_token:end_token] ) # checking above code if assertion: __magic_name__ : List[str] =doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : str =doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : Dict =""" """.join([old[i] for i in range(len(lowerCamelCase ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , lowerCamelCase , end="""\n""" ) print("""Old:""" , lowerCamelCase , end="""\n\n""" ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=True ): # overlap will be of doc_stride - q_len __magic_name__ : Any =get_context_and_ans(lowerCamelCase , assertion=lowerCamelCase ) __magic_name__ : Union[str, Any] =out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __magic_name__ : List[Any] =tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids __magic_name__ : Dict =input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : List[str] =[] __magic_name__ : int =[] __magic_name__ : List[str] =input_ids[:q_len] __magic_name__ : Dict =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Tuple =input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(lowerCamelCase ), "end_token": [-100] * len(lowerCamelCase ), "category": category, }, } __magic_name__ : int =out["""context"""].split() __magic_name__ : Any =splitted_context[answer["""end_token"""]] __magic_name__ : str =len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=lowerCamelCase , ).input_ids ) __magic_name__ : Optional[int] =len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=lowerCamelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __magic_name__ : Union[str, Any] =len(tokenizer(lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __magic_name__ : str =input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive __magic_name__ : Dict =answer["""start_token"""] __magic_name__ : int =answer["""end_token"""] if assertion: __magic_name__ : Any =tokenizer.decode(lowerCamelCase ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , lowerCamelCase , end="""\n\n""" ) if len(lowerCamelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __magic_name__ : Any =input_ids[:q_len] __magic_name__ : Union[str, Any] =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) __magic_name__ : Any =[] __magic_name__ : List[str] =[] __magic_name__ : List[str] =[] __magic_name__ : str =[] # null, yes, no, long, short for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Dict =input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __magic_name__ : List[Any] =start_token - i + q_len __magic_name__ : Optional[Any] =end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: __magic_name__ : Optional[Any] =-100 __magic_name__ : Optional[Any] =-100 answers_category.append("""null""" ) __magic_name__ : Optional[int] =inputs[-1][start_token : end_token + 1] answers_start_token.append(lowerCamelCase ) answers_end_token.append(lowerCamelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(lowerCamelCase ) ) print("""Old:""" , tokenizer.decode(lowerCamelCase ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=False ): __magic_name__ : List[Any] =get_strided_contexts_and_ans( lowerCamelCase , lowerCamelCase , doc_stride=lowerCamelCase , max_length=lowerCamelCase , assertion=lowerCamelCase , ) return example def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): with jsonlines.open(lowerCamelCase , """a""" ) as writer: for example in tqdm(lowerCamelCase , total=len(lowerCamelCase ) , desc="""Saving samples ... """ ): __magic_name__ : int =example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer UpperCAmelCase_ : Optional[int] = load_dataset("natural_questions") UpperCAmelCase_ : Optional[int] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") UpperCAmelCase_ : str = data["train" if PROCESS_TRAIN == "true" else "validation"] UpperCAmelCase_ : Optional[int] = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } UpperCAmelCase_ : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs) UpperCAmelCase_ : Optional[Any] = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) UpperCAmelCase_ : int = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
21
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase="pt" ): __magic_name__ : int ={"""add_prefix_space""": True} if isinstance(lowerCamelCase , lowerCamelCase ) and not line.startswith(""" """ ) else {} __magic_name__ : Dict =padding_side return tokenizer( [line] , max_length=lowerCamelCase , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase , return_tensors=lowerCamelCase , add_special_tokens=lowerCamelCase , **lowerCamelCase , ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=None , ): __magic_name__ : Union[str, Any] =input_ids.ne(lowerCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __A ( UpperCamelCase__ ): def __init__( self :Tuple , __snake_case :Tuple , __snake_case :Optional[Any] , __snake_case :Optional[int] , __snake_case :Union[str, Any] , __snake_case :Dict="train" , __snake_case :str=None , __snake_case :Union[str, Any]=None , __snake_case :Tuple=None , __snake_case :List[str]="" , ): '''simple docstring''' super().__init__() __magic_name__ : List[str] =Path(__snake_case ).joinpath(type_path + """.source""" ) __magic_name__ : Tuple =Path(__snake_case ).joinpath(type_path + """.target""" ) __magic_name__ : int =self.get_char_lens(self.src_file ) __magic_name__ : Optional[Any] =max_source_length __magic_name__ : int =max_target_length assert min(self.src_lens ) > 0, f"found empty line in {self.src_file}" __magic_name__ : Any =tokenizer __magic_name__ : str =prefix if n_obs is not None: __magic_name__ : Union[str, Any] =self.src_lens[:n_obs] __magic_name__ : Dict =src_lang __magic_name__ : List[str] =tgt_lang def __len__( self :Tuple ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self :int , __snake_case :List[Any] ): '''simple docstring''' __magic_name__ : str =index + 1 # linecache starts at 1 __magic_name__ : List[Any] =self.prefix + linecache.getline(str(self.src_file ) , __snake_case ).rstrip("""\n""" ) __magic_name__ : Tuple =linecache.getline(str(self.tgt_file ) , __snake_case ).rstrip("""\n""" ) assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , __snake_case ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __magic_name__ : Dict =( self.tokenizer.question_encoder if isinstance(self.tokenizer , __snake_case ) else self.tokenizer ) __magic_name__ : Optional[Any] =self.tokenizer.generator if isinstance(self.tokenizer , __snake_case ) else self.tokenizer __magic_name__ : Union[str, Any] =encode_line(__snake_case , __snake_case , self.max_source_length , """right""" ) __magic_name__ : str =encode_line(__snake_case , __snake_case , self.max_target_length , """right""" ) __magic_name__ : Tuple =source_inputs["""input_ids"""].squeeze() __magic_name__ : Any =target_inputs["""input_ids"""].squeeze() __magic_name__ : Any =source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def A__ ( __snake_case :List[str] ): '''simple docstring''' return [len(__snake_case ) for x in Path(__snake_case ).open().readlines()] def A__ ( self :Dict , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : Any =torch.stack([x["""input_ids"""] for x in batch] ) __magic_name__ : Any =torch.stack([x["""attention_mask"""] for x in batch] ) __magic_name__ : Optional[Any] =torch.stack([x["""decoder_input_ids"""] for x in batch] ) __magic_name__ : Dict =( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __snake_case ) else self.tokenizer.pad_token_id ) __magic_name__ : Any =( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __snake_case ) else self.tokenizer.pad_token_id ) __magic_name__ : Tuple =trim_batch(__snake_case , __snake_case ) __magic_name__ , __magic_name__ : Dict =trim_batch(__snake_case , __snake_case , attention_mask=__snake_case ) __magic_name__ : Union[str, Any] ={ """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch UpperCAmelCase_ : int = getLogger(__name__) def lowerCAmelCase_ ( lowerCamelCase ): return list(itertools.chain.from_iterable(lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =get_git_info() save_json(lowerCamelCase , os.path.join(lowerCamelCase , """git_log.json""" ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=4 , **lowerCamelCase ): with open(lowerCamelCase , """w""" ) as f: json.dump(lowerCamelCase , lowerCamelCase , indent=lowerCamelCase , **lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase ): with open(lowerCamelCase ) as f: return json.load(lowerCamelCase ) def lowerCAmelCase_ ( ): __magic_name__ : str =git.Repo(search_parent_directories=lowerCamelCase ) __magic_name__ : Optional[Any] ={ """repo_id""": str(lowerCamelCase ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return list(map(lowerCamelCase , lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): with open(lowerCamelCase , """wb""" ) as f: return pickle.dump(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase ): def remove_articles(lowerCamelCase ): return re.sub(R"""\b(a|an|the)\b""" , """ """ , lowerCamelCase ) def white_space_fix(lowerCamelCase ): return " ".join(text.split() ) def remove_punc(lowerCamelCase ): __magic_name__ : Optional[int] =set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCamelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase ) ) ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : str =normalize_answer(lowerCamelCase ).split() __magic_name__ : Tuple =normalize_answer(lowerCamelCase ).split() __magic_name__ : Any =Counter(lowerCamelCase ) & Counter(lowerCamelCase ) __magic_name__ : Any =sum(common.values() ) if num_same == 0: return 0 __magic_name__ : List[Any] =1.0 * num_same / len(lowerCamelCase ) __magic_name__ : Union[str, Any] =1.0 * num_same / len(lowerCamelCase ) __magic_name__ : List[str] =(2 * precision * recall) / (precision + recall) return fa def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return normalize_answer(lowerCamelCase ) == normalize_answer(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): assert len(lowerCamelCase ) == len(lowerCamelCase ) __magic_name__ : int =0 for hypo, pred in zip(lowerCamelCase , lowerCamelCase ): em += exact_match_score(lowerCamelCase , lowerCamelCase ) if len(lowerCamelCase ) > 0: em /= len(lowerCamelCase ) return {"em": em} def lowerCAmelCase_ ( lowerCamelCase ): return model_prefix.startswith("""rag""" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Optional[Any] ={p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __magic_name__ : Any ="""dropout_rate""" for p in extra_params: if getattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ): if not hasattr(lowerCamelCase , lowerCamelCase ) and not hasattr(lowerCamelCase , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase ) ) delattr(lowerCamelCase , lowerCamelCase ) continue __magic_name__ : str =p if hasattr(lowerCamelCase , lowerCamelCase ) else equivalent_param[p] setattr(lowerCamelCase , lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase ) ) delattr(lowerCamelCase , lowerCamelCase ) return hparams, config
21
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __A ( UpperCamelCase__ ): UpperCamelCase = """xlm-roberta-xl""" def __init__( self :Dict , __snake_case :Optional[Any]=25_08_80 , __snake_case :List[Any]=25_60 , __snake_case :Optional[Any]=36 , __snake_case :Any=32 , __snake_case :int=1_02_40 , __snake_case :List[Any]="gelu" , __snake_case :Union[str, Any]=0.1 , __snake_case :Optional[Any]=0.1 , __snake_case :str=5_14 , __snake_case :Union[str, Any]=1 , __snake_case :Optional[int]=0.02 , __snake_case :str=1E-05 , __snake_case :str=1 , __snake_case :int=0 , __snake_case :Tuple=2 , __snake_case :Optional[int]="absolute" , __snake_case :str=True , __snake_case :Any=None , **__snake_case :Dict , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __magic_name__ : List[str] =vocab_size __magic_name__ : List[str] =hidden_size __magic_name__ : Union[str, Any] =num_hidden_layers __magic_name__ : Any =num_attention_heads __magic_name__ : Any =hidden_act __magic_name__ : List[str] =intermediate_size __magic_name__ : Any =hidden_dropout_prob __magic_name__ : Union[str, Any] =attention_probs_dropout_prob __magic_name__ : Any =max_position_embeddings __magic_name__ : Any =type_vocab_size __magic_name__ : List[str] =initializer_range __magic_name__ : Optional[int] =layer_norm_eps __magic_name__ : Dict =position_embedding_type __magic_name__ : Any =use_cache __magic_name__ : Dict =classifier_dropout class __A ( UpperCamelCase__ ): @property def A__ ( self :Dict ): '''simple docstring''' if self.task == "multiple-choice": __magic_name__ : str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: __magic_name__ : Optional[Any] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
21
1
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : int = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } UpperCAmelCase_ : Union[str, Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): for attribute in key.split(""".""" ): __magic_name__ : Tuple =getattr(lowerCamelCase , lowerCamelCase ) if weight_type is not None: __magic_name__ : Optional[int] =getattr(lowerCamelCase , lowerCamelCase ).shape else: __magic_name__ : Union[str, Any] =hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __magic_name__ : int =value elif weight_type == "weight_g": __magic_name__ : int =value elif weight_type == "weight_v": __magic_name__ : Tuple =value elif weight_type == "bias": __magic_name__ : Tuple =value else: __magic_name__ : Any =value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : Optional[Any] =[] __magic_name__ : Tuple =fairseq_model.state_dict() __magic_name__ : Union[str, Any] =hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __magic_name__ : List[Any] =None for name, value in fairseq_dict.items(): __magic_name__ : Dict =False if "conv_layers" in name: load_conv_layer( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __magic_name__ : str =True elif name.split(""".""" )[0] == "proj": __magic_name__ : List[str] =fairseq_model.proj __magic_name__ : Tuple =True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __magic_name__ : int =True if "*" in mapped_key: __magic_name__ : List[str] =name.split(lowerCamelCase )[0].split(""".""" )[-2] __magic_name__ : str =mapped_key.replace("""*""" , lowerCamelCase ) if "weight_g" in name: __magic_name__ : Optional[Any] ="""weight_g""" elif "weight_v" in name: __magic_name__ : Optional[Any] ="""weight_v""" elif "bias" in name: __magic_name__ : Tuple ="""bias""" elif "weight" in name: __magic_name__ : int ="""weight""" else: __magic_name__ : Union[str, Any] =None set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) continue if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(F"Unused weights: {unused_weights}" ) return proj_weight def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =full_name.split("""conv_layers.""" )[-1] __magic_name__ : Tuple =name.split(""".""" ) __magic_name__ : int =int(items[0] ) __magic_name__ : Union[str, Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __magic_name__ : Tuple =value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __magic_name__ : List[str] =value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) __magic_name__ : List[str] =value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __magic_name__ : List[Any] =value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ , __magic_name__ : Tuple =emb.weight.shape __magic_name__ : Dict =nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) __magic_name__ : int =emb.weight.data return lin_layer def lowerCAmelCase_ ( lowerCamelCase ): with open(lowerCamelCase , """r""" , encoding="""utf-8""" ) as f: __magic_name__ : Optional[Any] =f.readlines() __magic_name__ : Tuple =[line.split(""" """ )[0] for line in lines] __magic_name__ : List[Any] =len(lowerCamelCase ) __magic_name__ : List[str] ={ """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(lowerCamelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): __magic_name__ : Tuple =WavaVecaConfig.from_pretrained(lowerCamelCase ) __magic_name__ : List[Any] =SpeechaTextaConfig.from_pretrained( lowerCamelCase , vocab_size=lowerCamelCase , decoder_layers=lowerCamelCase , do_stable_layer_norm=lowerCamelCase ) __magic_name__ : List[str] =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCamelCase , return_attention_mask=lowerCamelCase , ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) __magic_name__ : Dict =model[0].eval() # set weights for wav2vec2 encoder __magic_name__ : Optional[Any] =WavaVecaModel(lowerCamelCase ) __magic_name__ : Tuple =recursively_load_weights_wavaveca(model.encoder , lowerCamelCase ) __magic_name__ : Tuple =SpeechaTextaForCausalLM(lowerCamelCase ) __magic_name__ , __magic_name__ : Dict =hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowerCamelCase ) # set output linear layer unexpected_keys.remove("""embed_out""" ) __magic_name__ : List[str] =nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) __magic_name__ : Optional[int] =SpeechEncoderDecoderModel(encoder=lowerCamelCase , decoder=lowerCamelCase ) __magic_name__ : Union[str, Any] =False # add projection layer __magic_name__ : List[str] =nn.Parameter(projection_layer.weight ) __magic_name__ : Dict =nn.Parameter(projection_layer.bias ) __magic_name__ : str =create_vocab_dict(lowerCamelCase ) with open(os.path.join(lowerCamelCase , """vocab.json""" ) , """w""" ) as fp: json.dump(lowerCamelCase , lowerCamelCase ) __magic_name__ : Any =SpeechaTextaTokenizer(os.path.join(lowerCamelCase , """vocab.json""" ) ) tokenizer.save_pretrained(lowerCamelCase ) __magic_name__ : str =hf_wavavec.config.to_dict() __magic_name__ : int =tokenizer.pad_token_id __magic_name__ : Optional[Any] =tokenizer.bos_token_id __magic_name__ : Optional[Any] =tokenizer.eos_token_id __magic_name__ : Tuple ="""speech_to_text_2""" __magic_name__ : Union[str, Any] ="""wav2vec2""" __magic_name__ : Union[str, Any] =SpeechEncoderDecoderConfig.from_dict(lowerCamelCase ) hf_wavavec.save_pretrained(lowerCamelCase ) feature_extractor.save_pretrained(lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase_ : Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=10224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") UpperCAmelCase_ : Any = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
21
from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase_ ( lowerCamelCase="ro" , lowerCamelCase="en" , lowerCamelCase="wmt16" , lowerCamelCase=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) __magic_name__ : Dict =F"{src_lang}-{tgt_lang}" print(F"Converting {dataset}-{pair}" ) __magic_name__ : Dict =datasets.load_dataset(lowerCamelCase , lowerCamelCase ) if save_dir is None: __magic_name__ : Optional[int] =F"{dataset}-{pair}" __magic_name__ : int =Path(lowerCamelCase ) save_dir.mkdir(exist_ok=lowerCamelCase ) for split in ds.keys(): print(F"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets __magic_name__ : Dict ="""val""" if split == """validation""" else split __magic_name__ : List[Any] =save_dir.joinpath(F"{fn}.source" ) __magic_name__ : Optional[int] =save_dir.joinpath(F"{fn}.target" ) __magic_name__ : Optional[Any] =src_path.open("""w+""" ) __magic_name__ : List[Any] =tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __magic_name__ : str =x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
21
1
from __future__ import annotations def lowerCAmelCase_ ( lowerCamelCase ): if len(lowerCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __magic_name__ : int =nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
from __future__ import annotations from fractions import Fraction def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =[] __magic_name__ : List[Any] =11 __magic_name__ : Tuple =int("""1""" + """0""" * digit_len ) for num in range(lowerCamelCase , lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowerCamelCase , lowerCamelCase ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 __magic_name__ : List[str] =10 return solutions def lowerCAmelCase_ ( lowerCamelCase = 2 ): __magic_name__ : str =1.0 for fraction in fraction_list(lowerCamelCase ): __magic_name__ : int =Fraction(lowerCamelCase ) result *= frac.denominator / frac.numerator return int(lowerCamelCase ) if __name__ == "__main__": print(solution())
21
1
