code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def _A ( A__ , A__ , A__ , A__=5 ): """simple docstring""" assert masked_input.count('''<mask>''' ) == 1 __lowercase = torch.tensor(tokenizer.encode(A__ , add_special_tokens=A__ ) ).unsqueeze(0 ) # Batch size 1 __lowercase = model(A__ )[0] # The last hidden-state is the first element of the output tuple __lowercase = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __lowercase = logits[0, masked_index, :] __lowercase = logits.softmax(dim=0 ) __lowercase , __lowercase = prob.topk(k=A__ , dim=0 ) __lowercase = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(A__ ) )] ) __lowercase = tokenizer.mask_token __lowercase = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): __lowercase = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(A__ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(A__ ) , A__ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(A__ , A__ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs lowerCAmelCase__ = CamembertTokenizer.from_pretrained('''camembert-base''') lowerCAmelCase__ = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() lowerCAmelCase__ = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
41
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __A ( UpperCamelCase__ ): UpperCamelCase = """xlm-roberta-xl""" def __init__( self :Dict , __snake_case :Optional[Any]=25_08_80 , __snake_case :List[Any]=25_60 , __snake_case :Optional[Any]=36 , __snake_case :Any=32 , __snake_case :int=1_02_40 , __snake_case :List[Any]="gelu" , __snake_case :Union[str, Any]=0.1 , __snake_case :Optional[Any]=0.1 , __snake_case :str=5_14 , __snake_case :Union[str, Any]=1 , __snake_case :Optional[int]=0.02 , __snake_case :str=1E-05 , __snake_case :str=1 , __snake_case :int=0 , __snake_case :Tuple=2 , __snake_case :Optional[int]="absolute" , __snake_case :str=True , __snake_case :Any=None , **__snake_case :Dict , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __magic_name__ : List[str] =vocab_size __magic_name__ : List[str] =hidden_size __magic_name__ : Union[str, Any] =num_hidden_layers __magic_name__ : Any =num_attention_heads __magic_name__ : Any =hidden_act __magic_name__ : List[str] =intermediate_size __magic_name__ : Any =hidden_dropout_prob __magic_name__ : Union[str, Any] =attention_probs_dropout_prob __magic_name__ : Any =max_position_embeddings __magic_name__ : Any =type_vocab_size __magic_name__ : List[str] =initializer_range __magic_name__ : Optional[int] =layer_norm_eps __magic_name__ : Dict =position_embedding_type __magic_name__ : Any =use_cache __magic_name__ : Dict =classifier_dropout class __A ( UpperCamelCase__ ): @property def A__ ( self :Dict ): '''simple docstring''' if self.task == "multiple-choice": __magic_name__ : str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: __magic_name__ : Optional[Any] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
21
0
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'xlm-prophetnet' SCREAMING_SNAKE_CASE_ = ['past_key_values'] SCREAMING_SNAKE_CASE_ = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = "gelu" , SCREAMING_SNAKE_CASE_ = 30522 , SCREAMING_SNAKE_CASE_ = 1024 , SCREAMING_SNAKE_CASE_ = 4096 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 4096 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 0.02 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 128 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 2 , **SCREAMING_SNAKE_CASE_ , ) -> Tuple: '''simple docstring''' lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = encoder_ffn_dim lowerCamelCase_ = num_encoder_layers lowerCamelCase_ = num_encoder_attention_heads lowerCamelCase_ = decoder_ffn_dim lowerCamelCase_ = num_decoder_layers lowerCamelCase_ = num_decoder_attention_heads lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = init_std # Normal(0, this parameter) lowerCamelCase_ = activation_function # parameters for xlmprophetnet lowerCamelCase_ = ngram lowerCamelCase_ = num_buckets lowerCamelCase_ = relative_max_distance lowerCamelCase_ = disable_ngram_loss lowerCamelCase_ = eps # 3 Types of Dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = dropout lowerCamelCase_ = use_cache super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , add_cross_attention=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @property def UpperCamelCase( self ) -> int: '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and' ' `num_decoder_layers`.' )
42
from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase_ ( lowerCamelCase="ro" , lowerCamelCase="en" , lowerCamelCase="wmt16" , lowerCamelCase=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) __magic_name__ : Dict =F"{src_lang}-{tgt_lang}" print(F"Converting {dataset}-{pair}" ) __magic_name__ : Dict =datasets.load_dataset(lowerCamelCase , lowerCamelCase ) if save_dir is None: __magic_name__ : Optional[int] =F"{dataset}-{pair}" __magic_name__ : int =Path(lowerCamelCase ) save_dir.mkdir(exist_ok=lowerCamelCase ) for split in ds.keys(): print(F"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets __magic_name__ : Dict ="""val""" if split == """validation""" else split __magic_name__ : List[Any] =save_dir.joinpath(F"{fn}.source" ) __magic_name__ : Optional[int] =save_dir.joinpath(F"{fn}.target" ) __magic_name__ : Optional[Any] =src_path.open("""w+""" ) __magic_name__ : List[Any] =tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __magic_name__ : str =x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
21
0
from ..utils import DummyObject, requires_backends class _a ( metaclass=UpperCamelCase__ ): _lowercase : Dict = ['''flax''', '''transformers'''] def __init__( self: Optional[int] , *UpperCamelCase_: Any , **UpperCamelCase_: List[str] ) -> Tuple: """simple docstring""" requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def lowerCamelCase_ ( cls: Optional[Any] , *UpperCamelCase_: Dict , **UpperCamelCase_: Tuple ) -> str: """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def lowerCamelCase_ ( cls: int , *UpperCamelCase_: Optional[int] , **UpperCamelCase_: Tuple ) -> List[Any]: """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) class _a ( metaclass=UpperCamelCase__ ): _lowercase : str = ['''flax''', '''transformers'''] def __init__( self: Dict , *UpperCamelCase_: str , **UpperCamelCase_: Dict ) -> Dict: """simple docstring""" requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def lowerCamelCase_ ( cls: Union[str, Any] , *UpperCamelCase_: List[Any] , **UpperCamelCase_: Dict ) -> Any: """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def lowerCamelCase_ ( cls: Tuple , *UpperCamelCase_: List[Any] , **UpperCamelCase_: int ) -> Any: """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) class _a ( metaclass=UpperCamelCase__ ): _lowercase : Dict = ['''flax''', '''transformers'''] def __init__( self: List[Any] , *UpperCamelCase_: List[Any] , **UpperCamelCase_: Optional[Any] ) -> List[Any]: """simple docstring""" requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def lowerCamelCase_ ( cls: Optional[Any] , *UpperCamelCase_: Tuple , **UpperCamelCase_: Any ) -> Tuple: """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def lowerCamelCase_ ( cls: str , *UpperCamelCase_: Dict , **UpperCamelCase_: Union[str, Any] ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) class _a ( metaclass=UpperCamelCase__ ): _lowercase : Union[str, Any] = ['''flax''', '''transformers'''] def __init__( self: List[str] , *UpperCamelCase_: List[str] , **UpperCamelCase_: Dict ) -> Any: """simple docstring""" requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def lowerCamelCase_ ( cls: int , *UpperCamelCase_: Optional[int] , **UpperCamelCase_: Any ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def lowerCamelCase_ ( cls: Any , *UpperCamelCase_: Union[str, Any] , **UpperCamelCase_: Optional[int] ) -> Any: """simple docstring""" requires_backends(cls , ['''flax''', '''transformers'''] )
43
from __future__ import annotations from fractions import Fraction def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =[] __magic_name__ : List[Any] =11 __magic_name__ : Tuple =int("""1""" + """0""" * digit_len ) for num in range(lowerCamelCase , lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowerCamelCase , lowerCamelCase ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 __magic_name__ : List[str] =10 return solutions def lowerCAmelCase_ ( lowerCamelCase = 2 ): __magic_name__ : str =1.0 for fraction in fraction_list(lowerCamelCase ): __magic_name__ : int =Fraction(lowerCamelCase ) result *= frac.denominator / frac.numerator return int(lowerCamelCase ) if __name__ == "__main__": print(solution())
21
0
'''simple docstring''' import functools def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(_lowerCAmelCase ) != 3 or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(_lowerCAmelCase ) == 0: return 0 if min(_lowerCAmelCase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(_lowerCAmelCase ) >= 366: raise ValueError("All days elements should be less than 366" ) _lowerCamelCase : Union[str, Any] = set(_lowerCAmelCase ) @functools.cache def dynamic_programming(_lowerCAmelCase : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
44
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( lowerCamelCase ): # A local function to see if a dot lands in the circle. def is_in_circle(lowerCamelCase , lowerCamelCase ) -> bool: __magic_name__ : Dict =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __magic_name__ : Union[str, Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. __magic_name__ : List[Any] =proportion * 4 print(F"The estimated value of pi is {pi_estimate}" ) print(F"The numpy value of pi is {pi}" ) print(F"The total error is {abs(pi - pi_estimate )}" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 , ): return mean( function_to_integrate(uniform(lowerCamelCase , lowerCamelCase ) ) for _ in range(lowerCamelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ): def identity_function(lowerCamelCase ) -> float: return x __magic_name__ : Optional[int] =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __magic_name__ : str =(max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {expected_value}" ) print(F"Total error is {abs(estimated_value - expected_value )}" ) print("""******************""" ) def lowerCAmelCase_ ( lowerCamelCase ): def function_to_integrate(lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) __magic_name__ : Dict =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {pi}" ) print(F"Total error is {abs(estimated_value - pi )}" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
def A ( lowercase__ : int , lowercase__ : int ) -> int: return int(input_a == input_a == 0 ) def A ( ) -> None: print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
45
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __A ( tf.keras.layers.Layer ): def __init__( self :Optional[int] , __snake_case :Dict[str, int] , __snake_case :List[str] , __snake_case :int = None , __snake_case :int = None ): '''simple docstring''' super().__init__() __magic_name__ : Optional[int] =pad_token_id __magic_name__ : List[Any] =max_length __magic_name__ : Dict =vocab __magic_name__ : int =merges __magic_name__ : Optional[int] =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case ) @classmethod def A__ ( cls :List[Any] , __snake_case :GPTaTokenizer , *__snake_case :int , **__snake_case :Any ): '''simple docstring''' __magic_name__ : List[Any] =[""" """.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()] __magic_name__ : str =tokenizer.get_vocab() return cls(__snake_case , __snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Dict , __snake_case :Union[str, os.PathLike] , *__snake_case :Union[str, Any] , **__snake_case :int ): '''simple docstring''' __magic_name__ : Dict =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case ) return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Optional[Any] , __snake_case :List[Any] ): '''simple docstring''' return cls(**__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def A__ ( self :List[Any] , __snake_case :Dict , __snake_case :int = None ): '''simple docstring''' __magic_name__ : Optional[Any] =self.tf_tokenizer(__snake_case ) __magic_name__ : Tuple =tf.ones_like(__snake_case ) if self.pad_token_id is not None: # pad the tokens up to max length __magic_name__ : Tuple =max_length if max_length is not None else self.max_length if max_length is not None: __magic_name__ , __magic_name__ : Tuple =pad_model_inputs( __snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
21
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable _lowerCAmelCase : Union[str, Any] = list[list[float | int]] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Matrix: '''simple docstring''' _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )] _lowerCamelCase : int _lowerCamelCase : int _lowerCamelCase : int _lowerCamelCase : int _lowerCamelCase : int _lowerCamelCase : float for row in range(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCamelCase : List[str] = matrix[row][col] _lowerCamelCase : List[str] = vector[row][0] _lowerCamelCase : int = 0 _lowerCamelCase : List[Any] = 0 while row < size and col < size: # pivoting _lowerCamelCase : Tuple = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCamelCase, _lowerCamelCase : Any = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowerCamelCase ): _lowerCamelCase : Any = augmented[rowa][col] / augmented[row][col] _lowerCamelCase : Any = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowerCamelCase ): for row in range(_lowerCamelCase ): _lowerCamelCase : List[str] = augmented[row][col] / augmented[col][col] for cola in range(_lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase ) ] def lowerCamelCase_( _lowerCamelCase ) -> Callable[[int], int]: '''simple docstring''' _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] _lowerCamelCase : Matrix = [[0] for _ in range(_lowerCamelCase )] _lowerCamelCase : Matrix _lowerCamelCase : int _lowerCamelCase : int _lowerCamelCase : int for x_val, y_val in enumerate(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCamelCase : List[str] = (x_val + 1) ** (size - col - 1) _lowerCamelCase : Optional[Any] = y_val _lowerCamelCase : str = solve(_lowerCamelCase , _lowerCamelCase ) def interpolated_func(_lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCamelCase ) ) return interpolated_func def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase_( _lowerCamelCase = question_function , _lowerCamelCase = 10 ) -> int: '''simple docstring''' _lowerCamelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )] _lowerCamelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowerCamelCase : int = 0 _lowerCamelCase : Callable[[int], int] _lowerCamelCase : int for poly in polynomials: _lowerCamelCase : Tuple = 1 while func(_lowerCamelCase ) == poly(_lowerCamelCase ): x_val += 1 ret += poly(_lowerCamelCase ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
46
import math import tensorflow as tf from packaging import version def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : List[str] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Optional[Any] =tf.cast(math.pi , x.dtype ) __magic_name__ : int =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Any =tf.convert_to_tensor(lowerCamelCase ) return x * tf.tanh(tf.math.softplus(lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[Any] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Union[str, Any] =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Dict =tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCAmelCase_ ( lowerCamelCase ): return tf.clip_by_value(_gelu(lowerCamelCase ) , -10 , 10 ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=-1 ): __magic_name__ , __magic_name__ : List[Any] =tf.split(lowerCamelCase , 2 , axis=lowerCamelCase ) return a * tf.math.sigmoid(lowerCamelCase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowerCAmelCase_ ( lowerCamelCase ): return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase ) UpperCAmelCase_ : List[str] = tf.keras.activations.gelu UpperCAmelCase_ : Dict = approximate_gelu_wrap else: UpperCAmelCase_ : Dict = _gelu UpperCAmelCase_ : str = _gelu_new UpperCAmelCase_ : Any = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowerCAmelCase_ ( lowerCamelCase ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
21
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
47
from collections.abc import Sequence def lowerCAmelCase_ ( lowerCamelCase = None ): if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __magic_name__ : str =nums[0] for i in range(1 , len(lowerCamelCase ) ): __magic_name__ : Any =nums[i] __magic_name__ : Dict =max(lowerCamelCase , ans + num , lowerCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCAmelCase_ : List[str] = int(input("Enter number of elements : ").strip()) UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
21
0
'''simple docstring''' from ...processing_utils import ProcessorMixin class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :List[Any] = ['image_processor', 'feature_extractor'] snake_case__ :Tuple = 'TvltImageProcessor' snake_case__ :List[str] = 'TvltFeatureExtractor' def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple ): """simple docstring""" super().__init__(image_processor=__magic_name__ , feature_extractor=__magic_name__ ) lowerCAmelCase__ = image_processor lowerCAmelCase__ = feature_extractor def __call__( self : Optional[Any] , __magic_name__ : Optional[Any]=None , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[int]=None , __magic_name__ : Any=None , __magic_name__ : List[Any]=False , __magic_name__ : Union[str, Any]=False , *__magic_name__ : Optional[int] , **__magic_name__ : Optional[Any] , ): """simple docstring""" if images is None and audio is None: raise ValueError("You need to specify either an `images` or `audio` input to process." ) lowerCAmelCase__ = None if images is not None: lowerCAmelCase__ = self.image_processor(__magic_name__ , mask_pixel=__magic_name__ , *__magic_name__ , **__magic_name__ ) if images_mixed is not None: lowerCAmelCase__ = self.image_processor(__magic_name__ , is_mixed=__magic_name__ , *__magic_name__ , **__magic_name__ ) if audio is not None: lowerCAmelCase__ = self.feature_extractor( __magic_name__ , *__magic_name__ , sampling_rate=__magic_name__ , mask_audio=__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = {} if audio is not None: output_dict.update(__magic_name__ ) if images is not None: output_dict.update(__magic_name__ ) if images_mixed_dict is not None: output_dict.update(__magic_name__ ) return output_dict @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = self.image_processor.model_input_names lowerCAmelCase__ = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
48
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : UpperCamelCase = 42 UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""Translation""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def __call__( self :Union[str, Any] ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def A__ ( self :List[Any] ): '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __A : UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""TranslationVariableLanguages""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =sorted(set(self.languages ) ) if self.languages else None __magic_name__ : Optional[int] =len(self.languages ) if self.languages else None def __call__( self :List[str] ): '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def A__ ( self :str , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[int] =set(self.languages ) if self.languages and set(__snake_case ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __magic_name__ : Any =[] for lang, text in translation_dict.items(): if isinstance(__snake_case , __snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __magic_name__ , __magic_name__ : List[str] =zip(*sorted(__snake_case ) ) return {"language": languages, "translation": translations} def A__ ( self :List[Any] ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
21
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _lowercase : int = logging.get_logger(__name__) class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : Union[str, Any] , *_lowercase : int , **_lowercase : Tuple ): warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
49
from sklearn.metrics import matthews_corrcoef import datasets UpperCAmelCase_ : Dict = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCAmelCase_ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCAmelCase_ : Dict = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def A__ ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def A__ ( self :Tuple , __snake_case :str , __snake_case :Tuple , __snake_case :List[str]=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ), }
21
0
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = (DDIMParallelScheduler,) _UpperCamelCase = (('eta', 0.0), ('num_inference_steps', 50)) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): lowerCamelCase__ = { """num_train_timesteps""": 10_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """clip_sample""": True, } config.update(**_lowerCAmelCase ) return config def UpperCamelCase_ ( self ,**_lowerCAmelCase ): lowerCamelCase__ = self.scheduler_classes[0] lowerCamelCase__ = self.get_scheduler_config(**_lowerCAmelCase ) lowerCamelCase__ = scheduler_class(**_lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ = 10, 0.0 lowerCamelCase__ = self.dummy_model() lowerCamelCase__ = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for t in scheduler.timesteps: lowerCamelCase__ = model(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = scheduler.step(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ).prev_sample return sample def UpperCamelCase_ ( self ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def UpperCamelCase_ ( self ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowerCAmelCase ) lowerCamelCase__ = self.scheduler_classes[0] lowerCamelCase__ = self.get_scheduler_config(steps_offset=1 ) lowerCamelCase__ = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps ,torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def UpperCamelCase_ ( self ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] ,[0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCAmelCase ,beta_end=_lowerCAmelCase ) def UpperCamelCase_ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def UpperCamelCase_ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def UpperCamelCase_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def UpperCamelCase_ ( self ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_lowerCAmelCase ) def UpperCamelCase_ ( self ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_lowerCAmelCase ) def UpperCamelCase_ ( self ): self.check_over_configs(thresholding=_lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_lowerCAmelCase ,prediction_type=_lowerCAmelCase ,sample_max_value=_lowerCAmelCase ,) def UpperCamelCase_ ( self ): for t in [1, 10, 49]: self.check_over_forward(time_step=_lowerCAmelCase ) def UpperCamelCase_ ( self ): for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 5_00] ): self.check_over_forward(time_step=_lowerCAmelCase ,num_inference_steps=_lowerCAmelCase ) def UpperCamelCase_ ( self ): for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_lowerCAmelCase ,eta=_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.scheduler_classes[0] lowerCamelCase__ = self.get_scheduler_config() lowerCamelCase__ = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 ,4_00 ) - 0.1_4771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 ,9_60 ) - 0.3_2460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ,4_86 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ,9_98 ) - 0.02 ) ) < 1E-5 def UpperCamelCase_ ( self ): lowerCamelCase__ = self.scheduler_classes[0] lowerCamelCase__ = self.get_scheduler_config() lowerCamelCase__ = scheduler_class(**_lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ = 10, 0.0 scheduler.set_timesteps(_lowerCAmelCase ) lowerCamelCase__ = self.dummy_model() lowerCamelCase__ = self.dummy_sample_deter lowerCamelCase__ = self.dummy_sample_deter + 0.1 lowerCamelCase__ = self.dummy_sample_deter - 0.1 lowerCamelCase__ = samplea.shape[0] lowerCamelCase__ = torch.stack([samplea, samplea, samplea] ,dim=0 ) lowerCamelCase__ = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 ,_lowerCAmelCase ) lowerCamelCase__ = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) lowerCamelCase__ = scheduler.batch_step_no_noise(_lowerCAmelCase ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,_lowerCAmelCase ) lowerCamelCase__ = torch.sum(torch.abs(_lowerCAmelCase ) ) lowerCamelCase__ = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def UpperCamelCase_ ( self ): lowerCamelCase__ = self.full_loop() lowerCamelCase__ = torch.sum(torch.abs(_lowerCAmelCase ) ) lowerCamelCase__ = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.22_3967 ) < 1E-3 def UpperCamelCase_ ( self ): lowerCamelCase__ = self.full_loop(prediction_type="""v_prediction""" ) lowerCamelCase__ = torch.sum(torch.abs(_lowerCAmelCase ) ) lowerCamelCase__ = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def UpperCamelCase_ ( self ): # We specify different beta, so that the first alpha is 0.99 lowerCamelCase__ = self.full_loop(set_alpha_to_one=_lowerCAmelCase ,beta_start=0.01 ) lowerCamelCase__ = torch.sum(torch.abs(_lowerCAmelCase ) ) lowerCamelCase__ = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def UpperCamelCase_ ( self ): # We specify different beta, so that the first alpha is 0.99 lowerCamelCase__ = self.full_loop(set_alpha_to_one=_lowerCAmelCase ,beta_start=0.01 ) lowerCamelCase__ = torch.sum(torch.abs(_lowerCAmelCase ) ) lowerCamelCase__ = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
50
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =OmegaConf.load(lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(lowerCamelCase ) ) ) return config def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): if conf_path is None: __magic_name__ : List[str] ="""./model_checkpoints/vqgan_only.yaml""" __magic_name__ : Dict =load_config(lowerCamelCase , display=lowerCamelCase ) __magic_name__ : Tuple =VQModel(**config.model.params ) if ckpt_path is None: __magic_name__ : Optional[Any] ="""./model_checkpoints/vqgan_only.pt""" __magic_name__ : Tuple =torch.load(lowerCamelCase , map_location=lowerCamelCase ) if ".ckpt" in ckpt_path: __magic_name__ : Any =sd["""state_dict"""] model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) model.to(lowerCamelCase ) del sd return model def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =model.encode(lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) __magic_name__ : List[Any] =model.decode(lowerCamelCase ) return xrec def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ , __magic_name__ : Optional[int] =string.rsplit(""".""" , 1 ) if reload: __magic_name__ : Optional[int] =importlib.import_module(lowerCamelCase ) importlib.reload(lowerCamelCase ) return getattr(importlib.import_module(lowerCamelCase , package=lowerCamelCase ) , cls ) def lowerCAmelCase_ ( lowerCamelCase ): if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True ): __magic_name__ : str =instantiate_from_config(lowerCamelCase ) if sd is not None: model.load_state_dict(lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # load the specified checkpoint if ckpt: __magic_name__ : str =torch.load(lowerCamelCase , map_location="""cpu""" ) __magic_name__ : Any =pl_sd["""global_step"""] print(F"loaded model from global step {global_step}." ) else: __magic_name__ : List[Any] ={"""state_dict""": None} __magic_name__ : Optional[Any] =None __magic_name__ : Tuple =load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=lowerCamelCase , eval_mode=lowerCamelCase )["""model"""] return model, global_step
21
0
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING a__ : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Dict , *a__ : Optional[Any] , **a__ : List[Any] ): super().__init__(*a__ , **a__ ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def __snake_case ( self : int , a__ : Union[str, Any]=None ): UpperCAmelCase = {} if top_k is not None: UpperCAmelCase = top_k return {}, {}, postprocess_params def __call__( self : Any , a__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **a__ : List[str] ): return super().__call__(a__ , **a__ ) def __snake_case ( self : Union[str, Any] , a__ : Dict ): UpperCAmelCase = load_image(a__ ) UpperCAmelCase = self.image_processor(images=a__ , return_tensors=self.framework ) return model_inputs def __snake_case ( self : str , a__ : Optional[Any] ): UpperCAmelCase = self.model(**a__ ) return model_outputs def __snake_case ( self : Union[str, Any] , a__ : Tuple , a__ : Union[str, Any]=5 ): if top_k > self.model.config.num_labels: UpperCAmelCase = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase = model_outputs.logits.softmax(-1 )[0] UpperCAmelCase, UpperCAmelCase = probs.topk(a__ ) elif self.framework == "tf": UpperCAmelCase = stable_softmax(model_outputs.logits , axis=-1 )[0] UpperCAmelCase = tf.math.top_k(a__ , k=a__ ) UpperCAmelCase, UpperCAmelCase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"Unsupported framework: {self.framework}" ) UpperCAmelCase = scores.tolist() UpperCAmelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(a__ , a__ )]
51
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): def A__ ( self :Tuple ): '''simple docstring''' debug_launcher(test_script.main ) def A__ ( self :Dict ): '''simple docstring''' debug_launcher(test_ops.main )
21
0
"""simple docstring""" import os import sys import unittest A = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path A = os.path.join(git_repo_path, '''src''', '''transformers''') A = ''' {0} = None ''' A = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) ''' A = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): __a : Optional[Any] = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' ) self.assertIsNone(_UpperCAmelCase ) __a : Optional[int] = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(_UpperCAmelCase , '''tokenizers''' ) __a : List[Any] = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(_UpperCAmelCase , '''tensorflow_text''' ) __a : Tuple = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(_UpperCAmelCase , '''sentencepiece_and_tokenizers''' ) __a : str = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(_UpperCAmelCase , '''sentencepiece_and_tensorflow_text''' ) __a : Union[str, Any] = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(_UpperCAmelCase , '''sentencepiece_and_tokenizers_and_vision''' ) def _lowerCamelCase ( self ): __a : str = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , _UpperCAmelCase ) self.assertIn('''tensorflow_text''' , _UpperCAmelCase ) self.assertIn('''sentencepiece_and_tokenizers''' , _UpperCAmelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertModel''' , objects['''tf'''] ) self.assertIn('''FlaxBertModel''' , objects['''flax'''] ) self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] ) def _lowerCamelCase ( self ): __a : str = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(_UpperCAmelCase , '''\nCONSTANT = None\n''' ) __a : str = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( _UpperCAmelCase , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) __a : int = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' __a : List[str] = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[str] = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' __a : Any = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , _UpperCAmelCase )
52
UpperCAmelCase_ : Tuple = 0 # The first color of the flag. UpperCAmelCase_ : Any = 1 # The second color of the flag. UpperCAmelCase_ : str = 2 # The third color of the flag. UpperCAmelCase_ : Tuple = (red, white, blue) def lowerCAmelCase_ ( lowerCamelCase ): if not sequence: return [] if len(lowerCamelCase ) == 1: return list(lowerCamelCase ) __magic_name__ : int =0 __magic_name__ : str =len(lowerCamelCase ) - 1 __magic_name__ : Optional[Any] =0 while mid <= high: if sequence[mid] == colors[0]: __magic_name__ , __magic_name__ : Tuple =sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: __magic_name__ , __magic_name__ : Optional[Any] =sequence[high], sequence[mid] high -= 1 else: __magic_name__ : Optional[int] =F"The elements inside the sequence must contains only {colors} values" raise ValueError(lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[Any] = input("Enter numbers separated by commas:\n").strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
21
0
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : int, lowerCAmelCase_ : int, lowerCAmelCase_ : int, lowerCAmelCase_ : int, lowerCAmelCase_ : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: __lowerCAmelCase = ksize + 1 __lowerCAmelCase = np.zeros((ksize, ksize), dtype=np.floataa ) # each value for y in range(lowerCAmelCase_ ): for x in range(lowerCAmelCase_ ): # distance from center __lowerCAmelCase = x - ksize // 2 __lowerCAmelCase = y - ksize // 2 # degree to radiant __lowerCAmelCase = theta / 180 * np.pi __lowerCAmelCase = np.cos(_theta ) __lowerCAmelCase = np.sin(_theta ) # get kernel x __lowerCAmelCase = cos_theta * px + sin_theta * py # get kernel y __lowerCAmelCase = -sin_theta * px + cos_theta * py # fill kernel __lowerCAmelCase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _snake_case : Any = imread('../image_data/lena.jpg') # turn image in gray scale value _snake_case : Union[str, Any] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _snake_case : Dict = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _snake_case : Any = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _snake_case : int = out / out.max() * 255 _snake_case : int = out.astype(np.uinta) imshow('Original', gray) imshow('Gabor filter with 20x20 mask and 6 directions', out) waitKey(0)
53
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __A ( UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = 1 @register_to_config def __init__( self :Any , __snake_case :Tuple=20_00 , __snake_case :Optional[Any]=0.1 , __snake_case :Any=20 , __snake_case :Optional[int]=1E-3 ): '''simple docstring''' __magic_name__ : Dict =None __magic_name__ : List[str] =None __magic_name__ : str =None def A__ ( self :Dict , __snake_case :Optional[int] , __snake_case :Union[str, torch.device] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] =torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case ) def A__ ( self :List[str] , __snake_case :List[str] , __snake_case :int , __snake_case :int , __snake_case :List[str]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __magic_name__ : int =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __magic_name__ : Optional[int] =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __magic_name__ : str =std.flatten() while len(std.shape ) < len(score.shape ): __magic_name__ : List[str] =std.unsqueeze(-1 ) __magic_name__ : Union[str, Any] =-score / std # compute __magic_name__ : Tuple =-1.0 / len(self.timesteps ) __magic_name__ : int =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __magic_name__ : Dict =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __magic_name__ : Any =beta_t.unsqueeze(-1 ) __magic_name__ : Dict =-0.5 * beta_t * x __magic_name__ : Optional[int] =torch.sqrt(__snake_case ) __magic_name__ : int =drift - diffusion**2 * score __magic_name__ : List[str] =x + drift * dt # add noise __magic_name__ : Optional[int] =randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype ) __magic_name__ : Optional[Any] =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self :List[Any] ): '''simple docstring''' return self.config.num_train_timesteps
21
0
from ....configuration_utils import PretrainedConfig from ....utils import logging __lowercase : int =logging.get_logger(__name__) __lowercase : List[str] ={ """speechbrain/m-ctc-t-large""": """https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json""", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class A ( __lowercase ): _snake_case ='''mctct''' def __init__( self: Optional[Any] , _lowerCAmelCase: Union[str, Any]=8065 , _lowerCAmelCase: int=1536 , _lowerCAmelCase: int=36 , _lowerCAmelCase: Union[str, Any]=6144 , _lowerCAmelCase: Optional[Any]=4 , _lowerCAmelCase: int=384 , _lowerCAmelCase: List[str]=920 , _lowerCAmelCase: Tuple=1e-5 , _lowerCAmelCase: Optional[int]=0.3 , _lowerCAmelCase: Optional[int]="relu" , _lowerCAmelCase: List[str]=0.02 , _lowerCAmelCase: Tuple=0.3 , _lowerCAmelCase: str=0.3 , _lowerCAmelCase: Optional[Any]=1 , _lowerCAmelCase: Optional[int]=0 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: Optional[Any]=1 , _lowerCAmelCase: Optional[Any]=0.3 , _lowerCAmelCase: Tuple=1 , _lowerCAmelCase: List[str]=(7,) , _lowerCAmelCase: int=(3,) , _lowerCAmelCase: Optional[Any]=80 , _lowerCAmelCase: str=1 , _lowerCAmelCase: List[str]=None , _lowerCAmelCase: Optional[Any]="sum" , _lowerCAmelCase: Any=False , **_lowerCAmelCase: Union[str, Any] , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =attention_head_dim UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =layer_norm_eps UpperCAmelCase_ =layerdrop UpperCAmelCase_ =hidden_act UpperCAmelCase_ =initializer_range UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =pad_token_id UpperCAmelCase_ =bos_token_id UpperCAmelCase_ =eos_token_id UpperCAmelCase_ =conv_glu_dim UpperCAmelCase_ =conv_dropout UpperCAmelCase_ =num_conv_layers UpperCAmelCase_ =input_feat_per_channel UpperCAmelCase_ =input_channels UpperCAmelCase_ =conv_channels UpperCAmelCase_ =ctc_loss_reduction UpperCAmelCase_ =ctc_zero_infinity # prevents config testing fail with exporting to json UpperCAmelCase_ =list(_lowerCAmelCase ) UpperCAmelCase_ =list(_lowerCAmelCase ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel)` == `config.num_conv_layers` " F'but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ' F'`config.num_conv_layers = {self.num_conv_layers}`.' )
54
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCAmelCase_ : Dict = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__( self :List[str] , __snake_case :int , __snake_case :int , __snake_case :float , **__snake_case :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =feature_size __magic_name__ : Union[str, Any] =sampling_rate __magic_name__ : List[Any] =padding_value __magic_name__ : List[str] =kwargs.pop("""padding_side""" , """right""" ) __magic_name__ : Tuple =kwargs.pop("""return_attention_mask""" , __snake_case ) super().__init__(**__snake_case ) def A__ ( self :Any , __snake_case :Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __snake_case :Union[bool, str, PaddingStrategy] = True , __snake_case :Optional[int] = None , __snake_case :bool = False , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[Union[str, TensorType]] = None , ): '''simple docstring''' if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __magic_name__ : Union[str, Any] ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) __magic_name__ : int =processed_features[self.model_input_names[0]] __magic_name__ : Union[str, Any] =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__snake_case ) == 0: if return_attention_mask: __magic_name__ : List[str] =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __magic_name__ : Optional[int] =required_input[0] if isinstance(__snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __magic_name__ : Optional[Any] =0 while len(required_input[index] ) == 0: index += 1 if index < len(__snake_case ): __magic_name__ : List[str] =required_input[index][0] if return_tensors is None: if is_tf_tensor(__snake_case ): __magic_name__ : int ="""tf""" elif is_torch_tensor(__snake_case ): __magic_name__ : str ="""pt""" elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ): __magic_name__ : List[Any] ="""np""" else: raise ValueError( f"type of {first_element} unknown: {type(__snake_case )}. " """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __magic_name__ : List[str] =to_numpy(__snake_case ) else: __magic_name__ : str =[to_numpy(__snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy __magic_name__ : Dict =self._get_padding_strategies(padding=__snake_case , max_length=__snake_case ) __magic_name__ : Optional[Any] =processed_features[self.model_input_names[0]] __magic_name__ : Dict =len(__snake_case ) if not all(len(__snake_case ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) __magic_name__ : Optional[int] =[] for i in range(__snake_case ): __magic_name__ : Any ={k: v[i] for k, v in processed_features.items()} # truncation __magic_name__ : List[str] =self._truncate( __snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) truncated_inputs.append(__snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __magic_name__ : Optional[int] =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __magic_name__ : Tuple =PaddingStrategy.MAX_LENGTH __magic_name__ : str ={} for i in range(__snake_case ): # padding __magic_name__ : List[str] =self._pad( truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: __magic_name__ : Dict =[] if value.dtype is np.dtype(np.floataa ): __magic_name__ : Optional[int] =value.astype(np.floataa ) batch_outputs[key].append(__snake_case ) return BatchFeature(__snake_case , tensor_type=__snake_case ) def A__ ( self :Any , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' __magic_name__ : Dict =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __magic_name__ : Any =len(__snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : Dict =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : List[Any] =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __magic_name__ : int =np.ones(len(__snake_case ) , dtype=np.intaa ) if needs_to_be_padded: __magic_name__ : List[Any] =max_length - len(__snake_case ) if self.padding_side == "right": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (0, difference) ) __magic_name__ : Tuple =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __magic_name__ : str =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (difference, 0) ) __magic_name__ : Optional[int] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __magic_name__ : List[Any] =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def A__ ( self :Optional[Any] , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) __magic_name__ : Union[str, Any] =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : List[str] =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : Any =len(__snake_case ) > max_length if needs_to_be_truncated: __magic_name__ : List[Any] =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __magic_name__ : List[str] =processed_features["""attention_mask"""][:max_length] return processed_features def A__ ( self :List[Any] , __snake_case :str=False , __snake_case :Optional[int]=None ): '''simple docstring''' if padding is not False: if padding is True: __magic_name__ : Union[str, Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__snake_case , __snake_case ): __magic_name__ : Optional[int] =PaddingStrategy(__snake_case ) elif isinstance(__snake_case , __snake_case ): __magic_name__ : Any =padding else: __magic_name__ : Any =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
21
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "upernet" def __init__( self : List[Any] ,A : List[Any]=None ,A : Optional[Any]=5_12 ,A : Union[str, Any]=0.02 ,A : Any=[1, 2, 3, 6] ,A : Dict=True ,A : List[Any]=0.4 ,A : Dict=3_84 ,A : List[str]=2_56 ,A : List[str]=1 ,A : Optional[Any]=False ,A : List[Any]=2_55 ,**A : str ,): super().__init__(**A ) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __A = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"] ) elif isinstance(A ,A ): __A = backbone_config.get("model_type" ) __A = CONFIG_MAPPING[backbone_model_type] __A = config_class.from_dict(A ) __A = backbone_config __A = hidden_size __A = initializer_range __A = pool_scales __A = use_auxiliary_head __A = auxiliary_loss_weight __A = auxiliary_in_channels __A = auxiliary_channels __A = auxiliary_num_convs __A = auxiliary_concat_input __A = loss_ignore_index def UpperCamelCase_ ( self : Union[str, Any] ): __A = copy.deepcopy(self.__dict__ ) __A = self.backbone_config.to_dict() __A = self.__class__.model_type return output
55
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): def __init__( self :List[Any] ): '''simple docstring''' super().__init__() __magic_name__ : Tuple =nn.Linear(3 , 4 ) __magic_name__ : Union[str, Any] =nn.BatchNormad(4 ) __magic_name__ : List[str] =nn.Linear(4 , 5 ) def A__ ( self :Dict , __snake_case :Tuple ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) ) class __A ( UpperCamelCase__ ): def A__ ( self :Any , __snake_case :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Any ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __A ( UpperCamelCase__ ): def A__ ( self :List[str] , __snake_case :Tuple , __snake_case :Union[str, Any] ): '''simple docstring''' return output + 1 class __A ( unittest.TestCase ): def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : Tuple =ModelHook() add_hook_to_module(__snake_case , __snake_case ) self.assertEqual(test_model._hf_hook , __snake_case ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : List[str] =ModelHook() add_hook_to_module(__snake_case , __snake_case ) add_hook_to_module(__snake_case , __snake_case , append=__snake_case ) self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() __magic_name__ : Any =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(x + 1 ) __magic_name__ : Optional[Any] =test_model(x + 2 ) __magic_name__ : int =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : int =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : str =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : List[str] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Optional[Any] =SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) assert torch.allclose(__snake_case , __snake_case , atol=1E-5 ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() __magic_name__ : Dict =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(__snake_case ) __magic_name__ : Dict =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Optional[int] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Union[str, Any] =SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) assert torch.allclose(__snake_case , output + 2 , atol=1E-5 ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Tuple =ModelForTest() __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Dict =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __magic_name__ : Any =True __magic_name__ : Any =test_model(__snake_case ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[Any] =model(__snake_case ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) ) __magic_name__ : int =torch.randn(2 , 3 ).to(0 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , torch.device(0 ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : int =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : int ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[int] =torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : Union[str, Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __magic_name__ : Tuple ={ """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Tuple =torch.randn(2 , 3 ) __magic_name__ : int =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : str =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Optional[int] =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Dict =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : List[str] =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Any =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
21
0
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig _a : List[Any] = logging.get_logger(__name__) # General docstring _a : Union[str, Any] = "MobileNetV1Config" # Base docstring _a : int = "google/mobilenet_v1_1.0_224" _a : Any = [1, 1_024, 7, 7] # Image classification docstring _a : Any = "google/mobilenet_v1_1.0_224" _a : Tuple = "tabby, tabby cat" _a : Tuple = [ "google/mobilenet_v1_1.0_224", "google/mobilenet_v1_0.75_192", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def _a (lowercase__ : Union[str, Any] , lowercase__ : Tuple , lowercase__ : Tuple=None ) -> Optional[int]: """simple docstring""" __snake_case = {} if isinstance(lowercase__ , lowercase__ ): __snake_case = model.mobilenet_va else: __snake_case = model __snake_case = 'MobilenetV1/Conv2d_0/' __snake_case = backbone.conv_stem.convolution.weight __snake_case = backbone.conv_stem.normalization.bias __snake_case = backbone.conv_stem.normalization.weight __snake_case = backbone.conv_stem.normalization.running_mean __snake_case = backbone.conv_stem.normalization.running_var for i in range(1_3 ): __snake_case = i + 1 __snake_case = i * 2 __snake_case = backbone.layer[pt_index] __snake_case = f'MobilenetV1/Conv2d_{tf_index}_depthwise/' __snake_case = pointer.convolution.weight __snake_case = pointer.normalization.bias __snake_case = pointer.normalization.weight __snake_case = pointer.normalization.running_mean __snake_case = pointer.normalization.running_var __snake_case = backbone.layer[pt_index + 1] __snake_case = f'MobilenetV1/Conv2d_{tf_index}_pointwise/' __snake_case = pointer.convolution.weight __snake_case = pointer.normalization.bias __snake_case = pointer.normalization.weight __snake_case = pointer.normalization.running_mean __snake_case = pointer.normalization.running_var if isinstance(lowercase__ , lowercase__ ): __snake_case = 'MobilenetV1/Logits/Conv2d_1c_1x1/' __snake_case = model.classifier.weight __snake_case = model.classifier.bias return tf_to_pt_map def _a (lowercase__ : List[str] , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> str: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model __snake_case = tf.train.list_variables(lowercase__ ) __snake_case = {} for name, shape in init_vars: logger.info(f'Loading TF weight {name} with shape {shape}' ) __snake_case = tf.train.load_variable(lowercase__ , lowercase__ ) __snake_case = array # Build TF to PyTorch weights loading map __snake_case = _build_tf_to_pytorch_map(lowercase__ , lowercase__ , lowercase__ ) for name, pointer in tf_to_pt_map.items(): logger.info(f'Importing {name}' ) if name not in tf_weights: logger.info(f'{name} not in tf pre-trained weights, skipping' ) continue __snake_case = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) __snake_case = np.transpose(lowercase__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer __snake_case = array.squeeze().transpose() else: __snake_case = np.transpose(lowercase__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(f'Initialize PyTorch weight {name} {array.shape}' ) __snake_case = torch.from_numpy(lowercase__ ) tf_weights.pop(lowercase__ , lowercase__ ) tf_weights.pop(name + '/RMSProp' , lowercase__ ) tf_weights.pop(name + '/RMSProp_1' , lowercase__ ) tf_weights.pop(name + '/ExponentialMovingAverage' , lowercase__ ) logger.info(f'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def _a (lowercase__ : torch.Tensor , lowercase__ : nn.Convad ) -> torch.Tensor: """simple docstring""" __snake_case , __snake_case = features.shape[-2:] __snake_case , __snake_case = conv_layer.stride __snake_case , __snake_case = conv_layer.kernel_size if in_height % stride_height == 0: __snake_case = max(kernel_height - stride_height , 0 ) else: __snake_case = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: __snake_case = max(kernel_width - stride_width , 0 ) else: __snake_case = max(kernel_width - (in_width % stride_width) , 0 ) __snake_case = pad_along_width // 2 __snake_case = pad_along_width - pad_left __snake_case = pad_along_height // 2 __snake_case = pad_along_height - pad_top __snake_case = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(lowercase__ , lowercase__ , 'constant' , 0.0 ) class _lowercase ( nn.Module ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : MobileNetVaConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] = 1 , SCREAMING_SNAKE_CASE_ : Optional[int] = 1 , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[bool] = True , SCREAMING_SNAKE_CASE_ : Optional[bool or str] = True , ) -> None: super().__init__() __snake_case = config if in_channels % groups != 0: raise ValueError(f'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(f'Output channels ({out_channels}) are not divisible by {groups} groups.' ) __snake_case = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) __snake_case = nn.Convad( in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , groups=SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ , padding_mode='zeros' , ) if use_normalization: __snake_case = nn.BatchNormad( num_features=SCREAMING_SNAKE_CASE_ , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=SCREAMING_SNAKE_CASE_ , track_running_stats=SCREAMING_SNAKE_CASE_ , ) else: __snake_case = None if use_activation: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = ACTaFN[use_activation] elif isinstance(config.hidden_act , SCREAMING_SNAKE_CASE_ ): __snake_case = ACTaFN[config.hidden_act] else: __snake_case = config.hidden_act else: __snake_case = None def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : torch.Tensor ) -> torch.Tensor: if self.config.tf_padding: __snake_case = apply_tf_padding(SCREAMING_SNAKE_CASE_ , self.convolution ) __snake_case = self.convolution(SCREAMING_SNAKE_CASE_ ) if self.normalization is not None: __snake_case = self.normalization(SCREAMING_SNAKE_CASE_ ) if self.activation is not None: __snake_case = self.activation(SCREAMING_SNAKE_CASE_ ) return features class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Tuple = MobileNetVaConfig _SCREAMING_SNAKE_CASE : Optional[Any] = load_tf_weights_in_mobilenet_va _SCREAMING_SNAKE_CASE : Any = "mobilenet_v1" _SCREAMING_SNAKE_CASE : Optional[Any] = "pixel_values" _SCREAMING_SNAKE_CASE : List[Any] = False def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[nn.Linear, nn.Convad] ) -> None: if isinstance(SCREAMING_SNAKE_CASE_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(SCREAMING_SNAKE_CASE_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) _a : Optional[Any] = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _a : str = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , __lowercase , ) class _lowercase ( __lowercase ): def __init__( self : str , SCREAMING_SNAKE_CASE_ : MobileNetVaConfig , SCREAMING_SNAKE_CASE_ : bool = True ) -> Any: super().__init__(SCREAMING_SNAKE_CASE_ ) __snake_case = config __snake_case = 32 __snake_case = max(int(depth * config.depth_multiplier ) , config.min_depth ) __snake_case = MobileNetVaConvLayer( SCREAMING_SNAKE_CASE_ , in_channels=config.num_channels , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=3 , stride=2 , ) __snake_case = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] __snake_case = nn.ModuleList() for i in range(13 ): __snake_case = out_channels if strides[i] == 2 or i == 0: depth *= 2 __snake_case = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=3 , stride=strides[i] , groups=SCREAMING_SNAKE_CASE_ , ) ) self.layer.append( MobileNetVaConvLayer( SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=1 , ) ) __snake_case = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int ) -> Dict: raise NotImplementedError @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: __snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) __snake_case = self.conv_stem(SCREAMING_SNAKE_CASE_ ) __snake_case = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): __snake_case = layer_module(SCREAMING_SNAKE_CASE_ ) if output_hidden_states: __snake_case = all_hidden_states + (hidden_states,) __snake_case = hidden_states if self.pooler is not None: __snake_case = torch.flatten(self.pooler(SCREAMING_SNAKE_CASE_ ) , start_dim=1 ) else: __snake_case = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE_ , pooler_output=SCREAMING_SNAKE_CASE_ , hidden_states=SCREAMING_SNAKE_CASE_ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __lowercase , ) class _lowercase ( __lowercase ): def __init__( self : int , SCREAMING_SNAKE_CASE_ : MobileNetVaConfig ) -> None: super().__init__(SCREAMING_SNAKE_CASE_ ) __snake_case = config.num_labels __snake_case = MobileNetVaModel(SCREAMING_SNAKE_CASE_ ) __snake_case = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head __snake_case = nn.Dropout(config.classifier_dropout_prob , inplace=SCREAMING_SNAKE_CASE_ ) __snake_case = nn.Linear(SCREAMING_SNAKE_CASE_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: __snake_case = return_dict if return_dict is not None else self.config.use_return_dict __snake_case = self.mobilenet_va(SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) __snake_case = outputs.pooler_output if return_dict else outputs[1] __snake_case = self.classifier(self.dropout(SCREAMING_SNAKE_CASE_ ) ) __snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __snake_case = 'single_label_classification' else: __snake_case = 'multi_label_classification' if self.config.problem_type == "regression": __snake_case = MSELoss() if self.num_labels == 1: __snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: __snake_case = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif self.config.problem_type == "single_label_classification": __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __snake_case = BCEWithLogitsLoss() __snake_case = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: __snake_case = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ , hidden_states=outputs.hidden_states , )
56
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = KandinskyInpaintPipeline UpperCamelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCamelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCamelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase = False @property def A__ ( self :Union[str, Any] ): '''simple docstring''' return 32 @property def A__ ( self :Optional[Any] ): '''simple docstring''' return 32 @property def A__ ( self :List[Any] ): '''simple docstring''' return self.time_input_dim @property def A__ ( self :Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def A__ ( self :List[Any] ): '''simple docstring''' return 1_00 @property def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Dict =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self :str ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : str =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __magic_name__ : Tuple =MultilingualCLIP(__snake_case ) __magic_name__ : Optional[int] =text_encoder.eval() return text_encoder @property def A__ ( self :Dict ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Optional[Any] ={ """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __magic_name__ : Union[str, Any] =UNetaDConditionModel(**__snake_case ) return model @property def A__ ( self :List[str] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self :Tuple ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Dict =VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[str] =self.dummy_text_encoder __magic_name__ : Optional[Any] =self.dummy_tokenizer __magic_name__ : Optional[Any] =self.dummy_unet __magic_name__ : Tuple =self.dummy_movq __magic_name__ : List[str] =DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , ) __magic_name__ : str ={ """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self :str , __snake_case :Optional[Any] , __snake_case :int=0 ): '''simple docstring''' __magic_name__ : Union[str, Any] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : Dict =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case ) # create init_image __magic_name__ : str =floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : int =image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ : str =Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask __magic_name__ : Dict =np.ones((64, 64) , dtype=np.floataa ) __magic_name__ : Any =0 if str(__snake_case ).startswith("""mps""" ): __magic_name__ : Dict =torch.manual_seed(__snake_case ) else: __magic_name__ : Tuple =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__ : List[Any] ={ """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Tuple ="""cpu""" __magic_name__ : List[Any] =self.get_dummy_components() __magic_name__ : Union[str, Any] =self.pipeline_class(**__snake_case ) __magic_name__ : Tuple =pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Tuple =pipe(**self.get_dummy_inputs(__snake_case ) ) __magic_name__ : List[Any] =output.images __magic_name__ : Any =pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] __magic_name__ : int =image[0, -3:, -3:, -1] __magic_name__ : str =image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) __magic_name__ : Optional[Any] =np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def A__ ( self :Dict ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def A__ ( self :List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : List[str] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) __magic_name__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __magic_name__ : List[Any] =np.ones((7_68, 7_68) , dtype=np.floataa ) __magic_name__ : Any =0 __magic_name__ : int ="""a hat""" __magic_name__ : int =KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) __magic_name__ : Dict =KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) __magic_name__ : int =pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Union[str, Any] =torch.Generator(device="""cpu""" ).manual_seed(0 ) __magic_name__ , __magic_name__ : Dict =pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __magic_name__ : Optional[Any] =pipeline( __snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) __magic_name__ : Optional[int] =output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
21
0
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : int = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : int ='''umt5''' a : Optional[Any] =['''past_key_values'''] def __init__( self , _lowerCamelCase=2_5_0_1_1_2 , _lowerCamelCase=5_1_2 , _lowerCamelCase=6_4 , _lowerCamelCase=1_0_2_4 , _lowerCamelCase=8 , _lowerCamelCase=None , _lowerCamelCase=6 , _lowerCamelCase=3_2 , _lowerCamelCase=1_2_8 , _lowerCamelCase=0.1 , _lowerCamelCase=1e-6 , _lowerCamelCase=1.0 , _lowerCamelCase="gated-gelu" , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="T5Tokenizer" , _lowerCamelCase=True , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=0 , **_lowerCamelCase , ): super().__init__( is_encoder_decoder=_lowerCamelCase , tokenizer_class=_lowerCamelCase , tie_word_embeddings=_lowerCamelCase , pad_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , ) UpperCamelCase_: str = vocab_size UpperCamelCase_: Any = d_model UpperCamelCase_: Any = d_kv UpperCamelCase_: Optional[Any] = d_ff UpperCamelCase_: str = num_layers UpperCamelCase_: Tuple = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCamelCase_: Optional[Any] = num_heads UpperCamelCase_: List[str] = relative_attention_num_buckets UpperCamelCase_: Union[str, Any] = relative_attention_max_distance UpperCamelCase_: List[str] = dropout_rate UpperCamelCase_: str = layer_norm_epsilon UpperCamelCase_: Dict = initializer_factor UpperCamelCase_: Optional[int] = feed_forward_proj UpperCamelCase_: List[Any] = use_cache UpperCamelCase_: Dict = self.feed_forward_proj.split('-' ) UpperCamelCase_: List[str] = act_info[-1] UpperCamelCase_: str = act_info[0] == 'gated' if len(_lowerCamelCase ) > 1 and act_info[0] != "gated" or len(_lowerCamelCase ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": UpperCamelCase_: int = 'gelu_new' @property def _a ( self ): return self.d_model @property def _a ( self ): return self.num_heads @property def _a ( self ): return self.num_layers class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def _a ( self ): UpperCamelCase_: Dict = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: UpperCamelCase_: Tuple = 'past_encoder_sequence + sequence' UpperCamelCase_: Any = {0: 'batch'} UpperCamelCase_: Optional[int] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: UpperCamelCase_: Tuple = {0: 'batch', 1: 'decoder_sequence'} UpperCamelCase_: Any = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_lowerCamelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def _a ( self ): return 1_3 @property def _a ( self ): return 5e-4
57
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __A : def __init__( self :int , __snake_case :List[Any] , __snake_case :List[Any]=2 , __snake_case :Dict=True , __snake_case :Tuple=False , __snake_case :List[str]=10 , __snake_case :List[str]=3 , __snake_case :Union[str, Any]=32 * 8 , __snake_case :Optional[int]=32 * 8 , __snake_case :Any=4 , __snake_case :Union[str, Any]=64 , ): '''simple docstring''' __magic_name__ : Optional[int] =parent __magic_name__ : List[Any] =batch_size __magic_name__ : List[str] =is_training __magic_name__ : List[str] =use_auxiliary_loss __magic_name__ : Union[str, Any] =num_queries __magic_name__ : str =num_channels __magic_name__ : Union[str, Any] =min_size __magic_name__ : Union[str, Any] =max_size __magic_name__ : Optional[int] =num_labels __magic_name__ : Tuple =hidden_dim __magic_name__ : Any =hidden_dim def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __snake_case ) __magic_name__ : List[Any] =torch.ones([self.batch_size, self.min_size, self.max_size] , device=__snake_case ) __magic_name__ : List[str] =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__snake_case ) > 0.5 ).float() __magic_name__ : Union[str, Any] =(torch.rand((self.batch_size, self.num_labels) , device=__snake_case ) > 0.5).long() __magic_name__ : str =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Dict =MaskaFormerConfig( hidden_size=self.hidden_dim , ) __magic_name__ : str =self.num_queries __magic_name__ : Dict =self.num_labels __magic_name__ : int =[1, 1, 1, 1] __magic_name__ : List[str] =self.num_channels __magic_name__ : str =64 __magic_name__ : List[str] =1_28 __magic_name__ : Optional[Any] =self.hidden_dim __magic_name__ : Tuple =self.hidden_dim __magic_name__ : Optional[int] =self.hidden_dim return config def A__ ( self :Any ): '''simple docstring''' __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple =self.prepare_config_and_inputs() __magic_name__ : Optional[Any] ={"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def A__ ( self :Union[str, Any] , __snake_case :Tuple , __snake_case :Dict ): '''simple docstring''' __magic_name__ : int =output.encoder_hidden_states __magic_name__ : List[str] =output.pixel_decoder_hidden_states __magic_name__ : int =output.transformer_decoder_hidden_states self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , config.decoder_layers ) def A__ ( self :List[Any] , __snake_case :Optional[Any] , __snake_case :int , __snake_case :str , __snake_case :str=False ): '''simple docstring''' with torch.no_grad(): __magic_name__ : List[str] =MaskaFormerModel(config=__snake_case ) model.to(__snake_case ) model.eval() __magic_name__ : Union[str, Any] =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : int =model(__snake_case , output_hidden_states=__snake_case ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__snake_case , __snake_case ) def A__ ( self :Optional[Any] , __snake_case :List[str] , __snake_case :List[Any] , __snake_case :int , __snake_case :Any , __snake_case :Union[str, Any] ): '''simple docstring''' __magic_name__ : str =MaskaFormerForUniversalSegmentation(config=__snake_case ) model.to(__snake_case ) model.eval() def comm_check_on_output(__snake_case :List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __magic_name__ : int =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : List[str] =model(__snake_case ) comm_check_on_output(__snake_case ) __magic_name__ : Any =model( pixel_values=__snake_case , pixel_mask=__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) comm_check_on_output(__snake_case ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCamelCase = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def A__ ( self :str ): '''simple docstring''' __magic_name__ : Any =MaskaFormerModelTester(self ) __magic_name__ : Union[str, Any] =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def A__ ( self :Dict ): '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__snake_case ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def A__ ( self :List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def A__ ( self :Dict ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def A__ ( self :Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def A__ ( self :int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def A__ ( self :Tuple ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A__ ( self :Union[str, Any] ): '''simple docstring''' pass def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Tuple =model_class(__snake_case ) __magic_name__ : Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple =[*signature.parameters.keys()] __magic_name__ : Optional[Any] =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) @slow def A__ ( self :Tuple ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __magic_name__ : int =MaskaFormerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =(self.model_tester.min_size,) * 2 __magic_name__ : Union[str, Any] ={ """pixel_values""": torch.randn((2, 3, *size) , device=__snake_case ), """mask_labels""": torch.randn((2, 10, *size) , device=__snake_case ), """class_labels""": torch.zeros(2 , 10 , device=__snake_case ).long(), } __magic_name__ : Optional[Any] =self.model_tester.get_config() __magic_name__ : Dict =MaskaFormerForUniversalSegmentation(__snake_case ).to(__snake_case ) __magic_name__ : Any =model(**__snake_case ) self.assertTrue(outputs.loss is not None ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ , __magic_name__ : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] =model_class(__snake_case ).to(__snake_case ) __magic_name__ : Optional[int] =model(**__snake_case , output_attentions=__snake_case ) self.assertTrue(outputs.attentions is not None ) def A__ ( self :int ): '''simple docstring''' if not self.model_tester.is_training: return __magic_name__ : List[Any] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Dict =model_class(__snake_case ) model.to(__snake_case ) model.train() __magic_name__ : Optional[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ).loss loss.backward() def A__ ( self :int ): '''simple docstring''' __magic_name__ : List[str] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Tuple =True __magic_name__ : Optional[int] =True __magic_name__ : int =model_class(__snake_case ).to(__snake_case ) model.train() __magic_name__ : List[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) __magic_name__ : Optional[int] =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __magic_name__ : Optional[int] =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__snake_case ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase_ : Dict = 1e-4 def lowerCAmelCase_ ( ): __magic_name__ : Dict =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __A ( unittest.TestCase ): @cached_property def A__ ( self :int ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def A__ ( self :int ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__snake_case ) __magic_name__ : int =self.default_image_processor __magic_name__ : List[Any] =prepare_img() __magic_name__ : Any =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Dict =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : List[str] =model(**__snake_case ) __magic_name__ : Any =torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Dict =torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Any =torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Optional[int] =self.default_image_processor __magic_name__ : Tuple =prepare_img() __magic_name__ : List[Any] =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Union[str, Any] =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : str =model(**__snake_case ) # masks_queries_logits __magic_name__ : List[Any] =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __magic_name__ : List[Any] =[ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __magic_name__ : Dict =torch.tensor(__snake_case ).to(__snake_case ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) # class_queries_logits __magic_name__ : Any =outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __magic_name__ : int =torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Any =self.default_image_processor __magic_name__ : Union[str, Any] =image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , ) __magic_name__ : str =inputs["""pixel_values"""].to(__snake_case ) __magic_name__ : Tuple =[el.to(__snake_case ) for el in inputs["""mask_labels"""]] __magic_name__ : Union[str, Any] =[el.to(__snake_case ) for el in inputs["""class_labels"""]] with torch.no_grad(): __magic_name__ : Dict =model(**__snake_case ) self.assertTrue(outputs.loss is not None )
21
0
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int = 1_0_0_0 ): '''simple docstring''' snake_case_ : List[str] = 2**power snake_case_ : List[Any] = 0 while n: snake_case_ , snake_case_ : str = r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __A ( UpperCamelCase__ ): UpperCamelCase = """segformer""" def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ): '''simple docstring''' super().__init__(**__snake_case ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , ) __magic_name__ : Dict =num_channels __magic_name__ : str =num_encoder_blocks __magic_name__ : List[Any] =depths __magic_name__ : Optional[Any] =sr_ratios __magic_name__ : List[str] =hidden_sizes __magic_name__ : List[str] =patch_sizes __magic_name__ : Any =strides __magic_name__ : Optional[Any] =mlp_ratios __magic_name__ : str =num_attention_heads __magic_name__ : int =hidden_act __magic_name__ : List[Any] =hidden_dropout_prob __magic_name__ : Optional[Any] =attention_probs_dropout_prob __magic_name__ : Optional[Any] =classifier_dropout_prob __magic_name__ : List[str] =initializer_range __magic_name__ : List[str] =drop_path_rate __magic_name__ : List[Any] =layer_norm_eps __magic_name__ : List[str] =decoder_hidden_size __magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case ) __magic_name__ : Dict =semantic_loss_ignore_index class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.11""" ) @property def A__ ( self :List[str] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self :Any ): '''simple docstring''' return 1E-4 @property def A__ ( self :int ): '''simple docstring''' return 12
21
0
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __A = { "susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json", "susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json", } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "ernie_m" lowercase_ = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__(self : Any , UpperCAmelCase_ : int = 250_002 , UpperCAmelCase_ : int = 768 , UpperCAmelCase_ : int = 12 , UpperCAmelCase_ : int = 12 , UpperCAmelCase_ : int = 3_072 , UpperCAmelCase_ : str = "gelu" , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : int = 514 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : float = 1E-0_5 , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : List[Any]=0.0 , **UpperCAmelCase_ : str , ) ->List[str]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: List[Any] =vocab_size lowerCamelCase__: Tuple =hidden_size lowerCamelCase__: Optional[Any] =num_hidden_layers lowerCamelCase__: Optional[Any] =num_attention_heads lowerCamelCase__: List[str] =intermediate_size lowerCamelCase__: Optional[int] =hidden_act lowerCamelCase__: Optional[Any] =hidden_dropout_prob lowerCamelCase__: Union[str, Any] =attention_probs_dropout_prob lowerCamelCase__: Optional[Any] =max_position_embeddings lowerCamelCase__: Union[str, Any] =initializer_range lowerCamelCase__: Dict =layer_norm_eps lowerCamelCase__: List[str] =classifier_dropout lowerCamelCase__: Union[str, Any] =is_decoder lowerCamelCase__: str =act_dropout
59
import heapq def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase , [-1 * len(lowerCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices __magic_name__ : Tuple =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __magic_name__ : Tuple =heapq.heappop(lowerCamelCase )[1][0] chosen_vertices.add(lowerCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __magic_name__ : Tuple =elem[1][1].index(lowerCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
21
0
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar lowerCAmelCase_ = TypeVar('''T''') class __lowerCAmelCase ( Generic[T] ): def __init__(self , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' snake_case_ : Any | T = None snake_case_ : int = len(__magic_name__ ) snake_case_ : list[T] = [any_type for _ in range(self.N )] + arr snake_case_ : Optional[int] = fnc self.build() def lowerCamelCase (self ) -> None: '''simple docstring''' for p in range(self.N - 1 , 0 , -1 ): snake_case_ : Optional[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' p += self.N snake_case_ : Dict = v while p > 1: snake_case_ : List[str] = p // 2 snake_case_ : int = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> T | None: # noqa: E741 '''simple docstring''' snake_case_ , snake_case_ : int = l + self.N, r + self.N snake_case_ : T | None = None while l <= r: if l % 2 == 1: snake_case_ : Optional[Any] = self.st[l] if res is None else self.fn(__magic_name__ , self.st[l] ) if r % 2 == 0: snake_case_ : Optional[int] = self.st[r] if res is None else self.fn(__magic_name__ , self.st[r] ) snake_case_ , snake_case_ : Dict = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce lowerCAmelCase_ = [1, 1_0, -2, 9, -3, 8, 4, -7, 5, 6, 1_1, -1_2] lowerCAmelCase_ = { 0: 7, 1: 2, 2: 6, 3: -1_4, 4: 5, 5: 4, 6: 7, 7: -1_0, 8: 9, 9: 1_0, 1_0: 1_2, 1_1: 1, } lowerCAmelCase_ = SegmentTree(test_array, min) lowerCAmelCase_ = SegmentTree(test_array, max) lowerCAmelCase_ = SegmentTree(test_array, lambda a, b: a + b) def lowerCamelCase_ ( ) -> None: """simple docstring""" for i in range(len(_UpperCamelCase ) ): for j in range(_UpperCamelCase , len(_UpperCamelCase ) ): snake_case_ : Dict = reduce(_UpperCamelCase , test_array[i : j + 1] ) snake_case_ : Tuple = reduce(_UpperCamelCase , test_array[i : j + 1] ) snake_case_ : Tuple = reduce(lambda _UpperCamelCase , _UpperCamelCase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(_UpperCamelCase , _UpperCamelCase ) assert max_range == max_segment_tree.query(_UpperCamelCase , _UpperCamelCase ) assert sum_range == sum_segment_tree.query(_UpperCamelCase , _UpperCamelCase ) test_all_segments() for index, value in test_updates.items(): lowerCAmelCase_ = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
60
UpperCAmelCase_ : int = range(2, 20 + 1) UpperCAmelCase_ : Tuple = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =sum(a_i[j] for j in range(lowerCamelCase , len(lowerCamelCase ) ) ) __magic_name__ : Any =sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase ) , lowerCamelCase ) ) ) __magic_name__ , __magic_name__ : Tuple =0, 0 __magic_name__ : Optional[Any] =n - i __magic_name__ : Union[str, Any] =memo.get(lowerCamelCase ) if sub_memo is not None: __magic_name__ : int =sub_memo.get(lowerCamelCase ) if jumps is not None and len(lowerCamelCase ) > 0: # find and make the largest jump without going over __magic_name__ : Dict =-1 for _k in range(len(lowerCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __magic_name__ : Optional[Any] =_k break if max_jump >= 0: __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =jumps[max_jump] # since the difference between jumps is cached, add c __magic_name__ : Tuple =diff + c for j in range(min(lowerCamelCase , len(lowerCamelCase ) ) ): __magic_name__ , __magic_name__ : Tuple =divmod(lowerCamelCase , 10 ) if new_c > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __magic_name__ : str =[] else: __magic_name__ : List[str] ={c: []} __magic_name__ : List[str] =sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __magic_name__ , __magic_name__ : Union[str, Any] =next_term(lowerCamelCase , k - 1 , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __magic_name__ , __magic_name__ : Optional[int] =compute(lowerCamelCase , lowerCamelCase , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped __magic_name__ : Tuple =sub_memo[c] # keep jumps sorted by # of terms skipped __magic_name__ : List[Any] =0 while j < len(lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase , (diff, dn, k) ) return (diff, dn) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if i >= n: return 0, i if k > len(lowerCamelCase ): a_i.extend([0 for _ in range(k - len(lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __magic_name__ : Tuple =i __magic_name__ , __magic_name__ , __magic_name__ : Tuple =0, 0, 0 for j in range(len(lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __magic_name__ : Optional[Any] =ds_c + ds_b diff += addend __magic_name__ : str =0 for j in range(lowerCamelCase ): __magic_name__ : int =a_i[j] + addend __magic_name__ , __magic_name__ : Any =divmod(lowerCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return diff, i - start_i def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for j in range(lowerCamelCase , len(lowerCamelCase ) ): __magic_name__ : Tuple =digits[j] + addend if s >= 10: __magic_name__ , __magic_name__ : int =divmod(lowerCamelCase , 10 ) __magic_name__ : int =addend // 10 + quotient else: __magic_name__ : Dict =s __magic_name__ : Any =addend // 10 if addend == 0: break while addend > 0: __magic_name__ , __magic_name__ : Union[str, Any] =divmod(lowerCamelCase , 10 ) digits.append(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase = 10**15 ): __magic_name__ : List[str] =[1] __magic_name__ : str =1 __magic_name__ : str =0 while True: __magic_name__ , __magic_name__ : List[str] =next_term(lowerCamelCase , 20 , i + dn , lowerCamelCase ) dn += terms_jumped if dn == n - i: break __magic_name__ : int =0 for j in range(len(lowerCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
21
0
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class __lowerCamelCase ( UpperCamelCase__ , unittest.TestCase ): """simple docstring""" snake_case__ = XLNetTokenizer snake_case__ = XLNetTokenizerFast snake_case__ = True snake_case__ = True def a ( self : str ) -> str: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = XLNetTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def a ( self : List[str] ) -> List[Any]: lowerCAmelCase__ = "<s>" lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def a ( self : Union[str, Any] ) -> str: lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<eod>" ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 1_006 ) def a ( self : int ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def a ( self : List[str] ) -> Any: lowerCAmelCase__ = XLNetTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [285, 46, 10, 170, 382] ) lowerCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def a ( self : Optional[int] ) -> Optional[Any]: lowerCAmelCase__ = XLNetTokenizer(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + "", "i", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["▁he", "ll", "o"] ) def a ( self : List[Any] ) -> Optional[int]: lowerCAmelCase__ = XLNetTokenizer(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) @slow def a ( self : Any ) -> Any: lowerCAmelCase__ = XLNetTokenizer.from_pretrained("xlnet-base-cased" ) lowerCAmelCase__ = tokenizer.encode("sequence builders" , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer.encode("multi-sequence build" , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def a ( self : Union[str, Any] ) -> Any: # fmt: off lowerCAmelCase__ = {"input_ids": [[17, 21_442, 270, 17, 10, 14_645, 318, 34, 17, 4_546, 3_145, 787, 13, 7_752, 22_018, 23, 21, 17, 4_546, 3_145, 787, 13, 3_352, 14_431, 13, 5_500, 11, 1_176, 580, 13, 16_819, 4_797, 23, 17, 10, 17_135, 658, 19, 457, 7_932, 13, 184, 19, 3_154, 17_135, 6_468, 19, 1_404, 12_269, 19, 4_229, 5_356, 16_264, 46, 19, 17, 20_545, 10_395, 9, 9, 9, 11, 28, 6_421, 9_531, 20_729, 17, 10, 353, 17_022, 11, 21, 6_421, 9_531, 16_949, 17, 10, 11_509, 753, 11, 33, 95, 2_421, 7_385, 956, 14_431, 2_626, 25, 842, 7_385, 4_836, 21, 1_429, 2_272, 9_855, 3_120, 161, 24_738, 19, 13_203, 658, 218, 787, 21, 430, 18_482, 847, 2_637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22_178, 27, 1_064, 22, 956, 13, 11_101, 1_429, 5_854, 24_313, 18_953, 40, 422, 24_366, 68, 1_758, 37, 10_483, 14_257, 31, 207, 263, 21, 203, 3_773, 25, 71, 9_735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2_049, 3_442, 17, 13_894, 3_380, 23, 95, 18, 17_634, 2_288, 9, 4, 3]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE__ , model_name="xlnet-base-cased" , revision="c841166438c31ec7ca9a106dee7bb312b73ae511" , )
61
from typing import List from .keymap import KEYMAP, get_character def lowerCAmelCase_ ( lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : str =getattr(lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator def lowerCAmelCase_ ( *lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : Dict =getattr(lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator class __A ( UpperCamelCase__ ): def __new__( cls :Dict , __snake_case :Optional[Any] , __snake_case :Union[str, Any] , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : int =super().__new__(cls , __snake_case , __snake_case , __snake_case ) if not hasattr(__snake_case , """key_handler""" ): setattr(__snake_case , """key_handler""" , {} ) setattr(__snake_case , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __magic_name__ : int =getattr(__snake_case , """handle_key""" , [] ) for key in handled_keys: __magic_name__ : List[str] =value return new_cls @staticmethod def A__ ( cls :Optional[int] ): '''simple docstring''' __magic_name__ : Union[str, Any] =get_character() if char != KEYMAP["undefined"]: __magic_name__ : Optional[int] =ord(__snake_case ) __magic_name__ : int =cls.key_handler.get(__snake_case ) if handler: __magic_name__ : Dict =char return handler(cls ) else: return None def lowerCAmelCase_ ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
21
0
class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict ): SCREAMING_SNAKE_CASE : Optional[int] = {} def _A ( self : str ): print(self.vertex ) for i in self.vertex: print(UpperCAmelCase_ , " -> " , " -> ".join([str(UpperCAmelCase_ ) for j in self.vertex[i]] ) ) def _A ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(UpperCAmelCase_ ) else: # else make a new vertex SCREAMING_SNAKE_CASE : List[str] = [to_vertex] def _A ( self : int ): # visited array for storing already visited nodes SCREAMING_SNAKE_CASE : Any = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : list ): # mark start vertex as visited SCREAMING_SNAKE_CASE : Any = True print(UpperCAmelCase_ , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": snake_case = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
62
import os import jsonlines import numpy as np from tqdm import tqdm UpperCAmelCase_ : Dict = 2048 UpperCAmelCase_ : int = 4096 UpperCAmelCase_ : Any = 42 UpperCAmelCase_ : Optional[int] = os.environ.pop("PROCESS_TRAIN", "false") UpperCAmelCase_ : str = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def lowerCAmelCase_ ( lowerCamelCase ): def choose_first(lowerCamelCase , lowerCamelCase=False ): assert isinstance(lowerCamelCase , lowerCamelCase ) if len(lowerCamelCase ) == 1: __magic_name__ : List[str] =answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __magic_name__ : Tuple ={k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a __magic_name__ : str ={"""id""": example["""id"""]} __magic_name__ : List[Any] =example["""annotations"""] __magic_name__ : List[str] =annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: __magic_name__ : Optional[int] =["""yes"""] if 1 in yes_no_answer else ["""no"""] __magic_name__ : List[str] =[] __magic_name__ : Dict =[] __magic_name__ : str =["""<cls>"""] else: __magic_name__ : Tuple =["""short"""] __magic_name__ : Optional[int] =choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available __magic_name__ : Tuple =["""long"""] __magic_name__ : Tuple =choose_first(annotation["""long_answer"""] , is_long_answer=lowerCamelCase ) __magic_name__ : List[Any] =[] answer.update(lowerCamelCase ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: __magic_name__ : Any =True else: __magic_name__ : List[str] =False __magic_name__ : int =["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , lowerCamelCase ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =_get_single_answer(lowerCamelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : Any =example["""document"""]["""tokens"""] __magic_name__ : str =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __magic_name__ : Dict =["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __magic_name__ : Tuple =example["""document"""]["""tokens"""] __magic_name__ : Optional[int] =answer["""start_token"""] __magic_name__ : List[Any] =answer["""end_token"""] __magic_name__ : Optional[Any] =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __magic_name__ : Optional[int] =""" """.join(context[start_token:end_token] ) # checking above code if assertion: __magic_name__ : List[str] =doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : str =doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : Dict =""" """.join([old[i] for i in range(len(lowerCamelCase ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , lowerCamelCase , end="""\n""" ) print("""Old:""" , lowerCamelCase , end="""\n\n""" ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=True ): # overlap will be of doc_stride - q_len __magic_name__ : Any =get_context_and_ans(lowerCamelCase , assertion=lowerCamelCase ) __magic_name__ : Union[str, Any] =out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __magic_name__ : List[Any] =tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids __magic_name__ : Dict =input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : List[str] =[] __magic_name__ : int =[] __magic_name__ : List[str] =input_ids[:q_len] __magic_name__ : Dict =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Tuple =input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(lowerCamelCase ), "end_token": [-100] * len(lowerCamelCase ), "category": category, }, } __magic_name__ : int =out["""context"""].split() __magic_name__ : Any =splitted_context[answer["""end_token"""]] __magic_name__ : str =len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=lowerCamelCase , ).input_ids ) __magic_name__ : Optional[int] =len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=lowerCamelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __magic_name__ : Union[str, Any] =len(tokenizer(lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __magic_name__ : str =input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive __magic_name__ : Dict =answer["""start_token"""] __magic_name__ : int =answer["""end_token"""] if assertion: __magic_name__ : Any =tokenizer.decode(lowerCamelCase ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , lowerCamelCase , end="""\n\n""" ) if len(lowerCamelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __magic_name__ : Any =input_ids[:q_len] __magic_name__ : Union[str, Any] =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) __magic_name__ : Any =[] __magic_name__ : List[str] =[] __magic_name__ : List[str] =[] __magic_name__ : str =[] # null, yes, no, long, short for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Dict =input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __magic_name__ : List[Any] =start_token - i + q_len __magic_name__ : Optional[Any] =end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: __magic_name__ : Optional[Any] =-100 __magic_name__ : Optional[Any] =-100 answers_category.append("""null""" ) __magic_name__ : Optional[int] =inputs[-1][start_token : end_token + 1] answers_start_token.append(lowerCamelCase ) answers_end_token.append(lowerCamelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(lowerCamelCase ) ) print("""Old:""" , tokenizer.decode(lowerCamelCase ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=False ): __magic_name__ : List[Any] =get_strided_contexts_and_ans( lowerCamelCase , lowerCamelCase , doc_stride=lowerCamelCase , max_length=lowerCamelCase , assertion=lowerCamelCase , ) return example def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): with jsonlines.open(lowerCamelCase , """a""" ) as writer: for example in tqdm(lowerCamelCase , total=len(lowerCamelCase ) , desc="""Saving samples ... """ ): __magic_name__ : int =example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer UpperCAmelCase_ : Optional[int] = load_dataset("natural_questions") UpperCAmelCase_ : Optional[int] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") UpperCAmelCase_ : str = data["train" if PROCESS_TRAIN == "true" else "validation"] UpperCAmelCase_ : Optional[int] = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } UpperCAmelCase_ : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs) UpperCAmelCase_ : Optional[Any] = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) UpperCAmelCase_ : int = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