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ) , end="""\t""" ) else: print("""INF""" , end="""\t""" ) print() def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : Tuple =[[float("""inf""" ) for _ in range(lowerCamelCase )] for _ in range(lowerCamelCase )] for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): __magic_name__ : Dict =graph[i][j] # check vertex k against all other vertices (i, j) for k in range(lowerCamelCase ): # looping through rows of graph array for i in range(lowerCamelCase ): # looping through columns of graph array for j in range(lowerCamelCase ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): __magic_name__ : List[str] =dist[i][k] + dist[k][j] _print_dist(lowerCamelCase , lowerCamelCase ) return dist, v if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = int(input("Enter number of vertices: ")) UpperCAmelCase_ : str = int(input("Enter number of edges: ")) UpperCAmelCase_ : Optional[Any] = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): UpperCAmelCase_ : str = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) UpperCAmelCase_ : Optional[Any] = int(input("Enter source:")) UpperCAmelCase_ : Union[str, Any] = int(input("Enter destination:")) UpperCAmelCase_ : Dict = float(input("Enter weight:")) UpperCAmelCase_ : Union[str, Any] = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
21
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( lowerCamelCase ): # A local function to see if a dot lands in the circle. def is_in_circle(lowerCamelCase , lowerCamelCase ) -> bool: __magic_name__ : Dict =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __magic_name__ : Union[str, Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. __magic_name__ : List[Any] =proportion * 4 print(F"The estimated value of pi is {pi_estimate}" ) print(F"The numpy value of pi is {pi}" ) print(F"The total error is {abs(pi - pi_estimate )}" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 , ): return mean( function_to_integrate(uniform(lowerCamelCase , lowerCamelCase ) ) for _ in range(lowerCamelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ): def identity_function(lowerCamelCase ) -> float: return x __magic_name__ : Optional[int] =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __magic_name__ : str =(max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {expected_value}" ) print(F"Total error is {abs(estimated_value - expected_value )}" ) print("""******************""" ) def lowerCAmelCase_ ( lowerCamelCase ): def function_to_integrate(lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) __magic_name__ : Dict =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {pi}" ) print(F"Total error is {abs(estimated_value - pi )}" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
import json import sys def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): with open(lowerCamelCase , encoding="""utf-8""" ) as f: __magic_name__ : Tuple =json.load(lowerCamelCase ) __magic_name__ : Optional[Any] =["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(lowerCamelCase ): __magic_name__ : Union[str, Any] =results[benchmark_name] __magic_name__ : Union[str, Any] =benchmark_name.split("""/""" )[-1] output_md.append(F"### Benchmark: {benchmark_file_name}" ) __magic_name__ : Tuple ="""| metric |""" __magic_name__ : Optional[Any] ="""|--------|""" __magic_name__ : List[Any] ="""| new / old (diff) |""" for metric_name in sorted(lowerCamelCase ): __magic_name__ : Optional[int] =benchmark_res[metric_name] __magic_name__ : str =metric_vals["""new"""] __magic_name__ : Tuple =metric_vals.get("""old""" , lowerCamelCase ) __magic_name__ : Tuple =metric_vals.get("""diff""" , lowerCamelCase ) __magic_name__ : List[Any] =F" {new_val:f}" if isinstance(lowerCamelCase , (int, float) ) else """None""" if old_val is not None: val_str += F" / {old_val:f}" if isinstance(lowerCamelCase , (int, float) ) else "None" if dif_val is not None: val_str += F" ({dif_val:f})" if isinstance(lowerCamelCase , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.writelines("""\n""".join(lowerCamelCase ) ) if __name__ == "__main__": UpperCAmelCase_ : Tuple = sys.argv[1] UpperCAmelCase_ : List[Any] = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
21
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __A ( tf.keras.layers.Layer ): def __init__( self :Optional[int] , __snake_case :Dict[str, int] , __snake_case :List[str] , __snake_case :int = None , __snake_case :int = None ): '''simple docstring''' super().__init__() __magic_name__ : Optional[int] =pad_token_id __magic_name__ : List[Any] =max_length __magic_name__ : Dict =vocab __magic_name__ : int =merges __magic_name__ : Optional[int] =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case ) @classmethod def A__ ( cls :List[Any] , __snake_case :GPTaTokenizer , *__snake_case :int , **__snake_case :Any ): '''simple docstring''' __magic_name__ : List[Any] =[""" """.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()] __magic_name__ : str =tokenizer.get_vocab() return cls(__snake_case , __snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Dict , __snake_case :Union[str, os.PathLike] , *__snake_case :Union[str, Any] , **__snake_case :int ): '''simple docstring''' __magic_name__ : Dict =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case ) return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Optional[Any] , __snake_case :List[Any] ): '''simple docstring''' return cls(**__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def A__ ( self :List[Any] , __snake_case :Dict , __snake_case :int = None ): '''simple docstring''' __magic_name__ : Optional[Any] =self.tf_tokenizer(__snake_case ) __magic_name__ : Tuple =tf.ones_like(__snake_case ) if self.pad_token_id is not None: # pad the tokens up to max length __magic_name__ : Tuple =max_length if max_length is not None else self.max_length if max_length is not None: __magic_name__ , __magic_name__ : Tuple =pad_model_inputs( __snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
21
1
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __A ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self :List[str] , __snake_case :bool , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None ): '''simple docstring''' super().__init__() __magic_name__ : int =learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __magic_name__ : Dict =torch.zeros(__snake_case , __snake_case ) else: __magic_name__ : Tuple =None __magic_name__ : int =torch.nn.Parameter(__snake_case ) class __A ( UpperCamelCase__ ): UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self :Dict , __snake_case :VQModel , __snake_case :CLIPTextModel , __snake_case :CLIPTokenizer , __snake_case :TransformeraDModel , __snake_case :VQDiffusionScheduler , __snake_case :LearnedClassifierFreeSamplingEmbeddings , ): '''simple docstring''' super().__init__() self.register_modules( vqvae=__snake_case , transformer=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , scheduler=__snake_case , learned_classifier_free_sampling_embeddings=__snake_case , ) def A__ ( self :Optional[int] , __snake_case :Optional[int] , __snake_case :Optional[Any] , __snake_case :Dict ): '''simple docstring''' __magic_name__ : List[str] =len(__snake_case ) if isinstance(__snake_case , __snake_case ) else 1 # get prompt text embeddings __magic_name__ : str =self.tokenizer( __snake_case , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __magic_name__ : str =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __magic_name__ : int =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) __magic_name__ : List[Any] =text_input_ids[:, : self.tokenizer.model_max_length] __magic_name__ : Union[str, Any] =self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __magic_name__ : Optional[Any] =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__snake_case ) # duplicate text embeddings for each generation per prompt __magic_name__ : Any =prompt_embeds.repeat_interleave(__snake_case , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __magic_name__ : Union[str, Any] =self.learned_classifier_free_sampling_embeddings.embeddings __magic_name__ : Optional[Any] =negative_prompt_embeds.unsqueeze(0 ).repeat(__snake_case , 1 , 1 ) else: __magic_name__ : Any =[""""""] * batch_size __magic_name__ : List[str] =text_input_ids.shape[-1] __magic_name__ : Tuple =self.tokenizer( __snake_case , padding="""max_length""" , max_length=__snake_case , truncation=__snake_case , return_tensors="""pt""" , ) __magic_name__ : List[Any] =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __magic_name__ : Any =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__snake_case ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __magic_name__ : Any =negative_prompt_embeds.shape[1] __magic_name__ : str =negative_prompt_embeds.repeat(1 , __snake_case , 1 ) __magic_name__ : Any =negative_prompt_embeds.view(batch_size * num_images_per_prompt , __snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __magic_name__ : Optional[int] =torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self :Optional[Any] , __snake_case :Union[str, List[str]] , __snake_case :int = 1_00 , __snake_case :float = 5.0 , __snake_case :float = 1.0 , __snake_case :int = 1 , __snake_case :Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case :Optional[torch.FloatTensor] = None , __snake_case :Optional[str] = "pil" , __snake_case :bool = True , __snake_case :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __snake_case :int = 1 , ): '''simple docstring''' if isinstance(__snake_case , __snake_case ): __magic_name__ : str =1 elif isinstance(__snake_case , __snake_case ): __magic_name__ : List[str] =len(__snake_case ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(__snake_case )}" ) __magic_name__ : List[str] =batch_size * num_images_per_prompt __magic_name__ : Dict =guidance_scale > 1.0 __magic_name__ : Union[str, Any] =self._encode_prompt(__snake_case , __snake_case , __snake_case ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__snake_case , __snake_case ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(__snake_case )}." ) # get the initial completely masked latents unless the user supplied it __magic_name__ : List[Any] =(batch_size, self.transformer.num_latent_pixels) if latents is None: __magic_name__ : List[Any] =self.transformer.num_vector_embeds - 1 __magic_name__ : Union[str, Any] =torch.full(__snake_case , __snake_case ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" f" {self.transformer.num_vector_embeds - 1} (inclusive)." ) __magic_name__ : Dict =latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__snake_case , device=self.device ) __magic_name__ : Optional[Any] =self.scheduler.timesteps.to(self.device ) __magic_name__ : List[Any] =latents for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the sample if we are doing classifier free guidance __magic_name__ : Dict =torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __magic_name__ : List[str] =self.transformer(__snake_case , encoder_hidden_states=__snake_case , timestep=__snake_case ).sample if do_classifier_free_guidance: __magic_name__ , __magic_name__ : List[str] =model_output.chunk(2 ) __magic_name__ : List[Any] =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__snake_case , dim=1 , keepdim=__snake_case ) __magic_name__ : Any =self.truncate(__snake_case , __snake_case ) # remove `log(0)`'s (`-inf`s) __magic_name__ : Union[str, Any] =model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 __magic_name__ : Union[str, Any] =self.scheduler.step(__snake_case , timestep=__snake_case , sample=__snake_case , generator=__snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__snake_case , __snake_case , __snake_case ) __magic_name__ : Tuple =self.vqvae.config.vq_embed_dim __magic_name__ : str =(batch_size, self.transformer.height, self.transformer.width, embedding_channels) __magic_name__ : Optional[int] =self.vqvae.quantize.get_codebook_entry(__snake_case , shape=__snake_case ) __magic_name__ : Any =self.vqvae.decode(__snake_case , force_not_quantize=__snake_case ).sample __magic_name__ : Any =(image / 2 + 0.5).clamp(0 , 1 ) __magic_name__ : Optional[Any] =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __magic_name__ : Union[str, Any] =self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case ) def A__ ( self :List[str] , __snake_case :torch.FloatTensor , __snake_case :float ): '''simple docstring''' __magic_name__ , __magic_name__ : int =torch.sort(__snake_case , 1 , descending=__snake_case ) __magic_name__ : Any =torch.exp(__snake_case ) __magic_name__ : Dict =sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __magic_name__ : Dict =torch.full_like(keep_mask[:, 0:1, :] , __snake_case ) __magic_name__ : str =torch.cat((all_true, keep_mask) , dim=1 ) __magic_name__ : Tuple =keep_mask[:, :-1, :] __magic_name__ : Optional[int] =keep_mask.gather(1 , indices.argsort(1 ) ) __magic_name__ : Optional[int] =log_p_x_0.clone() __magic_name__ : Union[str, Any] =-torch.inf # -inf = log(0) return rv
21
import math import tensorflow as tf from packaging import version def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : List[str] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Optional[Any] =tf.cast(math.pi , x.dtype ) __magic_name__ : int =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Any =tf.convert_to_tensor(lowerCamelCase ) return x * tf.tanh(tf.math.softplus(lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[Any] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Union[str, Any] =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Dict =tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCAmelCase_ ( lowerCamelCase ): return tf.clip_by_value(_gelu(lowerCamelCase ) , -10 , 10 ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=-1 ): __magic_name__ , __magic_name__ : List[Any] =tf.split(lowerCamelCase , 2 , axis=lowerCamelCase ) return a * tf.math.sigmoid(lowerCamelCase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowerCAmelCase_ ( lowerCamelCase ): return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase ) UpperCAmelCase_ : List[str] = tf.keras.activations.gelu UpperCAmelCase_ : Dict = approximate_gelu_wrap else: UpperCAmelCase_ : Dict = _gelu UpperCAmelCase_ : str = _gelu_new UpperCAmelCase_ : Any = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowerCAmelCase_ ( lowerCamelCase ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
21
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : Union[str, Any] = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = ["ConditionalDetrFeatureExtractor"] UpperCAmelCase_ : str = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
from collections.abc import Sequence def lowerCAmelCase_ ( lowerCamelCase = None ): if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __magic_name__ : str =nums[0] for i in range(1 , len(lowerCamelCase ) ): __magic_name__ : Any =nums[i] __magic_name__ : Dict =max(lowerCamelCase , ans + num , lowerCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCAmelCase_ : List[str] = int(input("Enter number of elements : ").strip()) UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
21
1
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = ["model.decoder.embed_positions.weights"] def lowerCAmelCase_ ( lowerCamelCase ): if "emb" in name: __magic_name__ : List[str] =name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: __magic_name__ : Optional[int] =name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: __magic_name__ : List[str] =name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: __magic_name__ : Tuple =name.replace("""linear1""" , """fc1""" ) if "linear2" in name: __magic_name__ : Tuple =name.replace("""linear2""" , """fc2""" ) if "norm1" in name: __magic_name__ : Optional[int] =name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: __magic_name__ : Optional[int] =name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: __magic_name__ : str =name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: __magic_name__ : Any =name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: __magic_name__ : Dict =name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: __magic_name__ : List[str] =name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : List[Any] =list(state_dict.keys() ) __magic_name__ : List[Any] ={} for key in keys: __magic_name__ : Union[str, Any] =state_dict.pop(lowerCamelCase ) __magic_name__ : List[Any] =rename_keys(lowerCamelCase ) if "in_proj_weight" in key: # split fused qkv proj __magic_name__ : Optional[Any] =val[:hidden_size, :] __magic_name__ : Optional[int] =val[hidden_size : 2 * hidden_size, :] __magic_name__ : Dict =val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __magic_name__ : List[Any] =val else: __magic_name__ : Dict =val return state_dict, enc_dec_proj_state_dict def lowerCAmelCase_ ( lowerCamelCase ): if checkpoint == "small": # default config values __magic_name__ : int =1024 __magic_name__ : str =24 __magic_name__ : int =16 elif checkpoint == "medium": __magic_name__ : int =1536 __magic_name__ : List[Any] =48 __magic_name__ : List[str] =24 elif checkpoint == "large": __magic_name__ : List[Any] =2048 __magic_name__ : Any =48 __magic_name__ : Union[str, Any] =32 else: raise ValueError(F"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) __magic_name__ : Tuple =MusicgenDecoderConfig( hidden_size=lowerCamelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowerCamelCase , num_attention_heads=lowerCamelCase , ) return config @torch.no_grad() def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="cpu" ): __magic_name__ : str =MusicGen.get_pretrained(lowerCamelCase , device=lowerCamelCase ) __magic_name__ : List[Any] =decoder_config_from_checkpoint(lowerCamelCase ) __magic_name__ : int =fairseq_model.lm.state_dict() __magic_name__ , __magic_name__ : Optional[int] =rename_state_dict( lowerCamelCase , hidden_size=decoder_config.hidden_size ) __magic_name__ : List[Any] =TaEncoderModel.from_pretrained("""t5-base""" ) __magic_name__ : List[Any] =EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) __magic_name__ : Any =MusicgenForCausalLM(lowerCamelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __magic_name__ , __magic_name__ : List[str] =decoder.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowerCamelCase ) if len(lowerCamelCase ) > 0: raise ValueError(F"Missing key(s) in state_dict: {missing_keys}" ) if len(lowerCamelCase ) > 0: raise ValueError(F"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model __magic_name__ : List[Any] =MusicgenForConditionalGeneration(text_encoder=lowerCamelCase , audio_encoder=lowerCamelCase , decoder=lowerCamelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowerCamelCase ) # check we can do a forward pass __magic_name__ : Any =torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __magic_name__ : Dict =input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __magic_name__ : int =model(input_ids=lowerCamelCase , decoder_input_ids=lowerCamelCase ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor __magic_name__ : Dict =AutoTokenizer.from_pretrained("""t5-base""" ) __magic_name__ : List[Any] =AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) __magic_name__ : Optional[int] =MusicgenProcessor(feature_extractor=lowerCamelCase , tokenizer=lowerCamelCase ) # set the appropriate bos/pad token ids __magic_name__ : List[str] =2048 __magic_name__ : Optional[int] =2048 # set other default generation config params __magic_name__ : str =int(30 * audio_encoder.config.frame_rate ) __magic_name__ : Union[str, Any] =True __magic_name__ : Any =3.0 if pytorch_dump_folder is not None: Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) logger.info(F"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(lowerCamelCase ) processor.save_pretrained(lowerCamelCase ) if repo_id: logger.info(F"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(lowerCamelCase ) processor.push_to_hub(lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) UpperCAmelCase_ : Tuple = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
21
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : UpperCamelCase = 42 UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""Translation""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def __call__( self :Union[str, Any] ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def A__ ( self :List[Any] ): '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __A : UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""TranslationVariableLanguages""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =sorted(set(self.languages ) ) if self.languages else None __magic_name__ : Optional[int] =len(self.languages ) if self.languages else None def __call__( self :List[str] ): '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def A__ ( self :str , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[int] =set(self.languages ) if self.languages and set(__snake_case ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __magic_name__ : Any =[] for lang, text in translation_dict.items(): if isinstance(__snake_case , __snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __magic_name__ , __magic_name__ : List[str] =zip(*sorted(__snake_case ) ) return {"language": languages, "translation": translations} def A__ ( self :List[Any] ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