21
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : List[str] = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
63
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __A ( UpperCamelCase__ ): UpperCamelCase = """xlm-roberta-xl""" def __init__( self :Dict , __snake_case :Optional[Any]=25_08_80 , __snake_case :List[Any]=25_60 , __snake_case :Optional[Any]=36 , __snake_case :Any=32 , __snake_case :int=1_02_40 , __snake_case :List[Any]="gelu" , __snake_case :Union[str, Any]=0.1 , __snake_case :Optional[Any]=0.1 , __snake_case :str=5_14 , __snake_case :Union[str, Any]=1 , __snake_case :Optional[int]=0.02 , __snake_case :str=1E-05 , __snake_case :str=1 , __snake_case :int=0 , __snake_case :Tuple=2 , __snake_case :Optional[int]="absolute" , __snake_case :str=True , __snake_case :Any=None , **__snake_case :Dict , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __magic_name__ : List[str] =vocab_size __magic_name__ : List[str] =hidden_size __magic_name__ : Union[str, Any] =num_hidden_layers __magic_name__ : Any =num_attention_heads __magic_name__ : Any =hidden_act __magic_name__ : List[str] =intermediate_size __magic_name__ : Any =hidden_dropout_prob __magic_name__ : Union[str, Any] =attention_probs_dropout_prob __magic_name__ : Any =max_position_embeddings __magic_name__ : Any =type_vocab_size __magic_name__ : List[str] =initializer_range __magic_name__ : Optional[int] =layer_norm_eps __magic_name__ : Dict =position_embedding_type __magic_name__ : Any =use_cache __magic_name__ : Dict =classifier_dropout class __A ( UpperCamelCase__ ): @property def A__ ( self :Dict ): '''simple docstring''' if self.task == "multiple-choice": __magic_name__ : str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: __magic_name__ : Optional[Any] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
21
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _lowerCamelCase ( UpperCamelCase_ ): __a = (DPMSolverSinglestepScheduler,) __a = (("num_inference_steps", 25),) def UpperCamelCase_ ( self , **lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__: Any= { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf''' ), '''variance_type''': None, } config.update(**lowerCAmelCase ) return config def UpperCamelCase_ ( self , lowerCAmelCase=0 , **lowerCAmelCase ) -> Any: SCREAMING_SNAKE_CASE__: Union[str, Any]= dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__: Tuple= kwargs.pop('''num_inference_steps''' , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Tuple= self.dummy_sample SCREAMING_SNAKE_CASE__: List[Any]= 0.1 * sample SCREAMING_SNAKE_CASE__: Optional[Any]= [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__: str= self.get_scheduler_config(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Dict= scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE__: Tuple= dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[str]= scheduler_class.from_pretrained(lowerCAmelCase ) new_scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE__: int= dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Dict= sample, sample for t in range(lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): SCREAMING_SNAKE_CASE__: str= scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample SCREAMING_SNAKE_CASE__: str= new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self ) -> Optional[Any]: pass def UpperCamelCase_ ( self , lowerCAmelCase=0 , **lowerCAmelCase ) -> Dict: SCREAMING_SNAKE_CASE__: Optional[int]= dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__: List[Any]= kwargs.pop('''num_inference_steps''' , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Tuple= self.dummy_sample SCREAMING_SNAKE_CASE__: Dict= 0.1 * sample SCREAMING_SNAKE_CASE__: Optional[Any]= [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__: Optional[Any]= self.get_scheduler_config() SCREAMING_SNAKE_CASE__: Tuple= scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE__: Tuple= dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[Any]= scheduler_class.from_pretrained(lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE__: Union[str, Any]= dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE__: Dict= scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample SCREAMING_SNAKE_CASE__: str= new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self , lowerCAmelCase=None , **lowerCAmelCase ) -> List[Any]: if scheduler is None: SCREAMING_SNAKE_CASE__: Dict= self.scheduler_classes[0] SCREAMING_SNAKE_CASE__: Dict= self.get_scheduler_config(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[str]= scheduler_class(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: str= self.scheduler_classes[0] SCREAMING_SNAKE_CASE__: Tuple= self.get_scheduler_config(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[Any]= scheduler_class(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Tuple= 10 SCREAMING_SNAKE_CASE__: Optional[Any]= self.dummy_model() SCREAMING_SNAKE_CASE__: List[Any]= self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE__: str= model(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Tuple= scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample return sample def UpperCamelCase_ ( self ) -> List[str]: SCREAMING_SNAKE_CASE__: Union[str, Any]= DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE__: Tuple= 50 SCREAMING_SNAKE_CASE__: List[Any]= self.dummy_model() SCREAMING_SNAKE_CASE__: List[str]= self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): SCREAMING_SNAKE_CASE__: Dict= model(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: str= scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample SCREAMING_SNAKE_CASE__: Union[str, Any]= torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1e-3 def UpperCamelCase_ ( self ) -> str: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase ) def UpperCamelCase_ ( self ) -> int: # make sure that iterating over schedulers with same config names gives same results # for defaults SCREAMING_SNAKE_CASE__: Optional[int]= DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE__: int= self.full_loop(scheduler=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[int]= torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 SCREAMING_SNAKE_CASE__: Tuple= DEISMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE__: str= DPMSolverMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE__: Dict= UniPCMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE__: Union[str, Any]= DPMSolverSinglestepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE__: List[Any]= self.full_loop(scheduler=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 def UpperCamelCase_ ( self ) -> int: self.check_over_configs(thresholding=lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , algorithm_type='''dpmsolver++''' , solver_order=lowerCAmelCase , solver_type=lowerCAmelCase , ) def UpperCamelCase_ ( self ) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase ) def UpperCamelCase_ ( self ) -> int: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCAmelCase , solver_type=lowerCAmelCase , prediction_type=lowerCAmelCase , algorithm_type=lowerCAmelCase , ) SCREAMING_SNAKE_CASE__: int= self.full_loop( solver_order=lowerCAmelCase , solver_type=lowerCAmelCase , prediction_type=lowerCAmelCase , algorithm_type=lowerCAmelCase , ) assert not torch.isnan(lowerCAmelCase ).any(), "Samples have nan numbers" def UpperCamelCase_ ( self ) -> int: self.check_over_configs(lower_order_final=lowerCAmelCase ) self.check_over_configs(lower_order_final=lowerCAmelCase ) def UpperCamelCase_ ( self ) -> Dict: self.check_over_configs(lambda_min_clipped=-float('''inf''' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCamelCase_ ( self ) -> Union[str, Any]: self.check_over_configs(variance_type=lowerCAmelCase ) self.check_over_configs(variance_type='''learned_range''' ) def UpperCamelCase_ ( self ) -> Union[str, Any]: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=lowerCAmelCase , time_step=0 ) def UpperCamelCase_ ( self ) -> List[str]: SCREAMING_SNAKE_CASE__: List[str]= self.full_loop() SCREAMING_SNAKE_CASE__: List[Any]= torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 def UpperCamelCase_ ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: Optional[int]= self.full_loop(use_karras_sigmas=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Dict= torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1e-3 def UpperCamelCase_ ( self ) -> Dict: SCREAMING_SNAKE_CASE__: Any= self.full_loop(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE__: Union[str, Any]= torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1e-3 def UpperCamelCase_ ( self ) -> Dict: SCREAMING_SNAKE_CASE__: str= self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Tuple= torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1e-3 def UpperCamelCase_ ( self ) -> Tuple: SCREAMING_SNAKE_CASE__: int= self.scheduler_classes[0] SCREAMING_SNAKE_CASE__: int= self.get_scheduler_config(thresholding=lowerCAmelCase , dynamic_thresholding_ratio=0 ) SCREAMING_SNAKE_CASE__: Optional[int]= scheduler_class(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: str= 10 SCREAMING_SNAKE_CASE__: Tuple= self.dummy_model() SCREAMING_SNAKE_CASE__: Any= self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE__: Union[str, Any]= model(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Union[str, Any]= scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa
64
from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase_ ( lowerCamelCase="ro" , lowerCamelCase="en" , lowerCamelCase="wmt16" , lowerCamelCase=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) __magic_name__ : Dict =F"{src_lang}-{tgt_lang}" print(F"Converting {dataset}-{pair}" ) __magic_name__ : Dict =datasets.load_dataset(lowerCamelCase , lowerCamelCase ) if save_dir is None: __magic_name__ : Optional[int] =F"{dataset}-{pair}" __magic_name__ : int =Path(lowerCamelCase ) save_dir.mkdir(exist_ok=lowerCamelCase ) for split in ds.keys(): print(F"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets __magic_name__ : Dict ="""val""" if split == """validation""" else split __magic_name__ : List[Any] =save_dir.joinpath(F"{fn}.source" ) __magic_name__ : Optional[int] =save_dir.joinpath(F"{fn}.target" ) __magic_name__ : Optional[Any] =src_path.open("""w+""" ) __magic_name__ : List[Any] =tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __magic_name__ : str =x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
21
0
"""simple docstring""" def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' try: UpperCAmelCase__ : Union[str, Any] = float(__UpperCamelCase ) except ValueError: raise ValueError("""Please enter a valid number""" ) UpperCAmelCase__ : List[str] = decimal - int(__UpperCamelCase ) if fractional_part == 0: return int(__UpperCamelCase ), 1 else: UpperCAmelCase__ : Optional[Any] = len(str(__UpperCamelCase ).split(""".""" )[1] ) UpperCAmelCase__ : List[Any] = int(decimal * (10**number_of_frac_digits) ) UpperCAmelCase__ : Any = 10**number_of_frac_digits UpperCAmelCase__ , UpperCAmelCase__ : int = denominator, numerator while True: UpperCAmelCase__ : int = dividend % divisor if remainder == 0: break UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = divisor, remainder UpperCAmelCase__ , UpperCAmelCase__ : int = numerator / divisor, denominator / divisor return int(__UpperCamelCase ), int(__UpperCamelCase ) if __name__ == "__main__": print(F"{decimal_to_fraction(2) = }") print(F"{decimal_to_fraction(89.0) = }") print(F"{decimal_to_fraction('67') = }") print(F"{decimal_to_fraction('45.0') = }") print(F"{decimal_to_fraction(1.5) = }") print(F"{decimal_to_fraction('6.25') = }") print(F"{decimal_to_fraction('78td') = }")
65
from __future__ import annotations from fractions import Fraction def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =[] __magic_name__ : List[Any] =11 __magic_name__ : Tuple =int("""1""" + """0""" * digit_len ) for num in range(lowerCamelCase , lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowerCamelCase , lowerCamelCase ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 __magic_name__ : List[str] =10 return solutions def lowerCAmelCase_ ( lowerCamelCase = 2 ): __magic_name__ : str =1.0 for fraction in fraction_list(lowerCamelCase ): __magic_name__ : int =Fraction(lowerCamelCase ) result *= frac.denominator / frac.numerator return int(lowerCamelCase ) if __name__ == "__main__": print(solution())
21
0
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : int = args.pruning_method _lowercase : Optional[int] = args.threshold _lowercase : str = args.model_name_or_path.rstrip('/' ) _lowercase : Optional[Any] = args.target_model_path print(F"""Load fine-pruned model from {model_name_or_path}""" ) _lowercase : int = torch.load(os.path.join(SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ) _lowercase : List[Any] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _lowercase : Optional[Any] = tensor print(F"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: _lowercase : Tuple = tensor print(F"""Copied layer {name}""" ) elif "bias" in name: _lowercase : List[Any] = tensor print(F"""Copied layer {name}""" ) else: if pruning_method == "magnitude": _lowercase : Optional[int] = MagnitudeBinarizer.apply(inputs=SCREAMING_SNAKE_CASE , threshold=SCREAMING_SNAKE_CASE ) _lowercase : Dict = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue _lowercase : List[Any] = name[:-6] _lowercase : Dict = model[F"""{prefix_}mask_scores"""] _lowercase : Any = TopKBinarizer.apply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _lowercase : Dict = name[:-6] _lowercase : Union[str, Any] = model[F"""{prefix_}mask_scores"""] _lowercase : Any = ThresholdBinarizer.apply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : str = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue _lowercase : Optional[Any] = name[:-6] _lowercase : Optional[int] = model[F"""{prefix_}mask_scores"""] _lowercase , _lowercase : List[str] = -0.1, 1.1 _lowercase : int = torch.sigmoid(SCREAMING_SNAKE_CASE ) _lowercase : Tuple = s * (r - l) + l _lowercase : Union[str, Any] = s_bar.clamp(min=0.0 , max=1.0 ) _lowercase : Optional[int] = tensor * mask print(F"""Pruned layer {name}""" ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: _lowercase : Tuple = os.path.join( os.path.dirname(SCREAMING_SNAKE_CASE ) , F"""bertarized_{os.path.basename(SCREAMING_SNAKE_CASE )}""" ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): shutil.copytree(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(F"""\nCreated folder {target_model_path}""" ) torch.save(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) UpperCamelCase = parser.parse_args() main(args)
66
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( lowerCamelCase ): # A local function to see if a dot lands in the circle. def is_in_circle(lowerCamelCase , lowerCamelCase ) -> bool: __magic_name__ : Dict =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __magic_name__ : Union[str, Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. __magic_name__ : List[Any] =proportion * 4 print(F"The estimated value of pi is {pi_estimate}" ) print(F"The numpy value of pi is {pi}" ) print(F"The total error is {abs(pi - pi_estimate )}" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 , ): return mean( function_to_integrate(uniform(lowerCamelCase , lowerCamelCase ) ) for _ in range(lowerCamelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ): def identity_function(lowerCamelCase ) -> float: return x __magic_name__ : Optional[int] =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __magic_name__ : str =(max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {expected_value}" ) print(F"Total error is {abs(estimated_value - expected_value )}" ) print("""******************""" ) def lowerCAmelCase_ ( lowerCamelCase ): def function_to_integrate(lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) __magic_name__ : Dict =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {pi}" ) print(F"Total error is {abs(estimated_value - pi )}" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class A_ ( nn.Module ): """simple docstring""" def __init__( self : str ,__A : int = 16 ,__A : int = 88 ,__A : Optional[int] = None ,__A : int = 1 ,__A : float = 0.0 ,__A : int = 32 ,__A : Optional[int] = None ,__A : bool = False ,__A : Optional[int] = None ,__A : Optional[int] = None ,__A : str = "geglu" ,__A : Optional[int] = None ,) -> Optional[int]: super().__init__() _lowercase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__A ,attention_head_dim=__A ,in_channels=__A ,num_layers=__A ,dropout=__A ,norm_num_groups=__A ,cross_attention_dim=__A ,attention_bias=__A ,sample_size=__A ,num_vector_embeds=__A ,activation_fn=__A ,num_embeds_ada_norm=__A ,) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _lowercase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _lowercase = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _lowercase = [1, 0] def __UpperCAmelCase ( self : Union[str, Any] ,__A : Union[str, Any] ,__A : Tuple ,__A : Any=None ,__A : Optional[int]=None ,__A : Tuple=None ,__A : bool = True ,) -> Optional[Any]: _lowercase = hidden_states _lowercase = [] _lowercase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _lowercase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _lowercase = self.transformer_index_for_condition[i] _lowercase = self.transformers[transformer_index]( __A ,encoder_hidden_states=__A ,timestep=__A ,cross_attention_kwargs=__A ,return_dict=__A ,)[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _lowercase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _lowercase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__A )
67
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __A ( tf.keras.layers.Layer ): def __init__( self :Optional[int] , __snake_case :Dict[str, int] , __snake_case :List[str] , __snake_case :int = None , __snake_case :int = None ): '''simple docstring''' super().__init__() __magic_name__ : Optional[int] =pad_token_id __magic_name__ : List[Any] =max_length __magic_name__ : Dict =vocab __magic_name__ : int =merges __magic_name__ : Optional[int] =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case ) @classmethod def A__ ( cls :List[Any] , __snake_case :GPTaTokenizer , *__snake_case :int , **__snake_case :Any ): '''simple docstring''' __magic_name__ : List[Any] =[""" """.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()] __magic_name__ : str =tokenizer.get_vocab() return cls(__snake_case , __snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Dict , __snake_case :Union[str, os.PathLike] , *__snake_case :Union[str, Any] , **__snake_case :int ): '''simple docstring''' __magic_name__ : Dict =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case ) return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Optional[Any] , __snake_case :List[Any] ): '''simple docstring''' return cls(**__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def A__ ( self :List[Any] , __snake_case :Dict , __snake_case :int = None ): '''simple docstring''' __magic_name__ : Optional[Any] =self.tf_tokenizer(__snake_case ) __magic_name__ : Tuple =tf.ones_like(__snake_case ) if self.pad_token_id is not None: # pad the tokens up to max length __magic_name__ : Tuple =max_length if max_length is not None else self.max_length if max_length is not None: __magic_name__ , __magic_name__ : Tuple =pad_model_inputs( __snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
21
0
import numpy as np class _A : """simple docstring""" def __init__( self : Any ) -> Tuple: __UpperCAmelCase =(0, 0) __UpperCAmelCase =None __UpperCAmelCase =0 __UpperCAmelCase =0 __UpperCAmelCase =0 def __eq__( self : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> List[Any]: return self.position == cell.position def _a ( self : str ) -> Any: print(self.position ) class _A : """simple docstring""" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple=(5, 5) ) -> int: __UpperCAmelCase =np.zeros(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =world_size[0] __UpperCAmelCase =world_size[1] def _a ( self : Optional[Any] ) -> Tuple: print(self.w ) def _a ( self : int , __SCREAMING_SNAKE_CASE : Tuple ) -> int: __UpperCAmelCase =[ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] __UpperCAmelCase =cell.position[0] __UpperCAmelCase =cell.position[1] __UpperCAmelCase =[] for n in neughbour_cord: __UpperCAmelCase =current_x + n[0] __UpperCAmelCase =current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: __UpperCAmelCase =Cell() __UpperCAmelCase =(x, y) __UpperCAmelCase =cell neighbours.append(__SCREAMING_SNAKE_CASE ) return neighbours def lowercase__ ( A_: Dict , A_: Tuple , A_: Tuple ) -> str: """simple docstring""" __UpperCAmelCase =[] __UpperCAmelCase =[] _open.append(A_ ) while _open: __UpperCAmelCase =np.argmin([n.f for n in _open] ) __UpperCAmelCase =_open[min_f] _closed.append(_open.pop(A_ ) ) if current == goal: break for n in world.get_neigbours(A_ ): for c in _closed: if c == n: continue __UpperCAmelCase =current.g + 1 __UpperCAmelCase , __UpperCAmelCase =n.position __UpperCAmelCase , __UpperCAmelCase =goal.position __UpperCAmelCase =(ya - ya) ** 2 + (xa - xa) ** 2 __UpperCAmelCase =n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(A_ ) __UpperCAmelCase =[] while current.parent is not None: path.append(current.position ) __UpperCAmelCase =current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": __A = Gridworld() # Start position and goal __A = Cell() __A = (0, 0) __A = Cell() __A = (4, 4) print(F"""path from {start.position} to {goal.position}""") __A = astar(world, start, goal) # Just for visual reasons. for i in s: __A = 1 print(world.w)
68
import math import tensorflow as tf from packaging import version def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : List[str] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Optional[Any] =tf.cast(math.pi , x.dtype ) __magic_name__ : int =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Any =tf.convert_to_tensor(lowerCamelCase ) return x * tf.tanh(tf.math.softplus(lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[Any] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Union[str, Any] =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Dict =tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCAmelCase_ ( lowerCamelCase ): return tf.clip_by_value(_gelu(lowerCamelCase ) , -10 , 10 ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=-1 ): __magic_name__ , __magic_name__ : List[Any] =tf.split(lowerCamelCase , 2 , axis=lowerCamelCase ) return a * tf.math.sigmoid(lowerCamelCase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowerCAmelCase_ ( lowerCamelCase ): return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase ) UpperCAmelCase_ : List[str] = tf.keras.activations.gelu UpperCAmelCase_ : Dict = approximate_gelu_wrap else: UpperCAmelCase_ : Dict = _gelu UpperCAmelCase_ : str = _gelu_new UpperCAmelCase_ : Any = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowerCAmelCase_ ( lowerCamelCase ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
21
0
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def A ( *a_ : Optional[Any] , **a_ : int ): """simple docstring""" pass @is_pipeline_test @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @require_torch def A ( self : int ): """simple docstring""" __snake_case = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __snake_case = image_classifier(a_ , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(a_ ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) __snake_case = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(a_ ) , [ [ {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, ], [ {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, ], [ {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, ], [ {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, ], [ {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, ], ] , ) @require_tf def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __snake_case = image_classifier(a_ , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(a_ ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) __snake_case = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(a_ ) , [ [ {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, ], [ {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, ], [ {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, ], [ {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, ], [ {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, ], ] , ) @slow @require_torch def A ( self : Tuple ): """simple docstring""" __snake_case = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __snake_case = image_classifier(a_ , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(a_ ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) __snake_case = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(a_ ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def A ( self : int ): """simple docstring""" __snake_case = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __snake_case = image_classifier(a_ , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(a_ ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) __snake_case = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(a_ ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
69
from collections.abc import Sequence def lowerCAmelCase_ ( lowerCamelCase = None ): if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __magic_name__ : str =nums[0] for i in range(1 , len(lowerCamelCase ) ): __magic_name__ : Any =nums[i] __magic_name__ : Dict =max(lowerCamelCase , ans + num , lowerCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCAmelCase_ : List[str] = int(input("Enter number of elements : ").strip()) UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
21
0
def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = (boundary[1] - boundary[0]) / steps lowerCamelCase_ = boundary[0] lowerCamelCase_ = boundary[1] lowerCamelCase_ = make_points(lowercase , lowercase , lowercase ) lowerCamelCase_ = 0.0 y += (h / 2.0) * f(lowercase ) for i in x_i: # print(i) y += h * f(lowercase ) y += (h / 2.0) * f(lowercase ) return y def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Union[str, Any] , lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = a + h while x < (b - h): yield x lowerCamelCase_ = x + h def _SCREAMING_SNAKE_CASE ( lowercase : str ): # enter your function here '''simple docstring''' lowerCamelCase_ = (x - 0) * (x - 0) return y def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 0.0 # Lower bound of integration lowerCamelCase_ = 1.0 # Upper bound of integration lowerCamelCase_ = 10.0 # define number of steps or resolution lowerCamelCase_ = [a, b] # define boundary of integration lowerCamelCase_ = method_a(lowercase , lowercase ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
70
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : UpperCamelCase = 42 UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""Translation""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def __call__( self :Union[str, Any] ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def A__ ( self :List[Any] ): '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __A : UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""TranslationVariableLanguages""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =sorted(set(self.languages ) ) if self.languages else None __magic_name__ : Optional[int] =len(self.languages ) if self.languages else None def __call__( self :List[str] ): '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def A__ ( self :str , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[int] =set(self.languages ) if self.languages and set(__snake_case ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __magic_name__ : Any =[] for lang, text in translation_dict.items(): if isinstance(__snake_case , __snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __magic_name__ , __magic_name__ : List[str] =zip(*sorted(__snake_case ) ) return {"language": languages, "translation": translations} def A__ ( self :List[Any] ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
21
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase = {"""configuration_fnet""": ["""FNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ["""FNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ["""FNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ """FNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FNetForMaskedLM""", """FNetForMultipleChoice""", """FNetForNextSentencePrediction""", """FNetForPreTraining""", """FNetForQuestionAnswering""", """FNetForSequenceClassification""", """FNetForTokenClassification""", """FNetLayer""", """FNetModel""", """FNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
71
from sklearn.metrics import matthews_corrcoef import datasets UpperCAmelCase_ : Dict = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCAmelCase_ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCAmelCase_ : Dict = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def A__ ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def A__ ( self :Tuple , __snake_case :str , __snake_case :Tuple , __snake_case :List[str]=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ), }
21
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=__SCREAMING_SNAKE_CASE ): UpperCamelCase__ = ['note_seq'] def __init__( self , *snake_case_ , **snake_case_ ): requires_backends(self , ['''note_seq'''] ) @classmethod def _A( cls , *snake_case_ , **snake_case_ ): requires_backends(cls , ['''note_seq'''] ) @classmethod def _A( cls , *snake_case_ , **snake_case_ ): requires_backends(cls , ['''note_seq'''] )
72
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =OmegaConf.load(lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(lowerCamelCase ) ) ) return config def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): if conf_path is None: __magic_name__ : List[str] ="""./model_checkpoints/vqgan_only.yaml""" __magic_name__ : Dict =load_config(lowerCamelCase , display=lowerCamelCase ) __magic_name__ : Tuple =VQModel(**config.model.params ) if ckpt_path is None: __magic_name__ : Optional[Any] ="""./model_checkpoints/vqgan_only.pt""" __magic_name__ : Tuple =torch.load(lowerCamelCase , map_location=lowerCamelCase ) if ".ckpt" in ckpt_path: __magic_name__ : Any =sd["""state_dict"""] model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) model.to(lowerCamelCase ) del sd return model def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =model.encode(lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) __magic_name__ : List[Any] =model.decode(lowerCamelCase ) return xrec def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ , __magic_name__ : Optional[int] =string.rsplit(""".""" , 1 ) if reload: __magic_name__ : Optional[int] =importlib.import_module(lowerCamelCase ) importlib.reload(lowerCamelCase ) return getattr(importlib.import_module(lowerCamelCase , package=lowerCamelCase ) , cls ) def lowerCAmelCase_ ( lowerCamelCase ): if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True ): __magic_name__ : str =instantiate_from_config(lowerCamelCase ) if sd is not None: model.load_state_dict(lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # load the specified checkpoint if ckpt: __magic_name__ : str =torch.load(lowerCamelCase , map_location="""cpu""" ) __magic_name__ : Any =pl_sd["""global_step"""] print(F"loaded model from global step {global_step}." ) else: __magic_name__ : List[Any] ={"""state_dict""": None} __magic_name__ : Optional[Any] =None __magic_name__ : Tuple =load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=lowerCamelCase , eval_mode=lowerCamelCase )["""model"""] return model, global_step
21
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : str = logging.get_logger(__name__) a_ : List[Any] = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class _snake_case ( A__ ): _lowercase : List[str] = '''blip_text_model''' def __init__( self , a=3_0524 , a=768 , a=768 , a=3072 , a=768 , a=12 , a=8 , a=512 , a="gelu" , a=1E-12 , a=0.0 , a=0.0 , a=0.02 , a=3_0522 , a=2 , a=0 , a=102 , a=True , a=True , **a , ) -> Any: super().__init__( pad_token_id=a , bos_token_id=a , eos_token_id=a , sep_token_id=a , **a , ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = encoder_hidden_size SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = projection_dim SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = is_decoder SCREAMING_SNAKE_CASE = use_cache @classmethod def SCREAMING_SNAKE_CASE__ ( cls , a , **a) -> "PretrainedConfig": cls._set_token_in_kwargs(a) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cls.get_config_dict(a , **a) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type') == "blip": SCREAMING_SNAKE_CASE = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(a , **a) class _snake_case ( A__ ): _lowercase : Any = '''blip_vision_model''' def __init__( self , a=768 , a=3072 , a=512 , a=12 , a=12 , a=384 , a=16 , a="gelu" , a=1E-5 , a=0.0 , a=1E-10 , **a , ) -> Optional[int]: super().__init__(**a) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = projection_dim SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = hidden_act @classmethod def SCREAMING_SNAKE_CASE__ ( cls , a , **a) -> "PretrainedConfig": cls._set_token_in_kwargs(a) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cls.get_config_dict(a , **a) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type') == "blip": SCREAMING_SNAKE_CASE = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(a , **a) class _snake_case ( A__ ): _lowercase : Optional[int] = '''blip''' _lowercase : List[Any] = True def __init__( self , a=None , a=None , a=512 , a=2.65_92 , a=256 , **a , ) -> Any: super().__init__(**a) if text_config is None: SCREAMING_SNAKE_CASE = {} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.') if vision_config is None: SCREAMING_SNAKE_CASE = {} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.') SCREAMING_SNAKE_CASE = BlipTextConfig(**a) SCREAMING_SNAKE_CASE = BlipVisionConfig(**a) SCREAMING_SNAKE_CASE = self.vision_config.hidden_size SCREAMING_SNAKE_CASE = projection_dim SCREAMING_SNAKE_CASE = logit_scale_init_value SCREAMING_SNAKE_CASE = 1.0 SCREAMING_SNAKE_CASE = 0.02 SCREAMING_SNAKE_CASE = image_text_hidden_size @classmethod def SCREAMING_SNAKE_CASE__ ( cls , a , a , **a) -> Optional[int]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **a) def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__) SCREAMING_SNAKE_CASE = self.text_config.to_dict() SCREAMING_SNAKE_CASE = self.vision_config.to_dict() SCREAMING_SNAKE_CASE = self.__class__.model_type return output
73
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): def A__ ( self :Tuple ): '''simple docstring''' debug_launcher(test_script.main ) def A__ ( self :Dict ): '''simple docstring''' debug_launcher(test_ops.main )
21
0
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowercase_ = datasets.utils.logging.get_logger(__name__) class __UpperCamelCase ( folder_based_builder.FolderBasedBuilderConfig ): """simple docstring""" lowerCAmelCase_ = None lowerCAmelCase_ = None class __UpperCamelCase ( folder_based_builder.FolderBasedBuilder ): """simple docstring""" lowerCAmelCase_ = datasets.Audio() lowerCAmelCase_ = '''audio''' lowerCAmelCase_ = AudioFolderConfig lowerCAmelCase_ = 42 # definition at the bottom of the script lowerCAmelCase_ = AudioClassification(audio_column='''audio''' , label_column='''label''' ) lowercase_ = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] lowercase_ = AUDIO_EXTENSIONS
74
UpperCAmelCase_ : Tuple = 0 # The first color of the flag. UpperCAmelCase_ : Any = 1 # The second color of the flag. UpperCAmelCase_ : str = 2 # The third color of the flag. UpperCAmelCase_ : Tuple = (red, white, blue) def lowerCAmelCase_ ( lowerCamelCase ): if not sequence: return [] if len(lowerCamelCase ) == 1: return list(lowerCamelCase ) __magic_name__ : int =0 __magic_name__ : str =len(lowerCamelCase ) - 1 __magic_name__ : Optional[Any] =0 while mid <= high: if sequence[mid] == colors[0]: __magic_name__ , __magic_name__ : Tuple =sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: __magic_name__ , __magic_name__ : Optional[Any] =sequence[high], sequence[mid] high -= 1 else: __magic_name__ : Optional[int] =F"The elements inside the sequence must contains only {colors} values" raise ValueError(lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[Any] = input("Enter numbers separated by commas:\n").strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
21
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class lowerCamelCase_ ( __a ): def __init__( self : Union[str, Any] , _A : int , _A : List[str] , _A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = dataset UpperCAmelCase__ : List[Any] = process UpperCAmelCase__ : List[Any] = params def __len__( self : List[Any] ): '''simple docstring''' return len(self.dataset ) def __getitem__( self : Tuple , _A : int ): '''simple docstring''' UpperCAmelCase__ : Dict = self.dataset[i] UpperCAmelCase__ : str = self.process(_A , **self.params ) return processed class lowerCamelCase_ ( __a ): def __init__( self : Tuple , _A : int , _A : Tuple , _A : Optional[int] , _A : Union[str, Any]=None ): '''simple docstring''' UpperCAmelCase__ : Dict = loader UpperCAmelCase__ : Tuple = infer UpperCAmelCase__ : Tuple = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : List[Any] = loader_batch_size # Internal bookkeeping UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : str = None def __len__( self : Tuple ): '''simple docstring''' return len(self.loader ) def __iter__( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = iter(self.loader ) return self def lowercase_ ( self : Tuple ): '''simple docstring''' if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice UpperCAmelCase__ : Dict = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) UpperCAmelCase__ : Optional[int] = {} for k, element in self._loader_batch_data.items(): if isinstance(_A , _A ): # Convert ModelOutput to tuple first UpperCAmelCase__ : Dict = element.to_tuple() if isinstance(element[0] , torch.Tensor ): UpperCAmelCase__ : Optional[int] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): UpperCAmelCase__ : Dict = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_A , _A ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): UpperCAmelCase__ : Any = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): UpperCAmelCase__ : int = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around UpperCAmelCase__ : Any = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCAmelCase__ : Union[str, Any] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCAmelCase__ : Any = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. UpperCAmelCase__ : str = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 UpperCAmelCase__ : Optional[int] = self._loader_batch_data.__class__(_A ) self._loader_batch_index += 1 return result def lowercase_ ( self : str ): '''simple docstring''' if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch UpperCAmelCase__ : Dict = next(self.iterator ) UpperCAmelCase__ : Tuple = self.infer(_A , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_A , torch.Tensor ): UpperCAmelCase__ : str = processed else: UpperCAmelCase__ : Dict = list(processed.keys() )[0] UpperCAmelCase__ : List[Any] = processed[key] if isinstance(_A , _A ): UpperCAmelCase__ : Optional[Any] = len(_A ) else: UpperCAmelCase__ : Dict = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCAmelCase__ : Dict = observed_batch_size # Setting internal index to unwrap the batch UpperCAmelCase__ : List[str] = processed UpperCAmelCase__ : List[str] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class lowerCamelCase_ ( __a ): def __init__( self : Union[str, Any] , _A : Tuple , _A : Union[str, Any] , _A : Optional[Any] , _A : str=None ): '''simple docstring''' super().__init__(_A , _A , _A ) def __iter__( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = iter(self.loader ) UpperCAmelCase__ : Union[str, Any] = None return self def lowercase_ ( self : str ): '''simple docstring''' if self.subiterator is None: UpperCAmelCase__ : Optional[Any] = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item UpperCAmelCase__ : Any = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators UpperCAmelCase__ : Optional[Any] = self.infer(next(self.iterator ) , **self.params ) UpperCAmelCase__ : List[Any] = next(self.subiterator ) return processed class lowerCamelCase_ ( __a ): def __iter__( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = iter(self.loader ) return self def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : str = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: UpperCAmelCase__ : Optional[Any] = self.loader_batch_item() UpperCAmelCase__ : Dict = item.pop('''is_last''' ) accumulator.append(_A ) if is_last: return accumulator while not is_last: UpperCAmelCase__ : List[str] = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_A , torch.Tensor ): UpperCAmelCase__ : Union[str, Any] = processed else: UpperCAmelCase__ : List[str] = list(processed.keys() )[0] UpperCAmelCase__ : List[Any] = processed[key] if isinstance(_A , _A ): UpperCAmelCase__ : Tuple = len(_A ) else: UpperCAmelCase__ : List[Any] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCAmelCase__ : int = observed_batch_size UpperCAmelCase__ : str = processed UpperCAmelCase__ : List[str] = 0 while self._loader_batch_index < self.loader_batch_size: UpperCAmelCase__ : Tuple = self.loader_batch_item() UpperCAmelCase__ : List[Any] = item.pop('''is_last''' ) accumulator.append(_A ) if is_last: return accumulator else: UpperCAmelCase__ : int = processed UpperCAmelCase__ : List[str] = item.pop('''is_last''' ) accumulator.append(_A ) return accumulator class lowerCamelCase_ ( __a ): def __init__( self : List[Any] , _A : Dataset , _A : str ): '''simple docstring''' UpperCAmelCase__ : Dict = dataset UpperCAmelCase__ : str = key def __len__( self : List[Any] ): '''simple docstring''' return len(self.dataset ) def __getitem__( self : Dict , _A : Union[str, Any] ): '''simple docstring''' return self.dataset[i][self.key] class lowerCamelCase_ ( __a ): def __init__( self : Optional[int] , _A : Dataset , _A : str , _A : str ): '''simple docstring''' UpperCAmelCase__ : List[Any] = dataset UpperCAmelCase__ : List[str] = keya UpperCAmelCase__ : int = keya def __len__( self : Tuple ): '''simple docstring''' return len(self.dataset ) def __getitem__( self : Optional[int] , _A : Optional[int] ): '''simple docstring''' return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
75
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __A ( UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = 1 @register_to_config def __init__( self :Any , __snake_case :Tuple=20_00 , __snake_case :Optional[Any]=0.1 , __snake_case :Any=20 , __snake_case :Optional[int]=1E-3 ): '''simple docstring''' __magic_name__ : Dict =None __magic_name__ : List[str] =None __magic_name__ : str =None def A__ ( self :Dict , __snake_case :Optional[int] , __snake_case :Union[str, torch.device] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] =torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case ) def A__ ( self :List[str] , __snake_case :List[str] , __snake_case :int , __snake_case :int , __snake_case :List[str]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __magic_name__ : int =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __magic_name__ : Optional[int] =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __magic_name__ : str =std.flatten() while len(std.shape ) < len(score.shape ): __magic_name__ : List[str] =std.unsqueeze(-1 ) __magic_name__ : Union[str, Any] =-score / std # compute __magic_name__ : Tuple =-1.0 / len(self.timesteps ) __magic_name__ : int =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __magic_name__ : Dict =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __magic_name__ : Any =beta_t.unsqueeze(-1 ) __magic_name__ : Dict =-0.5 * beta_t * x __magic_name__ : Optional[int] =torch.sqrt(__snake_case ) __magic_name__ : int =drift - diffusion**2 * score __magic_name__ : List[str] =x + drift * dt # add noise __magic_name__ : Optional[int] =randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype ) __magic_name__ : Optional[Any] =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self :List[Any] ): '''simple docstring''' return self.config.num_train_timesteps
21
0
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path a_ = 'src/transformers' # Matches is_xxx_available() a_ = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} a_ = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] a_ = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available a_ = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") a_ = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] a_ = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", a_ = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], a_ = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo a_ = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: a_ = re.compile(r'^\s*try:') # Catches a line with else: a_ = re.compile(r'^\s*else:') def __UpperCAmelCase ( __UpperCamelCase ): if _re_test_backend.search(__UpperCamelCase ) is None: return None __lowercase : List[str] = [b[0] for b in _re_backend.findall(__UpperCamelCase )] backends.sort() return "_and_".join(__UpperCamelCase ) def __UpperCAmelCase ( __UpperCamelCase ): with open(__UpperCamelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __lowercase : Tuple = f.readlines() __lowercase : str = 0 while line_index < len(__UpperCamelCase ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__UpperCamelCase ): return None # First grab the objects without a specific backend in _import_structure __lowercase : List[str] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: __lowercase : List[Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__UpperCamelCase ): __lowercase : int = _re_one_line_import_struct.search(__UpperCamelCase ).groups()[0] __lowercase : Union[str, Any] = re.findall('''\[([^\]]+)\]''' , __UpperCamelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue __lowercase : Tuple = _re_import_struct_key_value.search(__UpperCamelCase ) if single_line_import_search is not None: __lowercase : Tuple = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(__UpperCamelCase ) > 0] objects.extend(__UpperCamelCase ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 __lowercase : Optional[Any] = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. __lowercase : Dict = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase : str = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase : Optional[Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): __lowercase : Union[str, Any] = lines[line_index] if _re_import_struct_add_one.search(__UpperCamelCase ) is not None: objects.append(_re_import_struct_add_one.search(__UpperCamelCase ).groups()[0] ) elif _re_import_struct_add_many.search(__UpperCamelCase ) is not None: __lowercase : Optional[Any] = _re_import_struct_add_many.search(__UpperCamelCase ).groups()[0].split(''', ''' ) __lowercase : Tuple = [obj[1:-1] for obj in imports if len(__UpperCamelCase ) > 0] objects.extend(__UpperCamelCase ) elif _re_between_brackets.search(__UpperCamelCase ) is not None: __lowercase : int = _re_between_brackets.search(__UpperCamelCase ).groups()[0].split(''', ''' ) __lowercase : int = [obj[1:-1] for obj in imports if len(__UpperCamelCase ) > 0] objects.extend(__UpperCamelCase ) elif _re_quote_object.search(__UpperCamelCase ) is not None: objects.append(_re_quote_object.search(__UpperCamelCase ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 __lowercase : str = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __lowercase : Union[str, Any] = [] while ( line_index < len(__UpperCamelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): __lowercase : List[str] = lines[line_index] __lowercase : Optional[Any] = _re_import.search(__UpperCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 __lowercase : Tuple = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(__UpperCamelCase ): # If the line is an if is_backend_available, we grab all objects associated. __lowercase : List[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase : Dict = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase : Optional[int] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): __lowercase : Optional[Any] = lines[line_index] __lowercase : Optional[int] = _re_import.search(__UpperCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 __lowercase : List[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): def find_duplicates(__UpperCamelCase ): return [k for k, v in collections.Counter(__UpperCamelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __lowercase : List[str] = [] for key in import_dict_objects.keys(): __lowercase : Optional[int] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) __lowercase : List[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __lowercase : List[Any] = '''base imports''' if key == '''none''' else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def __UpperCAmelCase ( ): __lowercase : Tuple = [] for root, _, files in os.walk(__UpperCamelCase ): if "__init__.py" in files: __lowercase : Optional[int] = os.path.join(__UpperCamelCase , '''__init__.py''' ) __lowercase : Dict = parse_init(__UpperCamelCase ) if objects is not None: __lowercase : Dict = analyze_results(*__UpperCamelCase ) if len(__UpperCamelCase ) > 0: __lowercase : str = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('''\n'''.join(__UpperCamelCase ) ) if len(__UpperCamelCase ) > 0: raise ValueError('''\n\n'''.join(__UpperCamelCase ) ) def __UpperCAmelCase ( ): __lowercase : int = [] for path, directories, files in os.walk(__UpperCamelCase ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(__UpperCamelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__UpperCamelCase ) / folder).glob('''*.py''' ) ) ) == 0: continue __lowercase : Tuple = str((Path(__UpperCamelCase ) / folder).relative_to(__UpperCamelCase ) ) __lowercase : List[Any] = short_path.replace(os.path.sep , '''.''' ) submodules.append(__UpperCamelCase ) for fname in files: if fname == "__init__.py": continue __lowercase : Optional[Any] = str((Path(__UpperCamelCase ) / fname).relative_to(__UpperCamelCase ) ) __lowercase : List[str] = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(__UpperCamelCase ) return submodules a_ = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def __UpperCAmelCase ( ): # This is to make sure the transformers module imported is the one in the repo. __lowercase : str = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(__UpperCamelCase , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __lowercase : List[Any] = spec.loader.load_module() __lowercase : int = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(__UpperCamelCase ) > 0: __lowercase : Optional[Any] = '''\n'''.join(f"""- {module}""" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' f"""{list_of_modules}\n""" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
76
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCAmelCase_ : Dict = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__( self :List[str] , __snake_case :int , __snake_case :int , __snake_case :float , **__snake_case :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =feature_size __magic_name__ : Union[str, Any] =sampling_rate __magic_name__ : List[Any] =padding_value __magic_name__ : List[str] =kwargs.pop("""padding_side""" , """right""" ) __magic_name__ : Tuple =kwargs.pop("""return_attention_mask""" , __snake_case ) super().__init__(**__snake_case ) def A__ ( self :Any , __snake_case :Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __snake_case :Union[bool, str, PaddingStrategy] = True , __snake_case :Optional[int] = None , __snake_case :bool = False , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[Union[str, TensorType]] = None , ): '''simple docstring''' if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __magic_name__ : Union[str, Any] ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) __magic_name__ : int =processed_features[self.model_input_names[0]] __magic_name__ : Union[str, Any] =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__snake_case ) == 0: if return_attention_mask: __magic_name__ : List[str] =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __magic_name__ : Optional[int] =required_input[0] if isinstance(__snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __magic_name__ : Optional[Any] =0 while len(required_input[index] ) == 0: index += 1 if index < len(__snake_case ): __magic_name__ : List[str] =required_input[index][0] if return_tensors is None: if is_tf_tensor(__snake_case ): __magic_name__ : int ="""tf""" elif is_torch_tensor(__snake_case ): __magic_name__ : str ="""pt""" elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ): __magic_name__ : List[Any] ="""np""" else: raise ValueError( f"type of {first_element} unknown: {type(__snake_case )}. " """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __magic_name__ : List[str] =to_numpy(__snake_case ) else: __magic_name__ : str =[to_numpy(__snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy __magic_name__ : Dict =self._get_padding_strategies(padding=__snake_case , max_length=__snake_case ) __magic_name__ : Optional[Any] =processed_features[self.model_input_names[0]] __magic_name__ : Dict =len(__snake_case ) if not all(len(__snake_case ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) __magic_name__ : Optional[int] =[] for i in range(__snake_case ): __magic_name__ : Any ={k: v[i] for k, v in processed_features.items()} # truncation __magic_name__ : List[str] =self._truncate( __snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) truncated_inputs.append(__snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __magic_name__ : Optional[int] =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __magic_name__ : Tuple =PaddingStrategy.MAX_LENGTH __magic_name__ : str ={} for i in range(__snake_case ): # padding __magic_name__ : List[str] =self._pad( truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: __magic_name__ : Dict =[] if value.dtype is np.dtype(np.floataa ): __magic_name__ : Optional[int] =value.astype(np.floataa ) batch_outputs[key].append(__snake_case ) return BatchFeature(__snake_case , tensor_type=__snake_case ) def A__ ( self :Any , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' __magic_name__ : Dict =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __magic_name__ : Any =len(__snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : Dict =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : List[Any] =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __magic_name__ : int =np.ones(len(__snake_case ) , dtype=np.intaa ) if needs_to_be_padded: __magic_name__ : List[Any] =max_length - len(__snake_case ) if self.padding_side == "right": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (0, difference) ) __magic_name__ : Tuple =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __magic_name__ : str =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (difference, 0) ) __magic_name__ : Optional[int] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __magic_name__ : List[Any] =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def A__ ( self :Optional[Any] , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) __magic_name__ : Union[str, Any] =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : List[str] =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : Any =len(__snake_case ) > max_length if needs_to_be_truncated: __magic_name__ : List[Any] =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __magic_name__ : List[str] =processed_features["""attention_mask"""][:max_length] return processed_features def A__ ( self :List[Any] , __snake_case :str=False , __snake_case :Optional[int]=None ): '''simple docstring''' if padding is not False: if padding is True: __magic_name__ : Union[str, Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__snake_case , __snake_case ): __magic_name__ : Optional[int] =PaddingStrategy(__snake_case ) elif isinstance(__snake_case , __snake_case ): __magic_name__ : Any =padding else: __magic_name__ : Any =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
21
0
"""simple docstring""" import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Dict: """simple docstring""" # Construct model if openai_config_file == "": __UpperCAmelCase : List[str] = OpenAIGPTConfig() else: __UpperCAmelCase : Dict = OpenAIGPTConfig.from_json_file(UpperCamelCase ) __UpperCAmelCase : Tuple = OpenAIGPTModel(UpperCamelCase ) # Load weights from numpy load_tf_weights_in_openai_gpt(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Save pytorch-model __UpperCAmelCase : Union[str, Any] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME __UpperCAmelCase : Dict = pytorch_dump_folder_path + "/" + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , UpperCamelCase ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--openai_checkpoint_folder_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--openai_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) A = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
77
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): def __init__( self :List[Any] ): '''simple docstring''' super().__init__() __magic_name__ : Tuple =nn.Linear(3 , 4 ) __magic_name__ : Union[str, Any] =nn.BatchNormad(4 ) __magic_name__ : List[str] =nn.Linear(4 , 5 ) def A__ ( self :Dict , __snake_case :Tuple ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) ) class __A ( UpperCamelCase__ ): def A__ ( self :Any , __snake_case :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Any ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __A ( UpperCamelCase__ ): def A__ ( self :List[str] , __snake_case :Tuple , __snake_case :Union[str, Any] ): '''simple docstring''' return output + 1 class __A ( unittest.TestCase ): def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : Tuple =ModelHook() add_hook_to_module(__snake_case , __snake_case ) self.assertEqual(test_model._hf_hook , __snake_case ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : List[str] =ModelHook() add_hook_to_module(__snake_case , __snake_case ) add_hook_to_module(__snake_case , __snake_case , append=__snake_case ) self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() __magic_name__ : Any =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(x + 1 ) __magic_name__ : Optional[Any] =test_model(x + 2 ) __magic_name__ : int =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : int =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : str =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : List[str] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Optional[Any] =SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) assert torch.allclose(__snake_case , __snake_case , atol=1E-5 ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() __magic_name__ : Dict =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(__snake_case ) __magic_name__ : Dict =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Optional[int] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Union[str, Any] =SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) assert torch.allclose(__snake_case , output + 2 , atol=1E-5 ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Tuple =ModelForTest() __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Dict =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __magic_name__ : Any =True __magic_name__ : Any =test_model(__snake_case ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[Any] =model(__snake_case ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) ) __magic_name__ : int =torch.randn(2 , 3 ).to(0 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , torch.device(0 ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : int =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : int ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[int] =torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : Union[str, Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __magic_name__ : Tuple ={ """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Tuple =torch.randn(2 , 3 ) __magic_name__ : int =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : str =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Optional[int] =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Dict =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : List[str] =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Any =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
21
0
'''simple docstring''' from collections import namedtuple SCREAMING_SNAKE_CASE_: Optional[int] =namedtuple('from_to', 'from_ to') SCREAMING_SNAKE_CASE_: str ={ 'cubicmeter': from_to(1, 1), 'litre': from_to(0.001, 10_00), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.00454, 264.172), 'cubicyard': from_to(0.76455, 1.30795), 'cubicfoot': from_to(0.028, 35.3147), 'cup': from_to(0.000236588, 4226.75), } def lowerCAmelCase_ ( snake_case_ : float , snake_case_ : str , snake_case_ : str ) -> float: '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ", ".join(snake_case_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ", ".join(snake_case_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
78
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = KandinskyInpaintPipeline UpperCamelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCamelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCamelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase = False @property def A__ ( self :Union[str, Any] ): '''simple docstring''' return 32 @property def A__ ( self :Optional[Any] ): '''simple docstring''' return 32 @property def A__ ( self :List[Any] ): '''simple docstring''' return self.time_input_dim @property def A__ ( self :Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def A__ ( self :List[Any] ): '''simple docstring''' return 1_00 @property def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Dict =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self :str ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : str =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __magic_name__ : Tuple =MultilingualCLIP(__snake_case ) __magic_name__ : Optional[int] =text_encoder.eval() return text_encoder @property def A__ ( self :Dict ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Optional[Any] ={ """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __magic_name__ : Union[str, Any] =UNetaDConditionModel(**__snake_case ) return model @property def A__ ( self :List[str] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self :Tuple ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Dict =VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[str] =self.dummy_text_encoder __magic_name__ : Optional[Any] =self.dummy_tokenizer __magic_name__ : Optional[Any] =self.dummy_unet __magic_name__ : Tuple =self.dummy_movq __magic_name__ : List[str] =DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , ) __magic_name__ : str ={ """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self :str , __snake_case :Optional[Any] , __snake_case :int=0 ): '''simple docstring''' __magic_name__ : Union[str, Any] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : Dict =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case ) # create init_image __magic_name__ : str =floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : int =image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ : str =Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask __magic_name__ : Dict =np.ones((64, 64) , dtype=np.floataa ) __magic_name__ : Any =0 if str(__snake_case ).startswith("""mps""" ): __magic_name__ : Dict =torch.manual_seed(__snake_case ) else: __magic_name__ : Tuple =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__ : List[Any] ={ """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Tuple ="""cpu""" __magic_name__ : List[Any] =self.get_dummy_components() __magic_name__ : Union[str, Any] =self.pipeline_class(**__snake_case ) __magic_name__ : Tuple =pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Tuple =pipe(**self.get_dummy_inputs(__snake_case ) ) __magic_name__ : List[Any] =output.images __magic_name__ : Any =pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] __magic_name__ : int =image[0, -3:, -3:, -1] __magic_name__ : str =image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) __magic_name__ : Optional[Any] =np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def A__ ( self :Dict ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def A__ ( self :List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : List[str] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) __magic_name__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __magic_name__ : List[Any] =np.ones((7_68, 7_68) , dtype=np.floataa ) __magic_name__ : Any =0 __magic_name__ : int ="""a hat""" __magic_name__ : int =KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) __magic_name__ : Dict =KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) __magic_name__ : int =pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Union[str, Any] =torch.Generator(device="""cpu""" ).manual_seed(0 ) __magic_name__ , __magic_name__ : Dict =pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __magic_name__ : Optional[Any] =pipeline( __snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) __magic_name__ : Optional[int] =output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
21
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _lowerCamelCase ( ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ : List[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__lowerCamelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__lowerCamelCase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__lowerCamelCase ) return parser.parse_args() def _lowerCamelCase ( ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ : Tuple = parse_args() # Import training_script as a module. UpperCAmelCase__ : Optional[int] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCAmelCase__ : List[str] = script_fpath.stem UpperCAmelCase__ : Optional[Any] = importlib.import_module(__lowerCamelCase ) # Patch sys.argv UpperCAmelCase__ : List[str] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
79
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __A : def __init__( self :int , __snake_case :List[Any] , __snake_case :List[Any]=2 , __snake_case :Dict=True , __snake_case :Tuple=False , __snake_case :List[str]=10 , __snake_case :List[str]=3 , __snake_case :Union[str, Any]=32 * 8 , __snake_case :Optional[int]=32 * 8 , __snake_case :Any=4 , __snake_case :Union[str, Any]=64 , ): '''simple docstring''' __magic_name__ : Optional[int] =parent __magic_name__ : List[Any] =batch_size __magic_name__ : List[str] =is_training __magic_name__ : List[str] =use_auxiliary_loss __magic_name__ : Union[str, Any] =num_queries __magic_name__ : str =num_channels __magic_name__ : Union[str, Any] =min_size __magic_name__ : Union[str, Any] =max_size __magic_name__ : Optional[int] =num_labels __magic_name__ : Tuple =hidden_dim __magic_name__ : Any =hidden_dim def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __snake_case ) __magic_name__ : List[Any] =torch.ones([self.batch_size, self.min_size, self.max_size] , device=__snake_case ) __magic_name__ : List[str] =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__snake_case ) > 0.5 ).float() __magic_name__ : Union[str, Any] =(torch.rand((self.batch_size, self.num_labels) , device=__snake_case ) > 0.5).long() __magic_name__ : str =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Dict =MaskaFormerConfig( hidden_size=self.hidden_dim , ) __magic_name__ : str =self.num_queries __magic_name__ : Dict =self.num_labels __magic_name__ : int =[1, 1, 1, 1] __magic_name__ : List[str] =self.num_channels __magic_name__ : str =64 __magic_name__ : List[str] =1_28 __magic_name__ : Optional[Any] =self.hidden_dim __magic_name__ : Tuple =self.hidden_dim __magic_name__ : Optional[int] =self.hidden_dim return config def A__ ( self :Any ): '''simple docstring''' __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple =self.prepare_config_and_inputs() __magic_name__ : Optional[Any] ={"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def A__ ( self :Union[str, Any] , __snake_case :Tuple , __snake_case :Dict ): '''simple docstring''' __magic_name__ : int =output.encoder_hidden_states __magic_name__ : List[str] =output.pixel_decoder_hidden_states __magic_name__ : int =output.transformer_decoder_hidden_states self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , config.decoder_layers ) def A__ ( self :List[Any] , __snake_case :Optional[Any] , __snake_case :int , __snake_case :str , __snake_case :str=False ): '''simple docstring''' with torch.no_grad(): __magic_name__ : List[str] =MaskaFormerModel(config=__snake_case ) model.to(__snake_case ) model.eval() __magic_name__ : Union[str, Any] =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : int =model(__snake_case , output_hidden_states=__snake_case ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__snake_case , __snake_case ) def A__ ( self :Optional[Any] , __snake_case :List[str] , __snake_case :List[Any] , __snake_case :int , __snake_case :Any , __snake_case :Union[str, Any] ): '''simple docstring''' __magic_name__ : str =MaskaFormerForUniversalSegmentation(config=__snake_case ) model.to(__snake_case ) model.eval() def comm_check_on_output(__snake_case :List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __magic_name__ : int =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : List[str] =model(__snake_case ) comm_check_on_output(__snake_case ) __magic_name__ : Any =model( pixel_values=__snake_case , pixel_mask=__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) comm_check_on_output(__snake_case ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCamelCase = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def A__ ( self :str ): '''simple docstring''' __magic_name__ : Any =MaskaFormerModelTester(self ) __magic_name__ : Union[str, Any] =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def A__ ( self :Dict ): '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__snake_case ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def A__ ( self :List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def A__ ( self :Dict ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def A__ ( self :Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def A__ ( self :int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def A__ ( self :Tuple ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A__ ( self :Union[str, Any] ): '''simple docstring''' pass def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Tuple =model_class(__snake_case ) __magic_name__ : Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple =[*signature.parameters.keys()] __magic_name__ : Optional[Any] =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) @slow def A__ ( self :Tuple ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __magic_name__ : int =MaskaFormerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =(self.model_tester.min_size,) * 2 __magic_name__ : Union[str, Any] ={ """pixel_values""": torch.randn((2, 3, *size) , device=__snake_case ), """mask_labels""": torch.randn((2, 10, *size) , device=__snake_case ), """class_labels""": torch.zeros(2 , 10 , device=__snake_case ).long(), } __magic_name__ : Optional[Any] =self.model_tester.get_config() __magic_name__ : Dict =MaskaFormerForUniversalSegmentation(__snake_case ).to(__snake_case ) __magic_name__ : Any =model(**__snake_case ) self.assertTrue(outputs.loss is not None ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ , __magic_name__ : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] =model_class(__snake_case ).to(__snake_case ) __magic_name__ : Optional[int] =model(**__snake_case , output_attentions=__snake_case ) self.assertTrue(outputs.attentions is not None ) def A__ ( self :int ): '''simple docstring''' if not self.model_tester.is_training: return __magic_name__ : List[Any] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Dict =model_class(__snake_case ) model.to(__snake_case ) model.train() __magic_name__ : Optional[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ).loss loss.backward() def A__ ( self :int ): '''simple docstring''' __magic_name__ : List[str] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Tuple =True __magic_name__ : Optional[int] =True __magic_name__ : int =model_class(__snake_case ).to(__snake_case ) model.train() __magic_name__ : List[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) __magic_name__ : Optional[int] =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __magic_name__ : Optional[int] =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__snake_case ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase_ : Dict = 1e-4 def lowerCAmelCase_ ( ): __magic_name__ : Dict =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __A ( unittest.TestCase ): @cached_property def A__ ( self :int ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def A__ ( self :int ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__snake_case ) __magic_name__ : int =self.default_image_processor __magic_name__ : List[Any] =prepare_img() __magic_name__ : Any =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Dict =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : List[str] =model(**__snake_case ) __magic_name__ : Any =torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Dict =torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Any =torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Optional[int] =self.default_image_processor __magic_name__ : Tuple =prepare_img() __magic_name__ : List[Any] =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Union[str, Any] =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : str =model(**__snake_case ) # masks_queries_logits __magic_name__ : List[Any] =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __magic_name__ : List[Any] =[ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __magic_name__ : Dict =torch.tensor(__snake_case ).to(__snake_case ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) # class_queries_logits __magic_name__ : Any =outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __magic_name__ : int =torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Any =self.default_image_processor __magic_name__ : Union[str, Any] =image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , ) __magic_name__ : str =inputs["""pixel_values"""].to(__snake_case ) __magic_name__ : Tuple =[el.to(__snake_case ) for el in inputs["""mask_labels"""]] __magic_name__ : Union[str, Any] =[el.to(__snake_case ) for el in inputs["""class_labels"""]] with torch.no_grad(): __magic_name__ : Dict =model(**__snake_case ) self.assertTrue(outputs.loss is not None )
21
0
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class __UpperCamelCase ( _lowerCAmelCase ): def __init__( self : int , _lowerCAmelCase : str , _lowerCAmelCase : List[str]=13 , _lowerCAmelCase : List[str]=7 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : int=99 , _lowerCAmelCase : Any=32 , _lowerCAmelCase : Optional[int]=5 , _lowerCAmelCase : Any=4 , _lowerCAmelCase : Tuple=37 , _lowerCAmelCase : str="gelu" , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : Union[str, Any]=512 , _lowerCAmelCase : Dict=16 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : Optional[int]=0.02 , _lowerCAmelCase : int=3 , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : List[Any]=None , ) -> List[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self : Optional[Any] ) -> int: """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _a ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Any ) -> Dict: """simple docstring""" __lowercase = DistilBertModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = DistilBertForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = DistilBertForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] ) -> int: """simple docstring""" __lowercase = self.num_labels __lowercase = DistilBertForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = DistilBertForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] ) -> str: """simple docstring""" __lowercase = self.num_choices __lowercase = DistilBertForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ((__lowercase) , (__lowercase) , (__lowercase) , (__lowercase) , (__lowercase) , (__lowercase)) = config_and_inputs __lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Optional[Any] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) __snake_case :Dict = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) __snake_case :Tuple = True __snake_case :Tuple = True __snake_case :List[str] = True __snake_case :Optional[int] = True def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = DistilBertModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase , dim=37 ) def _a ( self : Dict ) -> str: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_lowerCAmelCase ) def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_lowerCAmelCase ) def _a ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_lowerCAmelCase ) def _a ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_lowerCAmelCase ) def _a ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_lowerCAmelCase ) def _a ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_lowerCAmelCase ) @slow def _a ( self : int ) -> Optional[Any]: """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = DistilBertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @slow @require_torch_gpu def _a ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __lowercase = True __lowercase = model_class(config=_lowerCAmelCase ) __lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = torch.jit.trace( _lowerCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , """traced_model.pt""" ) ) __lowercase = torch.jit.load(os.path.join(_lowerCAmelCase , """traced_model.pt""" ) , map_location=_lowerCAmelCase ) loaded(inputs_dict["""input_ids"""].to(_lowerCAmelCase ) , inputs_dict["""attention_mask"""].to(_lowerCAmelCase ) ) @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = DistilBertModel.from_pretrained("""distilbert-base-uncased""" ) __lowercase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] __lowercase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) __lowercase = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1e-4 ) )
80
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __A ( UpperCamelCase__ ): UpperCamelCase = """segformer""" def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ): '''simple docstring''' super().__init__(**__snake_case ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , ) __magic_name__ : Dict =num_channels __magic_name__ : str =num_encoder_blocks __magic_name__ : List[Any] =depths __magic_name__ : Optional[Any] =sr_ratios __magic_name__ : List[str] =hidden_sizes __magic_name__ : List[str] =patch_sizes __magic_name__ : Any =strides __magic_name__ : Optional[Any] =mlp_ratios __magic_name__ : str =num_attention_heads __magic_name__ : int =hidden_act __magic_name__ : List[Any] =hidden_dropout_prob __magic_name__ : Optional[Any] =attention_probs_dropout_prob __magic_name__ : Optional[Any] =classifier_dropout_prob __magic_name__ : List[str] =initializer_range __magic_name__ : List[str] =drop_path_rate __magic_name__ : List[Any] =layer_norm_eps __magic_name__ : List[str] =decoder_hidden_size __magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case ) __magic_name__ : Dict =semantic_loss_ignore_index class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.11""" ) @property def A__ ( self :List[str] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self :Any ): '''simple docstring''' return 1E-4 @property def A__ ( self :int ): '''simple docstring''' return 12
21
0
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _snake_case : str = logging.get_logger(__name__) class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Dict = "AutoTokenizer" __UpperCAmelCase : List[Any] = ["tokenizer"] __UpperCAmelCase : Tuple = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self : str , lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any]=None ) -> Optional[Any]: super().__init__(lowerCamelCase ) __snake_case : Tuple = speaker_embeddings @classmethod def __snake_case ( cls : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Optional[int]="speaker_embeddings_path.json" , **lowerCamelCase : List[Any] ) -> List[str]: if speaker_embeddings_dict_path is not None: __snake_case : Any = get_file_from_repo( lowerCamelCase , lowerCamelCase , subfolder=kwargs.pop("subfolder" , lowerCamelCase ) , cache_dir=kwargs.pop("cache_dir" , lowerCamelCase ) , force_download=kwargs.pop("force_download" , lowerCamelCase ) , proxies=kwargs.pop("proxies" , lowerCamelCase ) , resume_download=kwargs.pop("resume_download" , lowerCamelCase ) , local_files_only=kwargs.pop("local_files_only" , lowerCamelCase ) , use_auth_token=kwargs.pop("use_auth_token" , lowerCamelCase ) , revision=kwargs.pop("revision" , lowerCamelCase ) , ) if speaker_embeddings_path is None: logger.warning( F'`{os.path.join(lowerCamelCase , lowerCamelCase )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.' ) __snake_case : List[str] = None else: with open(lowerCamelCase ) as speaker_embeddings_json: __snake_case : List[Any] = json.load(lowerCamelCase ) else: __snake_case : Dict = None __snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase , **lowerCamelCase ) return cls(tokenizer=lowerCamelCase , speaker_embeddings=lowerCamelCase ) def __snake_case ( self : Optional[int] , lowerCamelCase : Any , lowerCamelCase : List[str]="speaker_embeddings_path.json" , lowerCamelCase : List[Any]="speaker_embeddings" , lowerCamelCase : bool = False , **lowerCamelCase : List[Any] , ) -> str: if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowerCamelCase , lowerCamelCase , "v2" ) , exist_ok=lowerCamelCase ) __snake_case : List[Any] = {} __snake_case : Optional[int] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": __snake_case : List[str] = self._load_voice_preset(lowerCamelCase ) __snake_case : int = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"] , lowerCamelCase , F'{prompt_key}_{key}' ) , voice_preset[key] , allow_pickle=lowerCamelCase , ) __snake_case : Optional[Any] = os.path.join(lowerCamelCase , F'{prompt_key}_{key}.npy' ) __snake_case : List[str] = tmp_dict with open(os.path.join(lowerCamelCase , lowerCamelCase ) , "w" ) as fp: json.dump(lowerCamelCase , lowerCamelCase ) super().save_pretrained(lowerCamelCase , lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Optional[Any] , lowerCamelCase : str = None , **lowerCamelCase : int ) -> Union[str, Any]: __snake_case : Optional[int] = self.speaker_embeddings[voice_preset] __snake_case : List[str] = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].' ) __snake_case : int = get_file_from_repo( self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] , subfolder=kwargs.pop("subfolder" , lowerCamelCase ) , cache_dir=kwargs.pop("cache_dir" , lowerCamelCase ) , force_download=kwargs.pop("force_download" , lowerCamelCase ) , proxies=kwargs.pop("proxies" , lowerCamelCase ) , resume_download=kwargs.pop("resume_download" , lowerCamelCase ) , local_files_only=kwargs.pop("local_files_only" , lowerCamelCase ) , use_auth_token=kwargs.pop("use_auth_token" , lowerCamelCase ) , revision=kwargs.pop("revision" , lowerCamelCase ) , ) if path is None: raise ValueError( F'`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings.' ) __snake_case : Tuple = np.load(lowerCamelCase ) return voice_preset_dict def __snake_case ( self : Optional[int] , lowerCamelCase : Optional[dict] = None ) -> Tuple: for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'Voice preset unrecognized, missing {key} as a key.' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) def __call__( self : Optional[Any] , lowerCamelCase : Optional[Any]=None , lowerCamelCase : List[Any]=None , lowerCamelCase : Dict="pt" , lowerCamelCase : List[Any]=256 , lowerCamelCase : str=False , lowerCamelCase : Optional[int]=True , lowerCamelCase : str=False , **lowerCamelCase : Any , ) -> List[Any]: if voice_preset is not None and not isinstance(lowerCamelCase , lowerCamelCase ): if ( isinstance(lowerCamelCase , lowerCamelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): __snake_case : int = self._load_voice_preset(lowerCamelCase ) else: if isinstance(lowerCamelCase , lowerCamelCase ) and not voice_preset.endswith(".npz" ): __snake_case : List[str] = voice_preset + ".npz" __snake_case : Union[str, Any] = np.load(lowerCamelCase ) if voice_preset is not None: self._validate_voice_preset_dict(lowerCamelCase , **lowerCamelCase ) __snake_case : str = BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase ) __snake_case : Dict = self.tokenizer( lowerCamelCase , return_tensors=lowerCamelCase , padding="max_length" , max_length=lowerCamelCase , return_attention_mask=lowerCamelCase , return_token_type_ids=lowerCamelCase , add_special_tokens=lowerCamelCase , **lowerCamelCase , ) if voice_preset is not None: __snake_case : Tuple = voice_preset return encoded_text
81
import heapq def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase , [-1 * len(lowerCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices __magic_name__ : Tuple =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __magic_name__ : Tuple =heapq.heappop(lowerCamelCase )[1][0] chosen_vertices.add(lowerCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __magic_name__ : Tuple =elem[1][1].index(lowerCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
21
0
"""simple docstring""" def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = "" for word_or_phrase in separated: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
82
UpperCAmelCase_ : int = range(2, 20 + 1) UpperCAmelCase_ : Tuple = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =sum(a_i[j] for j in range(lowerCamelCase , len(lowerCamelCase ) ) ) __magic_name__ : Any =sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase ) , lowerCamelCase ) ) ) __magic_name__ , __magic_name__ : Tuple =0, 0 __magic_name__ : Optional[Any] =n - i __magic_name__ : Union[str, Any] =memo.get(lowerCamelCase ) if sub_memo is not None: __magic_name__ : int =sub_memo.get(lowerCamelCase ) if jumps is not None and len(lowerCamelCase ) > 0: # find and make the largest jump without going over __magic_name__ : Dict =-1 for _k in range(len(lowerCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __magic_name__ : Optional[Any] =_k break if max_jump >= 0: __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =jumps[max_jump] # since the difference between jumps is cached, add c __magic_name__ : Tuple =diff + c for j in range(min(lowerCamelCase , len(lowerCamelCase ) ) ): __magic_name__ , __magic_name__ : Tuple =divmod(lowerCamelCase , 10 ) if new_c > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __magic_name__ : str =[] else: __magic_name__ : List[str] ={c: []} __magic_name__ : List[str] =sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __magic_name__ , __magic_name__ : Union[str, Any] =next_term(lowerCamelCase , k - 1 , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __magic_name__ , __magic_name__ : Optional[int] =compute(lowerCamelCase , lowerCamelCase , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped __magic_name__ : Tuple =sub_memo[c] # keep jumps sorted by # of terms skipped __magic_name__ : List[Any] =0 while j < len(lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase , (diff, dn, k) ) return (diff, dn) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if i >= n: return 0, i if k > len(lowerCamelCase ): a_i.extend([0 for _ in range(k - len(lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __magic_name__ : Tuple =i __magic_name__ , __magic_name__ , __magic_name__ : Tuple =0, 0, 0 for j in range(len(lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __magic_name__ : Optional[Any] =ds_c + ds_b diff += addend __magic_name__ : str =0 for j in range(lowerCamelCase ): __magic_name__ : int =a_i[j] + addend __magic_name__ , __magic_name__ : Any =divmod(lowerCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return diff, i - start_i def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for j in range(lowerCamelCase , len(lowerCamelCase ) ): __magic_name__ : Tuple =digits[j] + addend if s >= 10: __magic_name__ , __magic_name__ : int =divmod(lowerCamelCase , 10 ) __magic_name__ : int =addend // 10 + quotient else: __magic_name__ : Dict =s __magic_name__ : Any =addend // 10 if addend == 0: break while addend > 0: __magic_name__ , __magic_name__ : Union[str, Any] =divmod(lowerCamelCase , 10 ) digits.append(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase = 10**15 ): __magic_name__ : List[str] =[1] __magic_name__ : str =1 __magic_name__ : str =0 while True: __magic_name__ , __magic_name__ : List[str] =next_term(lowerCamelCase , 20 , i + dn , lowerCamelCase ) dn += terms_jumped if dn == n - i: break __magic_name__ : int =0 for j in range(len(lowerCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
21
0
"""simple docstring""" lowerCAmelCase__ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowerCAmelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def snake_case_ ( A_ : str ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def snake_case_ ( A_ : str ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : List[Any] = '''Morse code here!''' print(A_ ) _lowerCamelCase : Optional[Any] = encrypt(A_ ) print(A_ ) _lowerCamelCase : Optional[Any] = decrypt(A_ ) print(A_ ) if __name__ == "__main__": main()
83
from typing import List from .keymap import KEYMAP, get_character def lowerCAmelCase_ ( lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : str =getattr(lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator def lowerCAmelCase_ ( *lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : Dict =getattr(lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator class __A ( UpperCamelCase__ ): def __new__( cls :Dict , __snake_case :Optional[Any] , __snake_case :Union[str, Any] , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : int =super().__new__(cls , __snake_case , __snake_case , __snake_case ) if not hasattr(__snake_case , """key_handler""" ): setattr(__snake_case , """key_handler""" , {} ) setattr(__snake_case , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __magic_name__ : int =getattr(__snake_case , """handle_key""" , [] ) for key in handled_keys: __magic_name__ : List[str] =value return new_cls @staticmethod def A__ ( cls :Optional[int] ): '''simple docstring''' __magic_name__ : Union[str, Any] =get_character() if char != KEYMAP["undefined"]: __magic_name__ : Optional[int] =ord(__snake_case ) __magic_name__ : int =cls.key_handler.get(__snake_case ) if handler: __magic_name__ : Dict =char return handler(cls ) else: return None def lowerCAmelCase_ ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
21
0