21
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __A ( unittest.TestCase ): def A__ ( self :str ): '''simple docstring''' __magic_name__ : str =tempfile.mkdtemp() # fmt: off __magic_name__ : str =["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __magic_name__ : Any =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __magic_name__ : Union[str, Any] =["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] __magic_name__ : Any ={"""unk_token""": """<unk>"""} __magic_name__ : List[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__snake_case ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__snake_case ) ) __magic_name__ : List[str] ={ """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } __magic_name__ : str =os.path.join(self.tmpdirname , __snake_case ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__snake_case , __snake_case ) def A__ ( self :Dict , **__snake_case :Any ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def A__ ( self :List[Any] , **__snake_case :List[Any] ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__snake_case ) def A__ ( self :Tuple , **__snake_case :List[Any] ): '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__snake_case ) def A__ ( self :Optional[int] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Dict =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __magic_name__ : Tuple =[Image.fromarray(np.moveaxis(__snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Optional[int] =self.get_tokenizer() __magic_name__ : List[Any] =self.get_rust_tokenizer() __magic_name__ : Union[str, Any] =self.get_image_processor() __magic_name__ : Optional[Any] =CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) processor_slow.save_pretrained(self.tmpdirname ) __magic_name__ : int =CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__snake_case ) __magic_name__ : Optional[Any] =CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) processor_fast.save_pretrained(self.tmpdirname ) __magic_name__ : List[Any] =CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __snake_case ) self.assertIsInstance(processor_fast.tokenizer , __snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __snake_case ) self.assertIsInstance(processor_fast.image_processor , __snake_case ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : int =CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Any =self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : Dict =self.get_image_processor(do_normalize=__snake_case , padding_value=1.0 ) __magic_name__ : Tuple =CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __snake_case ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =self.get_image_processor() __magic_name__ : int =self.get_tokenizer() __magic_name__ : Dict =CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) __magic_name__ : int =self.prepare_image_inputs() __magic_name__ : Union[str, Any] =image_processor(__snake_case , return_tensors="""np""" ) __magic_name__ : Any =processor(images=__snake_case , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : str =self.get_image_processor() __magic_name__ : Tuple =self.get_tokenizer() __magic_name__ : List[str] =CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) __magic_name__ : Any ="""lower newer""" __magic_name__ : Tuple =processor(text=__snake_case ) __magic_name__ : Dict =tokenizer(__snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A__ ( self :str ): '''simple docstring''' __magic_name__ : str =self.get_image_processor() __magic_name__ : List[str] =self.get_tokenizer() __magic_name__ : Optional[Any] =CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) __magic_name__ : List[Any] ="""lower newer""" __magic_name__ : Optional[Any] =self.prepare_image_inputs() __magic_name__ : Optional[Any] =processor(text=__snake_case , images=__snake_case ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__snake_case ): processor() def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Dict =self.get_image_processor() __magic_name__ : str =self.get_tokenizer() __magic_name__ : int =CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) __magic_name__ : Optional[Any] =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ : Optional[Any] =processor.batch_decode(__snake_case ) __magic_name__ : Dict =tokenizer.batch_decode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Tuple =self.get_image_processor() __magic_name__ : Any =self.get_tokenizer() __magic_name__ : List[str] =CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) __magic_name__ : Optional[int] ="""lower newer""" __magic_name__ : int =self.prepare_image_inputs() __magic_name__ : int =processor(text=__snake_case , images=__snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
21
from sklearn.metrics import matthews_corrcoef import datasets UpperCAmelCase_ : Dict = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCAmelCase_ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCAmelCase_ : Dict = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def A__ ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def A__ ( self :Tuple , __snake_case :str , __snake_case :Tuple , __snake_case :List[str]=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ), }
21
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : Tuple = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class __A ( UpperCamelCase__ ): UpperCamelCase = """mra""" def __init__( self :Tuple , __snake_case :int=5_02_65 , __snake_case :Optional[int]=7_68 , __snake_case :Union[str, Any]=12 , __snake_case :List[Any]=12 , __snake_case :int=30_72 , __snake_case :str="gelu" , __snake_case :str=0.1 , __snake_case :Optional[int]=0.1 , __snake_case :Union[str, Any]=5_12 , __snake_case :Any=1 , __snake_case :Tuple=0.02 , __snake_case :Dict=1E-5 , __snake_case :int="absolute" , __snake_case :Any=4 , __snake_case :Tuple="full" , __snake_case :int=0 , __snake_case :str=0 , __snake_case :str=1 , __snake_case :str=0 , __snake_case :Tuple=2 , **__snake_case :List[Any] , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __magic_name__ : Optional[Any] =vocab_size __magic_name__ : List[Any] =max_position_embeddings __magic_name__ : str =hidden_size __magic_name__ : List[str] =num_hidden_layers __magic_name__ : int =num_attention_heads __magic_name__ : str =intermediate_size __magic_name__ : str =hidden_act __magic_name__ : Dict =hidden_dropout_prob __magic_name__ : List[Any] =attention_probs_dropout_prob __magic_name__ : Any =initializer_range __magic_name__ : Optional[int] =type_vocab_size __magic_name__ : Tuple =layer_norm_eps __magic_name__ : List[str] =position_embedding_type __magic_name__ : List[str] =block_per_row __magic_name__ : Tuple =approx_mode __magic_name__ : Optional[int] =initial_prior_first_n_blocks __magic_name__ : List[str] =initial_prior_diagonal_n_blocks
21
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =OmegaConf.load(lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(lowerCamelCase ) ) ) return config def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): if conf_path is None: __magic_name__ : List[str] ="""./model_checkpoints/vqgan_only.yaml""" __magic_name__ : Dict =load_config(lowerCamelCase , display=lowerCamelCase ) __magic_name__ : Tuple =VQModel(**config.model.params ) if ckpt_path is None: __magic_name__ : Optional[Any] ="""./model_checkpoints/vqgan_only.pt""" __magic_name__ : Tuple =torch.load(lowerCamelCase , map_location=lowerCamelCase ) if ".ckpt" in ckpt_path: __magic_name__ : Any =sd["""state_dict"""] model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) model.to(lowerCamelCase ) del sd return model def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =model.encode(lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) __magic_name__ : List[Any] =model.decode(lowerCamelCase ) return xrec def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ , __magic_name__ : Optional[int] =string.rsplit(""".""" , 1 ) if reload: __magic_name__ : Optional[int] =importlib.import_module(lowerCamelCase ) importlib.reload(lowerCamelCase ) return getattr(importlib.import_module(lowerCamelCase , package=lowerCamelCase ) , cls ) def lowerCAmelCase_ ( lowerCamelCase ): if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True ): __magic_name__ : str =instantiate_from_config(lowerCamelCase ) if sd is not None: model.load_state_dict(lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # load the specified checkpoint if ckpt: __magic_name__ : str =torch.load(lowerCamelCase , map_location="""cpu""" ) __magic_name__ : Any =pl_sd["""global_step"""] print(F"loaded model from global step {global_step}." ) else: __magic_name__ : List[Any] ={"""state_dict""": None} __magic_name__ : Optional[Any] =None __magic_name__ : Tuple =load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=lowerCamelCase , eval_mode=lowerCamelCase )["""model"""] return model, global_step
21
1
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): __magic_name__ : Dict ={ """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } __magic_name__ , __magic_name__ : List[Any] =input_paths_and_base_extractors[compression_format] if input_path is None: __magic_name__ : Optional[Any] =F"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase ) assert base_extractor.is_extractable(lowerCamelCase ) __magic_name__ : List[str] =tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(lowerCamelCase , lowerCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __magic_name__ : Any =file_path.read_text(encoding="""utf-8""" ) else: __magic_name__ : Any =output_path.read_text(encoding="""utf-8""" ) __magic_name__ : Tuple =text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): __magic_name__ : List[str] ={ """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } __magic_name__ : int =input_paths[compression_format] if input_path is None: __magic_name__ : List[Any] =F"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase ) __magic_name__ : Optional[int] =Extractor.infer_extractor_format(lowerCamelCase ) assert extractor_format is not None __magic_name__ : List[str] =tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __magic_name__ : List[str] =file_path.read_text(encoding="""utf-8""" ) else: __magic_name__ : Optional[int] =output_path.read_text(encoding="""utf-8""" ) __magic_name__ : str =text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): import tarfile __magic_name__ : Union[str, Any] =tmp_path / """data_dot_dot""" directory.mkdir() __magic_name__ : List[str] =directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(lowerCamelCase , """w""" ) as f: f.add(lowerCamelCase , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def lowerCAmelCase_ ( lowerCamelCase ): import tarfile __magic_name__ : Any =tmp_path / """data_sym_link""" directory.mkdir() __magic_name__ : Dict =directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=lowerCamelCase ) with tarfile.TarFile(lowerCamelCase , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : int ={ """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } __magic_name__ : Optional[int] =insecure_tar_files[insecure_tar_file] __magic_name__ : str =tmp_path / """extracted""" TarExtractor.extract(lowerCamelCase , lowerCamelCase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def lowerCAmelCase_ ( lowerCamelCase ): # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number __magic_name__ : List[str] =tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 __magic_name__ : Any =( B"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" B"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" B"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" B"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(lowerCamelCase ) assert zipfile.is_zipfile(str(lowerCamelCase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(lowerCamelCase ) # but we're right
21
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): def A__ ( self :Tuple ): '''simple docstring''' debug_launcher(test_script.main ) def A__ ( self :Dict ): '''simple docstring''' debug_launcher(test_ops.main )
21
1
from __future__ import annotations def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None ): if start is None: __magic_name__ : Tuple =0 if end is None: __magic_name__ : Tuple =len(lowerCamelCase ) - 1 if start >= end: return __magic_name__ : str =(start + end) // 2 slowsort(lowerCamelCase , lowerCamelCase , lowerCamelCase ) slowsort(lowerCamelCase , mid + 1 , lowerCamelCase ) if sequence[end] < sequence[mid]: __magic_name__ , __magic_name__ : Tuple =sequence[mid], sequence[end] slowsort(lowerCamelCase , lowerCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
21
UpperCAmelCase_ : Tuple = 0 # The first color of the flag. UpperCAmelCase_ : Any = 1 # The second color of the flag. UpperCAmelCase_ : str = 2 # The third color of the flag. UpperCAmelCase_ : Tuple = (red, white, blue) def lowerCAmelCase_ ( lowerCamelCase ): if not sequence: return [] if len(lowerCamelCase ) == 1: return list(lowerCamelCase ) __magic_name__ : int =0 __magic_name__ : str =len(lowerCamelCase ) - 1 __magic_name__ : Optional[Any] =0 while mid <= high: if sequence[mid] == colors[0]: __magic_name__ , __magic_name__ : Tuple =sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: __magic_name__ , __magic_name__ : Optional[Any] =sequence[high], sequence[mid] high -= 1 else: __magic_name__ : Optional[int] =F"The elements inside the sequence must contains only {colors} values" raise ValueError(lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[Any] = input("Enter numbers separated by commas:\n").strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
21
1
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __A ( UpperCamelCase__ ): UpperCamelCase = 42 class __A ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self :Optional[int] , __snake_case :int = 32 , __snake_case :int = 64 , __snake_case :int = 20 , __snake_case :int = 7_68 , __snake_case :List[Any]=77 , __snake_case :Union[str, Any]=4 , __snake_case :float = 0.0 , __snake_case :str = "silu" , __snake_case :Optional[str] = None , __snake_case :Optional[str] = None , __snake_case :Optional[str] = "linear" , __snake_case :Optional[str] = "prd" , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , ): '''simple docstring''' super().__init__() __magic_name__ : Tuple =num_attention_heads __magic_name__ : Tuple =attention_head_dim __magic_name__ : Optional[int] =num_attention_heads * attention_head_dim __magic_name__ : Union[str, Any] =additional_embeddings __magic_name__ : Tuple =time_embed_dim or inner_dim __magic_name__ : str =embedding_proj_dim or embedding_dim __magic_name__ : List[Any] =clip_embed_dim or embedding_dim __magic_name__ : Union[str, Any] =Timesteps(__snake_case , __snake_case , 0 ) __magic_name__ : Dict =TimestepEmbedding(__snake_case , __snake_case , out_dim=__snake_case , act_fn=__snake_case ) __magic_name__ : Tuple =nn.Linear(__snake_case , __snake_case ) if embedding_proj_norm_type is None: __magic_name__ : Tuple =None elif embedding_proj_norm_type == "layer": __magic_name__ : Tuple =nn.LayerNorm(__snake_case ) else: raise ValueError(f"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" ) __magic_name__ : Tuple =nn.Linear(__snake_case , __snake_case ) if encoder_hid_proj_type is None: __magic_name__ : Any =None elif encoder_hid_proj_type == "linear": __magic_name__ : List[str] =nn.Linear(__snake_case , __snake_case ) else: raise ValueError(f"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" ) __magic_name__ : Dict =nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __snake_case ) ) if added_emb_type == "prd": __magic_name__ : Union[str, Any] =nn.Parameter(torch.zeros(1 , 1 , __snake_case ) ) elif added_emb_type is None: __magic_name__ : Optional[Any] =None else: raise ValueError( f"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." ) __magic_name__ : Optional[int] =nn.ModuleList( [ BasicTransformerBlock( __snake_case , __snake_case , __snake_case , dropout=__snake_case , activation_fn="""gelu""" , attention_bias=__snake_case , ) for d in range(__snake_case ) ] ) if norm_in_type == "layer": __magic_name__ : Optional[Any] =nn.LayerNorm(__snake_case ) elif norm_in_type is None: __magic_name__ : Optional[Any] =None else: raise ValueError(f"Unsupported norm_in_type: {norm_in_type}." ) __magic_name__ : Tuple =nn.LayerNorm(__snake_case ) __magic_name__ : Union[str, Any] =nn.Linear(__snake_case , __snake_case ) __magic_name__ : Any =torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) __magic_name__ : Union[str, Any] =causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , __snake_case , persistent=__snake_case ) __magic_name__ : Union[str, Any] =nn.Parameter(torch.zeros(1 , __snake_case ) ) __magic_name__ : Tuple =nn.Parameter(torch.zeros(1 , __snake_case ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Dict ={} def fn_recursive_add_processors(__snake_case :str , __snake_case :torch.nn.Module , __snake_case :Dict[str, AttentionProcessor] ): if hasattr(__snake_case , """set_processor""" ): __magic_name__ : Dict =module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}" , __snake_case , __snake_case ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__snake_case , __snake_case , __snake_case ) return processors def A__ ( self :Any , __snake_case :Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' __magic_name__ : Dict =len(self.attn_processors.keys() ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(__snake_case )} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(__snake_case :str , __snake_case :torch.nn.Module , __snake_case :List[Any] ): if hasattr(__snake_case , """set_processor""" ): if not isinstance(__snake_case , __snake_case ): module.set_processor(__snake_case ) else: module.set_processor(processor.pop(f"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}" , __snake_case , __snake_case ) for name, module in self.named_children(): fn_recursive_attn_processor(__snake_case , __snake_case , __snake_case ) def A__ ( self :str ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def A__ ( self :int , __snake_case :List[Any] , __snake_case :Union[torch.Tensor, float, int] , __snake_case :torch.FloatTensor , __snake_case :Optional[torch.FloatTensor] = None , __snake_case :Optional[torch.BoolTensor] = None , __snake_case :bool = True , ): '''simple docstring''' __magic_name__ : Optional[int] =hidden_states.shape[0] __magic_name__ : str =timestep if not torch.is_tensor(__snake_case ): __magic_name__ : Dict =torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(__snake_case ) and len(timesteps.shape ) == 0: __magic_name__ : Optional[int] =timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __magic_name__ : Optional[Any] =timesteps * torch.ones(__snake_case , dtype=timesteps.dtype , device=timesteps.device ) __magic_name__ : Any =self.time_proj(__snake_case ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __magic_name__ : Optional[Any] =timesteps_projected.to(dtype=self.dtype ) __magic_name__ : Union[str, Any] =self.time_embedding(__snake_case ) if self.embedding_proj_norm is not None: __magic_name__ : int =self.embedding_proj_norm(__snake_case ) __magic_name__ : Optional[int] =self.embedding_proj(__snake_case ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __magic_name__ : Union[str, Any] =self.encoder_hidden_states_proj(__snake_case ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) __magic_name__ : Any =self.proj_in(__snake_case ) __magic_name__ : Tuple =self.positional_embedding.to(hidden_states.dtype ) __magic_name__ : Dict =[] __magic_name__ : List[str] =0 if encoder_hidden_states is not None: additional_embeds.append(__snake_case ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __magic_name__ : Optional[int] =proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __magic_name__ : Union[str, Any] =hidden_states[:, None, :] __magic_name__ : Optional[Any] =additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __magic_name__ : List[Any] =self.prd_embedding.to(hidden_states.dtype ).expand(__snake_case , -1 , -1 ) additional_embeds.append(__snake_case ) __magic_name__ : Tuple =torch.cat( __snake_case , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __magic_name__ : List[Any] =additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __magic_name__ : List[str] =F.pad( __snake_case , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __magic_name__ : str =hidden_states + positional_embeddings if attention_mask is not None: __magic_name__ : Tuple =(1 - attention_mask.to(hidden_states.dtype )) * -10000.0 __magic_name__ : Optional[int] =F.pad(__snake_case , (0, self.additional_embeddings) , value=0.0 ) __magic_name__ : Any =(attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __magic_name__ : Tuple =attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __magic_name__ : List[str] =self.norm_in(__snake_case ) for block in self.transformer_blocks: __magic_name__ : str =block(__snake_case , attention_mask=__snake_case ) __magic_name__ : Tuple =self.norm_out(__snake_case ) if self.prd_embedding is not None: __magic_name__ : Optional[Any] =hidden_states[:, -1] else: __magic_name__ : Union[str, Any] =hidden_states[:, additional_embeddings_len:] __magic_name__ : str =self.proj_to_clip_embeddings(__snake_case ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=__snake_case ) def A__ ( self :int , __snake_case :Optional[int] ): '''simple docstring''' __magic_name__ : Tuple =(prior_latents * self.clip_std) + self.clip_mean return prior_latents
21
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __A ( UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = 1 @register_to_config def __init__( self :Any , __snake_case :Tuple=20_00 , __snake_case :Optional[Any]=0.1 , __snake_case :Any=20 , __snake_case :Optional[int]=1E-3 ): '''simple docstring''' __magic_name__ : Dict =None __magic_name__ : List[str] =None __magic_name__ : str =None def A__ ( self :Dict , __snake_case :Optional[int] , __snake_case :Union[str, torch.device] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] =torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case ) def A__ ( self :List[str] , __snake_case :List[str] , __snake_case :int , __snake_case :int , __snake_case :List[str]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __magic_name__ : int =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __magic_name__ : Optional[int] =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __magic_name__ : str =std.flatten() while len(std.shape ) < len(score.shape ): __magic_name__ : List[str] =std.unsqueeze(-1 ) __magic_name__ : Union[str, Any] =-score / std # compute __magic_name__ : Tuple =-1.0 / len(self.timesteps ) __magic_name__ : int =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __magic_name__ : Dict =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __magic_name__ : Any =beta_t.unsqueeze(-1 ) __magic_name__ : Dict =-0.5 * beta_t * x __magic_name__ : Optional[int] =torch.sqrt(__snake_case ) __magic_name__ : int =drift - diffusion**2 * score __magic_name__ : List[str] =x + drift * dt # add noise __magic_name__ : Optional[int] =randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype ) __magic_name__ : Optional[Any] =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self :List[Any] ): '''simple docstring''' return self.config.num_train_timesteps
21
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): @slow def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : List[str] =AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=__snake_case ).to(__snake_case ) __magic_name__ : Any =AutoTokenizer.from_pretrained("""google/mt5-small""" ) __magic_name__ : Dict =tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids __magic_name__ : Tuple =tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids __magic_name__ : List[Any] =model(input_ids.to(__snake_case ) , labels=labels.to(__snake_case ) ).loss __magic_name__ : List[Any] =-(labels.shape[-1] * loss.item()) __magic_name__ : Optional[int] =-84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
21
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCAmelCase_ : Dict = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__( self :List[str] , __snake_case :int , __snake_case :int , __snake_case :float , **__snake_case :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =feature_size __magic_name__ : Union[str, Any] =sampling_rate __magic_name__ : List[Any] =padding_value __magic_name__ : List[str] =kwargs.pop("""padding_side""" , """right""" ) __magic_name__ : Tuple =kwargs.pop("""return_attention_mask""" , __snake_case ) super().__init__(**__snake_case ) def A__ ( self :Any , __snake_case :Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __snake_case :Union[bool, str, PaddingStrategy] = True , __snake_case :Optional[int] = None , __snake_case :bool = False , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[Union[str, TensorType]] = None , ): '''simple docstring''' if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __magic_name__ : Union[str, Any] ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) __magic_name__ : int =processed_features[self.model_input_names[0]] __magic_name__ : Union[str, Any] =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__snake_case ) == 0: if return_attention_mask: __magic_name__ : List[str] =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __magic_name__ : Optional[int] =required_input[0] if isinstance(__snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __magic_name__ : Optional[Any] =0 while len(required_input[index] ) == 0: index += 1 if index < len(__snake_case ): __magic_name__ : List[str] =required_input[index][0] if return_tensors is None: if is_tf_tensor(__snake_case ): __magic_name__ : int ="""tf""" elif is_torch_tensor(__snake_case ): __magic_name__ : str ="""pt""" elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ): __magic_name__ : List[Any] ="""np""" else: raise ValueError( f"type of {first_element} unknown: {type(__snake_case )}. " """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __magic_name__ : List[str] =to_numpy(__snake_case ) else: __magic_name__ : str =[to_numpy(__snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy __magic_name__ : Dict =self._get_padding_strategies(padding=__snake_case , max_length=__snake_case ) __magic_name__ : Optional[Any] =processed_features[self.model_input_names[0]] __magic_name__ : Dict =len(__snake_case ) if not all(len(__snake_case ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) __magic_name__ : Optional[int] =[] for i in range(__snake_case ): __magic_name__ : Any ={k: v[i] for k, v in processed_features.items()} # truncation __magic_name__ : List[str] =self._truncate( __snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) truncated_inputs.append(__snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __magic_name__ : Optional[int] =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __magic_name__ : Tuple =PaddingStrategy.MAX_LENGTH __magic_name__ : str ={} for i in range(__snake_case ): # padding __magic_name__ : List[str] =self._pad( truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: __magic_name__ : Dict =[] if value.dtype is np.dtype(np.floataa ): __magic_name__ : Optional[int] =value.astype(np.floataa ) batch_outputs[key].append(__snake_case ) return BatchFeature(__snake_case , tensor_type=__snake_case ) def A__ ( self :Any , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' __magic_name__ : Dict =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __magic_name__ : Any =len(__snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : Dict =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : List[Any] =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __magic_name__ : int =np.ones(len(__snake_case ) , dtype=np.intaa ) if needs_to_be_padded: __magic_name__ : List[Any] =max_length - len(__snake_case ) if self.padding_side == "right": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (0, difference) ) __magic_name__ : Tuple =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __magic_name__ : str =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (difference, 0) ) __magic_name__ : Optional[int] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __magic_name__ : List[Any] =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def A__ ( self :Optional[Any] , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) __magic_name__ : Union[str, Any] =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : List[str] =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : Any =len(__snake_case ) > max_length if needs_to_be_truncated: __magic_name__ : List[Any] =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __magic_name__ : List[str] =processed_features["""attention_mask"""][:max_length] return processed_features def A__ ( self :List[Any] , __snake_case :str=False , __snake_case :Optional[int]=None ): '''simple docstring''' if padding is not False: if padding is True: __magic_name__ : Union[str, Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__snake_case , __snake_case ): __magic_name__ : Optional[int] =PaddingStrategy(__snake_case ) elif isinstance(__snake_case , __snake_case ): __magic_name__ : Any =padding else: __magic_name__ : Any =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
21
1
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __A : def __init__( self :Optional[Any] , __snake_case :List[str] , __snake_case :Any=99 , __snake_case :Optional[int]=13 , __snake_case :Any=16 , __snake_case :Any=7 , __snake_case :Tuple=True , __snake_case :List[Any]=True , __snake_case :Union[str, Any]=True , __snake_case :Dict=False , __snake_case :str=True , __snake_case :Optional[Any]=2 , __snake_case :Optional[int]=32 , __snake_case :int=4 , __snake_case :str=4 , __snake_case :Optional[int]=30 , __snake_case :str=0 , __snake_case :Optional[Any]=1 , __snake_case :Optional[int]=2 , __snake_case :List[str]=None , ): '''simple docstring''' __magic_name__ : Union[str, Any] =parent __magic_name__ : str =batch_size __magic_name__ : List[str] =decoder_seq_length # For common tests __magic_name__ : Optional[Any] =self.decoder_seq_length __magic_name__ : Any =is_training __magic_name__ : Any =use_attention_mask __magic_name__ : List[str] =use_labels __magic_name__ : List[str] =vocab_size __magic_name__ : str =d_model __magic_name__ : Optional[int] =d_model __magic_name__ : str =decoder_layers __magic_name__ : Optional[Any] =decoder_layers __magic_name__ : Dict =decoder_ffn_dim __magic_name__ : Tuple =decoder_attention_heads __magic_name__ : Optional[Any] =decoder_attention_heads __magic_name__ : Union[str, Any] =eos_token_id __magic_name__ : Optional[Any] =bos_token_id __magic_name__ : Optional[Any] =pad_token_id __magic_name__ : Any =decoder_start_token_id __magic_name__ : str =use_cache __magic_name__ : Optional[int] =max_position_embeddings __magic_name__ : Any =None __magic_name__ : Dict =decoder_seq_length __magic_name__ : Union[str, Any] =2 __magic_name__ : List[str] =1 def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __magic_name__ : Any =None if self.use_attention_mask: __magic_name__ : int =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) __magic_name__ : Optional[int] =None if self.use_labels: __magic_name__ : List[str] =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __magic_name__ : Tuple =TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def A__ ( self :Union[str, Any] , __snake_case :Any , __snake_case :int , __snake_case :Dict , __snake_case :Dict , ): '''simple docstring''' __magic_name__ : Dict =True __magic_name__ : List[Any] =TrOCRDecoder(config=__snake_case ).to(__snake_case ).eval() __magic_name__ : List[Any] =input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass __magic_name__ : str =model(__snake_case , use_cache=__snake_case ) __magic_name__ : Optional[Any] =model(__snake_case ) __magic_name__ : str =model(__snake_case , use_cache=__snake_case ) self.parent.assertTrue(len(__snake_case ) == len(__snake_case ) ) self.parent.assertTrue(len(__snake_case ) == len(__snake_case ) + 1 ) __magic_name__ : str =outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids __magic_name__ : Dict =ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and __magic_name__ : List[Any] =torch.cat([input_ids, next_tokens] , dim=-1 ) __magic_name__ : Dict =model(__snake_case )["""last_hidden_state"""] __magic_name__ : Union[str, Any] =model(__snake_case , past_key_values=__snake_case )["""last_hidden_state"""] # select random slice __magic_name__ : Dict =ids_tensor((1,) , output_from_past.shape[-1] ).item() __magic_name__ : List[str] =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() __magic_name__ : List[str] =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(__snake_case , __snake_case , atol=1E-3 ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Tuple =self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : int =config_and_inputs __magic_name__ : Optional[int] ={"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () UpperCamelCase = (TrOCRForCausalLM,) if is_torch_available() else () UpperCamelCase = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} UpperCamelCase = True UpperCamelCase = False def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Dict =TrOCRStandaloneDecoderModelTester(self , is_training=__snake_case ) __magic_name__ : Optional[int] =ConfigTester(self , config_class=__snake_case ) def A__ ( self :Optional[int] ): '''simple docstring''' pass def A__ ( self :Tuple ): '''simple docstring''' pass def A__ ( self :int ): '''simple docstring''' pass def A__ ( self :Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def A__ ( self :Optional[int] ): '''simple docstring''' pass
21
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): def __init__( self :List[Any] ): '''simple docstring''' super().__init__() __magic_name__ : Tuple =nn.Linear(3 , 4 ) __magic_name__ : Union[str, Any] =nn.BatchNormad(4 ) __magic_name__ : List[str] =nn.Linear(4 , 5 ) def A__ ( self :Dict , __snake_case :Tuple ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) ) class __A ( UpperCamelCase__ ): def A__ ( self :Any , __snake_case :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Any ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __A ( UpperCamelCase__ ): def A__ ( self :List[str] , __snake_case :Tuple , __snake_case :Union[str, Any] ): '''simple docstring''' return output + 1 class __A ( unittest.TestCase ): def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : Tuple =ModelHook() add_hook_to_module(__snake_case , __snake_case ) self.assertEqual(test_model._hf_hook , __snake_case ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : List[str] =ModelHook() add_hook_to_module(__snake_case , __snake_case ) add_hook_to_module(__snake_case , __snake_case , append=__snake_case ) self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() __magic_name__ : Any =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(x + 1 ) __magic_name__ : Optional[Any] =test_model(x + 2 ) __magic_name__ : int =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : int =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : str =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : List[str] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Optional[Any] =SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) assert torch.allclose(__snake_case , __snake_case , atol=1E-5 ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() __magic_name__ : Dict =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(__snake_case ) __magic_name__ : Dict =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Optional[int] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Union[str, Any] =SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) assert torch.allclose(__snake_case , output + 2 , atol=1E-5 ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Tuple =ModelForTest() __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Dict =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __magic_name__ : Any =True __magic_name__ : Any =test_model(__snake_case ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[Any] =model(__snake_case ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) ) __magic_name__ : int =torch.randn(2 , 3 ).to(0 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , torch.device(0 ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : int =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : int ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[int] =torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : Union[str, Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __magic_name__ : Tuple ={ """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Tuple =torch.randn(2 , 3 ) __magic_name__ : int =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : str =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Optional[int] =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Dict =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : List[str] =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Any =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
21
1
import colorsys from PIL import Image # type: ignore def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Any =x __magic_name__ : Dict =y for step in range(lowerCamelCase ): # noqa: B007 __magic_name__ : str =a * a - b * b + x __magic_name__ : int =2 * a * b + y __magic_name__ : Union[str, Any] =a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCAmelCase_ ( lowerCamelCase ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCAmelCase_ ( lowerCamelCase ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCamelCase , 1 , 1 ) ) def lowerCAmelCase_ ( lowerCamelCase = 800 , lowerCamelCase = 600 , lowerCamelCase = -0.6 , lowerCamelCase = 0 , lowerCamelCase = 3.2 , lowerCamelCase = 50 , lowerCamelCase = True , ): __magic_name__ : Tuple =Image.new("""RGB""" , (image_width, image_height) ) __magic_name__ : List[Any] =img.load() # loop through the image-coordinates for image_x in range(lowerCamelCase ): for image_y in range(lowerCamelCase ): # determine the figure-coordinates based on the image-coordinates __magic_name__ : Optional[int] =figure_width / image_width * image_height __magic_name__ : Optional[int] =figure_center_x + (image_x / image_width - 0.5) * figure_width __magic_name__ : Tuple =figure_center_y + (image_y / image_height - 0.5) * figure_height __magic_name__ : Optional[int] =get_distance(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __magic_name__ : Optional[int] =get_color_coded_rgb(lowerCamelCase ) else: __magic_name__ : int =get_black_and_white_rgb(lowerCamelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure UpperCAmelCase_ : Any = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
21
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = KandinskyInpaintPipeline UpperCamelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCamelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCamelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase = False @property def A__ ( self :Union[str, Any] ): '''simple docstring''' return 32 @property def A__ ( self :Optional[Any] ): '''simple docstring''' return 32 @property def A__ ( self :List[Any] ): '''simple docstring''' return self.time_input_dim @property def A__ ( self :Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def A__ ( self :List[Any] ): '''simple docstring''' return 1_00 @property def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Dict =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self :str ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : str =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __magic_name__ : Tuple =MultilingualCLIP(__snake_case ) __magic_name__ : Optional[int] =text_encoder.eval() return text_encoder @property def A__ ( self :Dict ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Optional[Any] ={ """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __magic_name__ : Union[str, Any] =UNetaDConditionModel(**__snake_case ) return model @property def A__ ( self :List[str] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self :Tuple ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Dict =VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[str] =self.dummy_text_encoder __magic_name__ : Optional[Any] =self.dummy_tokenizer __magic_name__ : Optional[Any] =self.dummy_unet __magic_name__ : Tuple =self.dummy_movq __magic_name__ : List[str] =DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , ) __magic_name__ : str ={ """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self :str , __snake_case :Optional[Any] , __snake_case :int=0 ): '''simple docstring''' __magic_name__ : Union[str, Any] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : Dict =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case ) # create init_image __magic_name__ : str =floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : int =image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ : str =Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask __magic_name__ : Dict =np.ones((64, 64) , dtype=np.floataa ) __magic_name__ : Any =0 if str(__snake_case ).startswith("""mps""" ): __magic_name__ : Dict =torch.manual_seed(__snake_case ) else: __magic_name__ : Tuple =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__ : List[Any] ={ """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Tuple ="""cpu""" __magic_name__ : List[Any] =self.get_dummy_components() __magic_name__ : Union[str, Any] =self.pipeline_class(**__snake_case ) __magic_name__ : Tuple =pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Tuple =pipe(**self.get_dummy_inputs(__snake_case ) ) __magic_name__ : List[Any] =output.images __magic_name__ : Any =pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] __magic_name__ : int =image[0, -3:, -3:, -1] __magic_name__ : str =image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) __magic_name__ : Optional[Any] =np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def A__ ( self :Dict ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def A__ ( self :List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : List[str] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) __magic_name__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __magic_name__ : List[Any] =np.ones((7_68, 7_68) , dtype=np.floataa ) __magic_name__ : Any =0 __magic_name__ : int ="""a hat""" __magic_name__ : int =KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) __magic_name__ : Dict =KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) __magic_name__ : int =pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Union[str, Any] =torch.Generator(device="""cpu""" ).manual_seed(0 ) __magic_name__ , __magic_name__ : Dict =pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __magic_name__ : Optional[Any] =pipeline( __snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) __magic_name__ : Optional[int] =output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