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) lowercase = DatasetInfosDict.from_directory(__SCREAMING_SNAKE_CASE ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = str(__SCREAMING_SNAKE_CASE ) dataset_info.write_to_directory(__SCREAMING_SNAKE_CASE ) lowercase = DatasetInfo.from_directory(__SCREAMING_SNAKE_CASE ) assert dataset_info == reloaded assert os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , 'dataset_info.json' ) ) def UpperCAmelCase_ ( ): lowercase = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) lowercase = dataset_info._to_yaml_dict() assert sorted(__SCREAMING_SNAKE_CASE ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowercase = yaml.safe_dump(__SCREAMING_SNAKE_CASE ) lowercase = yaml.safe_load(__SCREAMING_SNAKE_CASE ) assert dataset_info_yaml_dict == reloaded def UpperCAmelCase_ ( ): lowercase = DatasetInfo() lowercase = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1337 ), } ), ] , ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = str(__SCREAMING_SNAKE_CASE ) dataset_infos_dict.write_to_directory(__SCREAMING_SNAKE_CASE ) lowercase = DatasetInfosDict.from_directory(__SCREAMING_SNAKE_CASE ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowercase = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowercase = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , 'README.md' ) )
84
import os import jsonlines import numpy as np from tqdm import tqdm UpperCAmelCase_ : Dict = 2048 UpperCAmelCase_ : int = 4096 UpperCAmelCase_ : Any = 42 UpperCAmelCase_ : Optional[int] = os.environ.pop("PROCESS_TRAIN", "false") UpperCAmelCase_ : str = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def lowerCAmelCase_ ( lowerCamelCase ): def choose_first(lowerCamelCase , lowerCamelCase=False ): assert isinstance(lowerCamelCase , lowerCamelCase ) if len(lowerCamelCase ) == 1: __magic_name__ : List[str] =answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __magic_name__ : Tuple ={k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a __magic_name__ : str ={"""id""": example["""id"""]} __magic_name__ : List[Any] =example["""annotations"""] __magic_name__ : List[str] =annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: __magic_name__ : Optional[int] =["""yes"""] if 1 in yes_no_answer else ["""no"""] __magic_name__ : List[str] =[] __magic_name__ : Dict =[] __magic_name__ : str =["""<cls>"""] else: __magic_name__ : Tuple =["""short"""] __magic_name__ : Optional[int] =choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available __magic_name__ : Tuple =["""long"""] __magic_name__ : Tuple =choose_first(annotation["""long_answer"""] , is_long_answer=lowerCamelCase ) __magic_name__ : List[Any] =[] answer.update(lowerCamelCase ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: __magic_name__ : Any =True else: __magic_name__ : List[str] =False __magic_name__ : int =["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , lowerCamelCase ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =_get_single_answer(lowerCamelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : Any =example["""document"""]["""tokens"""] __magic_name__ : str =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __magic_name__ : Dict =["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __magic_name__ : Tuple =example["""document"""]["""tokens"""] __magic_name__ : Optional[int] =answer["""start_token"""] __magic_name__ : List[Any] =answer["""end_token"""] __magic_name__ : Optional[Any] =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __magic_name__ : Optional[int] =""" """.join(context[start_token:end_token] ) # checking above code if assertion: __magic_name__ : List[str] =doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : str =doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : Dict =""" """.join([old[i] for i in range(len(lowerCamelCase ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , lowerCamelCase , end="""\n""" ) print("""Old:""" , lowerCamelCase , end="""\n\n""" ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=True ): # overlap will be of doc_stride - q_len __magic_name__ : Any =get_context_and_ans(lowerCamelCase , assertion=lowerCamelCase ) __magic_name__ : Union[str, Any] =out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __magic_name__ : List[Any] =tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids __magic_name__ : Dict =input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : List[str] =[] __magic_name__ : int =[] __magic_name__ : List[str] =input_ids[:q_len] __magic_name__ : Dict =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Tuple =input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(lowerCamelCase ), "end_token": [-100] * len(lowerCamelCase ), "category": category, }, } __magic_name__ : int =out["""context"""].split() __magic_name__ : Any =splitted_context[answer["""end_token"""]] __magic_name__ : str =len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=lowerCamelCase , ).input_ids ) __magic_name__ : Optional[int] =len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=lowerCamelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __magic_name__ : Union[str, Any] =len(tokenizer(lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __magic_name__ : str =input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive __magic_name__ : Dict =answer["""start_token"""] __magic_name__ : int =answer["""end_token"""] if assertion: __magic_name__ : Any =tokenizer.decode(lowerCamelCase ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , lowerCamelCase , end="""\n\n""" ) if len(lowerCamelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __magic_name__ : Any =input_ids[:q_len] __magic_name__ : Union[str, Any] =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) __magic_name__ : Any =[] __magic_name__ : List[str] =[] __magic_name__ : List[str] =[] __magic_name__ : str =[] # null, yes, no, long, short for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Dict =input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __magic_name__ : List[Any] =start_token - i + q_len __magic_name__ : Optional[Any] =end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: __magic_name__ : Optional[Any] =-100 __magic_name__ : Optional[Any] =-100 answers_category.append("""null""" ) __magic_name__ : Optional[int] =inputs[-1][start_token : end_token + 1] answers_start_token.append(lowerCamelCase ) answers_end_token.append(lowerCamelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(lowerCamelCase ) ) print("""Old:""" , tokenizer.decode(lowerCamelCase ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=False ): __magic_name__ : List[Any] =get_strided_contexts_and_ans( lowerCamelCase , lowerCamelCase , doc_stride=lowerCamelCase , max_length=lowerCamelCase , assertion=lowerCamelCase , ) return example def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): with jsonlines.open(lowerCamelCase , """a""" ) as writer: for example in tqdm(lowerCamelCase , total=len(lowerCamelCase ) , desc="""Saving samples ... """ ): __magic_name__ : int =example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer UpperCAmelCase_ : Optional[int] = load_dataset("natural_questions") UpperCAmelCase_ : Optional[int] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") UpperCAmelCase_ : str = data["train" if PROCESS_TRAIN == "true" else "validation"] UpperCAmelCase_ : Optional[int] = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } UpperCAmelCase_ : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs) UpperCAmelCase_ : Optional[Any] = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) UpperCAmelCase_ : int = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
21
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): lowercase_ = StableDiffusionInstructPixaPixPipeline lowercase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} lowercase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowercase( self : str )-> int: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE__ : List[str] = PNDMScheduler(skip_prk_steps=a_ ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE__ : int = CLIPTextModel(a_ ) SCREAMING_SNAKE_CASE__ : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE__ : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowercase( self : List[Any] , a_ : Tuple , a_ : Optional[Any]=0 )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(a_ ) ).to(a_ ) SCREAMING_SNAKE_CASE__ : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ : List[Any] = Image.fromarray(np.uinta(a_ ) ).convert('RGB' ) if str(a_ ).startswith('mps' ): SCREAMING_SNAKE_CASE__ : str = torch.manual_seed(a_ ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.Generator(device=a_ ).manual_seed(a_ ) SCREAMING_SNAKE_CASE__ : Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def __lowercase( self : str )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : List[str] = StableDiffusionInstructPixaPixPipeline(**a_ ) SCREAMING_SNAKE_CASE__ : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) SCREAMING_SNAKE_CASE__ : Tuple = self.get_dummy_inputs(a_ ) SCREAMING_SNAKE_CASE__ : int = sd_pipe(**a_ ).images SCREAMING_SNAKE_CASE__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ : Dict = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowercase( self : Optional[Any] )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) SCREAMING_SNAKE_CASE__ : List[str] = self.get_dummy_inputs(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = 'french fries' SCREAMING_SNAKE_CASE__ : Optional[Any] = sd_pipe(**a_ , negative_prompt=a_ ) SCREAMING_SNAKE_CASE__ : Dict = output.images SCREAMING_SNAKE_CASE__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ : List[str] = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowercase( self : List[Any] )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**a_ ) SCREAMING_SNAKE_CASE__ : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_inputs(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [inputs['prompt']] * 2 SCREAMING_SNAKE_CASE__ : List[str] = np.array(inputs['image'] ).astype(np.floataa ) / 255.0 SCREAMING_SNAKE_CASE__ : Tuple = torch.from_numpy(a_ ).unsqueeze(0 ).to(a_ ) SCREAMING_SNAKE_CASE__ : Dict = image / 2 + 0.5 SCREAMING_SNAKE_CASE__ : Tuple = image.permute(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE__ : int = image.repeat(2 , 1 , 1 , 1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = sd_pipe(**a_ ).images SCREAMING_SNAKE_CASE__ : Any = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) SCREAMING_SNAKE_CASE__ : int = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowercase( self : List[Any] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : str = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Optional[Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' ) SCREAMING_SNAKE_CASE__ : List[Any] = StableDiffusionInstructPixaPixPipeline(**a_ ) SCREAMING_SNAKE_CASE__ : Dict = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_dummy_inputs(a_ ) SCREAMING_SNAKE_CASE__ : Tuple = sd_pipe(**a_ ).images SCREAMING_SNAKE_CASE__ : Any = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : Any = [round(a_ , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(a_ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ : List[Any] = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowercase( self : Union[str, Any] )-> Any: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __lowercase( self : List[Any] )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : List[str] = StableDiffusionInstructPixaPixPipeline(**a_ ) SCREAMING_SNAKE_CASE__ : int = VaeImageProcessor(do_resize=a_ , do_normalize=a_ ) SCREAMING_SNAKE_CASE__ : Tuple = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) SCREAMING_SNAKE_CASE__ : Any = pipe(**self.get_dummy_inputs_by_type(a_ , input_image_type='pt' ) )[0] SCREAMING_SNAKE_CASE__ : Optional[int] = components['vae'] SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_inputs_by_type(a_ , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = vae.encode(inputs[image_param] ).latent_dist.mode() SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe(**a_ )[0] SCREAMING_SNAKE_CASE__ : List[Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(a_ , 1e-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class snake_case ( unittest.TestCase ): def __lowercase( self : Tuple )-> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase( self : List[Any] , a_ : Dict=0 )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = torch.manual_seed(a_ ) SCREAMING_SNAKE_CASE__ : List[str] = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) SCREAMING_SNAKE_CASE__ : Tuple = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def __lowercase( self : int )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : str = self.get_inputs() SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe(**a_ ).images SCREAMING_SNAKE_CASE__ : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __lowercase( self : Dict )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=a_ ) SCREAMING_SNAKE_CASE__ : str = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : Tuple = self.get_inputs() SCREAMING_SNAKE_CASE__ : Dict = pipe(**a_ ).images SCREAMING_SNAKE_CASE__ : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ : List[Any] = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __lowercase( self : Optional[int] )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=a_ ) SCREAMING_SNAKE_CASE__ : Dict = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : str = self.get_inputs() SCREAMING_SNAKE_CASE__ : Tuple = pipe(**a_ ).images SCREAMING_SNAKE_CASE__ : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ : List[str] = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __lowercase( self : int )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = 0 def callback_fn(a_ : int , a_ : int , a_ : torch.FloatTensor ) -> None: SCREAMING_SNAKE_CASE__ : Tuple = True nonlocal number_of_steps number_of_steps += 1 if step == 1: SCREAMING_SNAKE_CASE__ : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) SCREAMING_SNAKE_CASE__ : List[Any] = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : Optional[int] = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: SCREAMING_SNAKE_CASE__ : Optional[int] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) SCREAMING_SNAKE_CASE__ : Tuple = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : Dict = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=a_ , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : Tuple = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : Tuple = self.get_inputs() pipe(**a_ , callback=a_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __lowercase( self : int )-> Any: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE__ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=a_ , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : Tuple = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE__ : Tuple = self.get_inputs() SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe(**a_ ) SCREAMING_SNAKE_CASE__ : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __lowercase( self : Tuple )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE__ : Dict = inputs['image'].resize((504, 504) ) SCREAMING_SNAKE_CASE__ : List[Any] = 'timbrooks/instruct-pix2pix' SCREAMING_SNAKE_CASE__ : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( a_ , safety_checker=a_ , ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : Any = pipe(**a_ ) SCREAMING_SNAKE_CASE__ : List[str] = output.images[0] SCREAMING_SNAKE_CASE__ : Any = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) SCREAMING_SNAKE_CASE__ : str = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
85
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __A ( UpperCamelCase__ ): UpperCamelCase = """xlm-roberta-xl""" def __init__( self :Dict , __snake_case :Optional[Any]=25_08_80 , __snake_case :List[Any]=25_60 , __snake_case :Optional[Any]=36 , __snake_case :Any=32 , __snake_case :int=1_02_40 , __snake_case :List[Any]="gelu" , __snake_case :Union[str, Any]=0.1 , __snake_case :Optional[Any]=0.1 , __snake_case :str=5_14 , __snake_case :Union[str, Any]=1 , __snake_case :Optional[int]=0.02 , __snake_case :str=1E-05 , __snake_case :str=1 , __snake_case :int=0 , __snake_case :Tuple=2 , __snake_case :Optional[int]="absolute" , __snake_case :str=True , __snake_case :Any=None , **__snake_case :Dict , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __magic_name__ : List[str] =vocab_size __magic_name__ : List[str] =hidden_size __magic_name__ : Union[str, Any] =num_hidden_layers __magic_name__ : Any =num_attention_heads __magic_name__ : Any =hidden_act __magic_name__ : List[str] =intermediate_size __magic_name__ : Any =hidden_dropout_prob __magic_name__ : Union[str, Any] =attention_probs_dropout_prob __magic_name__ : Any =max_position_embeddings __magic_name__ : Any =type_vocab_size __magic_name__ : List[str] =initializer_range __magic_name__ : Optional[int] =layer_norm_eps __magic_name__ : Dict =position_embedding_type __magic_name__ : Any =use_cache __magic_name__ : Dict =classifier_dropout class __A ( UpperCamelCase__ ): @property def A__ ( self :Dict ): '''simple docstring''' if self.task == "multiple-choice": __magic_name__ : str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: __magic_name__ : Optional[Any] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
21
0
__a :Optional[int] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_0000)] def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution __a :list[bool | None] = [None] * 1000_0000 __a :Optional[Any] = True __a :List[Any] = False def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore A_ = chain(next_number(__UpperCamelCase ) ) A_ = number_chain while number < 1000_0000: A_ = number_chain number *= 10 return number_chain def __snake_case ( __UpperCamelCase : int = 1000_0000 ): """simple docstring""" for i in range(1 ,__UpperCamelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(F"{solution() = }")
86
from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase_ ( lowerCamelCase="ro" , lowerCamelCase="en" , lowerCamelCase="wmt16" , lowerCamelCase=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) __magic_name__ : Dict =F"{src_lang}-{tgt_lang}" print(F"Converting {dataset}-{pair}" ) __magic_name__ : Dict =datasets.load_dataset(lowerCamelCase , lowerCamelCase ) if save_dir is None: __magic_name__ : Optional[int] =F"{dataset}-{pair}" __magic_name__ : int =Path(lowerCamelCase ) save_dir.mkdir(exist_ok=lowerCamelCase ) for split in ds.keys(): print(F"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets __magic_name__ : Dict ="""val""" if split == """validation""" else split __magic_name__ : List[Any] =save_dir.joinpath(F"{fn}.source" ) __magic_name__ : Optional[int] =save_dir.joinpath(F"{fn}.target" ) __magic_name__ : Optional[Any] =src_path.open("""w+""" ) __magic_name__ : List[Any] =tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __magic_name__ : str =x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
21
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=13 , UpperCAmelCase__ : Union[str, Any]=3 , UpperCAmelCase__ : str=224 , UpperCAmelCase__ : str=30 , UpperCAmelCase__ : Tuple=400 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Tuple=[0.5, 0.5, 0.5] , ) ->str: '''simple docstring''' A__ = size if size is not None else {'''height''': 18, '''width''': 18} A__ = parent A__ = batch_size A__ = num_channels A__ = image_size A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_normalize A__ = image_mean A__ = image_std def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : List[str]) ->str: '''simple docstring''' A__ = EfficientFormerImageProcessorTester(self) @property def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''size''')) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random PIL images A__ = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image) # Test not batched input A__ = image_processor(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched A__ = image_processor(UpperCAmelCase__ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors A__ = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray) # Test not batched input A__ = image_processor(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched A__ = image_processor(UpperCAmelCase__ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[Any]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor) # Test not batched input A__ = image_processor(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched A__ = image_processor(UpperCAmelCase__ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
87
from __future__ import annotations from fractions import Fraction def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =[] __magic_name__ : List[Any] =11 __magic_name__ : Tuple =int("""1""" + """0""" * digit_len ) for num in range(lowerCamelCase , lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowerCamelCase , lowerCamelCase ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 __magic_name__ : List[str] =10 return solutions def lowerCAmelCase_ ( lowerCamelCase = 2 ): __magic_name__ : str =1.0 for fraction in fraction_list(lowerCamelCase ): __magic_name__ : int =Fraction(lowerCamelCase ) result *= frac.denominator / frac.numerator return int(lowerCamelCase ) if __name__ == "__main__": print(solution())
21
0
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def _snake_case ( ): """simple docstring""" _lowerCamelCase : Optional[Any] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _lowerCamelCase : Dict = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(__snake_case ) # Let's go _lowerCamelCase : Any = parser.parse_args() if not hasattr(__snake_case , """func""" ): parser.print_help() exit(1 ) # Run _lowerCamelCase : List[str] = args.func(__snake_case ) service.run() if __name__ == "__main__": main()
88
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( lowerCamelCase ): # A local function to see if a dot lands in the circle. def is_in_circle(lowerCamelCase , lowerCamelCase ) -> bool: __magic_name__ : Dict =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __magic_name__ : Union[str, Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. __magic_name__ : List[Any] =proportion * 4 print(F"The estimated value of pi is {pi_estimate}" ) print(F"The numpy value of pi is {pi}" ) print(F"The total error is {abs(pi - pi_estimate )}" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 , ): return mean( function_to_integrate(uniform(lowerCamelCase , lowerCamelCase ) ) for _ in range(lowerCamelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ): def identity_function(lowerCamelCase ) -> float: return x __magic_name__ : Optional[int] =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __magic_name__ : str =(max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {expected_value}" ) print(F"Total error is {abs(estimated_value - expected_value )}" ) print("""******************""" ) def lowerCAmelCase_ ( lowerCamelCase ): def function_to_integrate(lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) __magic_name__ : Dict =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {pi}" ) print(F"Total error is {abs(estimated_value - pi )}" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
from __future__ import annotations from dataclasses import dataclass @dataclass class _lowerCamelCase: lowercase_ : float lowercase_ : TreeNode | None = None lowercase_ : TreeNode | None = None def UpperCamelCase_( lowerCamelCase_ ) -> bool: # Validation def is_valid_tree(lowerCamelCase_ ) -> bool: if node is None: return True if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(lowerCamelCase_ ): raise ValueError( 'Each node should be type of TreeNode and data should be float.' ) def is_binary_search_tree_recursive_check( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , lowerCamelCase_ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , lowerCamelCase_ ) ) return is_binary_search_tree_recursive_check(lowerCamelCase_ , -float('inf' ) , float('inf' ) ) if __name__ == "__main__": import doctest doctest.testmod()
89
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __A ( tf.keras.layers.Layer ): def __init__( self :Optional[int] , __snake_case :Dict[str, int] , __snake_case :List[str] , __snake_case :int = None , __snake_case :int = None ): '''simple docstring''' super().__init__() __magic_name__ : Optional[int] =pad_token_id __magic_name__ : List[Any] =max_length __magic_name__ : Dict =vocab __magic_name__ : int =merges __magic_name__ : Optional[int] =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case ) @classmethod def A__ ( cls :List[Any] , __snake_case :GPTaTokenizer , *__snake_case :int , **__snake_case :Any ): '''simple docstring''' __magic_name__ : List[Any] =[""" """.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()] __magic_name__ : str =tokenizer.get_vocab() return cls(__snake_case , __snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Dict , __snake_case :Union[str, os.PathLike] , *__snake_case :Union[str, Any] , **__snake_case :int ): '''simple docstring''' __magic_name__ : Dict =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case ) return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Optional[Any] , __snake_case :List[Any] ): '''simple docstring''' return cls(**__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def A__ ( self :List[Any] , __snake_case :Dict , __snake_case :int = None ): '''simple docstring''' __magic_name__ : Optional[Any] =self.tf_tokenizer(__snake_case ) __magic_name__ : Tuple =tf.ones_like(__snake_case ) if self.pad_token_id is not None: # pad the tokens up to max length __magic_name__ : Tuple =max_length if max_length is not None else self.max_length if max_length is not None: __magic_name__ , __magic_name__ : Tuple =pad_model_inputs( __snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
21
0
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _snake_case ( ) -> Tuple: lowerCAmelCase__ = HfArgumentParser(A ) lowerCAmelCase__ = parser.parse_args_into_dataclasses()[0] lowerCAmelCase__ = TensorFlowBenchmark(args=A ) try: lowerCAmelCase__ = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase__ = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' lowerCAmelCase__ = ''' '''.join(str(A ).split(''' ''' )[:-1] ) lowerCAmelCase__ = '''''' lowerCAmelCase__ = eval(str(A ).split(''' ''' )[-1] ) lowerCAmelCase__ = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(A ) if len(A ) > 0: lowerCAmelCase__ = full_error_msg + begin_error_msg + str(A ) raise ValueError(A ) benchmark.run() if __name__ == "__main__": main()
90
import math import tensorflow as tf from packaging import version def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : List[str] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Optional[Any] =tf.cast(math.pi , x.dtype ) __magic_name__ : int =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Any =tf.convert_to_tensor(lowerCamelCase ) return x * tf.tanh(tf.math.softplus(lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[Any] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Union[str, Any] =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Dict =tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCAmelCase_ ( lowerCamelCase ): return tf.clip_by_value(_gelu(lowerCamelCase ) , -10 , 10 ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=-1 ): __magic_name__ , __magic_name__ : List[Any] =tf.split(lowerCamelCase , 2 , axis=lowerCamelCase ) return a * tf.math.sigmoid(lowerCamelCase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowerCAmelCase_ ( lowerCamelCase ): return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase ) UpperCAmelCase_ : List[str] = tf.keras.activations.gelu UpperCAmelCase_ : Dict = approximate_gelu_wrap else: UpperCAmelCase_ : Dict = _gelu UpperCAmelCase_ : str = _gelu_new UpperCAmelCase_ : Any = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowerCAmelCase_ ( lowerCamelCase ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
21
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
91
from collections.abc import Sequence def lowerCAmelCase_ ( lowerCamelCase = None ): if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __magic_name__ : str =nums[0] for i in range(1 , len(lowerCamelCase ) ): __magic_name__ : Any =nums[i] __magic_name__ : Dict =max(lowerCamelCase , ans + num , lowerCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCAmelCase_ : List[str] = int(input("Enter number of elements : ").strip()) UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
21
0
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : MutableSequence[float] ): '''simple docstring''' if len(UpperCAmelCase__ ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) lowercase : list[float] =list(UpperCAmelCase__ ) lowercase : Union[str, Any] =degree def __add__( self : Any , UpperCAmelCase__ : Polynomial ): '''simple docstring''' if self.degree > polynomial_a.degree: lowercase : Optional[int] =self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , UpperCAmelCase__ ) else: lowercase : Dict =polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , UpperCAmelCase__ ) def __sub__( self : List[str] , UpperCAmelCase__ : Polynomial ): '''simple docstring''' return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : Any ): '''simple docstring''' return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : Optional[int] , UpperCAmelCase__ : Polynomial ): '''simple docstring''' lowercase : list[float] =[0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , UpperCAmelCase__ ) def lowerCamelCase_ ( self : int , UpperCAmelCase__ : int | float ): '''simple docstring''' lowercase : int | float =0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : str ): '''simple docstring''' lowercase : Union[str, Any] ='''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(UpperCAmelCase__ ) return polynomial def __repr__( self : Dict ): '''simple docstring''' return self.__str__() def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : list[float] =[0] * self.degree for i in range(self.degree ): lowercase : Tuple =self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , UpperCAmelCase__ ) def lowerCamelCase_ ( self : int , UpperCAmelCase__ : int | float = 0 ): '''simple docstring''' lowercase : list[float] =[0] * (self.degree + 2) lowercase : str =constant for i in range(self.degree + 1 ): lowercase : Union[str, Any] =self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , UpperCAmelCase__ ) def __eq__( self : str , UpperCAmelCase__ : object ): '''simple docstring''' if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Tuple , UpperCAmelCase__ : object ): '''simple docstring''' return not self.__eq__(UpperCAmelCase__ )
92
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : UpperCamelCase = 42 UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""Translation""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def __call__( self :Union[str, Any] ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def A__ ( self :List[Any] ): '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __A : UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""TranslationVariableLanguages""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =sorted(set(self.languages ) ) if self.languages else None __magic_name__ : Optional[int] =len(self.languages ) if self.languages else None def __call__( self :List[str] ): '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def A__ ( self :str , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[int] =set(self.languages ) if self.languages and set(__snake_case ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __magic_name__ : Any =[] for lang, text in translation_dict.items(): if isinstance(__snake_case , __snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __magic_name__ , __magic_name__ : List[str] =zip(*sorted(__snake_case ) ) return {"language": languages, "translation": translations} def A__ ( self :List[Any] ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
21
0
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_3 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=9_9 , __UpperCAmelCase=0 , __UpperCAmelCase=3_2 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_1_2 , __UpperCAmelCase=1_2 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase="last" , __UpperCAmelCase=None , __UpperCAmelCase=None , ): '''simple docstring''' lowerCAmelCase__ :Tuple = parent lowerCAmelCase__ :Optional[Any] = batch_size lowerCAmelCase__ :Dict = seq_length lowerCAmelCase__ :Optional[int] = is_training lowerCAmelCase__ :Tuple = use_input_lengths lowerCAmelCase__ :List[str] = use_token_type_ids lowerCAmelCase__ :str = use_labels lowerCAmelCase__ :List[str] = gelu_activation lowerCAmelCase__ :List[Any] = sinusoidal_embeddings lowerCAmelCase__ :Any = causal lowerCAmelCase__ :Union[str, Any] = asm lowerCAmelCase__ :int = n_langs lowerCAmelCase__ :Any = vocab_size lowerCAmelCase__ :List[Any] = n_special lowerCAmelCase__ :int = hidden_size lowerCAmelCase__ :Tuple = num_hidden_layers lowerCAmelCase__ :str = num_attention_heads lowerCAmelCase__ :str = hidden_dropout_prob lowerCAmelCase__ :Optional[Any] = attention_probs_dropout_prob lowerCAmelCase__ :Dict = max_position_embeddings lowerCAmelCase__ :Optional[int] = type_vocab_size lowerCAmelCase__ :str = type_sequence_label_size lowerCAmelCase__ :str = initializer_range lowerCAmelCase__ :Optional[Any] = num_labels lowerCAmelCase__ :List[Any] = num_choices lowerCAmelCase__ :str = summary_type lowerCAmelCase__ :Tuple = use_proj lowerCAmelCase__ :Tuple = scope def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ :Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ :Union[str, Any] = None if self.use_input_lengths: lowerCAmelCase__ :Any = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCAmelCase__ :str = None if self.use_token_type_ids: lowerCAmelCase__ :str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCAmelCase__ :List[Any] = None lowerCAmelCase__ :Tuple = None lowerCAmelCase__ :str = None if self.use_labels: lowerCAmelCase__ :Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ :Tuple = ids_tensor([self.batch_size] , 2 ).float() lowerCAmelCase__ :List[str] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ :Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def snake_case ( self ): '''simple docstring''' return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :List[str] = FlaubertModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :Any = model(__UpperCAmelCase , lengths=__UpperCAmelCase , langs=__UpperCAmelCase ) lowerCAmelCase__ :Dict = model(__UpperCAmelCase , langs=__UpperCAmelCase ) lowerCAmelCase__ :Dict = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :int = FlaubertWithLMHeadModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :List[Any] = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :str = FlaubertForQuestionAnsweringSimple(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :List[Any] = model(__UpperCAmelCase ) lowerCAmelCase__ :int = model(__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :List[str] = FlaubertForQuestionAnswering(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :Any = model(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = model( __UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , cls_index=__UpperCAmelCase , is_impossible=__UpperCAmelCase , p_mask=__UpperCAmelCase , ) lowerCAmelCase__ :Union[str, Any] = model( __UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , cls_index=__UpperCAmelCase , is_impossible=__UpperCAmelCase , ) ((lowerCAmelCase__) , ) :Dict = result_with_labels.to_tuple() lowerCAmelCase__ :List[Any] = model(__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase ) ((lowerCAmelCase__) , ) :int = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :List[str] = FlaubertForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :Dict = model(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :int = self.num_labels lowerCAmelCase__ :Dict = FlaubertForTokenClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :List[str] = self.num_choices lowerCAmelCase__ :Union[str, Any] = FlaubertForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ :Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ :Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ :List[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) :List[Any] = config_and_inputs lowerCAmelCase__ :Union[str, Any] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :Optional[int] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) __magic_name__ :List[str] = ( { """feature-extraction""": FlaubertModel, """fill-mask""": FlaubertWithLMHeadModel, """question-answering""": FlaubertForQuestionAnsweringSimple, """text-classification""": FlaubertForSequenceClassification, """token-classification""": FlaubertForTokenClassification, """zero-shot""": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowerCAmelCase__ :List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) lowerCAmelCase__ :Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) return inputs_dict def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = FlaubertModelTester(self ) lowerCAmelCase__ :Dict = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=3_7 ) def snake_case ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__UpperCAmelCase ) @slow def snake_case ( self ): '''simple docstring''' for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ :Optional[int] = FlaubertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @slow @require_torch_gpu def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowerCAmelCase__ :List[str] = True lowerCAmelCase__ :Optional[int] = model_class(config=__UpperCAmelCase ) lowerCAmelCase__ :Dict = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Tuple = torch.jit.trace( __UpperCAmelCase , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__UpperCAmelCase , os.path.join(__UpperCAmelCase , 'traced_model.pt' ) ) lowerCAmelCase__ :Optional[Any] = torch.jit.load(os.path.join(__UpperCAmelCase , 'traced_model.pt' ) , map_location=__UpperCAmelCase ) loaded(inputs_dict['input_ids'].to(__UpperCAmelCase ) , inputs_dict['attention_mask'].to(__UpperCAmelCase ) ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased' ) lowerCAmelCase__ :Optional[int] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) with torch.no_grad(): lowerCAmelCase__ :Optional[int] = model(__UpperCAmelCase )[0] lowerCAmelCase__ :Union[str, Any] = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , __UpperCAmelCase ) lowerCAmelCase__ :Tuple = torch.tensor( [[[-2.62_51, -1.42_98, -0.02_27], [-2.85_10, -1.63_87, 0.22_58], [-2.81_14, -1.18_32, -0.30_66]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
93
from sklearn.metrics import matthews_corrcoef import datasets UpperCAmelCase_ : Dict = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCAmelCase_ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCAmelCase_ : Dict = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def A__ ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def A__ ( self :Tuple , __snake_case :str , __snake_case :Tuple , __snake_case :List[str]=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ), }
21
0
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if not isinstance(__A , __A ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(__A , __A ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) lowercase : Optional[Any] ='''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__A ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
94
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =OmegaConf.load(lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(lowerCamelCase ) ) ) return config def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): if conf_path is None: __magic_name__ : List[str] ="""./model_checkpoints/vqgan_only.yaml""" __magic_name__ : Dict =load_config(lowerCamelCase , display=lowerCamelCase ) __magic_name__ : Tuple =VQModel(**config.model.params ) if ckpt_path is None: __magic_name__ : Optional[Any] ="""./model_checkpoints/vqgan_only.pt""" __magic_name__ : Tuple =torch.load(lowerCamelCase , map_location=lowerCamelCase ) if ".ckpt" in ckpt_path: __magic_name__ : Any =sd["""state_dict"""] model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) model.to(lowerCamelCase ) del sd return model def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =model.encode(lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) __magic_name__ : List[Any] =model.decode(lowerCamelCase ) return xrec def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ , __magic_name__ : Optional[int] =string.rsplit(""".""" , 1 ) if reload: __magic_name__ : Optional[int] =importlib.import_module(lowerCamelCase ) importlib.reload(lowerCamelCase ) return getattr(importlib.import_module(lowerCamelCase , package=lowerCamelCase ) , cls ) def lowerCAmelCase_ ( lowerCamelCase ): if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True ): __magic_name__ : str =instantiate_from_config(lowerCamelCase ) if sd is not None: model.load_state_dict(lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # load the specified checkpoint if ckpt: __magic_name__ : str =torch.load(lowerCamelCase , map_location="""cpu""" ) __magic_name__ : Any =pl_sd["""global_step"""] print(F"loaded model from global step {global_step}." ) else: __magic_name__ : List[Any] ={"""state_dict""": None} __magic_name__ : Optional[Any] =None __magic_name__ : Tuple =load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=lowerCamelCase , eval_mode=lowerCamelCase )["""model"""] return model, global_step
21
0
"""simple docstring""" def snake_case ( A__ ,A__ ): # Check if the input is valid if not len(A__ ) == len(A__ ) == 3: raise ValueError("Please enter a valid equation." ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("Both a & b of two equations can't be zero." ) # Extract the coefficients UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = equationa UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = equationa # Calculate the determinants of the matrices UpperCAmelCase_ : int = aa * ba - aa * ba UpperCAmelCase_ : Optional[int] = ca * ba - ca * ba UpperCAmelCase_ : List[str] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("Infinite solutions. (Consistent system)" ) else: raise ValueError("No solution. (Inconsistent system)" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: UpperCAmelCase_ : int = determinant_x / determinant UpperCAmelCase_ : Optional[Any] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
95
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): def A__ ( self :Tuple ): '''simple docstring''' debug_launcher(test_script.main ) def A__ ( self :Dict ): '''simple docstring''' debug_launcher(test_ops.main )
21
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __lowerCamelCase = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = ["input_features"] def __init__( self : str , __snake_case : List[Any]=8_0 , __snake_case : Dict=1_6_0_0_0 , __snake_case : Union[str, Any]=1_6_0 , __snake_case : Optional[int]=3_0 , __snake_case : List[str]=4_0_0 , __snake_case : Any=0.0 , __snake_case : int=False , **__snake_case : Optional[Any] , ) -> Optional[Any]: super().__init__( feature_size=__snake_case , sampling_rate=__snake_case , padding_value=__snake_case , return_attention_mask=__snake_case , **__snake_case , ) __magic_name__: List[str] = n_fft __magic_name__: Dict = hop_length __magic_name__: Optional[Any] = chunk_length __magic_name__: List[Any] = chunk_length * sampling_rate __magic_name__: List[Any] = self.n_samples // hop_length __magic_name__: List[str] = sampling_rate __magic_name__: str = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__snake_case , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=__snake_case , norm="""slaney""" , mel_scale="""slaney""" , ) def lowerCamelCase__ ( self : str , __snake_case : np.array ) -> np.ndarray: __magic_name__: Tuple = spectrogram( __snake_case , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="""log10""" , ) __magic_name__: Optional[Any] = log_spec[:, :-1] __magic_name__: int = np.maximum(__snake_case , log_spec.max() - 8.0 ) __magic_name__: Union[str, Any] = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCamelCase__ ( __snake_case : List[np.ndarray] , __snake_case : List[np.ndarray] , __snake_case : float = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: __magic_name__: str = np.array(__snake_case , np.intaa ) __magic_name__: Dict = [] for vector, length in zip(__snake_case , attention_mask.sum(-1 ) ): __magic_name__: Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: __magic_name__: Dict = padding_value normed_input_values.append(__snake_case ) else: __magic_name__: List[Any] = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Union[str, Any] , __snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __snake_case : bool = True , __snake_case : Optional[int] = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[str] = "max_length" , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , **__snake_case : Optional[Any] , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __magic_name__: Dict = isinstance(__snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) __magic_name__: Optional[Any] = is_batched_numpy or ( isinstance(__snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __magic_name__: List[Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__snake_case , np.ndarray ): __magic_name__: List[str] = np.asarray(__snake_case , dtype=np.floataa ) elif isinstance(__snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __magic_name__: str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __magic_name__: str = [np.asarray([raw_speech] ).T] __magic_name__: str = BatchFeature({"""input_features""": raw_speech} ) # convert into correct format for padding __magic_name__: Optional[Any] = self.pad( __snake_case , padding=__snake_case , max_length=max_length if max_length else self.n_samples , truncation=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: __magic_name__: List[Any] = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] , attention_mask=padded_inputs["""attention_mask"""] , padding_value=self.padding_value , ) __magic_name__: List[Any] = np.stack(padded_inputs["""input_features"""] , axis=0 ) # make sure list is in array format __magic_name__: int = padded_inputs.get("""input_features""" ).transpose(2 , 0 , 1 ) __magic_name__: Union[str, Any] = [self._np_extract_fbank_features(__snake_case ) for waveform in input_features[0]] if isinstance(input_features[0] , __snake_case ): __magic_name__: Dict = [np.asarray(__snake_case , dtype=np.floataa ) for feature in input_features] else: __magic_name__: List[str] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) __magic_name__: Optional[Any] = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: __magic_name__: Optional[int] = padded_inputs.convert_to_tensors(__snake_case ) return padded_inputs def lowerCamelCase__ ( self : List[str] ) -> Dict[str, Any]: __magic_name__: Tuple = copy.deepcopy(self.__dict__ ) __magic_name__: Union[str, Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