21
1
from typing import List from .keymap import KEYMAP, get_character def lowerCAmelCase_ ( lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : str =getattr(lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator def lowerCAmelCase_ ( *lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : Dict =getattr(lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator class __A ( UpperCamelCase__ ): def __new__( cls :Dict , __snake_case :Optional[Any] , __snake_case :Union[str, Any] , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : int =super().__new__(cls , __snake_case , __snake_case , __snake_case ) if not hasattr(__snake_case , """key_handler""" ): setattr(__snake_case , """key_handler""" , {} ) setattr(__snake_case , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __magic_name__ : int =getattr(__snake_case , """handle_key""" , [] ) for key in handled_keys: __magic_name__ : List[str] =value return new_cls @staticmethod def A__ ( cls :Optional[int] ): '''simple docstring''' __magic_name__ : Union[str, Any] =get_character() if char != KEYMAP["undefined"]: __magic_name__ : Optional[int] =ord(__snake_case ) __magic_name__ : int =cls.key_handler.get(__snake_case ) if handler: __magic_name__ : Dict =char return handler(cls ) else: return None def lowerCAmelCase_ ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
21
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __A : def __init__( self :int , __snake_case :List[Any] , __snake_case :List[Any]=2 , __snake_case :Dict=True , __snake_case :Tuple=False , __snake_case :List[str]=10 , __snake_case :List[str]=3 , __snake_case :Union[str, Any]=32 * 8 , __snake_case :Optional[int]=32 * 8 , __snake_case :Any=4 , __snake_case :Union[str, Any]=64 , ): '''simple docstring''' __magic_name__ : Optional[int] =parent __magic_name__ : List[Any] =batch_size __magic_name__ : List[str] =is_training __magic_name__ : List[str] =use_auxiliary_loss __magic_name__ : Union[str, Any] =num_queries __magic_name__ : str =num_channels __magic_name__ : Union[str, Any] =min_size __magic_name__ : Union[str, Any] =max_size __magic_name__ : Optional[int] =num_labels __magic_name__ : Tuple =hidden_dim __magic_name__ : Any =hidden_dim def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __snake_case ) __magic_name__ : List[Any] =torch.ones([self.batch_size, self.min_size, self.max_size] , device=__snake_case ) __magic_name__ : List[str] =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__snake_case ) > 0.5 ).float() __magic_name__ : Union[str, Any] =(torch.rand((self.batch_size, self.num_labels) , device=__snake_case ) > 0.5).long() __magic_name__ : str =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Dict =MaskaFormerConfig( hidden_size=self.hidden_dim , ) __magic_name__ : str =self.num_queries __magic_name__ : Dict =self.num_labels __magic_name__ : int =[1, 1, 1, 1] __magic_name__ : List[str] =self.num_channels __magic_name__ : str =64 __magic_name__ : List[str] =1_28 __magic_name__ : Optional[Any] =self.hidden_dim __magic_name__ : Tuple =self.hidden_dim __magic_name__ : Optional[int] =self.hidden_dim return config def A__ ( self :Any ): '''simple docstring''' __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple =self.prepare_config_and_inputs() __magic_name__ : Optional[Any] ={"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def A__ ( self :Union[str, Any] , __snake_case :Tuple , __snake_case :Dict ): '''simple docstring''' __magic_name__ : int =output.encoder_hidden_states __magic_name__ : List[str] =output.pixel_decoder_hidden_states __magic_name__ : int =output.transformer_decoder_hidden_states self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , config.decoder_layers ) def A__ ( self :List[Any] , __snake_case :Optional[Any] , __snake_case :int , __snake_case :str , __snake_case :str=False ): '''simple docstring''' with torch.no_grad(): __magic_name__ : List[str] =MaskaFormerModel(config=__snake_case ) model.to(__snake_case ) model.eval() __magic_name__ : Union[str, Any] =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : int =model(__snake_case , output_hidden_states=__snake_case ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__snake_case , __snake_case ) def A__ ( self :Optional[Any] , __snake_case :List[str] , __snake_case :List[Any] , __snake_case :int , __snake_case :Any , __snake_case :Union[str, Any] ): '''simple docstring''' __magic_name__ : str =MaskaFormerForUniversalSegmentation(config=__snake_case ) model.to(__snake_case ) model.eval() def comm_check_on_output(__snake_case :List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __magic_name__ : int =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : List[str] =model(__snake_case ) comm_check_on_output(__snake_case ) __magic_name__ : Any =model( pixel_values=__snake_case , pixel_mask=__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) comm_check_on_output(__snake_case ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCamelCase = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def A__ ( self :str ): '''simple docstring''' __magic_name__ : Any =MaskaFormerModelTester(self ) __magic_name__ : Union[str, Any] =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def A__ ( self :Dict ): '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__snake_case ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def A__ ( self :List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def A__ ( self :Dict ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def A__ ( self :Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def A__ ( self :int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def A__ ( self :Tuple ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A__ ( self :Union[str, Any] ): '''simple docstring''' pass def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Tuple =model_class(__snake_case ) __magic_name__ : Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple =[*signature.parameters.keys()] __magic_name__ : Optional[Any] =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) @slow def A__ ( self :Tuple ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __magic_name__ : int =MaskaFormerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =(self.model_tester.min_size,) * 2 __magic_name__ : Union[str, Any] ={ """pixel_values""": torch.randn((2, 3, *size) , device=__snake_case ), """mask_labels""": torch.randn((2, 10, *size) , device=__snake_case ), """class_labels""": torch.zeros(2 , 10 , device=__snake_case ).long(), } __magic_name__ : Optional[Any] =self.model_tester.get_config() __magic_name__ : Dict =MaskaFormerForUniversalSegmentation(__snake_case ).to(__snake_case ) __magic_name__ : Any =model(**__snake_case ) self.assertTrue(outputs.loss is not None ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ , __magic_name__ : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] =model_class(__snake_case ).to(__snake_case ) __magic_name__ : Optional[int] =model(**__snake_case , output_attentions=__snake_case ) self.assertTrue(outputs.attentions is not None ) def A__ ( self :int ): '''simple docstring''' if not self.model_tester.is_training: return __magic_name__ : List[Any] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Dict =model_class(__snake_case ) model.to(__snake_case ) model.train() __magic_name__ : Optional[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ).loss loss.backward() def A__ ( self :int ): '''simple docstring''' __magic_name__ : List[str] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Tuple =True __magic_name__ : Optional[int] =True __magic_name__ : int =model_class(__snake_case ).to(__snake_case ) model.train() __magic_name__ : List[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) __magic_name__ : Optional[int] =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __magic_name__ : Optional[int] =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__snake_case ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase_ : Dict = 1e-4 def lowerCAmelCase_ ( ): __magic_name__ : Dict =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __A ( unittest.TestCase ): @cached_property def A__ ( self :int ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def A__ ( self :int ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__snake_case ) __magic_name__ : int =self.default_image_processor __magic_name__ : List[Any] =prepare_img() __magic_name__ : Any =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Dict =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : List[str] =model(**__snake_case ) __magic_name__ : Any =torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Dict =torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Any =torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Optional[int] =self.default_image_processor __magic_name__ : Tuple =prepare_img() __magic_name__ : List[Any] =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Union[str, Any] =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : str =model(**__snake_case ) # masks_queries_logits __magic_name__ : List[Any] =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __magic_name__ : List[Any] =[ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __magic_name__ : Dict =torch.tensor(__snake_case ).to(__snake_case ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) # class_queries_logits __magic_name__ : Any =outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __magic_name__ : int =torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Any =self.default_image_processor __magic_name__ : Union[str, Any] =image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , ) __magic_name__ : str =inputs["""pixel_values"""].to(__snake_case ) __magic_name__ : Tuple =[el.to(__snake_case ) for el in inputs["""mask_labels"""]] __magic_name__ : Union[str, Any] =[el.to(__snake_case ) for el in inputs["""class_labels"""]] with torch.no_grad(): __magic_name__ : Dict =model(**__snake_case ) self.assertTrue(outputs.loss is not None )
21
1
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): def __init__( self :List[Any] ): '''simple docstring''' super().__init__() __magic_name__ : Tuple =nn.Linear(3 , 4 ) __magic_name__ : Union[str, Any] =nn.BatchNormad(4 ) __magic_name__ : List[str] =nn.Linear(4 , 5 ) def A__ ( self :Dict , __snake_case :Tuple ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) ) class __A ( UpperCamelCase__ ): def A__ ( self :Any , __snake_case :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Any ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __A ( UpperCamelCase__ ): def A__ ( self :List[str] , __snake_case :Tuple , __snake_case :Union[str, Any] ): '''simple docstring''' return output + 1 class __A ( unittest.TestCase ): def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : Tuple =ModelHook() add_hook_to_module(__snake_case , __snake_case ) self.assertEqual(test_model._hf_hook , __snake_case ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : List[str] =ModelHook() add_hook_to_module(__snake_case , __snake_case ) add_hook_to_module(__snake_case , __snake_case , append=__snake_case ) self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() __magic_name__ : Any =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(x + 1 ) __magic_name__ : Optional[Any] =test_model(x + 2 ) __magic_name__ : int =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : int =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : str =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : List[str] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Optional[Any] =SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) assert torch.allclose(__snake_case , __snake_case , atol=1E-5 ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() __magic_name__ : Dict =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(__snake_case ) __magic_name__ : Dict =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Optional[int] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Union[str, Any] =SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) assert torch.allclose(__snake_case , output + 2 , atol=1E-5 ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Tuple =ModelForTest() __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Dict =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __magic_name__ : Any =True __magic_name__ : Any =test_model(__snake_case ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[Any] =model(__snake_case ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) ) __magic_name__ : int =torch.randn(2 , 3 ).to(0 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , torch.device(0 ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : int =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : int ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[int] =torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : Union[str, Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __magic_name__ : Tuple ={ """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Tuple =torch.randn(2 , 3 ) __magic_name__ : int =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : str =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Optional[int] =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Dict =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : List[str] =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Any =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
21
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __A ( UpperCamelCase__ ): UpperCamelCase = """segformer""" def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ): '''simple docstring''' super().__init__(**__snake_case ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , ) __magic_name__ : Dict =num_channels __magic_name__ : str =num_encoder_blocks __magic_name__ : List[Any] =depths __magic_name__ : Optional[Any] =sr_ratios __magic_name__ : List[str] =hidden_sizes __magic_name__ : List[str] =patch_sizes __magic_name__ : Any =strides __magic_name__ : Optional[Any] =mlp_ratios __magic_name__ : str =num_attention_heads __magic_name__ : int =hidden_act __magic_name__ : List[Any] =hidden_dropout_prob __magic_name__ : Optional[Any] =attention_probs_dropout_prob __magic_name__ : Optional[Any] =classifier_dropout_prob __magic_name__ : List[str] =initializer_range __magic_name__ : List[str] =drop_path_rate __magic_name__ : List[Any] =layer_norm_eps __magic_name__ : List[str] =decoder_hidden_size __magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case ) __magic_name__ : Dict =semantic_loss_ignore_index class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.11""" ) @property def A__ ( self :List[str] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self :Any ): '''simple docstring''' return 1E-4 @property def A__ ( self :int ): '''simple docstring''' return 12
21
1
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): assert isinstance(lowerCamelCase , lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Dict =tmp_path / """cache""" __magic_name__ : int ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __magic_name__ : Dict =ParquetDatasetReader(lowerCamelCase , cache_dir=lowerCamelCase , keep_in_memory=lowerCamelCase ).read() _check_parquet_dataset(lowerCamelCase , lowerCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =tmp_path / """cache""" __magic_name__ : Dict ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __magic_name__ : List[str] =features.copy() if features else default_expected_features __magic_name__ : Any =( Features({feature: Value(lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __magic_name__ : Dict =ParquetDatasetReader(lowerCamelCase , features=lowerCamelCase , cache_dir=lowerCamelCase ).read() _check_parquet_dataset(lowerCamelCase , lowerCamelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : str =tmp_path / """cache""" __magic_name__ : List[Any] ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __magic_name__ : Optional[Any] =ParquetDatasetReader(lowerCamelCase , cache_dir=lowerCamelCase , split=lowerCamelCase ).read() _check_parquet_dataset(lowerCamelCase , lowerCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): if issubclass(lowerCamelCase , lowerCamelCase ): __magic_name__ : Dict =parquet_path elif issubclass(lowerCamelCase , lowerCamelCase ): __magic_name__ : str =[parquet_path] __magic_name__ : str =tmp_path / """cache""" __magic_name__ : Tuple ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __magic_name__ : List[str] =ParquetDatasetReader(lowerCamelCase , cache_dir=lowerCamelCase ).read() _check_parquet_dataset(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=("train",) ): assert isinstance(lowerCamelCase , lowerCamelCase ) for split in splits: __magic_name__ : Tuple =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Optional[int] =tmp_path / """cache""" __magic_name__ : Any ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __magic_name__ : str =ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=lowerCamelCase , keep_in_memory=lowerCamelCase ).read() _check_parquet_datasetdict(lowerCamelCase , lowerCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Optional[int] =tmp_path / """cache""" __magic_name__ : List[Any] ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __magic_name__ : List[str] =features.copy() if features else default_expected_features __magic_name__ : Optional[Any] =( Features({feature: Value(lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __magic_name__ : Union[str, Any] =ParquetDatasetReader({"""train""": parquet_path} , features=lowerCamelCase , cache_dir=lowerCamelCase ).read() _check_parquet_datasetdict(lowerCamelCase , lowerCamelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): if split: __magic_name__ : Optional[int] ={split: parquet_path} else: __magic_name__ : int ="""train""" __magic_name__ : Dict ={"""train""": parquet_path, """test""": parquet_path} __magic_name__ : Dict =tmp_path / """cache""" __magic_name__ : Optional[Any] ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __magic_name__ : List[str] =ParquetDatasetReader(lowerCamelCase , cache_dir=lowerCamelCase ).read() _check_parquet_datasetdict(lowerCamelCase , lowerCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : str =ParquetDatasetWriter(lowerCamelCase , tmp_path / """foo.parquet""" ) assert writer.write() > 0 __magic_name__ : Any =pq.ParquetFile(tmp_path / """foo.parquet""" ) __magic_name__ : Optional[int] =pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : str =str(shared_datadir / """test_image_rgb.jpg""" ) __magic_name__ : Tuple ={"""image""": [image_path]} __magic_name__ : str =Features({"""image""": Image()} ) __magic_name__ : Any =Dataset.from_dict(lowerCamelCase , features=lowerCamelCase ) __magic_name__ : int =ParquetDatasetWriter(lowerCamelCase , tmp_path / """foo.parquet""" ) assert writer.write() > 0 __magic_name__ : List[str] =Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features __magic_name__ : Any =ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=lowerCamelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): assert get_writer_batch_size(lowerCamelCase ) == expected
21
import heapq def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase , [-1 * len(lowerCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices __magic_name__ : Tuple =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __magic_name__ : Tuple =heapq.heappop(lowerCamelCase )[1][0] chosen_vertices.add(lowerCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __magic_name__ : Tuple =elem[1][1].index(lowerCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
21
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Tuple =SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["""stage2""", """stage3""", """stage4"""] , ) __magic_name__ : Tuple =DetaConfig( backbone_config=lowerCamelCase , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=lowerCamelCase , with_box_refine=lowerCamelCase , two_stage=lowerCamelCase , ) # set labels __magic_name__ : Optional[Any] ="""huggingface/label-files""" if "o365" in model_name: __magic_name__ : int =366 __magic_name__ : Any ="""object365-id2label.json""" else: __magic_name__ : Optional[int] =91 __magic_name__ : Any ="""coco-detection-id2label.json""" __magic_name__ : Union[str, Any] =num_labels __magic_name__ : Any =json.load(open(cached_download(hf_hub_url(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) __magic_name__ : Union[str, Any] ={int(lowerCamelCase ): v for k, v in idalabel.items()} __magic_name__ : Union[str, Any] =idalabel __magic_name__ : Tuple ={v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =[] # stem # fmt: off rename_keys.append(("""backbone.0.body.patch_embed.proj.weight""", """model.backbone.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.proj.bias""", """model.backbone.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.weight""", """model.backbone.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.bias""", """model.backbone.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.0.body.layers.{i}.downsample.reduction.weight", F"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.weight", F"model.backbone.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.bias", F"model.backbone.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append(("""backbone.0.body.norm1.weight""", """model.backbone.model.hidden_states_norms.stage2.weight""") ) rename_keys.append(("""backbone.0.body.norm1.bias""", """model.backbone.model.hidden_states_norms.stage2.bias""") ) rename_keys.append(("""backbone.0.body.norm2.weight""", """model.backbone.model.hidden_states_norms.stage3.weight""") ) rename_keys.append(("""backbone.0.body.norm2.bias""", """model.backbone.model.hidden_states_norms.stage3.bias""") ) rename_keys.append(("""backbone.0.body.norm3.weight""", """model.backbone.model.hidden_states_norms.stage4.weight""") ) rename_keys.append(("""backbone.0.body.norm3.bias""", """model.backbone.model.hidden_states_norms.stage4.bias""") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", F"model.encoder.layers.{i}.self_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", F"model.encoder.layers.{i}.self_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", F"model.encoder.layers.{i}.self_attn.attention_weights.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", F"model.encoder.layers.{i}.self_attn.attention_weights.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.weight", F"model.encoder.layers.{i}.self_attn.value_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.bias", F"model.encoder.layers.{i}.self_attn.value_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.weight", F"model.encoder.layers.{i}.self_attn.output_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.bias", F"model.encoder.layers.{i}.self_attn.output_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.weight", F"model.encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"model.encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"model.encoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"model.encoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"model.encoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"model.encoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"model.encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"model.encoder.layers.{i}.final_layer_norm.bias") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", F"model.decoder.layers.{i}.encoder_attn.attention_weights.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", F"model.decoder.layers.{i}.encoder_attn.attention_weights.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", F"model.decoder.layers.{i}.encoder_attn.value_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", F"model.decoder.layers.{i}.encoder_attn.value_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", F"model.decoder.layers.{i}.encoder_attn.output_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", F"model.decoder.layers.{i}.encoder_attn.output_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.weight", F"model.decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"model.decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"model.decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"model.decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.weight", F"model.decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.bias", F"model.decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"model.decoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"model.decoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"model.decoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"model.decoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"model.decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"model.decoder.layers.{i}.final_layer_norm.bias") ) # fmt: on return rename_keys def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : str =dct.pop(lowerCamelCase ) __magic_name__ : List[str] =val def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : Tuple =[int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __magic_name__ : Optional[int] =num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __magic_name__ : List[str] =state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight" ) __magic_name__ : Any =state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __magic_name__ : List[Any] =in_proj_weight[:dim, :] __magic_name__ : Tuple =in_proj_bias[: dim] __magic_name__ : str =in_proj_weight[ dim : dim * 2, : ] __magic_name__ : Optional[int] =in_proj_bias[ dim : dim * 2 ] __magic_name__ : Union[str, Any] =in_proj_weight[ -dim :, : ] __magic_name__ : Tuple =in_proj_bias[-dim :] # fmt: on def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): # transformer decoder self-attention layers __magic_name__ : Union[str, Any] =config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __magic_name__ : Dict =state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) __magic_name__ : int =state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __magic_name__ : int =in_proj_weight[:hidden_size, :] __magic_name__ : Tuple =in_proj_bias[:hidden_size] __magic_name__ : int =in_proj_weight[ hidden_size : hidden_size * 2, : ] __magic_name__ : List[Any] =in_proj_bias[hidden_size : hidden_size * 2] __magic_name__ : str =in_proj_weight[-hidden_size:, :] __magic_name__ : str =in_proj_bias[-hidden_size:] def lowerCAmelCase_ ( ): __magic_name__ : int ="""http://images.cocodataset.org/val2017/000000039769.jpg""" __magic_name__ : str =Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Dict =get_deta_config(lowerCamelCase ) # load original state dict if model_name == "deta-swin-large": __magic_name__ : List[str] =hf_hub_download(repo_id="""nielsr/deta-checkpoints""" , filename="""adet_swin_ft.pth""" ) elif model_name == "deta-swin-large-o365": __magic_name__ : Dict =hf_hub_download(repo_id="""jozhang97/deta-swin-l-o365""" , filename="""deta_swin_pt_o365.pth""" ) else: raise ValueError(F"Model name {model_name} not supported" ) __magic_name__ : int =torch.load(lowerCamelCase , map_location="""cpu""" )["""model"""] # original state dict for name, param in state_dict.items(): print(lowerCamelCase , param.shape ) # rename keys __magic_name__ : Any =create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_swin_q_k_v(lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase , lowerCamelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __magic_name__ : Any =state_dict.pop(lowerCamelCase ) __magic_name__ : Any =val if "input_proj" in key: __magic_name__ : List[str] =state_dict.pop(lowerCamelCase ) __magic_name__ : Optional[Any] =val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __magic_name__ : int =state_dict.pop(lowerCamelCase ) __magic_name__ : Any =val # finally, create HuggingFace model and load state dict __magic_name__ : str =DetaForObjectDetection(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() __magic_name__ : Optional[Any] ="""cuda""" if torch.cuda.is_available() else """cpu""" model.to(lowerCamelCase ) # load image processor __magic_name__ : Any =DetaImageProcessor(format="""coco_detection""" ) # verify our conversion on image __magic_name__ : Tuple =prepare_img() __magic_name__ : Optional[Any] =processor(images=lowerCamelCase , return_tensors="""pt""" ) __magic_name__ : int =encoding["""pixel_values"""] __magic_name__ : List[str] =model(pixel_values.to(lowerCamelCase ) ) # verify logits print("""Logits:""" , outputs.logits[0, :3, :3] ) print("""Boxes:""" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __magic_name__ : str =torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) __magic_name__ : Dict =torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": __magic_name__ : List[Any] =torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) __magic_name__ : Optional[Any] =torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(lowerCamelCase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(lowerCamelCase ) , atol=1E-4 ) print("""Everything ok!""" ) if pytorch_dump_folder_path: # Save model and processor logger.info(F"Saving PyTorch model and processor to {pytorch_dump_folder_path}..." ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) processor.save_pretrained(lowerCamelCase ) # Push to hub if push_to_hub: print("""Pushing model and processor to hub...""" ) model.push_to_hub(F"jozhang97/{model_name}" ) processor.push_to_hub(F"jozhang97/{model_name}" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCAmelCase_ : str = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
21
UpperCAmelCase_ : int = range(2, 20 + 1) UpperCAmelCase_ : Tuple = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =sum(a_i[j] for j in range(lowerCamelCase , len(lowerCamelCase ) ) ) __magic_name__ : Any =sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase ) , lowerCamelCase ) ) ) __magic_name__ , __magic_name__ : Tuple =0, 0 __magic_name__ : Optional[Any] =n - i __magic_name__ : Union[str, Any] =memo.get(lowerCamelCase ) if sub_memo is not None: __magic_name__ : int =sub_memo.get(lowerCamelCase ) if jumps is not None and len(lowerCamelCase ) > 0: # find and make the largest jump without going over __magic_name__ : Dict =-1 for _k in range(len(lowerCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __magic_name__ : Optional[Any] =_k break if max_jump >= 0: __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =jumps[max_jump] # since the difference between jumps is cached, add c __magic_name__ : Tuple =diff + c for j in range(min(lowerCamelCase , len(lowerCamelCase ) ) ): __magic_name__ , __magic_name__ : Tuple =divmod(lowerCamelCase , 10 ) if new_c > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __magic_name__ : str =[] else: __magic_name__ : List[str] ={c: []} __magic_name__ : List[str] =sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __magic_name__ , __magic_name__ : Union[str, Any] =next_term(lowerCamelCase , k - 1 , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __magic_name__ , __magic_name__ : Optional[int] =compute(lowerCamelCase , lowerCamelCase , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped __magic_name__ : Tuple =sub_memo[c] # keep jumps sorted by # of terms skipped __magic_name__ : List[Any] =0 while j < len(lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase , (diff, dn, k) ) return (diff, dn) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if i >= n: return 0, i if k > len(lowerCamelCase ): a_i.extend([0 for _ in range(k - len(lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __magic_name__ : Tuple =i __magic_name__ , __magic_name__ , __magic_name__ : Tuple =0, 0, 0 for j in range(len(lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __magic_name__ : Optional[Any] =ds_c + ds_b diff += addend __magic_name__ : str =0 for j in range(lowerCamelCase ): __magic_name__ : int =a_i[j] + addend __magic_name__ , __magic_name__ : Any =divmod(lowerCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return diff, i - start_i def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for j in range(lowerCamelCase , len(lowerCamelCase ) ): __magic_name__ : Tuple =digits[j] + addend if s >= 10: __magic_name__ , __magic_name__ : int =divmod(lowerCamelCase , 10 ) __magic_name__ : int =addend // 10 + quotient else: __magic_name__ : Dict =s __magic_name__ : Any =addend // 10 if addend == 0: break while addend > 0: __magic_name__ , __magic_name__ : Union[str, Any] =divmod(lowerCamelCase , 10 ) digits.append(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase = 10**15 ): __magic_name__ : List[str] =[1] __magic_name__ : str =1 __magic_name__ : str =0 while True: __magic_name__ , __magic_name__ : List[str] =next_term(lowerCamelCase , 20 , i + dn , lowerCamelCase ) dn += terms_jumped if dn == n - i: break __magic_name__ : int =0 for j in range(len(lowerCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
21
1
from numpy import exp, pi, sqrt def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
21
from typing import List from .keymap import KEYMAP, get_character def lowerCAmelCase_ ( lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : str =getattr(lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator def lowerCAmelCase_ ( *lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : Dict =getattr(lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator class __A ( UpperCamelCase__ ): def __new__( cls :Dict , __snake_case :Optional[Any] , __snake_case :Union[str, Any] , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : int =super().__new__(cls , __snake_case , __snake_case , __snake_case ) if not hasattr(__snake_case , """key_handler""" ): setattr(__snake_case , """key_handler""" , {} ) setattr(__snake_case , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __magic_name__ : int =getattr(__snake_case , """handle_key""" , [] ) for key in handled_keys: __magic_name__ : List[str] =value return new_cls @staticmethod def A__ ( cls :Optional[int] ): '''simple docstring''' __magic_name__ : Union[str, Any] =get_character() if char != KEYMAP["undefined"]: __magic_name__ : Optional[int] =ord(__snake_case ) __magic_name__ : int =cls.key_handler.get(__snake_case ) if handler: __magic_name__ : Dict =char return handler(cls ) else: return None def lowerCAmelCase_ ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
21
1
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowerCAmelCase_ ( lowerCamelCase ): return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) UpperCAmelCase_ : Tuple = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class __A ( UpperCamelCase__ ): @staticmethod def A__ ( __snake_case :ArgumentParser ): '''simple docstring''' __magic_name__ : List[str] =parser.add_parser( """convert""" , help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" , ) train_parser.add_argument("""--model_type""" , type=__snake_case , required=__snake_case , help="""Model's type.""" ) train_parser.add_argument( """--tf_checkpoint""" , type=__snake_case , required=__snake_case , help="""TensorFlow checkpoint path or folder.""" ) train_parser.add_argument( """--pytorch_dump_output""" , type=__snake_case , required=__snake_case , help="""Path to the PyTorch saved model output.""" ) train_parser.add_argument("""--config""" , type=__snake_case , default="""""" , help="""Configuration file path or folder.""" ) train_parser.add_argument( """--finetuning_task_name""" , type=__snake_case , default=__snake_case , help="""Optional fine-tuning task name if the TF model was a finetuned model.""" , ) train_parser.set_defaults(func=__snake_case ) def __init__( self :Any , __snake_case :str , __snake_case :str , __snake_case :str , __snake_case :str , __snake_case :str , *__snake_case :Optional[Any] , ): '''simple docstring''' __magic_name__ : Union[str, Any] =logging.get_logger("""transformers-cli/converting""" ) self._logger.info(f"Loading model {model_type}" ) __magic_name__ : List[Any] =model_type __magic_name__ : List[str] =tf_checkpoint __magic_name__ : Union[str, Any] =pytorch_dump_output __magic_name__ : Tuple =config __magic_name__ : Optional[int] =finetuning_task_name def A__ ( self :int ): '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__snake_case ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__snake_case ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__snake_case ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(__snake_case ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__snake_case ) if "ckpt" in self._tf_checkpoint.lower(): __magic_name__ : Tuple =self._tf_checkpoint __magic_name__ : Tuple ="""""" else: __magic_name__ : List[Any] =self._tf_checkpoint __magic_name__ : List[str] ="""""" convert_transfo_xl_checkpoint_to_pytorch( __snake_case , self._config , self._pytorch_dump_output , __snake_case ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__snake_case ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__snake_case ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( """--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
21