96
UpperCAmelCase_ : Tuple = 0 # The first color of the flag. UpperCAmelCase_ : Any = 1 # The second color of the flag. UpperCAmelCase_ : str = 2 # The third color of the flag. UpperCAmelCase_ : Tuple = (red, white, blue) def lowerCAmelCase_ ( lowerCamelCase ): if not sequence: return [] if len(lowerCamelCase ) == 1: return list(lowerCamelCase ) __magic_name__ : int =0 __magic_name__ : str =len(lowerCamelCase ) - 1 __magic_name__ : Optional[Any] =0 while mid <= high: if sequence[mid] == colors[0]: __magic_name__ , __magic_name__ : Tuple =sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: __magic_name__ , __magic_name__ : Optional[Any] =sequence[high], sequence[mid] high -= 1 else: __magic_name__ : Optional[int] =F"The elements inside the sequence must contains only {colors} values" raise ValueError(lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[Any] = input("Enter numbers separated by commas:\n").strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
21
0
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __a = trt.Logger(trt.Logger.WARNING) __a = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __a = logging.getLogger(__name__) __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=3_8_4, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=1_2_8, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=2_0, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=3_0, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=4_2, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) __a = parser.parse_args() if args.tokenizer_name: __a = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) __a = args.per_device_eval_batch_size __a = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __a = True __a = 'temp_engine/bert-fp32.engine' if args.fpaa: __a = 'temp_engine/bert-fp16.engine' if args.inta: __a = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') __a = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __a = [network.get_input(i) for i in range(network.num_inputs)] __a = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __a = 1 << 5_0 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __a = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __a = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def a ( snake_case__: str , snake_case__: List[str] , snake_case__: List[Any] , snake_case__: List[str] , snake_case__: Optional[int] , snake_case__: Optional[Any] , snake_case__: List[str] , snake_case__: List[Any] ): '''simple docstring''' lowercase_ = np.asarray(inputs['''input_ids'''] , dtype=np.intaa ) lowercase_ = np.asarray(inputs['''attention_mask'''] , dtype=np.intaa ) lowercase_ = np.asarray(inputs['''token_type_ids'''] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , snake_case__ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , snake_case__ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , snake_case__ ) # start time lowercase_ = time.time() # Run inference context.execute_async( bindings=[int(snake_case__ ) for d_inp in d_inputs] + [int(snake_case__ ), int(snake_case__ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(snake_case__ , snake_case__ , snake_case__ ) cuda.memcpy_dtoh_async(snake_case__ , snake_case__ , snake_case__ ) # Synchronize the stream and take time stream.synchronize() # end time lowercase_ = time.time() lowercase_ = end_time - start_time lowercase_ = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __a = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __a = raw_datasets['validation'].column_names __a = 'question' if 'question' in column_names else column_names[0] __a = 'context' if 'context' in column_names else column_names[1] __a = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __a = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) __a = min(args.max_seq_length, tokenizer.model_max_length) def a ( snake_case__: Tuple ): '''simple docstring''' # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace lowercase_ = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowercase_ = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='''only_second''' if pad_on_right else '''only_first''' , max_length=snake_case__ , stride=args.doc_stride , return_overflowing_tokens=snake_case__ , return_offsets_mapping=snake_case__ , padding='''max_length''' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowercase_ = tokenized_examples.pop('''overflow_to_sample_mapping''' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowercase_ = [] for i in range(len(tokenized_examples['''input_ids'''] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowercase_ = tokenized_examples.sequence_ids(snake_case__ ) lowercase_ = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowercase_ = sample_mapping[i] tokenized_examples["example_id"].append(examples['''id'''][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowercase_ = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['''offset_mapping'''][i] ) ] return tokenized_examples __a = raw_datasets['validation'] # Validation Feature Creation __a = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) __a = default_data_collator __a = eval_dataset.remove_columns(['example_id', 'offset_mapping']) __a = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def a ( snake_case__: Tuple , snake_case__: int , snake_case__: Union[str, Any] , snake_case__: Optional[int]="eval" ): '''simple docstring''' # Post-processing: we match the start logits and end logits to answers in the original context. lowercase_ = postprocess_qa_predictions( examples=snake_case__ , features=snake_case__ , predictions=snake_case__ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=snake_case__ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowercase_ = [ {'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items() ] else: lowercase_ = [{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()] lowercase_ = [{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=snake_case__ , label_ids=snake_case__ ) __a = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def a ( snake_case__: Dict ): '''simple docstring''' return trt.volume(engine.get_binding_shape(snake_case__ ) ) * engine.get_binding_dtype(snake_case__ ).itemsize # Allocate device memory for inputs and outputs. __a = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __a = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __a = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __a = cuda.mem_alloc(h_outputa.nbytes) __a = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __a = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f" Num examples = {len(eval_dataset)}") logger.info(f" Batch size = {args.per_device_eval_batch_size}") __a = 0.0 __a = 0 __a = timeit.default_timer() __a = None for step, batch in enumerate(eval_dataloader): __a , __a = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __a , __a = outputs __a = torch.tensor(start_logits) __a = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __a = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_0_0) __a = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_0_0) __a = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __a = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_0_0) if all_preds is not None: __a = nested_truncate(all_preds, len(eval_dataset)) __a = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_0_0_0 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_0_0_0)) logger.info('Total Number of Inference = %d', niter) __a = post_processing_function(eval_examples, eval_dataset, all_preds) __a = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"Evaluation metrics: {eval_metric}")
97
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __A ( UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = 1 @register_to_config def __init__( self :Any , __snake_case :Tuple=20_00 , __snake_case :Optional[Any]=0.1 , __snake_case :Any=20 , __snake_case :Optional[int]=1E-3 ): '''simple docstring''' __magic_name__ : Dict =None __magic_name__ : List[str] =None __magic_name__ : str =None def A__ ( self :Dict , __snake_case :Optional[int] , __snake_case :Union[str, torch.device] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] =torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case ) def A__ ( self :List[str] , __snake_case :List[str] , __snake_case :int , __snake_case :int , __snake_case :List[str]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __magic_name__ : int =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __magic_name__ : Optional[int] =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __magic_name__ : str =std.flatten() while len(std.shape ) < len(score.shape ): __magic_name__ : List[str] =std.unsqueeze(-1 ) __magic_name__ : Union[str, Any] =-score / std # compute __magic_name__ : Tuple =-1.0 / len(self.timesteps ) __magic_name__ : int =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __magic_name__ : Dict =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __magic_name__ : Any =beta_t.unsqueeze(-1 ) __magic_name__ : Dict =-0.5 * beta_t * x __magic_name__ : Optional[int] =torch.sqrt(__snake_case ) __magic_name__ : int =drift - diffusion**2 * score __magic_name__ : List[str] =x + drift * dt # add noise __magic_name__ : Optional[int] =randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype ) __magic_name__ : Optional[Any] =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self :List[Any] ): '''simple docstring''' return self.config.num_train_timesteps
21
0
'''simple docstring''' def a__ ( lowercase : list[int] ) -> int: """simple docstring""" if not numbers: return 0 if not isinstance(lowercase, (list, tuple) ) or not all( isinstance(lowercase, lowercase ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) _UpperCamelCase = _UpperCamelCase = _UpperCamelCase = numbers[0] for i in range(1, len(lowercase ) ): # update the maximum and minimum subarray products _UpperCamelCase = numbers[i] if number < 0: _UpperCamelCase , _UpperCamelCase = min_till_now, max_till_now _UpperCamelCase = max(lowercase, max_till_now * number ) _UpperCamelCase = min(lowercase, min_till_now * number ) # update the maximum product found till now _UpperCamelCase = max(lowercase, lowercase ) return max_prod
98
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCAmelCase_ : Dict = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__( self :List[str] , __snake_case :int , __snake_case :int , __snake_case :float , **__snake_case :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =feature_size __magic_name__ : Union[str, Any] =sampling_rate __magic_name__ : List[Any] =padding_value __magic_name__ : List[str] =kwargs.pop("""padding_side""" , """right""" ) __magic_name__ : Tuple =kwargs.pop("""return_attention_mask""" , __snake_case ) super().__init__(**__snake_case ) def A__ ( self :Any , __snake_case :Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __snake_case :Union[bool, str, PaddingStrategy] = True , __snake_case :Optional[int] = None , __snake_case :bool = False , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[Union[str, TensorType]] = None , ): '''simple docstring''' if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __magic_name__ : Union[str, Any] ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) __magic_name__ : int =processed_features[self.model_input_names[0]] __magic_name__ : Union[str, Any] =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__snake_case ) == 0: if return_attention_mask: __magic_name__ : List[str] =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __magic_name__ : Optional[int] =required_input[0] if isinstance(__snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __magic_name__ : Optional[Any] =0 while len(required_input[index] ) == 0: index += 1 if index < len(__snake_case ): __magic_name__ : List[str] =required_input[index][0] if return_tensors is None: if is_tf_tensor(__snake_case ): __magic_name__ : int ="""tf""" elif is_torch_tensor(__snake_case ): __magic_name__ : str ="""pt""" elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ): __magic_name__ : List[Any] ="""np""" else: raise ValueError( f"type of {first_element} unknown: {type(__snake_case )}. " """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __magic_name__ : List[str] =to_numpy(__snake_case ) else: __magic_name__ : str =[to_numpy(__snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy __magic_name__ : Dict =self._get_padding_strategies(padding=__snake_case , max_length=__snake_case ) __magic_name__ : Optional[Any] =processed_features[self.model_input_names[0]] __magic_name__ : Dict =len(__snake_case ) if not all(len(__snake_case ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) __magic_name__ : Optional[int] =[] for i in range(__snake_case ): __magic_name__ : Any ={k: v[i] for k, v in processed_features.items()} # truncation __magic_name__ : List[str] =self._truncate( __snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) truncated_inputs.append(__snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __magic_name__ : Optional[int] =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __magic_name__ : Tuple =PaddingStrategy.MAX_LENGTH __magic_name__ : str ={} for i in range(__snake_case ): # padding __magic_name__ : List[str] =self._pad( truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: __magic_name__ : Dict =[] if value.dtype is np.dtype(np.floataa ): __magic_name__ : Optional[int] =value.astype(np.floataa ) batch_outputs[key].append(__snake_case ) return BatchFeature(__snake_case , tensor_type=__snake_case ) def A__ ( self :Any , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' __magic_name__ : Dict =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __magic_name__ : Any =len(__snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : Dict =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : List[Any] =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __magic_name__ : int =np.ones(len(__snake_case ) , dtype=np.intaa ) if needs_to_be_padded: __magic_name__ : List[Any] =max_length - len(__snake_case ) if self.padding_side == "right": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (0, difference) ) __magic_name__ : Tuple =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __magic_name__ : str =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (difference, 0) ) __magic_name__ : Optional[int] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __magic_name__ : List[Any] =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def A__ ( self :Optional[Any] , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) __magic_name__ : Union[str, Any] =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : List[str] =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : Any =len(__snake_case ) > max_length if needs_to_be_truncated: __magic_name__ : List[Any] =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __magic_name__ : List[str] =processed_features["""attention_mask"""][:max_length] return processed_features def A__ ( self :List[Any] , __snake_case :str=False , __snake_case :Optional[int]=None ): '''simple docstring''' if padding is not False: if padding is True: __magic_name__ : Union[str, Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__snake_case , __snake_case ): __magic_name__ : Optional[int] =PaddingStrategy(__snake_case ) elif isinstance(__snake_case , __snake_case ): __magic_name__ : Any =padding else: __magic_name__ : Any =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
21
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_upernet': ['UperNetConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'UperNetForSemanticSegmentation', 'UperNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
99
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): def __init__( self :List[Any] ): '''simple docstring''' super().__init__() __magic_name__ : Tuple =nn.Linear(3 , 4 ) __magic_name__ : Union[str, Any] =nn.BatchNormad(4 ) __magic_name__ : List[str] =nn.Linear(4 , 5 ) def A__ ( self :Dict , __snake_case :Tuple ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) ) class __A ( UpperCamelCase__ ): def A__ ( self :Any , __snake_case :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Any ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __A ( UpperCamelCase__ ): def A__ ( self :List[str] , __snake_case :Tuple , __snake_case :Union[str, Any] ): '''simple docstring''' return output + 1 class __A ( unittest.TestCase ): def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : Tuple =ModelHook() add_hook_to_module(__snake_case , __snake_case ) self.assertEqual(test_model._hf_hook , __snake_case ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : List[str] =ModelHook() add_hook_to_module(__snake_case , __snake_case ) add_hook_to_module(__snake_case , __snake_case , append=__snake_case ) self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() __magic_name__ : Any =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(x + 1 ) __magic_name__ : Optional[Any] =test_model(x + 2 ) __magic_name__ : int =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : int =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : str =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : List[str] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Optional[Any] =SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) assert torch.allclose(__snake_case , __snake_case , atol=1E-5 ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() __magic_name__ : Dict =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(__snake_case ) __magic_name__ : Dict =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Optional[int] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Union[str, Any] =SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) assert torch.allclose(__snake_case , output + 2 , atol=1E-5 ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Tuple =ModelForTest() __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Dict =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __magic_name__ : Any =True __magic_name__ : Any =test_model(__snake_case ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[Any] =model(__snake_case ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) ) __magic_name__ : int =torch.randn(2 , 3 ).to(0 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , torch.device(0 ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : int =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : int ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[int] =torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : Union[str, Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __magic_name__ : Tuple ={ """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Tuple =torch.randn(2 , 3 ) __magic_name__ : int =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : str =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Optional[int] =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Dict =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : List[str] =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Any =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
21
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __snake_case : '''simple docstring''' def __init__( self , A_ , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = 13 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 99 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 5_12 SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 0.02 SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = '''last''' SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = 0 def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) SCREAMING_SNAKE_CASE__ = None if self.use_input_lengths: SCREAMING_SNAKE_CASE__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = TFFlaubertModel(config=A_ ) SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} SCREAMING_SNAKE_CASE__ = model(A_ ) SCREAMING_SNAKE_CASE__ = [input_ids, input_mask] SCREAMING_SNAKE_CASE__ = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = TFFlaubertWithLMHeadModel(A_ ) SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} SCREAMING_SNAKE_CASE__ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = TFFlaubertForQuestionAnsweringSimple(A_ ) SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''lengths''': input_lengths} SCREAMING_SNAKE_CASE__ = model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = TFFlaubertForSequenceClassification(A_ ) SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''lengths''': input_lengths} SCREAMING_SNAKE_CASE__ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = TFFlaubertForTokenClassification(config=A_ ) SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE__ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.num_choices SCREAMING_SNAKE_CASE__ = TFFlaubertForMultipleChoice(config=A_ ) SCREAMING_SNAKE_CASE__ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE__ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ : Union[str, Any] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowerCamelCase__ : Optional[int] = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : Optional[Any] = False def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = TFFlaubertModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=A_ , emb_dim=37 ) def lowercase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A_ ) @slow def lowercase_ ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = TFFlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''' ) SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" SCREAMING_SNAKE_CASE__ = model(A_ )[0] SCREAMING_SNAKE_CASE__ = tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , A_ ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor( [ [ [-1.8768773, -1.566555, 0.27072418], [-1.6920038, -0.5873505, 1.9329599], [-2.9563985, -1.6993835, 1.7972052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
100
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = KandinskyInpaintPipeline UpperCamelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCamelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCamelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase = False @property def A__ ( self :Union[str, Any] ): '''simple docstring''' return 32 @property def A__ ( self :Optional[Any] ): '''simple docstring''' return 32 @property def A__ ( self :List[Any] ): '''simple docstring''' return self.time_input_dim @property def A__ ( self :Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def A__ ( self :List[Any] ): '''simple docstring''' return 1_00 @property def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Dict =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self :str ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : str =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __magic_name__ : Tuple =MultilingualCLIP(__snake_case ) __magic_name__ : Optional[int] =text_encoder.eval() return text_encoder @property def A__ ( self :Dict ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Optional[Any] ={ """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __magic_name__ : Union[str, Any] =UNetaDConditionModel(**__snake_case ) return model @property def A__ ( self :List[str] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self :Tuple ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Dict =VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[str] =self.dummy_text_encoder __magic_name__ : Optional[Any] =self.dummy_tokenizer __magic_name__ : Optional[Any] =self.dummy_unet __magic_name__ : Tuple =self.dummy_movq __magic_name__ : List[str] =DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , ) __magic_name__ : str ={ """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self :str , __snake_case :Optional[Any] , __snake_case :int=0 ): '''simple docstring''' __magic_name__ : Union[str, Any] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : Dict =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case ) # create init_image __magic_name__ : str =floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : int =image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ : str =Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask __magic_name__ : Dict =np.ones((64, 64) , dtype=np.floataa ) __magic_name__ : Any =0 if str(__snake_case ).startswith("""mps""" ): __magic_name__ : Dict =torch.manual_seed(__snake_case ) else: __magic_name__ : Tuple =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__ : List[Any] ={ """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Tuple ="""cpu""" __magic_name__ : List[Any] =self.get_dummy_components() __magic_name__ : Union[str, Any] =self.pipeline_class(**__snake_case ) __magic_name__ : Tuple =pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Tuple =pipe(**self.get_dummy_inputs(__snake_case ) ) __magic_name__ : List[Any] =output.images __magic_name__ : Any =pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] __magic_name__ : int =image[0, -3:, -3:, -1] __magic_name__ : str =image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) __magic_name__ : Optional[Any] =np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def A__ ( self :Dict ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def A__ ( self :List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : List[str] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) __magic_name__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __magic_name__ : List[Any] =np.ones((7_68, 7_68) , dtype=np.floataa ) __magic_name__ : Any =0 __magic_name__ : int ="""a hat""" __magic_name__ : int =KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) __magic_name__ : Dict =KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) __magic_name__ : int =pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Union[str, Any] =torch.Generator(device="""cpu""" ).manual_seed(0 ) __magic_name__ , __magic_name__ : Dict =pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __magic_name__ : Optional[Any] =pipeline( __snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) __magic_name__ : Optional[int] =output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
21
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __lowercase (unittest.TestCase ): """simple docstring""" _UpperCAmelCase = StableDiffusionLDMaDPipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Any = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) SCREAMING_SNAKE_CASE_ : int = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : int = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=6 , out_channels=6 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) SCREAMING_SNAKE_CASE_ : Any = CLIPTextModel(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ): """simple docstring""" if str(lowerCAmelCase__ ).startswith('mps' ): SCREAMING_SNAKE_CASE_ : List[str] = torch.manual_seed(lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE_ : str = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ : Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Tuple = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = ldmad_pipe(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = output.rgb, output.depth SCREAMING_SNAKE_CASE_ : Optional[Any] = rgb[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : Any = depth[0, -3:, -1] assert rgb.shape == (1, 6_4, 6_4, 3) assert depth.shape == (1, 6_4, 6_4) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.array( [0.37_338_176, 0.70_247, 0.74_203_193, 0.51_643_604, 0.58_256_793, 0.60_932_136, 0.4_181_095, 0.48_355_877, 0.46_535_262] ) SCREAMING_SNAKE_CASE_ : List[Any] = np.array([103.46_727, 85.812_004, 87.849_236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Any = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_dummy_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE_ : str = ldmad_pipe(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = output.rgb, output.depth SCREAMING_SNAKE_CASE_ : Optional[Any] = rgb_slice_a[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : List[str] = depth_slice_a[0, -3:, -1] SCREAMING_SNAKE_CASE_ : int = self.get_dummy_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE_ : List[str] = ldmad_pipe.tokenizer( lowerCAmelCase__ , padding='max_length' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=lowerCAmelCase__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE_ : str = text_inputs['input_ids'].to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = ldmad_pipe.text_encoder(lowerCAmelCase__ )[0] SCREAMING_SNAKE_CASE_ : List[str] = prompt_embeds # forward SCREAMING_SNAKE_CASE_ : Tuple = ldmad_pipe(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = output.rgb, output.depth SCREAMING_SNAKE_CASE_ : str = rgb_slice_a[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : List[Any] = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Tuple = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = 'french fries' SCREAMING_SNAKE_CASE_ : str = ldmad_pipe(**lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = output.rgb, output.depth SCREAMING_SNAKE_CASE_ : List[Any] = rgb[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = depth[0, -3:, -1] assert rgb.shape == (1, 6_4, 6_4, 3) assert depth.shape == (1, 6_4, 6_4) SCREAMING_SNAKE_CASE_ : Tuple = np.array( [0.37_044, 0.71_811_503, 0.7_223_251, 0.48_603_675, 0.5_638_391, 0.6_364_948, 0.42_833_704, 0.4_901_315, 0.47_926_217] ) SCREAMING_SNAKE_CASE_ : List[Any] = np.array([107.84_738, 84.62_802, 89.962_135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__="cpu" , lowerCAmelCase__=torch.floataa , lowerCAmelCase__=0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 6_4, 6_4) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = ldmad_pipe(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = output.rgb, output.depth SCREAMING_SNAKE_CASE_ : Union[str, Any] = rgb[0, -3:, -3:, -1].flatten() SCREAMING_SNAKE_CASE_ : Optional[Any] = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 5_1_2, 5_1_2, 3) assert depth.shape == (1, 5_1_2, 5_1_2) SCREAMING_SNAKE_CASE_ : int = np.array( [0.53_805_465, 0.56_707_305, 0.5_486_515, 0.57_012_236, 0.5_814_511, 0.56_253_487, 0.54_843_014, 0.55_092_263, 0.6_459_706] ) SCREAMING_SNAKE_CASE_ : List[Any] = np.array( [0.9_263_781, 0.6_678_672, 0.5_486_515, 0.92_202_145, 0.67_831_135, 0.56_253_487, 0.9_241_694, 0.7_551_478, 0.6_459_706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__="cpu" , lowerCAmelCase__=torch.floataa , lowerCAmelCase__=0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 6_4, 6_4) ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 5_0, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ).to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = self.get_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ldmad_pipe(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = output.rgb, output.depth SCREAMING_SNAKE_CASE_ : Optional[int] = 0.495_586 SCREAMING_SNAKE_CASE_ : str = 0.33_795_515 SCREAMING_SNAKE_CASE_ : Optional[int] = 112.48_518 SCREAMING_SNAKE_CASE_ : Optional[Any] = 98.489_746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d-4c' ).to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = ldmad_pipe(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = output.rgb, output.depth SCREAMING_SNAKE_CASE_ : Dict = 0.4_194_127 SCREAMING_SNAKE_CASE_ : Optional[int] = 0.35_375_586 SCREAMING_SNAKE_CASE_ : int = 0.5_638_502 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0.34_686_103 assert rgb.shape == (1, 5_1_2, 5_1_2, 3) assert depth.shape == (1, 5_1_2, 5_1_2, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
101
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __A : def __init__( self :int , __snake_case :List[Any] , __snake_case :List[Any]=2 , __snake_case :Dict=True , __snake_case :Tuple=False , __snake_case :List[str]=10 , __snake_case :List[str]=3 , __snake_case :Union[str, Any]=32 * 8 , __snake_case :Optional[int]=32 * 8 , __snake_case :Any=4 , __snake_case :Union[str, Any]=64 , ): '''simple docstring''' __magic_name__ : Optional[int] =parent __magic_name__ : List[Any] =batch_size __magic_name__ : List[str] =is_training __magic_name__ : List[str] =use_auxiliary_loss __magic_name__ : Union[str, Any] =num_queries __magic_name__ : str =num_channels __magic_name__ : Union[str, Any] =min_size __magic_name__ : Union[str, Any] =max_size __magic_name__ : Optional[int] =num_labels __magic_name__ : Tuple =hidden_dim __magic_name__ : Any =hidden_dim def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __snake_case ) __magic_name__ : List[Any] =torch.ones([self.batch_size, self.min_size, self.max_size] , device=__snake_case ) __magic_name__ : List[str] =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__snake_case ) > 0.5 ).float() __magic_name__ : Union[str, Any] =(torch.rand((self.batch_size, self.num_labels) , device=__snake_case ) > 0.5).long() __magic_name__ : str =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Dict =MaskaFormerConfig( hidden_size=self.hidden_dim , ) __magic_name__ : str =self.num_queries __magic_name__ : Dict =self.num_labels __magic_name__ : int =[1, 1, 1, 1] __magic_name__ : List[str] =self.num_channels __magic_name__ : str =64 __magic_name__ : List[str] =1_28 __magic_name__ : Optional[Any] =self.hidden_dim __magic_name__ : Tuple =self.hidden_dim __magic_name__ : Optional[int] =self.hidden_dim return config def A__ ( self :Any ): '''simple docstring''' __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple =self.prepare_config_and_inputs() __magic_name__ : Optional[Any] ={"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def A__ ( self :Union[str, Any] , __snake_case :Tuple , __snake_case :Dict ): '''simple docstring''' __magic_name__ : int =output.encoder_hidden_states __magic_name__ : List[str] =output.pixel_decoder_hidden_states __magic_name__ : int =output.transformer_decoder_hidden_states self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , config.decoder_layers ) def A__ ( self :List[Any] , __snake_case :Optional[Any] , __snake_case :int , __snake_case :str , __snake_case :str=False ): '''simple docstring''' with torch.no_grad(): __magic_name__ : List[str] =MaskaFormerModel(config=__snake_case ) model.to(__snake_case ) model.eval() __magic_name__ : Union[str, Any] =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : int =model(__snake_case , output_hidden_states=__snake_case ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__snake_case , __snake_case ) def A__ ( self :Optional[Any] , __snake_case :List[str] , __snake_case :List[Any] , __snake_case :int , __snake_case :Any , __snake_case :Union[str, Any] ): '''simple docstring''' __magic_name__ : str =MaskaFormerForUniversalSegmentation(config=__snake_case ) model.to(__snake_case ) model.eval() def comm_check_on_output(__snake_case :List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __magic_name__ : int =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : List[str] =model(__snake_case ) comm_check_on_output(__snake_case ) __magic_name__ : Any =model( pixel_values=__snake_case , pixel_mask=__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) comm_check_on_output(__snake_case ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCamelCase = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def A__ ( self :str ): '''simple docstring''' __magic_name__ : Any =MaskaFormerModelTester(self ) __magic_name__ : Union[str, Any] =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def A__ ( self :Dict ): '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__snake_case ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def A__ ( self :List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def A__ ( self :Dict ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def A__ ( self :Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def A__ ( self :int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def A__ ( self :Tuple ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A__ ( self :Union[str, Any] ): '''simple docstring''' pass def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Tuple =model_class(__snake_case ) __magic_name__ : Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple =[*signature.parameters.keys()] __magic_name__ : Optional[Any] =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) @slow def A__ ( self :Tuple ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __magic_name__ : int =MaskaFormerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =(self.model_tester.min_size,) * 2 __magic_name__ : Union[str, Any] ={ """pixel_values""": torch.randn((2, 3, *size) , device=__snake_case ), """mask_labels""": torch.randn((2, 10, *size) , device=__snake_case ), """class_labels""": torch.zeros(2 , 10 , device=__snake_case ).long(), } __magic_name__ : Optional[Any] =self.model_tester.get_config() __magic_name__ : Dict =MaskaFormerForUniversalSegmentation(__snake_case ).to(__snake_case ) __magic_name__ : Any =model(**__snake_case ) self.assertTrue(outputs.loss is not None ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ , __magic_name__ : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] =model_class(__snake_case ).to(__snake_case ) __magic_name__ : Optional[int] =model(**__snake_case , output_attentions=__snake_case ) self.assertTrue(outputs.attentions is not None ) def A__ ( self :int ): '''simple docstring''' if not self.model_tester.is_training: return __magic_name__ : List[Any] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Dict =model_class(__snake_case ) model.to(__snake_case ) model.train() __magic_name__ : Optional[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ).loss loss.backward() def A__ ( self :int ): '''simple docstring''' __magic_name__ : List[str] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Tuple =True __magic_name__ : Optional[int] =True __magic_name__ : int =model_class(__snake_case ).to(__snake_case ) model.train() __magic_name__ : List[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) __magic_name__ : Optional[int] =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __magic_name__ : Optional[int] =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__snake_case ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase_ : Dict = 1e-4 def lowerCAmelCase_ ( ): __magic_name__ : Dict =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __A ( unittest.TestCase ): @cached_property def A__ ( self :int ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def A__ ( self :int ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__snake_case ) __magic_name__ : int =self.default_image_processor __magic_name__ : List[Any] =prepare_img() __magic_name__ : Any =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Dict =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : List[str] =model(**__snake_case ) __magic_name__ : Any =torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Dict =torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Any =torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Optional[int] =self.default_image_processor __magic_name__ : Tuple =prepare_img() __magic_name__ : List[Any] =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Union[str, Any] =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : str =model(**__snake_case ) # masks_queries_logits __magic_name__ : List[Any] =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __magic_name__ : List[Any] =[ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __magic_name__ : Dict =torch.tensor(__snake_case ).to(__snake_case ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) # class_queries_logits __magic_name__ : Any =outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __magic_name__ : int =torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Any =self.default_image_processor __magic_name__ : Union[str, Any] =image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , ) __magic_name__ : str =inputs["""pixel_values"""].to(__snake_case ) __magic_name__ : Tuple =[el.to(__snake_case ) for el in inputs["""mask_labels"""]] __magic_name__ : Union[str, Any] =[el.to(__snake_case ) for el in inputs["""class_labels"""]] with torch.no_grad(): __magic_name__ : Dict =model(**__snake_case ) self.assertTrue(outputs.loss is not None )
21
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __magic_name__ : int = logging.get_logger(__name__) class lowercase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase : Any = ["""input_features""", """is_longer"""] def __init__( self , _A=6_4 , _A=4_8_0_0_0 , _A=4_8_0 , _A=1_0 , _A=1_0_2_4 , _A=0.0 , _A=False , _A = 0 , _A = 1_4_0_0_0 , _A = None , _A = "fusion" , _A = "repeatpad" , **_A , ): '''simple docstring''' super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) UpperCamelCase : Optional[int] = top_db UpperCamelCase : Tuple = truncation UpperCamelCase : str = padding UpperCamelCase : str = fft_window_size UpperCamelCase : int = (fft_window_size >> 1) + 1 UpperCamelCase : Optional[int] = hop_length UpperCamelCase : Tuple = max_length_s UpperCamelCase : Optional[Any] = max_length_s * sampling_rate UpperCamelCase : List[str] = sampling_rate UpperCamelCase : List[Any] = frequency_min UpperCamelCase : Union[str, Any] = frequency_max UpperCamelCase : Optional[int] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm=_A , mel_scale="""htk""" , ) UpperCamelCase : str = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm="""slaney""" , mel_scale="""slaney""" , ) def _a ( self ): '''simple docstring''' UpperCamelCase : Tuple = copy.deepcopy(self.__dict__ ) UpperCamelCase : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _a ( self , _A , _A = None ): '''simple docstring''' UpperCamelCase : Dict = spectrogram( _A , window_function(self.fft_window_size , """hann""" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_A , log_mel="""dB""" , ) return log_mel_spectrogram.T def _a ( self , _A , _A , _A ): '''simple docstring''' UpperCamelCase : int = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk UpperCamelCase : int = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk UpperCamelCase : Union[str, Any] = [0] # randomly choose index for each part UpperCamelCase : Optional[int] = np.random.choice(ranges[0] ) UpperCamelCase : List[Any] = np.random.choice(ranges[1] ) UpperCamelCase : int = np.random.choice(ranges[2] ) UpperCamelCase : str = mel[idx_front : idx_front + chunk_frames, :] UpperCamelCase : List[Any] = mel[idx_middle : idx_middle + chunk_frames, :] UpperCamelCase : int = mel[idx_back : idx_back + chunk_frames, :] UpperCamelCase : int = torch.tensor(mel[None, None, :] ) UpperCamelCase : Union[str, Any] = torch.nn.functional.interpolate( _A , size=[chunk_frames, 6_4] , mode="""bilinear""" , align_corners=_A ) UpperCamelCase : List[Any] = mel_shrink[0][0].numpy() UpperCamelCase : Optional[int] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _a ( self , _A , _A , _A , _A ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": UpperCamelCase : Any = True # random crop to max_length (for compatibility) -> this should be handled by self.pad UpperCamelCase : Union[str, Any] = len(_A ) - max_length UpperCamelCase : Optional[int] = np.random.randint(0 , overflow + 1 ) UpperCamelCase : Optional[int] = waveform[idx : idx + max_length] UpperCamelCase : Union[str, Any] = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": UpperCamelCase : List[Any] = self._np_extract_fbank_features(_A , self.mel_filters ) UpperCamelCase : Union[str, Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed UpperCamelCase : Any = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. UpperCamelCase : Optional[Any] = np.stack([mel, mel, mel, mel] , axis=0 ) UpperCamelCase : Optional[Any] = False else: UpperCamelCase : Optional[int] = self._random_mel_fusion(_A , _A , _A ) UpperCamelCase : Any = True else: raise NotImplementedError(f"""data_truncating {truncation} not implemented""" ) else: UpperCamelCase : Union[str, Any] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": UpperCamelCase : int = int(max_length / len(_A ) ) UpperCamelCase : Tuple = np.stack(np.tile(_A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": UpperCamelCase : Any = int(max_length / len(_A ) ) UpperCamelCase : str = np.stack(np.tile(_A , _A ) ) UpperCamelCase : Optional[int] = np.pad(_A , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0 ) if truncation == "fusion": UpperCamelCase : List[Any] = self._np_extract_fbank_features(_A , self.mel_filters ) UpperCamelCase : Any = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: UpperCamelCase : Union[str, Any] = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , **_A , ): '''simple docstring''' UpperCamelCase : str = truncation if truncation is not None else self.truncation UpperCamelCase : int = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) UpperCamelCase : int = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase : int = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase : Any = [np.asarray(_A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): UpperCamelCase : Any = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase : Optional[int] = [np.asarray(_A )] # convert to mel spectrogram, truncate and pad if needed. UpperCamelCase : List[str] = [ self._get_input_mel(_A , max_length if max_length else self.nb_max_samples , _A , _A ) for waveform in raw_speech ] UpperCamelCase : Union[str, Any] = [] UpperCamelCase : Optional[int] = [] for mel, longer in padded_inputs: input_mel.append(_A ) is_longer.append(_A ) if truncation == "fusion" and sum(_A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer UpperCamelCase : int = np.random.randint(0 , len(_A ) ) UpperCamelCase : List[str] = True if isinstance(input_mel[0] , _A ): UpperCamelCase : Dict = [np.asarray(_A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool UpperCamelCase : Optional[int] = [[longer] for longer in is_longer] UpperCamelCase : Union[str, Any] = {"""input_features""": input_mel, """is_longer""": is_longer} UpperCamelCase : List[Any] = BatchFeature(_A ) if return_tensors is not None: UpperCamelCase : str = input_features.convert_to_tensors(_A ) return input_features