import os import jsonlines import numpy as np from tqdm import tqdm UpperCAmelCase_ : Dict = 2048 UpperCAmelCase_ : int = 4096 UpperCAmelCase_ : Any = 42 UpperCAmelCase_ : Optional[int] = os.environ.pop("PROCESS_TRAIN", "false") UpperCAmelCase_ : str = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def lowerCAmelCase_ ( lowerCamelCase ): def choose_first(lowerCamelCase , lowerCamelCase=False ): assert isinstance(lowerCamelCase , lowerCamelCase ) if len(lowerCamelCase ) == 1: __magic_name__ : List[str] =answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __magic_name__ : Tuple ={k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a __magic_name__ : str ={"""id""": example["""id"""]} __magic_name__ : List[Any] =example["""annotations"""] __magic_name__ : List[str] =annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: __magic_name__ : Optional[int] =["""yes"""] if 1 in yes_no_answer else ["""no"""] __magic_name__ : List[str] =[] __magic_name__ : Dict =[] __magic_name__ : str =["""<cls>"""] else: __magic_name__ : Tuple =["""short"""] __magic_name__ : Optional[int] =choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available __magic_name__ : Tuple =["""long"""] __magic_name__ : Tuple =choose_first(annotation["""long_answer"""] , is_long_answer=lowerCamelCase ) __magic_name__ : List[Any] =[] answer.update(lowerCamelCase ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: __magic_name__ : Any =True else: __magic_name__ : List[str] =False __magic_name__ : int =["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , lowerCamelCase ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =_get_single_answer(lowerCamelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : Any =example["""document"""]["""tokens"""] __magic_name__ : str =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __magic_name__ : Dict =["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __magic_name__ : Tuple =example["""document"""]["""tokens"""] __magic_name__ : Optional[int] =answer["""start_token"""] __magic_name__ : List[Any] =answer["""end_token"""] __magic_name__ : Optional[Any] =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __magic_name__ : Optional[int] =""" """.join(context[start_token:end_token] ) # checking above code if assertion: __magic_name__ : List[str] =doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : str =doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : Dict =""" """.join([old[i] for i in range(len(lowerCamelCase ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , lowerCamelCase , end="""\n""" ) print("""Old:""" , lowerCamelCase , end="""\n\n""" ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=True ): # overlap will be of doc_stride - q_len __magic_name__ : Any =get_context_and_ans(lowerCamelCase , assertion=lowerCamelCase ) __magic_name__ : Union[str, Any] =out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __magic_name__ : List[Any] =tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids __magic_name__ : Dict =input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : List[str] =[] __magic_name__ : int =[] __magic_name__ : List[str] =input_ids[:q_len] __magic_name__ : Dict =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Tuple =input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(lowerCamelCase ), "end_token": [-100] * len(lowerCamelCase ), "category": category, }, } __magic_name__ : int =out["""context"""].split() __magic_name__ : Any =splitted_context[answer["""end_token"""]] __magic_name__ : str =len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=lowerCamelCase , ).input_ids ) __magic_name__ : Optional[int] =len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=lowerCamelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __magic_name__ : Union[str, Any] =len(tokenizer(lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __magic_name__ : str =input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive __magic_name__ : Dict =answer["""start_token"""] __magic_name__ : int =answer["""end_token"""] if assertion: __magic_name__ : Any =tokenizer.decode(lowerCamelCase ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , lowerCamelCase , end="""\n\n""" ) if len(lowerCamelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __magic_name__ : Any =input_ids[:q_len] __magic_name__ : Union[str, Any] =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) __magic_name__ : Any =[] __magic_name__ : List[str] =[] __magic_name__ : List[str] =[] __magic_name__ : str =[] # null, yes, no, long, short for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Dict =input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __magic_name__ : List[Any] =start_token - i + q_len __magic_name__ : Optional[Any] =end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: __magic_name__ : Optional[Any] =-100 __magic_name__ : Optional[Any] =-100 answers_category.append("""null""" ) __magic_name__ : Optional[int] =inputs[-1][start_token : end_token + 1] answers_start_token.append(lowerCamelCase ) answers_end_token.append(lowerCamelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(lowerCamelCase ) ) print("""Old:""" , tokenizer.decode(lowerCamelCase ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=False ): __magic_name__ : List[Any] =get_strided_contexts_and_ans( lowerCamelCase , lowerCamelCase , doc_stride=lowerCamelCase , max_length=lowerCamelCase , assertion=lowerCamelCase , ) return example def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): with jsonlines.open(lowerCamelCase , """a""" ) as writer: for example in tqdm(lowerCamelCase , total=len(lowerCamelCase ) , desc="""Saving samples ... """ ): __magic_name__ : int =example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer UpperCAmelCase_ : Optional[int] = load_dataset("natural_questions") UpperCAmelCase_ : Optional[int] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") UpperCAmelCase_ : str = data["train" if PROCESS_TRAIN == "true" else "validation"] UpperCAmelCase_ : Optional[int] = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } UpperCAmelCase_ : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs) UpperCAmelCase_ : Optional[Any] = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) UpperCAmelCase_ : int = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
21
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : List[str] =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __magic_name__ : Union[str, Any] =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: __magic_name__ : Optional[Any] ="""""" else: __magic_name__ : List[Any] ="""vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __magic_name__ : Tuple =state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" ) __magic_name__ : Optional[Any] =state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __magic_name__ : Union[str, Any] =in_proj_weight[ : config.hidden_size, : ] __magic_name__ : Any =in_proj_bias[: config.hidden_size] __magic_name__ : Any =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __magic_name__ : Any =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __magic_name__ : Union[str, Any] =in_proj_weight[ -config.hidden_size :, : ] __magic_name__ : Any =in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : int =["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase ): # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. __magic_name__ : List[Any] =[ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Optional[Any] =dct.pop(lowerCamelCase ) __magic_name__ : List[str] =val def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : str =ViTMSNConfig() __magic_name__ : str =1000 __magic_name__ : Tuple ="""datasets/huggingface/label-files""" __magic_name__ : Union[str, Any] ="""imagenet-1k-id2label.json""" __magic_name__ : int =json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase ) , """r""" ) ) __magic_name__ : Dict ={int(lowerCamelCase ): v for k, v in idalabel.items()} __magic_name__ : int =idalabel __magic_name__ : List[Any] ={v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: __magic_name__ : int =384 __magic_name__ : List[str] =1536 __magic_name__ : Optional[int] =6 elif "l16" in checkpoint_url: __magic_name__ : Tuple =1024 __magic_name__ : Dict =4096 __magic_name__ : Tuple =24 __magic_name__ : Tuple =16 __magic_name__ : List[str] =0.1 elif "b4" in checkpoint_url: __magic_name__ : str =4 elif "l7" in checkpoint_url: __magic_name__ : List[Any] =7 __magic_name__ : Dict =1024 __magic_name__ : Any =4096 __magic_name__ : Union[str, Any] =24 __magic_name__ : Tuple =16 __magic_name__ : Any =0.1 __magic_name__ : List[str] =ViTMSNModel(lowerCamelCase ) __magic_name__ : str =torch.hub.load_state_dict_from_url(lowerCamelCase , map_location="""cpu""" )["""target_encoder"""] __magic_name__ : Dict =ViTImageProcessor(size=config.image_size ) remove_projection_head(lowerCamelCase ) __magic_name__ : Dict =create_rename_keys(lowerCamelCase , base_model=lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_q_k_v(lowerCamelCase , lowerCamelCase , base_model=lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() __magic_name__ : List[Any] ="""http://images.cocodataset.org/val2017/000000039769.jpg""" __magic_name__ : Dict =Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) __magic_name__ : Tuple =ViTImageProcessor( size=config.image_size , image_mean=lowerCamelCase , image_std=lowerCamelCase ) __magic_name__ : Tuple =image_processor(images=lowerCamelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) __magic_name__ : Dict =model(**lowerCamelCase ) __magic_name__ : List[Any] =outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: __magic_name__ : Any =torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: __magic_name__ : Optional[int] =torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: __magic_name__ : Tuple =torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: __magic_name__ : Tuple =torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: __magic_name__ : List[Any] =torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , lowerCamelCase , atol=1E-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase_ : int = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
21
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __A ( UpperCamelCase__ ): UpperCamelCase = """xlm-roberta-xl""" def __init__( self :Dict , __snake_case :Optional[Any]=25_08_80 , __snake_case :List[Any]=25_60 , __snake_case :Optional[Any]=36 , __snake_case :Any=32 , __snake_case :int=1_02_40 , __snake_case :List[Any]="gelu" , __snake_case :Union[str, Any]=0.1 , __snake_case :Optional[Any]=0.1 , __snake_case :str=5_14 , __snake_case :Union[str, Any]=1 , __snake_case :Optional[int]=0.02 , __snake_case :str=1E-05 , __snake_case :str=1 , __snake_case :int=0 , __snake_case :Tuple=2 , __snake_case :Optional[int]="absolute" , __snake_case :str=True , __snake_case :Any=None , **__snake_case :Dict , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __magic_name__ : List[str] =vocab_size __magic_name__ : List[str] =hidden_size __magic_name__ : Union[str, Any] =num_hidden_layers __magic_name__ : Any =num_attention_heads __magic_name__ : Any =hidden_act __magic_name__ : List[str] =intermediate_size __magic_name__ : Any =hidden_dropout_prob __magic_name__ : Union[str, Any] =attention_probs_dropout_prob __magic_name__ : Any =max_position_embeddings __magic_name__ : Any =type_vocab_size __magic_name__ : List[str] =initializer_range __magic_name__ : Optional[int] =layer_norm_eps __magic_name__ : Dict =position_embedding_type __magic_name__ : Any =use_cache __magic_name__ : Dict =classifier_dropout class __A ( UpperCamelCase__ ): @property def A__ ( self :Dict ): '''simple docstring''' if self.task == "multiple-choice": __magic_name__ : str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: __magic_name__ : Optional[Any] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
21
1
import heapq as hq import math from collections.abc import Iterator class __A : def __init__( self :Optional[Any] , __snake_case :Optional[Any] ): '''simple docstring''' __magic_name__ : int =str(id_ ) __magic_name__ : str =None __magic_name__ : Any =None __magic_name__ : List[Any] =[] __magic_name__ : Optional[Any] ={} # {vertex:distance} def __lt__( self :List[Any] , __snake_case :str ): '''simple docstring''' return self.key < other.key def __repr__( self :List[str] ): '''simple docstring''' return self.id def A__ ( self :List[Any] , __snake_case :List[Any] ): '''simple docstring''' self.neighbors.append(__snake_case ) def A__ ( self :Dict , __snake_case :List[Any] , __snake_case :Dict ): '''simple docstring''' __magic_name__ : Dict =weight def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowerCamelCase ) graph[b - 1].add_edge(graph[a - 1] , lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : List[str] =[] for u in graph: __magic_name__ : Any =math.inf __magic_name__ : Tuple =None __magic_name__ : Any =0 __magic_name__ : Tuple =graph[:] while q: __magic_name__ : Tuple =min(lowerCamelCase ) q.remove(lowerCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __magic_name__ : Optional[Any] =u __magic_name__ : int =u.edges[v.id] for i in range(1 , len(lowerCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): for u in graph: __magic_name__ : Any =math.inf __magic_name__ : str =None __magic_name__ : Union[str, Any] =0 __magic_name__ : Union[str, Any] =list(lowerCamelCase ) hq.heapify(lowerCamelCase ) while h: __magic_name__ : str =hq.heappop(lowerCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __magic_name__ : List[str] =u __magic_name__ : str =u.edges[v.id] hq.heapify(lowerCamelCase ) for i in range(1 , len(lowerCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowerCAmelCase_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
21
from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase_ ( lowerCamelCase="ro" , lowerCamelCase="en" , lowerCamelCase="wmt16" , lowerCamelCase=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) __magic_name__ : Dict =F"{src_lang}-{tgt_lang}" print(F"Converting {dataset}-{pair}" ) __magic_name__ : Dict =datasets.load_dataset(lowerCamelCase , lowerCamelCase ) if save_dir is None: __magic_name__ : Optional[int] =F"{dataset}-{pair}" __magic_name__ : int =Path(lowerCamelCase ) save_dir.mkdir(exist_ok=lowerCamelCase ) for split in ds.keys(): print(F"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets __magic_name__ : Dict ="""val""" if split == """validation""" else split __magic_name__ : List[Any] =save_dir.joinpath(F"{fn}.source" ) __magic_name__ : Optional[int] =save_dir.joinpath(F"{fn}.target" ) __magic_name__ : Optional[Any] =src_path.open("""w+""" ) __magic_name__ : List[Any] =tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __magic_name__ : str =x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
21
1
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : Optional[int] =1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): __magic_name__ : Union[str, Any] =n - k # Calculate C(n,k) for i in range(lowerCamelCase ): result *= n - i result //= i + 1 return result def lowerCAmelCase_ ( lowerCamelCase ): return binomial_coefficient(2 * node_count , lowerCamelCase ) // (node_count + 1) def lowerCAmelCase_ ( lowerCamelCase ): if n < 0: raise ValueError("""factorial() not defined for negative values""" ) __magic_name__ : List[str] =1 for i in range(1 , n + 1 ): result *= i return result def lowerCAmelCase_ ( lowerCamelCase ): return catalan_number(lowerCamelCase ) * factorial(lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( F"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ F"""binary trees and {catalan_number(node_count)} binary search trees.""" )
21
from __future__ import annotations from fractions import Fraction def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =[] __magic_name__ : List[Any] =11 __magic_name__ : Tuple =int("""1""" + """0""" * digit_len ) for num in range(lowerCamelCase , lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowerCamelCase , lowerCamelCase ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 __magic_name__ : List[str] =10 return solutions def lowerCAmelCase_ ( lowerCamelCase = 2 ): __magic_name__ : str =1.0 for fraction in fraction_list(lowerCamelCase ): __magic_name__ : int =Fraction(lowerCamelCase ) result *= frac.denominator / frac.numerator return int(lowerCamelCase ) if __name__ == "__main__": print(solution())
21
1
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record UpperCAmelCase_ : int = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n" UpperCAmelCase_ : Any = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n" UpperCAmelCase_ : Tuple = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return float((preds == labels).mean() ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase="binary" ): __magic_name__ : Optional[int] =simple_accuracy(lowerCamelCase , lowerCamelCase ) __magic_name__ : Optional[int] =float(fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average=lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : Tuple ={} for id_pred, label in zip(lowerCamelCase , lowerCamelCase ): __magic_name__ : List[Any] =F"{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}" __magic_name__ : Any =id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: __magic_name__ : Optional[int] =[(pred, label)] __magic_name__ , __magic_name__ : Dict =[], [] for question, preds_labels in question_map.items(): __magic_name__ , __magic_name__ : Tuple =zip(*lowerCamelCase ) __magic_name__ : str =fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average="""macro""" ) fas.append(lowerCamelCase ) __magic_name__ : Optional[int] =int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase ) ) ems.append(lowerCamelCase ) __magic_name__ : Any =float(sum(lowerCamelCase ) / len(lowerCamelCase ) ) __magic_name__ : str =sum(lowerCamelCase ) / len(lowerCamelCase ) __magic_name__ : Any =float(fa_score(y_true=lowerCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def A__ ( self :str ): '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def A__ ( self :int ): '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def A__ ( self :Union[str, Any] , __snake_case :List[str] , __snake_case :List[Any] ): '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__snake_case , __snake_case )} elif self.config_name == "cb": return acc_and_fa(__snake_case , __snake_case , fa_avg="""macro""" ) elif self.config_name == "record": __magic_name__ : List[str] =[ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] __magic_name__ : Optional[int] ={pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(__snake_case , __snake_case )[0] elif self.config_name == "multirc": return evaluate_multirc(__snake_case , __snake_case ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__snake_case , __snake_case )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
21
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( lowerCamelCase ): # A local function to see if a dot lands in the circle. def is_in_circle(lowerCamelCase , lowerCamelCase ) -> bool: __magic_name__ : Dict =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __magic_name__ : Union[str, Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. __magic_name__ : List[Any] =proportion * 4 print(F"The estimated value of pi is {pi_estimate}" ) print(F"The numpy value of pi is {pi}" ) print(F"The total error is {abs(pi - pi_estimate )}" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 , ): return mean( function_to_integrate(uniform(lowerCamelCase , lowerCamelCase ) ) for _ in range(lowerCamelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ): def identity_function(lowerCamelCase ) -> float: return x __magic_name__ : Optional[int] =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __magic_name__ : str =(max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {expected_value}" ) print(F"Total error is {abs(estimated_value - expected_value )}" ) print("""******************""" ) def lowerCAmelCase_ ( lowerCamelCase ): def function_to_integrate(lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) __magic_name__ : Dict =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {pi}" ) print(F"Total error is {abs(estimated_value - pi )}" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
from __future__ import annotations def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : Tuple =sorted(numsa + numsa ) __magic_name__ , __magic_name__ : Optional[Any] =divmod(len(lowerCamelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Union[str, Any] = [float(x) for x in input("Enter the elements of first array: ").split()] UpperCAmelCase_ : Dict = [float(x) for x in input("Enter the elements of second array: ").split()] print(F"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
21
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __A ( tf.keras.layers.Layer ): def __init__( self :Optional[int] , __snake_case :Dict[str, int] , __snake_case :List[str] , __snake_case :int = None , __snake_case :int = None ): '''simple docstring''' super().__init__() __magic_name__ : Optional[int] =pad_token_id __magic_name__ : List[Any] =max_length __magic_name__ : Dict =vocab __magic_name__ : int =merges __magic_name__ : Optional[int] =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case ) @classmethod def A__ ( cls :List[Any] , __snake_case :GPTaTokenizer , *__snake_case :int , **__snake_case :Any ): '''simple docstring''' __magic_name__ : List[Any] =[""" """.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()] __magic_name__ : str =tokenizer.get_vocab() return cls(__snake_case , __snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Dict , __snake_case :Union[str, os.PathLike] , *__snake_case :Union[str, Any] , **__snake_case :int ): '''simple docstring''' __magic_name__ : Dict =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case ) return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Optional[Any] , __snake_case :List[Any] ): '''simple docstring''' return cls(**__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def A__ ( self :List[Any] , __snake_case :Dict , __snake_case :int = None ): '''simple docstring''' __magic_name__ : Optional[Any] =self.tf_tokenizer(__snake_case ) __magic_name__ : Tuple =tf.ones_like(__snake_case ) if self.pad_token_id is not None: # pad the tokens up to max length __magic_name__ : Tuple =max_length if max_length is not None else self.max_length if max_length is not None: __magic_name__ , __magic_name__ : Tuple =pad_model_inputs( __snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
21
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Tuple = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class __A ( UpperCamelCase__ ): UpperCamelCase = """levit""" def __init__( self :Optional[int] , __snake_case :str=2_24 , __snake_case :Any=3 , __snake_case :List[str]=3 , __snake_case :List[Any]=2 , __snake_case :Optional[Any]=1 , __snake_case :Optional[int]=16 , __snake_case :List[str]=[1_28, 2_56, 3_84] , __snake_case :Dict=[4, 8, 12] , __snake_case :Optional[Any]=[4, 4, 4] , __snake_case :Union[str, Any]=[16, 16, 16] , __snake_case :Any=0 , __snake_case :Dict=[2, 2, 2] , __snake_case :List[Any]=[2, 2, 2] , __snake_case :List[Any]=0.02 , **__snake_case :Optional[int] , ): '''simple docstring''' super().__init__(**__snake_case ) __magic_name__ : List[Any] =image_size __magic_name__ : Optional[int] =num_channels __magic_name__ : Any =kernel_size __magic_name__ : Optional[Any] =stride __magic_name__ : Union[str, Any] =padding __magic_name__ : Tuple =hidden_sizes __magic_name__ : str =num_attention_heads __magic_name__ : Dict =depths __magic_name__ : Union[str, Any] =key_dim __magic_name__ : int =drop_path_rate __magic_name__ : List[Any] =patch_size __magic_name__ : Dict =attention_ratio __magic_name__ : List[Any] =mlp_ratio __magic_name__ : Tuple =initializer_range __magic_name__ : Any =[ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.11""" ) @property def A__ ( self :Optional[int] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self :List[str] ): '''simple docstring''' return 1E-4
21
import math import tensorflow as tf from packaging import version def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : List[str] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Optional[Any] =tf.cast(math.pi , x.dtype ) __magic_name__ : int =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Any =tf.convert_to_tensor(lowerCamelCase ) return x * tf.tanh(tf.math.softplus(lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[Any] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Union[str, Any] =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Dict =tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCAmelCase_ ( lowerCamelCase ): return tf.clip_by_value(_gelu(lowerCamelCase ) , -10 , 10 ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=-1 ): __magic_name__ , __magic_name__ : List[Any] =tf.split(lowerCamelCase , 2 , axis=lowerCamelCase ) return a * tf.math.sigmoid(lowerCamelCase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowerCAmelCase_ ( lowerCamelCase ): return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase ) UpperCAmelCase_ : List[str] = tf.keras.activations.gelu UpperCAmelCase_ : Dict = approximate_gelu_wrap else: UpperCAmelCase_ : Dict = _gelu UpperCAmelCase_ : str = _gelu_new UpperCAmelCase_ : Any = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowerCAmelCase_ ( lowerCamelCase ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
21
1
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})" def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=True ): model.train() __magic_name__ : Dict =model(lowerCamelCase ) __magic_name__ : int =F.mse_loss(lowerCamelCase , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): set_seed(42 ) __magic_name__ : Optional[int] =RegressionModel() __magic_name__ : Optional[Any] =deepcopy(lowerCamelCase ) __magic_name__ : List[str] =RegressionDataset(length=80 ) __magic_name__ : Dict =DataLoader(lowerCamelCase , batch_size=16 ) model.to(accelerator.device ) if sched: __magic_name__ : Optional[Any] =AdamW(params=model.parameters() , lr=1E-3 ) __magic_name__ : Optional[Any] =AdamW(params=ddp_model.parameters() , lr=1E-3 ) __magic_name__ : Optional[int] =LambdaLR(lowerCamelCase , lr_lambda=lambda lowerCamelCase : epoch**0.6_5 ) __magic_name__ : Dict =LambdaLR(lowerCamelCase , lr_lambda=lambda lowerCamelCase : epoch**0.6_5 ) # Make a copy of `model` if sched: __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Dict =accelerator.prepare(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __magic_name__ , __magic_name__ : int =accelerator.prepare(lowerCamelCase , lowerCamelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowerCAmelCase_ ( lowerCamelCase ): # Test when on a single CPU or GPU that the context manager does nothing __magic_name__ , __magic_name__ , __magic_name__ : Dict =get_training_setup(lowerCamelCase ) # Use a single batch __magic_name__ , __magic_name__ : Optional[Any] =next(iter(lowerCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __magic_name__ , __magic_name__ : Any =accelerator.gather((ddp_input, ddp_target) ) __magic_name__ , __magic_name__ : str =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCamelCase ): step_model(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: # Sync grads step_model(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) __magic_name__ : Dict =ddp_input[torch.randperm(len(lowerCamelCase ) )] def lowerCAmelCase_ ( lowerCamelCase ): # Test on distributed setup that context manager behaves properly __magic_name__ , __magic_name__ , __magic_name__ : Dict =get_training_setup(lowerCamelCase ) # Use a single batch __magic_name__ , __magic_name__ : Any =next(iter(lowerCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __magic_name__ , __magic_name__ : Tuple =accelerator.gather((ddp_input, ddp_target) ) __magic_name__ , __magic_name__ : Any =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCamelCase ): step_model(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: # Sync grads step_model(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) __magic_name__ : Optional[Any] =ddp_input[torch.randperm(len(lowerCamelCase ) )] def lowerCAmelCase_ ( lowerCamelCase=False , lowerCamelCase=False ): __magic_name__ : List[Any] =Accelerator( split_batches=lowerCamelCase , dispatch_batches=lowerCamelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __magic_name__ , __magic_name__ , __magic_name__ : str =get_training_setup(lowerCamelCase ) for iteration, batch in enumerate(lowerCamelCase ): __magic_name__ , __magic_name__ : List[Any] =batch.values() # Gather the distributed inputs and targs for the base model __magic_name__ , __magic_name__ : Optional[Any] =accelerator.gather((ddp_input, ddp_target) ) __magic_name__ , __magic_name__ : str =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(lowerCamelCase ): step_model(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(lowerCamelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) __magic_name__ : List[Any] =ddp_input[torch.randperm(len(lowerCamelCase ) )] GradientState._reset_state() def lowerCAmelCase_ ( lowerCamelCase=False , lowerCamelCase=False ): __magic_name__ : Union[str, Any] =Accelerator( split_batches=lowerCamelCase , dispatch_batches=lowerCamelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Any =get_training_setup(lowerCamelCase , lowerCamelCase ) for iteration, batch in enumerate(lowerCamelCase ): __magic_name__ , __magic_name__ : str =batch.values() # Gather the distributed inputs and targs for the base model __magic_name__ , __magic_name__ : List[Any] =accelerator.gather((ddp_input, ddp_target) ) __magic_name__ , __magic_name__ : List[Any] =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowerCamelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(lowerCamelCase ): step_model(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n" __magic_name__ : Union[str, Any] =(((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowerCamelCase )) if accelerator.num_processes > 1: check_model_parameters(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def lowerCAmelCase_ ( ): __magic_name__ : Optional[int] =Accelerator() __magic_name__ : List[Any] =RegressionDataset(length=80 ) __magic_name__ : Union[str, Any] =DataLoader(lowerCamelCase , batch_size=16 ) __magic_name__ : Tuple =RegressionDataset(length=96 ) __magic_name__ : Dict =DataLoader(lowerCamelCase , batch_size=16 ) __magic_name__ , __magic_name__ : Union[str, Any] =accelerator.prepare(lowerCamelCase , lowerCamelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(lowerCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCamelCase ) if iteration < len(lowerCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(lowerCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCamelCase ) if batch_num < len(lowerCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowerCAmelCase_ ( ): __magic_name__ : str =Accelerator() __magic_name__ : str =accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(lowerCamelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(lowerCamelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , F"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation(lowerCamelCase , lowerCamelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , F"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation_with_opt_and_scheduler(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
21
from collections.abc import Sequence def lowerCAmelCase_ ( lowerCamelCase = None ): if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __magic_name__ : str =nums[0] for i in range(1 , len(lowerCamelCase ) ): __magic_name__ : Any =nums[i] __magic_name__ : Dict =max(lowerCamelCase , ans + num , lowerCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCAmelCase_ : List[str] = int(input("Enter number of elements : ").strip()) UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
21
1
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): UpperCamelCase = ["""pixel_values"""] def __init__( self :Optional[int] , __snake_case :bool = True , __snake_case :Union[int, float] = 1 / 2_55 , __snake_case :bool = True , __snake_case :int = 8 , **__snake_case :int , ): '''simple docstring''' super().__init__(**__snake_case ) __magic_name__ : Optional[Any] =do_rescale __magic_name__ : List[Any] =rescale_factor __magic_name__ : Dict =do_pad __magic_name__ : Tuple =pad_size def A__ ( self :List[str] , __snake_case :np.ndarray , __snake_case :float , __snake_case :Optional[Union[str, ChannelDimension]] = None , **__snake_case :Tuple ): '''simple docstring''' return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def A__ ( self :List[Any] , __snake_case :np.ndarray , __snake_case :int , __snake_case :Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' __magic_name__ , __magic_name__ : Optional[int] =get_image_size(__snake_case ) __magic_name__ : List[Any] =(old_height // size + 1) * size - old_height __magic_name__ : Union[str, Any] =(old_width // size + 1) * size - old_width return pad(__snake_case , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=__snake_case ) def A__ ( self :Union[str, Any] , __snake_case :ImageInput , __snake_case :Optional[bool] = None , __snake_case :Optional[float] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[int] = None , __snake_case :Optional[Union[str, TensorType]] = None , __snake_case :Union[str, ChannelDimension] = ChannelDimension.FIRST , **__snake_case :Tuple , ): '''simple docstring''' __magic_name__ : List[str] =do_rescale if do_rescale is not None else self.do_rescale __magic_name__ : str =rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ : Dict =do_pad if do_pad is not None else self.do_pad __magic_name__ : Union[str, Any] =pad_size if pad_size is not None else self.pad_size __magic_name__ : int =make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. __magic_name__ : Optional[int] =[to_numpy_array(__snake_case ) for image in images] if do_rescale: __magic_name__ : Any =[self.rescale(image=__snake_case , scale=__snake_case ) for image in images] if do_pad: __magic_name__ : Optional[Any] =[self.pad(__snake_case , size=__snake_case ) for image in images] __magic_name__ : Any =[to_channel_dimension_format(__snake_case , __snake_case ) for image in images] __magic_name__ : Dict ={"""pixel_values""": images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
21
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : UpperCamelCase = 42 UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""Translation""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def __call__( self :Union[str, Any] ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def A__ ( self :List[Any] ): '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __A : UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""TranslationVariableLanguages""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =sorted(set(self.languages ) ) if self.languages else None __magic_name__ : Optional[int] =len(self.languages ) if self.languages else None def __call__( self :List[str] ): '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def A__ ( self :str , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[int] =set(self.languages ) if self.languages and set(__snake_case ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __magic_name__ : Any =[] for lang, text in translation_dict.items(): if isinstance(__snake_case , __snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __magic_name__ , __magic_name__ : List[str] =zip(*sorted(__snake_case ) ) return {"language": languages, "translation": translations} def A__ ( self :List[Any] ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
21
1
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCAmelCase_ : Union[str, Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") UpperCAmelCase_ : Optional[Any] = ( subprocess.check_output(F"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode("utf-8").split() ) UpperCAmelCase_ : int = "|".join(sys.argv[1:]) UpperCAmelCase_ : Union[str, Any] = re.compile(RF"""^({joined_dirs}).*?\.py$""") UpperCAmelCase_ : List[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
21
from sklearn.metrics import matthews_corrcoef import datasets UpperCAmelCase_ : Dict = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCAmelCase_ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCAmelCase_ : Dict = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def A__ ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def A__ ( self :Tuple , __snake_case :str , __snake_case :Tuple , __snake_case :List[str]=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ), }
21
1
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCAmelCase_ : Dict = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__( self :List[str] , __snake_case :int , __snake_case :int , __snake_case :float , **__snake_case :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =feature_size __magic_name__ : Union[str, Any] =sampling_rate __magic_name__ : List[Any] =padding_value __magic_name__ : List[str] =kwargs.pop("""padding_side""" , """right""" ) __magic_name__ : Tuple =kwargs.pop("""return_attention_mask""" , __snake_case ) super().__init__(**__snake_case ) def A__ ( self :Any , __snake_case :Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __snake_case :Union[bool, str, PaddingStrategy] = True , __snake_case :Optional[int] = None , __snake_case :bool = False , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[Union[str, TensorType]] = None , ): '''simple docstring''' if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __magic_name__ : Union[str, Any] ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) __magic_name__ : int =processed_features[self.model_input_names[0]] __magic_name__ : Union[str, Any] =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__snake_case ) == 0: if return_attention_mask: __magic_name__ : List[str] =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __magic_name__ : Optional[int] =required_input[0] if isinstance(__snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __magic_name__ : Optional[Any] =0 while len(required_input[index] ) == 0: index += 1 if index < len(__snake_case ): __magic_name__ : List[str] =required_input[index][0] if return_tensors is None: if is_tf_tensor(__snake_case ): __magic_name__ : int ="""tf""" elif is_torch_tensor(__snake_case ): __magic_name__ : str ="""pt""" elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ): __magic_name__ : List[Any] ="""np""" else: raise ValueError( f"type of {first_element} unknown: {type(__snake_case )}. " """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __magic_name__ : List[str] =to_numpy(__snake_case ) else: __magic_name__ : str =[to_numpy(__snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy __magic_name__ : Dict =self._get_padding_strategies(padding=__snake_case , max_length=__snake_case ) __magic_name__ : Optional[Any] =processed_features[self.model_input_names[0]] __magic_name__ : Dict =len(__snake_case ) if not all(len(__snake_case ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) __magic_name__ : Optional[int] =[] for i in range(__snake_case ): __magic_name__ : Any ={k: v[i] for k, v in processed_features.items()} # truncation __magic_name__ : List[str] =self._truncate( __snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) truncated_inputs.append(__snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __magic_name__ : Optional[int] =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __magic_name__ : Tuple =PaddingStrategy.MAX_LENGTH __magic_name__ : str ={} for i in range(__snake_case ): # padding __magic_name__ : List[str] =self._pad( truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: __magic_name__ : Dict =[] if value.dtype is np.dtype(np.floataa ): __magic_name__ : Optional[int] =value.astype(np.floataa ) batch_outputs[key].append(__snake_case ) return BatchFeature(__snake_case , tensor_type=__snake_case ) def A__ ( self :Any , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' __magic_name__ : Dict =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __magic_name__ : Any =len(__snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : Dict =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : List[Any] =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __magic_name__ : int =np.ones(len(__snake_case ) , dtype=np.intaa ) if needs_to_be_padded: __magic_name__ : List[Any] =max_length - len(__snake_case ) if self.padding_side == "right": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (0, difference) ) __magic_name__ : Tuple =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __magic_name__ : str =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (difference, 0) ) __magic_name__ : Optional[int] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __magic_name__ : List[Any] =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def A__ ( self :Optional[Any] , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) __magic_name__ : Union[str, Any] =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : List[str] =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : Any =len(__snake_case ) > max_length if needs_to_be_truncated: __magic_name__ : List[Any] =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __magic_name__ : List[str] =processed_features["""attention_mask"""][:max_length] return processed_features def A__ ( self :List[Any] , __snake_case :str=False , __snake_case :Optional[int]=None ): '''simple docstring''' if padding is not False: if padding is True: __magic_name__ : Union[str, Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__snake_case , __snake_case ): __magic_name__ : Optional[int] =PaddingStrategy(__snake_case ) elif isinstance(__snake_case , __snake_case ): __magic_name__ : Any =padding else: __magic_name__ : Any =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
21
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =OmegaConf.load(lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(lowerCamelCase ) ) ) return config def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): if conf_path is None: __magic_name__ : List[str] ="""./model_checkpoints/vqgan_only.yaml""" __magic_name__ : Dict =load_config(lowerCamelCase , display=lowerCamelCase ) __magic_name__ : Tuple =VQModel(**config.model.params ) if ckpt_path is None: __magic_name__ : Optional[Any] ="""./model_checkpoints/vqgan_only.pt""" __magic_name__ : Tuple =torch.load(lowerCamelCase , map_location=lowerCamelCase ) if ".ckpt" in ckpt_path: __magic_name__ : Any =sd["""state_dict"""] model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) model.to(lowerCamelCase ) del sd return model def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =model.encode(lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) __magic_name__ : List[Any] =model.decode(lowerCamelCase ) return xrec def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ , __magic_name__ : Optional[int] =string.rsplit(""".""" , 1 ) if reload: __magic_name__ : Optional[int] =importlib.import_module(lowerCamelCase ) importlib.reload(lowerCamelCase ) return getattr(importlib.import_module(lowerCamelCase , package=lowerCamelCase ) , cls ) def lowerCAmelCase_ ( lowerCamelCase ): if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True ): __magic_name__ : str =instantiate_from_config(lowerCamelCase ) if sd is not None: model.load_state_dict(lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # load the specified checkpoint if ckpt: __magic_name__ : str =torch.load(lowerCamelCase , map_location="""cpu""" ) __magic_name__ : Any =pl_sd["""global_step"""] print(F"loaded model from global step {global_step}." ) else: __magic_name__ : List[Any] ={"""state_dict""": None} __magic_name__ : Optional[Any] =None __magic_name__ : Tuple =load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=lowerCamelCase , eval_mode=lowerCamelCase )["""model"""] return model, global_step
21
1