102
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __A ( UpperCamelCase__ ): UpperCamelCase = """segformer""" def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ): '''simple docstring''' super().__init__(**__snake_case ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , ) __magic_name__ : Dict =num_channels __magic_name__ : str =num_encoder_blocks __magic_name__ : List[Any] =depths __magic_name__ : Optional[Any] =sr_ratios __magic_name__ : List[str] =hidden_sizes __magic_name__ : List[str] =patch_sizes __magic_name__ : Any =strides __magic_name__ : Optional[Any] =mlp_ratios __magic_name__ : str =num_attention_heads __magic_name__ : int =hidden_act __magic_name__ : List[Any] =hidden_dropout_prob __magic_name__ : Optional[Any] =attention_probs_dropout_prob __magic_name__ : Optional[Any] =classifier_dropout_prob __magic_name__ : List[str] =initializer_range __magic_name__ : List[str] =drop_path_rate __magic_name__ : List[Any] =layer_norm_eps __magic_name__ : List[str] =decoder_hidden_size __magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case ) __magic_name__ : Dict =semantic_loss_ignore_index class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.11""" ) @property def A__ ( self :List[str] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self :Any ): '''simple docstring''' return 1E-4 @property def A__ ( self :int ): '''simple docstring''' return 12
21
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) snake_case = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ['''ViTFeatureExtractor'''] snake_case = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
103
import heapq def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase , [-1 * len(lowerCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices __magic_name__ : Tuple =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __magic_name__ : Tuple =heapq.heappop(lowerCamelCase )[1][0] chosen_vertices.add(lowerCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __magic_name__ : Tuple =elem[1][1].index(lowerCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
21
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { """configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """ResNetForImageClassification""", """ResNetModel""", """ResNetPreTrainedModel""", """ResNetBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFResNetForImageClassification""", """TFResNetModel""", """TFResNetPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """FlaxResNetForImageClassification""", """FlaxResNetModel""", """FlaxResNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
104
UpperCAmelCase_ : int = range(2, 20 + 1) UpperCAmelCase_ : Tuple = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =sum(a_i[j] for j in range(lowerCamelCase , len(lowerCamelCase ) ) ) __magic_name__ : Any =sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase ) , lowerCamelCase ) ) ) __magic_name__ , __magic_name__ : Tuple =0, 0 __magic_name__ : Optional[Any] =n - i __magic_name__ : Union[str, Any] =memo.get(lowerCamelCase ) if sub_memo is not None: __magic_name__ : int =sub_memo.get(lowerCamelCase ) if jumps is not None and len(lowerCamelCase ) > 0: # find and make the largest jump without going over __magic_name__ : Dict =-1 for _k in range(len(lowerCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __magic_name__ : Optional[Any] =_k break if max_jump >= 0: __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =jumps[max_jump] # since the difference between jumps is cached, add c __magic_name__ : Tuple =diff + c for j in range(min(lowerCamelCase , len(lowerCamelCase ) ) ): __magic_name__ , __magic_name__ : Tuple =divmod(lowerCamelCase , 10 ) if new_c > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __magic_name__ : str =[] else: __magic_name__ : List[str] ={c: []} __magic_name__ : List[str] =sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __magic_name__ , __magic_name__ : Union[str, Any] =next_term(lowerCamelCase , k - 1 , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __magic_name__ , __magic_name__ : Optional[int] =compute(lowerCamelCase , lowerCamelCase , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped __magic_name__ : Tuple =sub_memo[c] # keep jumps sorted by # of terms skipped __magic_name__ : List[Any] =0 while j < len(lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase , (diff, dn, k) ) return (diff, dn) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if i >= n: return 0, i if k > len(lowerCamelCase ): a_i.extend([0 for _ in range(k - len(lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __magic_name__ : Tuple =i __magic_name__ , __magic_name__ , __magic_name__ : Tuple =0, 0, 0 for j in range(len(lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __magic_name__ : Optional[Any] =ds_c + ds_b diff += addend __magic_name__ : str =0 for j in range(lowerCamelCase ): __magic_name__ : int =a_i[j] + addend __magic_name__ , __magic_name__ : Any =divmod(lowerCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return diff, i - start_i def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for j in range(lowerCamelCase , len(lowerCamelCase ) ): __magic_name__ : Tuple =digits[j] + addend if s >= 10: __magic_name__ , __magic_name__ : int =divmod(lowerCamelCase , 10 ) __magic_name__ : int =addend // 10 + quotient else: __magic_name__ : Dict =s __magic_name__ : Any =addend // 10 if addend == 0: break while addend > 0: __magic_name__ , __magic_name__ : Union[str, Any] =divmod(lowerCamelCase , 10 ) digits.append(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase = 10**15 ): __magic_name__ : List[str] =[1] __magic_name__ : str =1 __magic_name__ : str =0 while True: __magic_name__ , __magic_name__ : List[str] =next_term(lowerCamelCase , 20 , i + dn , lowerCamelCase ) dn += terms_jumped if dn == n - i: break __magic_name__ : int =0 for j in range(len(lowerCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
21
0
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' ,revision='bf16' ,dtype=jnp.bfloataa ,) SCREAMING_SNAKE_CASE_ : List[str] = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ : str = jax.device_count() SCREAMING_SNAKE_CASE_ : Optional[Any] = num_samples * [prompt] SCREAMING_SNAKE_CASE_ : Any = sd_pipe.prepare_inputs(snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = replicate(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = shard(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE_ : Dict = jax.random.split(snake_case__ ,jax.device_count() ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = sd_pipe(snake_case__ ,snake_case__ ,snake_case__ ,num_inference_steps=25 ,jit=snake_case__ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) SCREAMING_SNAKE_CASE_ : Tuple = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE_ : int = images[0, 253:256, 253:256, -1] SCREAMING_SNAKE_CASE_ : List[str] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = 'stabilityai/stable-diffusion-2' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = FlaxDPMSolverMultistepScheduler.from_pretrained(snake_case__ ,subfolder='scheduler' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( snake_case__ ,scheduler=snake_case__ ,revision='bf16' ,dtype=jnp.bfloataa ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_params SCREAMING_SNAKE_CASE_ : Tuple = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ : Optional[Any] = jax.device_count() SCREAMING_SNAKE_CASE_ : Tuple = num_samples * [prompt] SCREAMING_SNAKE_CASE_ : List[str] = sd_pipe.prepare_inputs(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = replicate(snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = shard(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE_ : str = jax.random.split(snake_case__ ,jax.device_count() ) SCREAMING_SNAKE_CASE_ : Dict = sd_pipe(snake_case__ ,snake_case__ ,snake_case__ ,num_inference_steps=25 ,jit=snake_case__ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) SCREAMING_SNAKE_CASE_ : List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE_ : Tuple = images[0, 253:256, 253:256, -1] SCREAMING_SNAKE_CASE_ : Optional[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
105
from typing import List from .keymap import KEYMAP, get_character def lowerCAmelCase_ ( lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : str =getattr(lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator def lowerCAmelCase_ ( *lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : Dict =getattr(lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator class __A ( UpperCamelCase__ ): def __new__( cls :Dict , __snake_case :Optional[Any] , __snake_case :Union[str, Any] , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : int =super().__new__(cls , __snake_case , __snake_case , __snake_case ) if not hasattr(__snake_case , """key_handler""" ): setattr(__snake_case , """key_handler""" , {} ) setattr(__snake_case , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __magic_name__ : int =getattr(__snake_case , """handle_key""" , [] ) for key in handled_keys: __magic_name__ : List[str] =value return new_cls @staticmethod def A__ ( cls :Optional[int] ): '''simple docstring''' __magic_name__ : Union[str, Any] =get_character() if char != KEYMAP["undefined"]: __magic_name__ : Optional[int] =ord(__snake_case ) __magic_name__ : int =cls.key_handler.get(__snake_case ) if handler: __magic_name__ : Dict =char return handler(cls ) else: return None def lowerCAmelCase_ ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
21
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __snake_case :List[Any] ={ 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :List[str] =[ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Optional[Any] =[ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __snake_case :Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
106
import os import jsonlines import numpy as np from tqdm import tqdm UpperCAmelCase_ : Dict = 2048 UpperCAmelCase_ : int = 4096 UpperCAmelCase_ : Any = 42 UpperCAmelCase_ : Optional[int] = os.environ.pop("PROCESS_TRAIN", "false") UpperCAmelCase_ : str = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def lowerCAmelCase_ ( lowerCamelCase ): def choose_first(lowerCamelCase , lowerCamelCase=False ): assert isinstance(lowerCamelCase , lowerCamelCase ) if len(lowerCamelCase ) == 1: __magic_name__ : List[str] =answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __magic_name__ : Tuple ={k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a __magic_name__ : str ={"""id""": example["""id"""]} __magic_name__ : List[Any] =example["""annotations"""] __magic_name__ : List[str] =annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: __magic_name__ : Optional[int] =["""yes"""] if 1 in yes_no_answer else ["""no"""] __magic_name__ : List[str] =[] __magic_name__ : Dict =[] __magic_name__ : str =["""<cls>"""] else: __magic_name__ : Tuple =["""short"""] __magic_name__ : Optional[int] =choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available __magic_name__ : Tuple =["""long"""] __magic_name__ : Tuple =choose_first(annotation["""long_answer"""] , is_long_answer=lowerCamelCase ) __magic_name__ : List[Any] =[] answer.update(lowerCamelCase ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: __magic_name__ : Any =True else: __magic_name__ : List[str] =False __magic_name__ : int =["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , lowerCamelCase ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =_get_single_answer(lowerCamelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : Any =example["""document"""]["""tokens"""] __magic_name__ : str =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __magic_name__ : Dict =["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __magic_name__ : Tuple =example["""document"""]["""tokens"""] __magic_name__ : Optional[int] =answer["""start_token"""] __magic_name__ : List[Any] =answer["""end_token"""] __magic_name__ : Optional[Any] =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __magic_name__ : Optional[int] =""" """.join(context[start_token:end_token] ) # checking above code if assertion: __magic_name__ : List[str] =doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : str =doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : Dict =""" """.join([old[i] for i in range(len(lowerCamelCase ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , lowerCamelCase , end="""\n""" ) print("""Old:""" , lowerCamelCase , end="""\n\n""" ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=True ): # overlap will be of doc_stride - q_len __magic_name__ : Any =get_context_and_ans(lowerCamelCase , assertion=lowerCamelCase ) __magic_name__ : Union[str, Any] =out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __magic_name__ : List[Any] =tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids __magic_name__ : Dict =input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : List[str] =[] __magic_name__ : int =[] __magic_name__ : List[str] =input_ids[:q_len] __magic_name__ : Dict =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Tuple =input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(lowerCamelCase ), "end_token": [-100] * len(lowerCamelCase ), "category": category, }, } __magic_name__ : int =out["""context"""].split() __magic_name__ : Any =splitted_context[answer["""end_token"""]] __magic_name__ : str =len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=lowerCamelCase , ).input_ids ) __magic_name__ : Optional[int] =len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=lowerCamelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __magic_name__ : Union[str, Any] =len(tokenizer(lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __magic_name__ : str =input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive __magic_name__ : Dict =answer["""start_token"""] __magic_name__ : int =answer["""end_token"""] if assertion: __magic_name__ : Any =tokenizer.decode(lowerCamelCase ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , lowerCamelCase , end="""\n\n""" ) if len(lowerCamelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __magic_name__ : Any =input_ids[:q_len] __magic_name__ : Union[str, Any] =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) __magic_name__ : Any =[] __magic_name__ : List[str] =[] __magic_name__ : List[str] =[] __magic_name__ : str =[] # null, yes, no, long, short for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Dict =input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __magic_name__ : List[Any] =start_token - i + q_len __magic_name__ : Optional[Any] =end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: __magic_name__ : Optional[Any] =-100 __magic_name__ : Optional[Any] =-100 answers_category.append("""null""" ) __magic_name__ : Optional[int] =inputs[-1][start_token : end_token + 1] answers_start_token.append(lowerCamelCase ) answers_end_token.append(lowerCamelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(lowerCamelCase ) ) print("""Old:""" , tokenizer.decode(lowerCamelCase ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=False ): __magic_name__ : List[Any] =get_strided_contexts_and_ans( lowerCamelCase , lowerCamelCase , doc_stride=lowerCamelCase , max_length=lowerCamelCase , assertion=lowerCamelCase , ) return example def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): with jsonlines.open(lowerCamelCase , """a""" ) as writer: for example in tqdm(lowerCamelCase , total=len(lowerCamelCase ) , desc="""Saving samples ... """ ): __magic_name__ : int =example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer UpperCAmelCase_ : Optional[int] = load_dataset("natural_questions") UpperCAmelCase_ : Optional[int] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") UpperCAmelCase_ : str = data["train" if PROCESS_TRAIN == "true" else "validation"] UpperCAmelCase_ : Optional[int] = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } UpperCAmelCase_ : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs) UpperCAmelCase_ : Optional[Any] = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) UpperCAmelCase_ : int = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
21
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Optional[Any] = '''▁''' _UpperCAmelCase : Tuple = {'''vocab_file''': '''spiece.model'''} _UpperCAmelCase : Optional[Any] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } _UpperCAmelCase : Tuple = { '''google/pegasus-xsum''': 5_12, } _UpperCAmelCase : str = logging.get_logger(__name__) class lowercase_ ( _UpperCamelCase ): """simple docstring""" __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self : Optional[int], UpperCamelCase__ : str, UpperCamelCase__ : Optional[Any]="<pad>", UpperCamelCase__ : List[Any]="</s>", UpperCamelCase__ : Dict="<unk>", UpperCamelCase__ : List[Any]="<mask_2>", UpperCamelCase__ : Dict="<mask_1>", UpperCamelCase__ : List[str]=None, UpperCamelCase__ : List[str]=1_03, UpperCamelCase__ : Optional[Dict[str, Any]] = None, **UpperCamelCase__ : List[str], ) -> None: _A = offset if additional_special_tokens is not None: if not isinstance(UpperCamelCase__, UpperCamelCase__ ): raise TypeError( f'additional_special_tokens should be of type {type(UpperCamelCase__ )}, but is' f' {type(UpperCamelCase__ )}' ) _A = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'<unk_{i}>' for i in range(len(UpperCamelCase__ ), self.offset - 1 ) ] if len(set(UpperCamelCase__ ) ) != len(UpperCamelCase__ ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' f' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) _A = additional_special_tokens_extended else: _A = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'<unk_{i}>' for i in range(2, self.offset )] _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCamelCase__, unk_token=UpperCamelCase__, mask_token=UpperCamelCase__, pad_token=UpperCamelCase__, mask_token_sent=UpperCamelCase__, offset=UpperCamelCase__, additional_special_tokens=UpperCamelCase__, sp_model_kwargs=self.sp_model_kwargs, **UpperCamelCase__, ) _A = mask_token_sent _A = vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) # add special tokens to encoder dict _A = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1, self.offset - 1 )} ) _A = {v: k for k, v in self.encoder.items()} @property def __UpperCAmelCase ( self : str ) -> int: return len(self.sp_model ) + self.offset def __UpperCAmelCase ( self : Tuple ) -> Dict[str, int]: _A = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : int ) -> Tuple: _A = self.__dict__.copy() _A = None return state def __setstate__( self : Any, UpperCamelCase__ : str ) -> List[str]: _A = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self : int, UpperCamelCase__ : str ) -> List[str]: return self.sp_model.encode(UpperCamelCase__, out_type=UpperCamelCase__ ) def __UpperCAmelCase ( self : Union[str, Any], UpperCamelCase__ : str ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] _A = self.sp_model.piece_to_id(UpperCamelCase__ ) return sp_id + self.offset def __UpperCAmelCase ( self : List[str], UpperCamelCase__ : int ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: _A = self.sp_model.IdToPiece(index - self.offset ) return token def __UpperCAmelCase ( self : str, UpperCamelCase__ : Dict ) -> Optional[int]: _A = [] _A = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase__ ) + token _A = [] else: current_sub_tokens.append(UpperCamelCase__ ) out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def __UpperCAmelCase ( self : Optional[Any], UpperCamelCase__ : int=False ) -> List[Any]: return 1 def __UpperCAmelCase ( self : Tuple, UpperCamelCase__ : Optional[Any] ) -> List[str]: _A = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __UpperCAmelCase ( self : Tuple, UpperCamelCase__ : List, UpperCamelCase__ : Optional[List] = None, UpperCamelCase__ : bool = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(UpperCamelCase__ ) elif token_ids_a is None: return self._special_token_mask(UpperCamelCase__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __UpperCAmelCase ( self : List[str], UpperCamelCase__ : Optional[int], UpperCamelCase__ : List[Any]=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : List[Any], UpperCamelCase__ : str, UpperCamelCase__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _A = os.path.join( UpperCamelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__, 'wb' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
107
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __A ( UpperCamelCase__ ): UpperCamelCase = """xlm-roberta-xl""" def __init__( self :Dict , __snake_case :Optional[Any]=25_08_80 , __snake_case :List[Any]=25_60 , __snake_case :Optional[Any]=36 , __snake_case :Any=32 , __snake_case :int=1_02_40 , __snake_case :List[Any]="gelu" , __snake_case :Union[str, Any]=0.1 , __snake_case :Optional[Any]=0.1 , __snake_case :str=5_14 , __snake_case :Union[str, Any]=1 , __snake_case :Optional[int]=0.02 , __snake_case :str=1E-05 , __snake_case :str=1 , __snake_case :int=0 , __snake_case :Tuple=2 , __snake_case :Optional[int]="absolute" , __snake_case :str=True , __snake_case :Any=None , **__snake_case :Dict , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __magic_name__ : List[str] =vocab_size __magic_name__ : List[str] =hidden_size __magic_name__ : Union[str, Any] =num_hidden_layers __magic_name__ : Any =num_attention_heads __magic_name__ : Any =hidden_act __magic_name__ : List[str] =intermediate_size __magic_name__ : Any =hidden_dropout_prob __magic_name__ : Union[str, Any] =attention_probs_dropout_prob __magic_name__ : Any =max_position_embeddings __magic_name__ : Any =type_vocab_size __magic_name__ : List[str] =initializer_range __magic_name__ : Optional[int] =layer_norm_eps __magic_name__ : Dict =position_embedding_type __magic_name__ : Any =use_cache __magic_name__ : Dict =classifier_dropout class __A ( UpperCamelCase__ ): @property def A__ ( self :Dict ): '''simple docstring''' if self.task == "multiple-choice": __magic_name__ : str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: __magic_name__ : Optional[Any] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
21
0
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Union[str, Any]: _UpperCAmelCase = SwinConfig(image_size=1_9_2 ) if "base" in model_name: _UpperCAmelCase = 6 _UpperCAmelCase = 1_2_8 _UpperCAmelCase = (2, 2, 1_8, 2) _UpperCAmelCase = (4, 8, 1_6, 3_2) elif "large" in model_name: _UpperCAmelCase = 1_2 _UpperCAmelCase = 1_9_2 _UpperCAmelCase = (2, 2, 1_8, 2) _UpperCAmelCase = (6, 1_2, 2_4, 4_8) else: raise ValueError("""Model not supported, only supports base and large variants""" ) _UpperCAmelCase = window_size _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = num_heads return config def _SCREAMING_SNAKE_CASE ( __snake_case ) -> List[Any]: if "encoder.mask_token" in name: _UpperCAmelCase = name.replace("""encoder.mask_token""" , """embeddings.mask_token""" ) if "encoder.patch_embed.proj" in name: _UpperCAmelCase = name.replace("""encoder.patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "encoder.patch_embed.norm" in name: _UpperCAmelCase = name.replace("""encoder.patch_embed.norm""" , """embeddings.norm""" ) if "attn.proj" in name: _UpperCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: _UpperCAmelCase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: _UpperCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: _UpperCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: _UpperCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: _UpperCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": _UpperCAmelCase = """layernorm.weight""" if name == "encoder.norm.bias": _UpperCAmelCase = """layernorm.bias""" if "decoder" in name: pass else: _UpperCAmelCase = """swin.""" + name return name def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> int: for key in orig_state_dict.copy().keys(): _UpperCAmelCase = orig_state_dict.pop(__snake_case ) if "attn_mask" in key: pass elif "qkv" in key: _UpperCAmelCase = key.split(""".""" ) _UpperCAmelCase = int(key_split[2] ) _UpperCAmelCase = int(key_split[4] ) _UpperCAmelCase = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _UpperCAmelCase = val[:dim, :] _UpperCAmelCase = val[ dim : dim * 2, : ] _UpperCAmelCase = val[-dim:, :] else: _UpperCAmelCase = val[ :dim ] _UpperCAmelCase = val[ dim : dim * 2 ] _UpperCAmelCase = val[ -dim: ] else: _UpperCAmelCase = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case , __snake_case ) -> int: _UpperCAmelCase = torch.load(__snake_case , map_location="""cpu""" )["""model"""] _UpperCAmelCase = get_swin_config(__snake_case ) _UpperCAmelCase = SwinForMaskedImageModeling(__snake_case ) model.eval() _UpperCAmelCase = convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) _UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase = ViTImageProcessor(size={"""height""": 1_9_2, """width""": 1_9_2} ) _UpperCAmelCase = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) _UpperCAmelCase = image_processor(images=__snake_case , return_tensors="""pt""" ) with torch.no_grad(): _UpperCAmelCase = model(**__snake_case ).logits print(outputs.keys() ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__snake_case ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: print(f"""Pushing model and image processor for {model_name} to hub""" ) model.push_to_hub(f"""microsoft/{model_name}""" ) image_processor.push_to_hub(f"""microsoft/{model_name}""" ) if __name__ == "__main__": __a: Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __a: int = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
108
from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase_ ( lowerCamelCase="ro" , lowerCamelCase="en" , lowerCamelCase="wmt16" , lowerCamelCase=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) __magic_name__ : Dict =F"{src_lang}-{tgt_lang}" print(F"Converting {dataset}-{pair}" ) __magic_name__ : Dict =datasets.load_dataset(lowerCamelCase , lowerCamelCase ) if save_dir is None: __magic_name__ : Optional[int] =F"{dataset}-{pair}" __magic_name__ : int =Path(lowerCamelCase ) save_dir.mkdir(exist_ok=lowerCamelCase ) for split in ds.keys(): print(F"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets __magic_name__ : Dict ="""val""" if split == """validation""" else split __magic_name__ : List[Any] =save_dir.joinpath(F"{fn}.source" ) __magic_name__ : Optional[int] =save_dir.joinpath(F"{fn}.target" ) __magic_name__ : Optional[Any] =src_path.open("""w+""" ) __magic_name__ : List[Any] =tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __magic_name__ : str =x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
21
0
'''simple docstring''' import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __a ( _snake_case, unittest.TestCase ): # TODO: is there an appropriate internal test set? __UpperCamelCase : Optional[Any] = 'ssube/stable-diffusion-x4-upscaler-onnx' def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : Optional[int]=0 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 128, 128) ,rng=random.Random(lowerCamelCase ) ) __SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCamelCase ) __SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs() __SCREAMING_SNAKE_CASE = pipe(**lowerCamelCase ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) __SCREAMING_SNAKE_CASE = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs() __SCREAMING_SNAKE_CASE = pipe(**lowerCamelCase ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) __SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs() __SCREAMING_SNAKE_CASE = pipe(**lowerCamelCase ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) __SCREAMING_SNAKE_CASE = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs() __SCREAMING_SNAKE_CASE = pipe(**lowerCamelCase ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) __SCREAMING_SNAKE_CASE = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs() __SCREAMING_SNAKE_CASE = pipe(**lowerCamelCase ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class __a ( unittest.TestCase ): @property def UpperCAmelCase__ ( self : int ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ort.SessionOptions() __SCREAMING_SNAKE_CASE = False return options def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __SCREAMING_SNAKE_CASE = init_image.resize((128, 128) ) # using the PNDM scheduler by default __SCREAMING_SNAKE_CASE = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=lowerCamelCase ) __SCREAMING_SNAKE_CASE = """A fantasy landscape, trending on artstation""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=lowerCamelCase ,image=lowerCamelCase ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=lowerCamelCase ,output_type="""np""" ,) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __SCREAMING_SNAKE_CASE = init_image.resize((128, 128) ) __SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" ,subfolder="""scheduler""" ) __SCREAMING_SNAKE_CASE = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" ,scheduler=lowerCamelCase ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=lowerCamelCase ) __SCREAMING_SNAKE_CASE = """A fantasy landscape, trending on artstation""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=lowerCamelCase ,image=lowerCamelCase ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=lowerCamelCase ,output_type="""np""" ,) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
109
from __future__ import annotations from fractions import Fraction def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =[] __magic_name__ : List[Any] =11 __magic_name__ : Tuple =int("""1""" + """0""" * digit_len ) for num in range(lowerCamelCase , lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowerCamelCase , lowerCamelCase ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 __magic_name__ : List[str] =10 return solutions def lowerCAmelCase_ ( lowerCamelCase = 2 ): __magic_name__ : str =1.0 for fraction in fraction_list(lowerCamelCase ): __magic_name__ : int =Fraction(lowerCamelCase ) result *= frac.denominator / frac.numerator return int(lowerCamelCase ) if __name__ == "__main__": print(solution())
21
0
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def lowerCamelCase ( ): UpperCAmelCase__ : dict[int, int] = {} UpperCAmelCase__ : Any = 2 while True: UpperCAmelCase__ : Optional[int] = factor_map.pop(_snake_case ,_snake_case ) if factor: UpperCAmelCase__ : Any = factor + prime while x in factor_map: x += factor UpperCAmelCase__ : int = factor else: UpperCAmelCase__ : List[Any] = prime yield prime prime += 1 def lowerCamelCase ( _snake_case = 1e1_0 ): UpperCAmelCase__ : List[Any] = sieve() UpperCAmelCase__ : Optional[int] = 1 while True: UpperCAmelCase__ : Optional[Any] = next(_snake_case ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(_snake_case ) n += 2 if __name__ == "__main__": print(solution())
110
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( lowerCamelCase ): # A local function to see if a dot lands in the circle. def is_in_circle(lowerCamelCase , lowerCamelCase ) -> bool: __magic_name__ : Dict =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __magic_name__ : Union[str, Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. __magic_name__ : List[Any] =proportion * 4 print(F"The estimated value of pi is {pi_estimate}" ) print(F"The numpy value of pi is {pi}" ) print(F"The total error is {abs(pi - pi_estimate )}" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 , ): return mean( function_to_integrate(uniform(lowerCamelCase , lowerCamelCase ) ) for _ in range(lowerCamelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ): def identity_function(lowerCamelCase ) -> float: return x __magic_name__ : Optional[int] =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __magic_name__ : str =(max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {expected_value}" ) print(F"Total error is {abs(estimated_value - expected_value )}" ) print("""******************""" ) def lowerCAmelCase_ ( lowerCamelCase ): def function_to_integrate(lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) __magic_name__ : Dict =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {pi}" ) print(F"Total error is {abs(estimated_value - pi )}" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ : Union[str, Any] = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Tuple = ["ConditionalDetrFeatureExtractor"] lowerCAmelCase_ : str = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[Any] = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys lowerCAmelCase_ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
673
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __A ( tf.keras.layers.Layer ): def __init__( self :Optional[int] , __snake_case :Dict[str, int] , __snake_case :List[str] , __snake_case :int = None , __snake_case :int = None ): '''simple docstring''' super().__init__() __magic_name__ : Optional[int] =pad_token_id __magic_name__ : List[Any] =max_length __magic_name__ : Dict =vocab __magic_name__ : int =merges __magic_name__ : Optional[int] =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case ) @classmethod def A__ ( cls :List[Any] , __snake_case :GPTaTokenizer , *__snake_case :int , **__snake_case :Any ): '''simple docstring''' __magic_name__ : List[Any] =[""" """.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()] __magic_name__ : str =tokenizer.get_vocab() return cls(__snake_case , __snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Dict , __snake_case :Union[str, os.PathLike] , *__snake_case :Union[str, Any] , **__snake_case :int ): '''simple docstring''' __magic_name__ : Dict =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case ) return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Optional[Any] , __snake_case :List[Any] ): '''simple docstring''' return cls(**__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def A__ ( self :List[Any] , __snake_case :Dict , __snake_case :int = None ): '''simple docstring''' __magic_name__ : Optional[Any] =self.tf_tokenizer(__snake_case ) __magic_name__ : Tuple =tf.ones_like(__snake_case ) if self.pad_token_id is not None: # pad the tokens up to max length __magic_name__ : Tuple =max_length if max_length is not None else self.max_length if max_length is not None: __magic_name__ , __magic_name__ : Tuple =pad_model_inputs( __snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
21
0
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class a__ ( UpperCamelCase__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = RoFormerTokenizer __lowerCamelCase = RoFormerTokenizerFast __lowerCamelCase = True __lowerCamelCase = True def UpperCamelCase ( self ) -> Any: '''simple docstring''' super().setUp() def UpperCamelCase ( self , **lowercase ) -> Any: '''simple docstring''' return self.tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **__snake_case ) def UpperCamelCase ( self , **lowercase ) -> Tuple: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **__snake_case ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = """永和服装饰品有限公司,今天天气非常好""" A__ = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = self.get_tokenizer() A__ = self.get_chinese_input_output_texts() A__ = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , output_text.split() ) A__ = tokens + [tokenizer.unk_token] A__ = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def UpperCamelCase ( self ) -> str: '''simple docstring''' A__ = self.get_rust_tokenizer() A__ = self.get_chinese_input_output_texts() A__ = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , output_text.split() ) A__ = tokens + [tokenizer.unk_token] A__ = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' pass def UpperCamelCase ( self ) -> str: '''simple docstring''' pass def UpperCamelCase ( self ) -> str: '''simple docstring''' pass
514
import math import tensorflow as tf from packaging import version def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : List[str] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Optional[Any] =tf.cast(math.pi , x.dtype ) __magic_name__ : int =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Any =tf.convert_to_tensor(lowerCamelCase ) return x * tf.tanh(tf.math.softplus(lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[Any] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Union[str, Any] =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Dict =tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCAmelCase_ ( lowerCamelCase ): return tf.clip_by_value(_gelu(lowerCamelCase ) , -10 , 10 ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=-1 ): __magic_name__ , __magic_name__ : List[Any] =tf.split(lowerCamelCase , 2 , axis=lowerCamelCase ) return a * tf.math.sigmoid(lowerCamelCase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowerCAmelCase_ ( lowerCamelCase ): return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase ) UpperCAmelCase_ : List[str] = tf.keras.activations.gelu UpperCAmelCase_ : Dict = approximate_gelu_wrap else: UpperCAmelCase_ : Dict = _gelu UpperCAmelCase_ : str = _gelu_new UpperCAmelCase_ : Any = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowerCAmelCase_ ( lowerCamelCase ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
21
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right UpperCAmelCase = 2_5_0_0_0_4 UpperCAmelCase = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class snake_case__ ( UpperCamelCase__ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Tuple = MBartTokenizer _SCREAMING_SNAKE_CASE : List[Any] = MBartTokenizerFast _SCREAMING_SNAKE_CASE : Optional[int] = True _SCREAMING_SNAKE_CASE : List[str] = True def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case_ : List[str] = MBartTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = MBartTokenizer(__snake_case , keep_accents=__snake_case ) snake_case_ : int = tokenizer.tokenize("This is a test" ) self.assertListEqual(__snake_case , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) snake_case_ : Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) snake_case_ : Optional[Any] = tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case_ : Any = tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def UpperCAmelCase__ ( self : Tuple ) -> str: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case_ : Tuple = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case_ : List[Any] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) snake_case_ : List[str] = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) snake_case_ : Optional[Any] = tempfile.mkdtemp() snake_case_ : Dict = tokenizer_r.save_pretrained(__snake_case ) snake_case_ : Dict = tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) snake_case_ : int = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way snake_case_ : Any = tokenizer_r.from_pretrained(__snake_case ) snake_case_ : List[Any] = tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True snake_case_ : List[str] = tempfile.mkdtemp() snake_case_ : Optional[int] = tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) snake_case_ : Dict = tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way snake_case_ : Any = tokenizer_r.from_pretrained(__snake_case ) snake_case_ : int = tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False snake_case_ : List[Any] = tempfile.mkdtemp() snake_case_ : Dict = tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) snake_case_ : List[str] = tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case_ : str = tokenizer_r.from_pretrained(__snake_case ) snake_case_ : Optional[int] = tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @require_torch @require_sentencepiece @require_tokenizers class snake_case__ ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = "facebook/mbart-large-en-ro" _SCREAMING_SNAKE_CASE : Any = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] _SCREAMING_SNAKE_CASE : Any = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] _SCREAMING_SNAKE_CASE : Dict = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def UpperCAmelCase__ ( cls : str ) -> int: '''simple docstring''' snake_case_ : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) snake_case_ : Any = 1 return cls def UpperCAmelCase__ ( self : Any ) -> int: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 25_00_20 ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' self.assertIn(__snake_case , self.tokenizer.all_special_ids ) snake_case_ : Union[str, Any] = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] snake_case_ : Optional[int] = self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) snake_case_ : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertNotIn(self.tokenizer.eos_token , __snake_case ) def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , __snake_case ) snake_case_ : Dict = 10 snake_case_ : Optional[Any] = self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __snake_case ) self.assertEqual(len(__snake_case ) , __snake_case ) def UpperCAmelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [25_00_26, 25_00_01] ) def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[int] = tempfile.mkdtemp() snake_case_ : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) snake_case_ : Dict = MBartTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case ) @require_torch def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : Any = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__snake_case , return_tensors="pt" ) snake_case_ : str = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) snake_case_ : Any = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) snake_case_ : int = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def UpperCAmelCase__ ( self : List[str] ) -> Dict: '''simple docstring''' snake_case_ : Tuple = self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors="pt" ) snake_case_ : Tuple = self.tokenizer( text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=10 , return_tensors="pt" ) snake_case_ : List[Any] = targets["""input_ids"""] snake_case_ : List[str] = shift_tokens_right(__snake_case , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCAmelCase__ ( self : str ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(__snake_case ) , { # A, test, EOS, en_XX "input_ids": [[62, 30_34, 2, 25_00_04]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_00_01, } , )
666
from collections.abc import Sequence def lowerCAmelCase_ ( lowerCamelCase = None ): if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __magic_name__ : str =nums[0] for i in range(1 , len(lowerCamelCase ) ): __magic_name__ : Any =nums[i] __magic_name__ : Dict =max(lowerCamelCase , ans + num , lowerCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCAmelCase_ : List[str] = int(input("Enter number of elements : ").strip()) UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
21
0
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def __lowerCamelCase (UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple ): SCREAMING_SNAKE_CASE = np.array([[1, item, train_mtch[i]] for i, item in enumerate(UpperCAmelCase__ )] ) SCREAMING_SNAKE_CASE = np.array(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , UpperCAmelCase__ ) ) , x.transpose() ) , UpperCAmelCase__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def __lowerCamelCase (UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any ): SCREAMING_SNAKE_CASE = (1, 2, 1) SCREAMING_SNAKE_CASE = (1, 1, 0, 7) SCREAMING_SNAKE_CASE = SARIMAX( UpperCAmelCase__ , exog=UpperCAmelCase__ , order=UpperCAmelCase__ , seasonal_order=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = model.fit(disp=UpperCAmelCase__ , maxiter=6_0_0 , method="nm" ) SCREAMING_SNAKE_CASE = model_fit.predict(1 , len(UpperCAmelCase__ ) , exog=[test_match] ) return result[0] def __lowerCamelCase (UpperCAmelCase__ : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any ): SCREAMING_SNAKE_CASE = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = regressor.predict(UpperCAmelCase__ ) return y_pred[0] def __lowerCamelCase (UpperCAmelCase__ : Tuple ): train_user.sort() SCREAMING_SNAKE_CASE = np.percentile(UpperCAmelCase__ , 2_5 ) SCREAMING_SNAKE_CASE = np.percentile(UpperCAmelCase__ , 7_5 ) SCREAMING_SNAKE_CASE = qa - qa SCREAMING_SNAKE_CASE = qa - (iqr * 0.1) return low_lim def __lowerCamelCase (UpperCAmelCase__ : str , UpperCAmelCase__ : Dict ): SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 for i in list_vote: if i > actual_result: SCREAMING_SNAKE_CASE = not_safe + 1 else: if abs(abs(UpperCAmelCase__ ) - abs(UpperCAmelCase__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) _lowerCamelCase : Tuple = [[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]] _lowerCamelCase : str = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) _lowerCamelCase : Tuple = Normalizer().fit_transform(data_input_df.values) # split data _lowerCamelCase : Dict = normalize_df[:, 2].tolist() _lowerCamelCase : List[str] = normalize_df[:, 0].tolist() _lowerCamelCase : List[Any] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) _lowerCamelCase : List[Any] = normalize_df[:, [1, 2]].tolist() _lowerCamelCase : List[Any] = x[: len(x) - 1] _lowerCamelCase : Tuple = x[len(x) - 1 :] # for linear regression & sarimax _lowerCamelCase : Dict = total_date[: len(total_date) - 1] _lowerCamelCase : Optional[Any] = total_user[: len(total_user) - 1] _lowerCamelCase : int = total_match[: len(total_match) - 1] _lowerCamelCase : int = total_date[len(total_date) - 1 :] _lowerCamelCase : Dict = total_user[len(total_user) - 1 :] _lowerCamelCase : Optional[int] = total_match[len(total_match) - 1 :] # voting system with forecasting _lowerCamelCase : Union[str, Any] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data _lowerCamelCase : Optional[Any] = "" if data_safety_checker(res_vote, tst_user) else "not " print('''Today\'s data is {not_str}safe.''')
403
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : UpperCamelCase = 42 UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""Translation""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def __call__( self :Union[str, Any] ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def A__ ( self :List[Any] ): '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __A : UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""TranslationVariableLanguages""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =sorted(set(self.languages ) ) if self.languages else None __magic_name__ : Optional[int] =len(self.languages ) if self.languages else None def __call__( self :List[str] ): '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def A__ ( self :str , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[int] =set(self.languages ) if self.languages and set(__snake_case ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __magic_name__ : Any =[] for lang, text in translation_dict.items(): if isinstance(__snake_case , __snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __magic_name__ , __magic_name__ : List[str] =zip(*sorted(__snake_case ) ) return {"language": languages, "translation": translations} def A__ ( self :List[Any] ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
21
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __lowerCamelCase ( UpperCamelCase__ ): a__: Any = 'ibert' def __init__( self , UpperCAmelCase=3_0522 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=2 , UpperCAmelCase=0.0_2 , UpperCAmelCase=1e-1_2 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase="absolute" , UpperCAmelCase=False , UpperCAmelCase="none" , **UpperCAmelCase , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = position_embedding_type lowerCamelCase_ = quant_mode lowerCamelCase_ = force_dequant class __lowerCamelCase ( UpperCamelCase__ ): @property def UpperCAmelCase__ ( self ): if self.task == "multiple-choice": lowerCamelCase_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCamelCase_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
29
from sklearn.metrics import matthews_corrcoef import datasets UpperCAmelCase_ : Dict = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCAmelCase_ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCAmelCase_ : Dict = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def A__ ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def A__ ( self :Tuple , __snake_case :str , __snake_case :Tuple , __snake_case :List[str]=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ), }
21
0
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCAmelCase ( a__ , a__ , a__ , a__ , a__=True , a__="pt" ): '''simple docstring''' lowerCAmelCase :int = {"""add_prefix_space""": True} if isinstance(a__ , a__ ) and not line.startswith(' ' ) else {} lowerCAmelCase :Dict = padding_side return tokenizer( [line] , max_length=a__ , padding='max_length' if pad_to_max_length else None , truncation=a__ , return_tensors=a__ , add_special_tokens=a__ , **a__ , ) def UpperCAmelCase ( a__ , a__ , a__=None , ): '''simple docstring''' lowerCAmelCase :Union[str, Any] = input_ids.ne(a__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __UpperCamelCase ( UpperCamelCase__ ): def __init__( self : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict="train" , UpperCAmelCase : str=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[str]="" , ) -> Tuple: super().__init__() lowerCAmelCase :List[str] = Path(__snake_case ).joinpath(type_path + '.source' ) lowerCAmelCase :Tuple = Path(__snake_case ).joinpath(type_path + '.target' ) lowerCAmelCase :int = self.get_char_lens(self.src_file ) lowerCAmelCase :Optional[Any] = max_source_length lowerCAmelCase :int = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" lowerCAmelCase :Any = tokenizer lowerCAmelCase :str = prefix if n_obs is not None: lowerCAmelCase :Union[str, Any] = self.src_lens[:n_obs] lowerCAmelCase :Dict = src_lang lowerCAmelCase :List[str] = tgt_lang def __len__( self : Tuple ) -> Union[str, Any]: return len(self.src_lens ) def __getitem__( self : int , UpperCAmelCase : List[Any] ) -> List[str]: lowerCAmelCase :str = index + 1 # linecache starts at 1 lowerCAmelCase :List[Any] = self.prefix + linecache.getline(str(self.src_file ) , __snake_case ).rstrip('\n' ) lowerCAmelCase :Tuple = linecache.getline(str(self.tgt_file ) , __snake_case ).rstrip('\n' ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , __snake_case ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowerCAmelCase :Dict = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __snake_case ) else self.tokenizer ) lowerCAmelCase :Optional[Any] = self.tokenizer.generator if isinstance(self.tokenizer , __snake_case ) else self.tokenizer lowerCAmelCase :Union[str, Any] = encode_line(__snake_case , __snake_case , self.max_source_length , 'right' ) lowerCAmelCase :str = encode_line(__snake_case , __snake_case , self.max_target_length , 'right' ) lowerCAmelCase :Tuple = source_inputs["""input_ids"""].squeeze() lowerCAmelCase :Any = target_inputs["""input_ids"""].squeeze() lowerCAmelCase :Any = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCAmelCase__ ( UpperCAmelCase : List[str] ) -> Dict: return [len(__snake_case ) for x in Path(__snake_case ).open().readlines()] def UpperCAmelCase__ ( self : Dict , UpperCAmelCase : List[str] ) -> Optional[Any]: lowerCAmelCase :Any = torch.stack([x['input_ids'] for x in batch] ) lowerCAmelCase :Any = torch.stack([x['attention_mask'] for x in batch] ) lowerCAmelCase :Optional[Any] = torch.stack([x['decoder_input_ids'] for x in batch] ) lowerCAmelCase :Dict = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __snake_case ) else self.tokenizer.pad_token_id ) lowerCAmelCase :Any = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __snake_case ) else self.tokenizer.pad_token_id ) lowerCAmelCase :Tuple = trim_batch(__snake_case , __snake_case ) lowerCAmelCase :Dict = trim_batch(__snake_case , __snake_case , attention_mask=__snake_case ) lowerCAmelCase :Union[str, Any] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __SCREAMING_SNAKE_CASE = getLogger(__name__) def UpperCAmelCase ( a__ ): '''simple docstring''' return list(itertools.chain.from_iterable(a__ ) ) def UpperCAmelCase ( a__ ): '''simple docstring''' lowerCAmelCase :str = get_git_info() save_json(a__ , os.path.join(a__ , 'git_log.json' ) ) def UpperCAmelCase ( a__ , a__ , a__=4 , **a__ ): '''simple docstring''' with open(a__ , 'w' ) as f: json.dump(a__ , a__ , indent=a__ , **a__ ) def UpperCAmelCase ( a__ ): '''simple docstring''' with open(a__ ) as f: return json.load(a__ ) def UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase :str = git.Repo(search_parent_directories=a__ ) lowerCAmelCase :Optional[Any] = { """repo_id""": str(a__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' return list(map(a__ , a__ ) ) def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' with open(a__ , 'wb' ) as f: return pickle.dump(a__ , a__ ) def UpperCAmelCase ( a__ ): '''simple docstring''' def remove_articles(a__ ): return re.sub(R'\b(a|an|the)\b' , ' ' , a__ ) def white_space_fix(a__ ): return " ".join(text.split() ) def remove_punc(a__ ): lowerCAmelCase :Optional[int] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(a__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(a__ ) ) ) ) def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' lowerCAmelCase :str = normalize_answer(a__ ).split() lowerCAmelCase :Tuple = normalize_answer(a__ ).split() lowerCAmelCase :Any = Counter(a__ ) & Counter(a__ ) lowerCAmelCase :Any = sum(common.values() ) if num_same == 0: return 0 lowerCAmelCase :List[Any] = 1.0 * num_same / len(a__ ) lowerCAmelCase :Union[str, Any] = 1.0 * num_same / len(a__ ) lowerCAmelCase :List[str] = (2 * precision * recall) / (precision + recall) return fa def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' return normalize_answer(a__ ) == normalize_answer(a__ ) def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' assert len(a__ ) == len(a__ ) lowerCAmelCase :int = 0 for hypo, pred in zip(a__ , a__ ): em += exact_match_score(a__ , a__ ) if len(a__ ) > 0: em /= len(a__ ) return {"em": em} def UpperCAmelCase ( a__ ): '''simple docstring''' return model_prefix.startswith('rag' ) def UpperCAmelCase ( a__ , a__ , a__ ): '''simple docstring''' lowerCAmelCase :Optional[Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowerCAmelCase :Any = """dropout_rate""" for p in extra_params: if getattr(a__ , a__ , a__ ): if not hasattr(a__ , a__ ) and not hasattr(a__ , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(a__ ) ) delattr(a__ , a__ ) continue lowerCAmelCase :str = p if hasattr(a__ , a__ ) else equivalent_param[p] setattr(a__ , a__ , getattr(a__ , a__ ) ) delattr(a__ , a__ ) return hparams, config
553
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =OmegaConf.load(lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(lowerCamelCase ) ) ) return config def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): if conf_path is None: __magic_name__ : List[str] ="""./model_checkpoints/vqgan_only.yaml""" __magic_name__ : Dict =load_config(lowerCamelCase , display=lowerCamelCase ) __magic_name__ : Tuple =VQModel(**config.model.params ) if ckpt_path is None: __magic_name__ : Optional[Any] ="""./model_checkpoints/vqgan_only.pt""" __magic_name__ : Tuple =torch.load(lowerCamelCase , map_location=lowerCamelCase ) if ".ckpt" in ckpt_path: __magic_name__ : Any =sd["""state_dict"""] model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) model.to(lowerCamelCase ) del sd return model def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =model.encode(lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) __magic_name__ : List[Any] =model.decode(lowerCamelCase ) return xrec def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ , __magic_name__ : Optional[int] =string.rsplit(""".""" , 1 ) if reload: __magic_name__ : Optional[int] =importlib.import_module(lowerCamelCase ) importlib.reload(lowerCamelCase ) return getattr(importlib.import_module(lowerCamelCase , package=lowerCamelCase ) , cls ) def lowerCAmelCase_ ( lowerCamelCase ): if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True ): __magic_name__ : str =instantiate_from_config(lowerCamelCase ) if sd is not None: model.load_state_dict(lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # load the specified checkpoint if ckpt: __magic_name__ : str =torch.load(lowerCamelCase , map_location="""cpu""" ) __magic_name__ : Any =pl_sd["""global_step"""] print(F"loaded model from global step {global_step}." ) else: __magic_name__ : List[Any] ={"""state_dict""": None} __magic_name__ : Optional[Any] =None __magic_name__ : Tuple =load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=lowerCamelCase , eval_mode=lowerCamelCase )["""model"""] return model, global_step
21
0
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any]=False ): """simple docstring""" snake_case_ : Optional[int] = OmegaConf.load(SCREAMING_SNAKE_CASE__ ) if display: print(yaml.dump(OmegaConf.to_container(SCREAMING_SNAKE_CASE__ ) ) ) return config def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Dict=None ): """simple docstring""" if conf_path is None: snake_case_ : List[str] = """./model_checkpoints/vqgan_only.yaml""" snake_case_ : Dict = load_config(SCREAMING_SNAKE_CASE__ , display=SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = VQModel(**config.model.params ) if ckpt_path is None: snake_case_ : Optional[Any] = """./model_checkpoints/vqgan_only.pt""" snake_case_ : Tuple = torch.load(SCREAMING_SNAKE_CASE__ , map_location=SCREAMING_SNAKE_CASE__ ) if ".ckpt" in ckpt_path: snake_case_ : Any = sd["""state_dict"""] model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) del sd return model def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Optional[Any] = model.encode(SCREAMING_SNAKE_CASE__ ) print(f'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' ) snake_case_ : List[Any] = model.decode(SCREAMING_SNAKE_CASE__ ) return xrec def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=False ): """simple docstring""" snake_case_ : Optional[int] = string.rsplit(""".""" , 1 ) if reload: snake_case_ : Optional[int] = importlib.import_module(SCREAMING_SNAKE_CASE__ ) importlib.reload(SCREAMING_SNAKE_CASE__ ) return getattr(importlib.import_module(SCREAMING_SNAKE_CASE__ , package=SCREAMING_SNAKE_CASE__ ) , cls ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[Any]=True ): """simple docstring""" snake_case_ : str = instantiate_from_config(SCREAMING_SNAKE_CASE__ ) if sd is not None: model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" if ckpt: snake_case_ : str = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) snake_case_ : Any = pl_sd["""global_step"""] print(f'loaded model from global step {global_step}.' ) else: snake_case_ : List[Any] = {"""state_dict""": None} snake_case_ : Optional[Any] = None snake_case_ : Tuple = load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=SCREAMING_SNAKE_CASE__ , eval_mode=SCREAMING_SNAKE_CASE__ )["""model"""] return model, global_step
480
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): def A__ ( self :Tuple ): '''simple docstring''' debug_launcher(test_script.main ) def A__ ( self :Dict ): '''simple docstring''' debug_launcher(test_ops.main )
21
0
def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Optional[Any]: return "".join([hex(__snake_case )[2:].zfill(2 ).upper() for byte in list(__snake_case )] ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Dict: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(__snake_case ) % 2) != 0: raise ValueError( """Base16 encoded data is invalid: Data does not have an even number of hex digits.""" ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__snake_case ) <= set("""0123456789ABCDEF""" ): raise ValueError( """Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.""" ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 1_6 ) for i in range(0 , len(__snake_case ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
108
UpperCAmelCase_ : Tuple = 0 # The first color of the flag. UpperCAmelCase_ : Any = 1 # The second color of the flag. UpperCAmelCase_ : str = 2 # The third color of the flag. UpperCAmelCase_ : Tuple = (red, white, blue) def lowerCAmelCase_ ( lowerCamelCase ): if not sequence: return [] if len(lowerCamelCase ) == 1: return list(lowerCamelCase ) __magic_name__ : int =0 __magic_name__ : str =len(lowerCamelCase ) - 1 __magic_name__ : Optional[Any] =0 while mid <= high: if sequence[mid] == colors[0]: __magic_name__ , __magic_name__ : Tuple =sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: __magic_name__ , __magic_name__ : Optional[Any] =sequence[high], sequence[mid] high -= 1 else: __magic_name__ : Optional[int] =F"The elements inside the sequence must contains only {colors} values" raise ValueError(lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[Any] = input("Enter numbers separated by commas:\n").strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
21
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def snake_case_ (__A : Union[str, Any] ) -> int: __lowerCAmelCase : Tuple = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: __lowerCAmelCase : Any = [1_4_4, 1_9_2, 2_4_0] __lowerCAmelCase : Union[str, Any] = [1_6, 3_2, 6_4, 9_6, 1_2_8, 1_6_0, 6_4_0] elif "mobilevit_xs" in mobilevit_name: __lowerCAmelCase : Dict = [9_6, 1_2_0, 1_4_4] __lowerCAmelCase : str = [1_6, 3_2, 4_8, 6_4, 8_0, 9_6, 3_8_4] elif "mobilevit_xxs" in mobilevit_name: __lowerCAmelCase : List[str] = [6_4, 8_0, 9_6] __lowerCAmelCase : List[str] = [1_6, 1_6, 2_4, 4_8, 6_4, 8_0, 3_2_0] __lowerCAmelCase : Optional[int] = 0.05 __lowerCAmelCase : int = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): __lowerCAmelCase : int = 5_1_2 __lowerCAmelCase : Dict = 1_6 __lowerCAmelCase : Union[str, Any] = 2_1 __lowerCAmelCase : int = """pascal-voc-id2label.json""" else: __lowerCAmelCase : Union[str, Any] = 1_0_0_0 __lowerCAmelCase : List[Any] = """imagenet-1k-id2label.json""" __lowerCAmelCase : List[Any] = """huggingface/label-files""" __lowerCAmelCase : Dict = json.load(open(hf_hub_download(__A , __A , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase : Any = {int(__A ): v for k, v in idalabel.items()} __lowerCAmelCase : int = idalabel __lowerCAmelCase : Any = {v: k for k, v in idalabel.items()} return config def snake_case_ (__A : Union[str, Any] , __A : str=False ) -> Optional[Any]: for i in range(1 , 6 ): if f'''layer_{i}.''' in name: __lowerCAmelCase : Dict = name.replace(f'''layer_{i}.''' , f'''encoder.layer.{i - 1}.''' ) if "conv_1." in name: __lowerCAmelCase : List[Any] = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: __lowerCAmelCase : int = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: __lowerCAmelCase : str = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: __lowerCAmelCase : Dict = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: __lowerCAmelCase : List[str] = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: __lowerCAmelCase : Optional[Any] = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: __lowerCAmelCase : Tuple = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: __lowerCAmelCase : Any = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: __lowerCAmelCase : Optional[Any] = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if f'''.{i}.{j}.''' in name: __lowerCAmelCase : int = name.replace(f'''.{i}.{j}.''' , f'''.{i}.layer.{j}.''' ) for i in range(2 , 6 ): for j in range(0 , 4 ): if f'''.{i}.{j}.''' in name: __lowerCAmelCase : Dict = name.replace(f'''.{i}.{j}.''' , f'''.{i}.''' ) if "expand_1x1" in name: __lowerCAmelCase : Optional[int] = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: __lowerCAmelCase : Optional[int] = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: __lowerCAmelCase : Any = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if f'''.global_rep.{i}.weight''' in name: __lowerCAmelCase : Dict = name.replace(f'''.global_rep.{i}.weight''' , """.layernorm.weight""" ) if f'''.global_rep.{i}.bias''' in name: __lowerCAmelCase : Tuple = name.replace(f'''.global_rep.{i}.bias''' , """.layernorm.bias""" ) if ".global_rep." in name: __lowerCAmelCase : List[str] = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: __lowerCAmelCase : int = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: __lowerCAmelCase : Optional[Any] = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: __lowerCAmelCase : List[str] = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: __lowerCAmelCase : Any = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: __lowerCAmelCase : Optional[int] = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: __lowerCAmelCase : int = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: __lowerCAmelCase : List[Any] = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: __lowerCAmelCase : List[Any] = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: __lowerCAmelCase : Tuple = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: __lowerCAmelCase : Dict = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: __lowerCAmelCase : Tuple = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): __lowerCAmelCase : Any = """mobilevit.""" + name return name def snake_case_ (__A : Union[str, Any] , __A : int , __A : int=False ) -> str: if base_model: __lowerCAmelCase : Any = """""" else: __lowerCAmelCase : Tuple = """mobilevit.""" for key in orig_state_dict.copy().keys(): __lowerCAmelCase : Dict = orig_state_dict.pop(__A ) if key[:8] == "encoder.": __lowerCAmelCase : Optional[int] = key[8:] if "qkv" in key: __lowerCAmelCase : Tuple = key.split(""".""" ) __lowerCAmelCase : Dict = int(key_split[0][6:] ) - 1 __lowerCAmelCase : Dict = int(key_split[3] ) __lowerCAmelCase : Optional[int] = model.get_submodule(f'''{model_prefix}encoder.layer.{layer_num}''' ) __lowerCAmelCase : List[Any] = layer.transformer.layer[transformer_num].attention.attention.all_head_size __lowerCAmelCase : Tuple = ( f'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.''' ) if "weight" in key: __lowerCAmelCase : Optional[int] = val[:dim, :] __lowerCAmelCase : Tuple = val[dim : dim * 2, :] __lowerCAmelCase : List[str] = val[-dim:, :] else: __lowerCAmelCase : Tuple = val[:dim] __lowerCAmelCase : str = val[dim : dim * 2] __lowerCAmelCase : int = val[-dim:] else: __lowerCAmelCase : Optional[int] = val return orig_state_dict def snake_case_ () -> Union[str, Any]: __lowerCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase : str = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def snake_case_ (__A : Dict , __A : Optional[Any] , __A : Tuple , __A : int=False ) -> Dict: __lowerCAmelCase : Optional[int] = get_mobilevit_config(__A ) # load original state_dict __lowerCAmelCase : List[Any] = torch.load(__A , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): __lowerCAmelCase : Union[str, Any] = MobileViTForSemanticSegmentation(__A ).eval() else: __lowerCAmelCase : Tuple = MobileViTForImageClassification(__A ).eval() __lowerCAmelCase : Dict = convert_state_dict(__A , __A ) model.load_state_dict(__A ) # Check outputs on an image, prepared by MobileViTImageProcessor __lowerCAmelCase : Any = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 3_2 ) __lowerCAmelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="""pt""" ) __lowerCAmelCase : List[Any] = model(**__A ) __lowerCAmelCase : Union[str, Any] = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 2_1, 3_2, 3_2) if mobilevit_name == "deeplabv3_mobilevit_s": __lowerCAmelCase : Any = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": __lowerCAmelCase : Dict = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": __lowerCAmelCase : Dict = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-1_0.5_5_3_6, -1_0.2_3_3_2, -1_0.2_9_2_4], [-1_0.2_3_3_6, -9.8624, -9.5964], [-1_0.8_8_4_0, -1_0.8_1_5_8, -1_0.6_6_5_9]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3, :3, :3] , __A , atol=1e-4 ) else: assert logits.shape == (1, 1_0_0_0) if mobilevit_name == "mobilevit_s": __lowerCAmelCase : List[str] = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": __lowerCAmelCase : Dict = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": __lowerCAmelCase : Optional[Any] = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3] , __A , atol=1e-4 ) Path(__A ).mkdir(exist_ok=__A ) print(f'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__A ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__A ) if push_to_hub: __lowerCAmelCase : List[Any] = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) __lowerCAmelCase : str = model_mapping[mobilevit_name] image_processor.push_to_hub(__A , organization="""apple""" ) model.push_to_hub(__A , organization="""apple""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--mobilevit_name""", default="""mobilevit_s""", type=str, help=( """Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',""" """ 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'.""" ), ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
651
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __A ( UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = 1 @register_to_config def __init__( self :Any , __snake_case :Tuple=20_00 , __snake_case :Optional[Any]=0.1 , __snake_case :Any=20 , __snake_case :Optional[int]=1E-3 ): '''simple docstring''' __magic_name__ : Dict =None __magic_name__ : List[str] =None __magic_name__ : str =None def A__ ( self :Dict , __snake_case :Optional[int] , __snake_case :Union[str, torch.device] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] =torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case ) def A__ ( self :List[str] , __snake_case :List[str] , __snake_case :int , __snake_case :int , __snake_case :List[str]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __magic_name__ : int =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __magic_name__ : Optional[int] =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __magic_name__ : str =std.flatten() while len(std.shape ) < len(score.shape ): __magic_name__ : List[str] =std.unsqueeze(-1 ) __magic_name__ : Union[str, Any] =-score / std # compute __magic_name__ : Tuple =-1.0 / len(self.timesteps ) __magic_name__ : int =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __magic_name__ : Dict =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __magic_name__ : Any =beta_t.unsqueeze(-1 ) __magic_name__ : Dict =-0.5 * beta_t * x __magic_name__ : Optional[int] =torch.sqrt(__snake_case ) __magic_name__ : int =drift - diffusion**2 * score __magic_name__ : List[str] =x + drift * dt # add noise __magic_name__ : Optional[int] =randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype ) __magic_name__ : Optional[Any] =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self :List[Any] ): '''simple docstring''' return self.config.num_train_timesteps
21
0
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( snake_case : str , snake_case : Optional[int] , snake_case : Any , snake_case : List[Any] )-> Optional[Any]: _lowerCamelCase = [] _lowerCamelCase = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) _lowerCamelCase = result + left + right return input_list def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[int] )-> Dict: if len(snake_case ) <= 1: return input_list _lowerCamelCase = list(snake_case ) # iteration for two-way merging _lowerCamelCase = 2 while p <= len(snake_case ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(snake_case ) , snake_case ): _lowerCamelCase = i _lowerCamelCase = i + p - 1 _lowerCamelCase = (low + high + 1) // 2 _lowerCamelCase = merge(snake_case , snake_case , snake_case , snake_case ) # final merge of last two parts if p * 2 >= len(snake_case ): _lowerCamelCase = i _lowerCamelCase = merge(snake_case , 0 , snake_case , len(snake_case ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": A_ : Dict =input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": A_ : Optional[Any] =[] else: A_ : Optional[int] =[int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
650
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCAmelCase_ : Dict = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__( self :List[str] , __snake_case :int , __snake_case :int , __snake_case :float , **__snake_case :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =feature_size __magic_name__ : Union[str, Any] =sampling_rate __magic_name__ : List[Any] =padding_value __magic_name__ : List[str] =kwargs.pop("""padding_side""" , """right""" ) __magic_name__ : Tuple =kwargs.pop("""return_attention_mask""" , __snake_case ) super().__init__(**__snake_case ) def A__ ( self :Any , __snake_case :Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __snake_case :Union[bool, str, PaddingStrategy] = True , __snake_case :Optional[int] = None , __snake_case :bool = False , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[Union[str, TensorType]] = None , ): '''simple docstring''' if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __magic_name__ : Union[str, Any] ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) __magic_name__ : int =processed_features[self.model_input_names[0]] __magic_name__ : Union[str, Any] =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__snake_case ) == 0: if return_attention_mask: __magic_name__ : List[str] =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __magic_name__ : Optional[int] =required_input[0] if isinstance(__snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __magic_name__ : Optional[Any] =0 while len(required_input[index] ) == 0: index += 1 if index < len(__snake_case ): __magic_name__ : List[str] =required_input[index][0] if return_tensors is None: if is_tf_tensor(__snake_case ): __magic_name__ : int ="""tf""" elif is_torch_tensor(__snake_case ): __magic_name__ : str ="""pt""" elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ): __magic_name__ : List[Any] ="""np""" else: raise ValueError( f"type of {first_element} unknown: {type(__snake_case )}. " """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __magic_name__ : List[str] =to_numpy(__snake_case ) else: __magic_name__ : str =[to_numpy(__snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy __magic_name__ : Dict =self._get_padding_strategies(padding=__snake_case , max_length=__snake_case ) __magic_name__ : Optional[Any] =processed_features[self.model_input_names[0]] __magic_name__ : Dict =len(__snake_case ) if not all(len(__snake_case ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) __magic_name__ : Optional[int] =[] for i in range(__snake_case ): __magic_name__ : Any ={k: v[i] for k, v in processed_features.items()} # truncation __magic_name__ : List[str] =self._truncate( __snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) truncated_inputs.append(__snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __magic_name__ : Optional[int] =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __magic_name__ : Tuple =PaddingStrategy.MAX_LENGTH __magic_name__ : str ={} for i in range(__snake_case ): # padding __magic_name__ : List[str] =self._pad( truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: __magic_name__ : Dict =[] if value.dtype is np.dtype(np.floataa ): __magic_name__ : Optional[int] =value.astype(np.floataa ) batch_outputs[key].append(__snake_case ) return BatchFeature(__snake_case , tensor_type=__snake_case ) def A__ ( self :Any , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' __magic_name__ : Dict =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __magic_name__ : Any =len(__snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : Dict =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : List[Any] =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __magic_name__ : int =np.ones(len(__snake_case ) , dtype=np.intaa ) if needs_to_be_padded: __magic_name__ : List[Any] =max_length - len(__snake_case ) if self.padding_side == "right": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (0, difference) ) __magic_name__ : Tuple =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __magic_name__ : str =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (difference, 0) ) __magic_name__ : Optional[int] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __magic_name__ : List[Any] =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def A__ ( self :Optional[Any] , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) __magic_name__ : Union[str, Any] =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : List[str] =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : Any =len(__snake_case ) > max_length if needs_to_be_truncated: __magic_name__ : List[Any] =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __magic_name__ : List[str] =processed_features["""attention_mask"""][:max_length] return processed_features def A__ ( self :List[Any] , __snake_case :str=False , __snake_case :Optional[int]=None ): '''simple docstring''' if padding is not False: if padding is True: __magic_name__ : Union[str, Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__snake_case , __snake_case ): __magic_name__ : Optional[int] =PaddingStrategy(__snake_case ) elif isinstance(__snake_case , __snake_case ): __magic_name__ : Any =padding else: __magic_name__ : Any =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
21
0
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowercase ( unittest.TestCase ): '''simple docstring''' @property def __magic_name__( self :Union[str, Any] ) -> int: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Tuple = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def __magic_name__( self :Dict ) -> int: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_uncond_unet __SCREAMING_SNAKE_CASE : Tuple = KarrasVeScheduler() __SCREAMING_SNAKE_CASE : List[str] = KarrasVePipeline(unet=__snake_case , scheduler=__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = pipe(num_inference_steps=2 , generator=__snake_case , output_type='''numpy''' ).images __SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = pipe(num_inference_steps=2 , generator=__snake_case , output_type='''numpy''' , return_dict=__snake_case )[0] __SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Tuple ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = """google/ncsnpp-celebahq-256""" __SCREAMING_SNAKE_CASE : str = UNetaDModel.from_pretrained(__snake_case ) __SCREAMING_SNAKE_CASE : int = KarrasVeScheduler() __SCREAMING_SNAKE_CASE : List[Any] = KarrasVePipeline(unet=__snake_case , scheduler=__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[str] = pipe(num_inference_steps=20 , generator=__snake_case , output_type='''numpy''' ).images __SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __SCREAMING_SNAKE_CASE : str = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
696
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): def __init__( self :List[Any] ): '''simple docstring''' super().__init__() __magic_name__ : Tuple =nn.Linear(3 , 4 ) __magic_name__ : Union[str, Any] =nn.BatchNormad(4 ) __magic_name__ : List[str] =nn.Linear(4 , 5 ) def A__ ( self :Dict , __snake_case :Tuple ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) ) class __A ( UpperCamelCase__ ): def A__ ( self :Any , __snake_case :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Any ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __A ( UpperCamelCase__ ): def A__ ( self :List[str] , __snake_case :Tuple , __snake_case :Union[str, Any] ): '''simple docstring''' return output + 1 class __A ( unittest.TestCase ): def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : Tuple =ModelHook() add_hook_to_module(__snake_case , __snake_case ) self.assertEqual(test_model._hf_hook , __snake_case ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : List[str] =ModelHook() add_hook_to_module(__snake_case , __snake_case ) add_hook_to_module(__snake_case , __snake_case , append=__snake_case ) self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() __magic_name__ : Any =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(x + 1 ) __magic_name__ : Optional[Any] =test_model(x + 2 ) __magic_name__ : int =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : int =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : str =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : List[str] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Optional[Any] =SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) assert torch.allclose(__snake_case , __snake_case , atol=1E-5 ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() __magic_name__ : Dict =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(__snake_case ) __magic_name__ : Dict =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Optional[int] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Union[str, Any] =SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) assert torch.allclose(__snake_case , output + 2 , atol=1E-5 ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Tuple =ModelForTest() __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Dict =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __magic_name__ : Any =True __magic_name__ : Any =test_model(__snake_case ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[Any] =model(__snake_case ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) ) __magic_name__ : int =torch.randn(2 , 3 ).to(0 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , torch.device(0 ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : int =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : int ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[int] =torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : Union[str, Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __magic_name__ : Tuple ={ """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Tuple =torch.randn(2 , 3 ) __magic_name__ : int =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : str =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Optional[int] =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Dict =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : List[str] =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Any =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
21
0
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( UpperCamelCase__ ): _A : int = (KDPMaDiscreteScheduler,) _A : Optional[int] = 10 def UpperCamelCase_ ( self , **snake_case__ ) -> Dict: """simple docstring""" UpperCAmelCase = { """num_train_timesteps""": 11_00, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**__snake_case ) return config def UpperCamelCase_ ( self ) -> int: """simple docstring""" for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__snake_case ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=__snake_case , beta_end=__snake_case ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__snake_case ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__snake_case ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) UpperCAmelCase = scheduler_class(**__snake_case ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(__snake_case ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(__snake_case , __snake_case ) UpperCAmelCase = model(__snake_case , __snake_case ) UpperCAmelCase = scheduler.step(__snake_case , __snake_case , __snake_case ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(__snake_case ) ) UpperCAmelCase = torch.mean(torch.abs(__snake_case ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1_112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693_428_650_170_972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0_002 ) < 1e-3 def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" if torch_device == "mps": return UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**__snake_case ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(__snake_case ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(__snake_case , __snake_case ) UpperCAmelCase = model(__snake_case , __snake_case ) UpperCAmelCase = scheduler.step(__snake_case , __snake_case , __snake_case ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(__snake_case ) ) UpperCAmelCase = torch.mean(torch.abs(__snake_case ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 def UpperCamelCase_ ( self ) -> str: """simple docstring""" if torch_device == "mps": return UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**__snake_case ) scheduler.set_timesteps(self.num_inference_steps , device=__snake_case ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter.to(__snake_case ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(__snake_case , __snake_case ) UpperCAmelCase = model(__snake_case , __snake_case ) UpperCAmelCase = scheduler.step(__snake_case , __snake_case , __snake_case ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(__snake_case ) ) UpperCAmelCase = torch.mean(torch.abs(__snake_case ) ) if str(__snake_case ).startswith("""cpu""" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3
673
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = KandinskyInpaintPipeline UpperCamelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCamelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCamelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase = False @property def A__ ( self :Union[str, Any] ): '''simple docstring''' return 32 @property def A__ ( self :Optional[Any] ): '''simple docstring''' return 32 @property def A__ ( self :List[Any] ): '''simple docstring''' return self.time_input_dim @property def A__ ( self :Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def A__ ( self :List[Any] ): '''simple docstring''' return 1_00 @property def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Dict =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self :str ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : str =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __magic_name__ : Tuple =MultilingualCLIP(__snake_case ) __magic_name__ : Optional[int] =text_encoder.eval() return text_encoder @property def A__ ( self :Dict ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Optional[Any] ={ """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __magic_name__ : Union[str, Any] =UNetaDConditionModel(**__snake_case ) return model @property def A__ ( self :List[str] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self :Tuple ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Dict =VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[str] =self.dummy_text_encoder __magic_name__ : Optional[Any] =self.dummy_tokenizer __magic_name__ : Optional[Any] =self.dummy_unet __magic_name__ : Tuple =self.dummy_movq __magic_name__ : List[str] =DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , ) __magic_name__ : str ={ """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self :str , __snake_case :Optional[Any] , __snake_case :int=0 ): '''simple docstring''' __magic_name__ : Union[str, Any] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : Dict =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case ) # create init_image __magic_name__ : str =floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : int =image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ : str =Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask __magic_name__ : Dict =np.ones((64, 64) , dtype=np.floataa ) __magic_name__ : Any =0 if str(__snake_case ).startswith("""mps""" ): __magic_name__ : Dict =torch.manual_seed(__snake_case ) else: __magic_name__ : Tuple =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__ : List[Any] ={ """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Tuple ="""cpu""" __magic_name__ : List[Any] =self.get_dummy_components() __magic_name__ : Union[str, Any] =self.pipeline_class(**__snake_case ) __magic_name__ : Tuple =pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Tuple =pipe(**self.get_dummy_inputs(__snake_case ) ) __magic_name__ : List[Any] =output.images __magic_name__ : Any =pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] __magic_name__ : int =image[0, -3:, -3:, -1] __magic_name__ : str =image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) __magic_name__ : Optional[Any] =np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def A__ ( self :Dict ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def A__ ( self :List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : List[str] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) __magic_name__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __magic_name__ : List[Any] =np.ones((7_68, 7_68) , dtype=np.floataa ) __magic_name__ : Any =0 __magic_name__ : int ="""a hat""" __magic_name__ : int =KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) __magic_name__ : Dict =KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) __magic_name__ : int =pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Union[str, Any] =torch.Generator(device="""cpu""" ).manual_seed(0 ) __magic_name__ , __magic_name__ : Dict =pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __magic_name__ : Optional[Any] =pipeline( __snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) __magic_name__ : Optional[int] =output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
21
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class a__ ( UpperCamelCase__ ): """simple docstring""" @staticmethod @abstractmethod def UpperCamelCase ( lowercase ) -> List[str]: '''simple docstring''' raise NotImplementedError() @abstractmethod def UpperCamelCase ( self ) -> int: '''simple docstring''' raise NotImplementedError()
514
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __A : def __init__( self :int , __snake_case :List[Any] , __snake_case :List[Any]=2 , __snake_case :Dict=True , __snake_case :Tuple=False , __snake_case :List[str]=10 , __snake_case :List[str]=3 , __snake_case :Union[str, Any]=32 * 8 , __snake_case :Optional[int]=32 * 8 , __snake_case :Any=4 , __snake_case :Union[str, Any]=64 , ): '''simple docstring''' __magic_name__ : Optional[int] =parent __magic_name__ : List[Any] =batch_size __magic_name__ : List[str] =is_training __magic_name__ : List[str] =use_auxiliary_loss __magic_name__ : Union[str, Any] =num_queries __magic_name__ : str =num_channels __magic_name__ : Union[str, Any] =min_size __magic_name__ : Union[str, Any] =max_size __magic_name__ : Optional[int] =num_labels __magic_name__ : Tuple =hidden_dim __magic_name__ : Any =hidden_dim def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __snake_case ) __magic_name__ : List[Any] =torch.ones([self.batch_size, self.min_size, self.max_size] , device=__snake_case ) __magic_name__ : List[str] =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__snake_case ) > 0.5 ).float() __magic_name__ : Union[str, Any] =(torch.rand((self.batch_size, self.num_labels) , device=__snake_case ) > 0.5).long() __magic_name__ : str =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Dict =MaskaFormerConfig( hidden_size=self.hidden_dim , ) __magic_name__ : str =self.num_queries __magic_name__ : Dict =self.num_labels __magic_name__ : int =[1, 1, 1, 1] __magic_name__ : List[str] =self.num_channels __magic_name__ : str =64 __magic_name__ : List[str] =1_28 __magic_name__ : Optional[Any] =self.hidden_dim __magic_name__ : Tuple =self.hidden_dim __magic_name__ : Optional[int] =self.hidden_dim return config def A__ ( self :Any ): '''simple docstring''' __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple =self.prepare_config_and_inputs() __magic_name__ : Optional[Any] ={"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def A__ ( self :Union[str, Any] , __snake_case :Tuple , __snake_case :Dict ): '''simple docstring''' __magic_name__ : int =output.encoder_hidden_states __magic_name__ : List[str] =output.pixel_decoder_hidden_states __magic_name__ : int =output.transformer_decoder_hidden_states self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , config.decoder_layers ) def A__ ( self :List[Any] , __snake_case :Optional[Any] , __snake_case :int , __snake_case :str , __snake_case :str=False ): '''simple docstring''' with torch.no_grad(): __magic_name__ : List[str] =MaskaFormerModel(config=__snake_case ) model.to(__snake_case ) model.eval() __magic_name__ : Union[str, Any] =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : int =model(__snake_case , output_hidden_states=__snake_case ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__snake_case , __snake_case ) def A__ ( self :Optional[Any] , __snake_case :List[str] , __snake_case :List[Any] , __snake_case :int , __snake_case :Any , __snake_case :Union[str, Any] ): '''simple docstring''' __magic_name__ : str =MaskaFormerForUniversalSegmentation(config=__snake_case ) model.to(__snake_case ) model.eval() def comm_check_on_output(__snake_case :List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __magic_name__ : int =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : List[str] =model(__snake_case ) comm_check_on_output(__snake_case ) __magic_name__ : Any =model( pixel_values=__snake_case , pixel_mask=__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) comm_check_on_output(__snake_case ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCamelCase = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def A__ ( self :str ): '''simple docstring''' __magic_name__ : Any =MaskaFormerModelTester(self ) __magic_name__ : Union[str, Any] =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def A__ ( self :Dict ): '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__snake_case ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def A__ ( self :List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def A__ ( self :Dict ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def A__ ( self :Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def A__ ( self :int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def A__ ( self :Tuple ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A__ ( self :Union[str, Any] ): '''simple docstring''' pass def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Tuple =model_class(__snake_case ) __magic_name__ : Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple =[*signature.parameters.keys()] __magic_name__ : Optional[Any] =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) @slow def A__ ( self :Tuple ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __magic_name__ : int =MaskaFormerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =(self.model_tester.min_size,) * 2 __magic_name__ : Union[str, Any] ={ """pixel_values""": torch.randn((2, 3, *size) , device=__snake_case ), """mask_labels""": torch.randn((2, 10, *size) , device=__snake_case ), """class_labels""": torch.zeros(2 , 10 , device=__snake_case ).long(), } __magic_name__ : Optional[Any] =self.model_tester.get_config() __magic_name__ : Dict =MaskaFormerForUniversalSegmentation(__snake_case ).to(__snake_case ) __magic_name__ : Any =model(**__snake_case ) self.assertTrue(outputs.loss is not None ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ , __magic_name__ : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] =model_class(__snake_case ).to(__snake_case ) __magic_name__ : Optional[int] =model(**__snake_case , output_attentions=__snake_case ) self.assertTrue(outputs.attentions is not None ) def A__ ( self :int ): '''simple docstring''' if not self.model_tester.is_training: return __magic_name__ : List[Any] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Dict =model_class(__snake_case ) model.to(__snake_case ) model.train() __magic_name__ : Optional[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ).loss loss.backward() def A__ ( self :int ): '''simple docstring''' __magic_name__ : List[str] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Tuple =True __magic_name__ : Optional[int] =True __magic_name__ : int =model_class(__snake_case ).to(__snake_case ) model.train() __magic_name__ : List[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) __magic_name__ : Optional[int] =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __magic_name__ : Optional[int] =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__snake_case ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase_ : Dict = 1e-4 def lowerCAmelCase_ ( ): __magic_name__ : Dict =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __A ( unittest.TestCase ): @cached_property def A__ ( self :int ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def A__ ( self :int ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__snake_case ) __magic_name__ : int =self.default_image_processor __magic_name__ : List[Any] =prepare_img() __magic_name__ : Any =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Dict =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : List[str] =model(**__snake_case ) __magic_name__ : Any =torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Dict =torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Any =torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Optional[int] =self.default_image_processor __magic_name__ : Tuple =prepare_img() __magic_name__ : List[Any] =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Union[str, Any] =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : str =model(**__snake_case ) # masks_queries_logits __magic_name__ : List[Any] =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __magic_name__ : List[Any] =[ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __magic_name__ : Dict =torch.tensor(__snake_case ).to(__snake_case ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) # class_queries_logits __magic_name__ : Any =outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __magic_name__ : int =torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Any =self.default_image_processor __magic_name__ : Union[str, Any] =image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , ) __magic_name__ : str =inputs["""pixel_values"""].to(__snake_case ) __magic_name__ : Tuple =[el.to(__snake_case ) for el in inputs["""mask_labels"""]] __magic_name__ : Union[str, Any] =[el.to(__snake_case ) for el in inputs["""class_labels"""]] with torch.no_grad(): __magic_name__ : Dict =model(**__snake_case ) self.assertTrue(outputs.loss is not None )
21
0
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( UpperCamelCase__ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = MgpstrTokenizer _SCREAMING_SNAKE_CASE : Any = False _SCREAMING_SNAKE_CASE : Union[str, Any] = {} _SCREAMING_SNAKE_CASE : List[Any] = False def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' super().setUp() # fmt: off snake_case_ : int = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on snake_case_ : Union[str, Any] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) snake_case_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__snake_case ) + "\n" ) def UpperCAmelCase__ ( self : str , **A__ : Tuple ) -> List[str]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def UpperCAmelCase__ ( self : List[str] , A__ : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[int] = """tester""" snake_case_ : Any = """tester""" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self : Dict ) -> str: '''simple docstring''' snake_case_ : Tuple = self.get_tokenizers(do_lower_case=__snake_case ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): snake_case_ : Union[str, Any] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"cls_token": special_token} ) snake_case_ : Optional[Any] = tokenizer.encode([special_token] , add_special_tokens=__snake_case ) self.assertEqual(len(__snake_case ) , 1 ) snake_case_ : int = tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): snake_case_ : List[str] = self.get_input_output_texts(__snake_case ) snake_case_ : Dict = tokenizer.tokenize(__snake_case ) snake_case_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(__snake_case ) snake_case_ : Dict = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case_ : Tuple = tokenizer.convert_ids_to_tokens(__snake_case ) self.assertNotEqual(len(__snake_case ) , 0 ) snake_case_ : Optional[Any] = tokenizer.decode(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(text_a.replace(" " , "" ) , __snake_case ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' pass
666
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __A ( UpperCamelCase__ ): UpperCamelCase = """segformer""" def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ): '''simple docstring''' super().__init__(**__snake_case ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , ) __magic_name__ : Dict =num_channels __magic_name__ : str =num_encoder_blocks __magic_name__ : List[Any] =depths __magic_name__ : Optional[Any] =sr_ratios __magic_name__ : List[str] =hidden_sizes __magic_name__ : List[str] =patch_sizes __magic_name__ : Any =strides __magic_name__ : Optional[Any] =mlp_ratios __magic_name__ : str =num_attention_heads __magic_name__ : int =hidden_act __magic_name__ : List[Any] =hidden_dropout_prob __magic_name__ : Optional[Any] =attention_probs_dropout_prob __magic_name__ : Optional[Any] =classifier_dropout_prob __magic_name__ : List[str] =initializer_range __magic_name__ : List[str] =drop_path_rate __magic_name__ : List[Any] =layer_norm_eps __magic_name__ : List[str] =decoder_hidden_size __magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case ) __magic_name__ : Dict =semantic_loss_ignore_index class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.11""" ) @property def A__ ( self :List[str] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self :Any ): '''simple docstring''' return 1E-4 @property def A__ ( self :int ): '''simple docstring''' return 12
21
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( UpperCamelCase__ ): lowercase__ : Union[str, Any] = (PNDMScheduler,) lowercase__ : str = (("""num_inference_steps""", 50),) def __snake_case( self : str , **_UpperCamelCase : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = { """num_train_timesteps""": 1_000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", } config.update(**__snake_case ) return config def __snake_case( self : List[Any] , _UpperCamelCase : Union[str, Any]=0 , **_UpperCamelCase : Optional[int] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , __snake_case ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config(**__snake_case ) SCREAMING_SNAKE_CASE = scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals SCREAMING_SNAKE_CASE = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case ) SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(__snake_case ) new_scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals SCREAMING_SNAKE_CASE = dummy_past_residuals[:] SCREAMING_SNAKE_CASE = scheduler.step_prk(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample SCREAMING_SNAKE_CASE = new_scheduler.step_prk(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE = scheduler.step_plms(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample SCREAMING_SNAKE_CASE = new_scheduler.step_plms(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __snake_case( self : Tuple ) -> Optional[int]: '''simple docstring''' pass def __snake_case( self : Dict , _UpperCamelCase : Optional[int]=0 , **_UpperCamelCase : List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , __snake_case ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case ) SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(__snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(__snake_case ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE = dummy_past_residuals[:] SCREAMING_SNAKE_CASE = scheduler.step_prk(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample SCREAMING_SNAKE_CASE = new_scheduler.step_prk(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE = scheduler.step_plms(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample SCREAMING_SNAKE_CASE = new_scheduler.step_plms(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __snake_case( self : Any , **_UpperCamelCase : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(**__snake_case ) SCREAMING_SNAKE_CASE = scheduler_class(**__snake_case ) SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter scheduler.set_timesteps(__snake_case ) for i, t in enumerate(scheduler.prk_timesteps ): SCREAMING_SNAKE_CASE = model(__snake_case , __snake_case ) SCREAMING_SNAKE_CASE = scheduler.step_prk(__snake_case , __snake_case , __snake_case ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): SCREAMING_SNAKE_CASE = model(__snake_case , __snake_case ) SCREAMING_SNAKE_CASE = scheduler.step_plms(__snake_case , __snake_case , __snake_case ).prev_sample return sample def __snake_case( self : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , __snake_case ) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**__snake_case ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample if num_inference_steps is not None and hasattr(__snake_case , "set_timesteps" ): scheduler.set_timesteps(__snake_case ) elif num_inference_steps is not None and not hasattr(__snake_case , "set_timesteps" ): SCREAMING_SNAKE_CASE = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] SCREAMING_SNAKE_CASE = dummy_past_residuals[:] SCREAMING_SNAKE_CASE = scheduler.step_prk(__snake_case , 0 , __snake_case , **__snake_case ).prev_sample SCREAMING_SNAKE_CASE = scheduler.step_prk(__snake_case , 1 , __snake_case , **__snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) SCREAMING_SNAKE_CASE = scheduler.step_plms(__snake_case , 0 , __snake_case , **__snake_case ).prev_sample SCREAMING_SNAKE_CASE = scheduler.step_plms(__snake_case , 1 , __snake_case , **__snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __snake_case( self : Tuple ) -> int: '''simple docstring''' for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=__snake_case ) def __snake_case( self : int ) -> int: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__snake_case ) SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(steps_offset=1 ) SCREAMING_SNAKE_CASE = scheduler_class(**__snake_case ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def __snake_case( self : Optional[int] ) -> Tuple: '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] , [0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=__snake_case , beta_end=__snake_case ) def __snake_case( self : Union[str, Any] ) -> str: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__snake_case ) def __snake_case( self : str ) -> List[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__snake_case ) def __snake_case( self : Tuple ) -> List[Any]: '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=__snake_case ) def __snake_case( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__snake_case ) def __snake_case( self : Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = 27 for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): SCREAMING_SNAKE_CASE = scheduler.step_prk(__snake_case , __snake_case , __snake_case ).prev_sample def __snake_case( self : List[Any] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(__snake_case ): SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**__snake_case ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def __snake_case( self : Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.full_loop() SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__snake_case ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1e-3 def __snake_case( self : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.full_loop(prediction_type="v_prediction" ) SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__snake_case ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1e-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1e-3 def __snake_case( self : List[str] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.full_loop(set_alpha_to_one=__snake_case , beta_start=0.0_1 ) SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__snake_case ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1e-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1e-3 def __snake_case( self : Dict ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.full_loop(set_alpha_to_one=__snake_case , beta_start=0.0_1 ) SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__snake_case ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1e-3
403
import heapq def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase , [-1 * len(lowerCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices __magic_name__ : Tuple =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __magic_name__ : Tuple =heapq.heappop(lowerCamelCase )[1][0] chosen_vertices.add(lowerCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __magic_name__ : Tuple =elem[1][1].index(lowerCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
21
0
"""simple docstring""" import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ = logging.get_logger(__name__) A_ = {"vocab_file": "spiece.model"} A_ = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } A_ = { "AI-Sweden/gpt-sw3-126m": 2048, "AI-Sweden/gpt-sw3-350m": 2048, "AI-Sweden/gpt-sw3-1.6b": 2048, "AI-Sweden/gpt-sw3-6.7b": 2048, "AI-Sweden/gpt-sw3-20b": 2048, } class __lowerCamelCase ( UpperCamelCase__ ): a__: Union[str, Any] = VOCAB_FILES_NAMES a__: Tuple = PRETRAINED_VOCAB_FILES_MAP a__: int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__: Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = None , **UpperCAmelCase , ): lowerCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs lowerCamelCase_ = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) lowerCamelCase_ = """None""" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowerCamelCase_ = """<|endoftext|>""" if eos_token is None else eos_token lowerCamelCase_ = """<unk>""" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowerCamelCase_ = unk_token if pad_token is None else pad_token lowerCamelCase_ = eos_token if bos_token is None else bos_token else: lowerCamelCase_ = """<pad>""" if pad_token is None else pad_token lowerCamelCase_ = """<s>""" if bos_token is None else bos_token super().__init__( do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = remove_space lowerCamelCase_ = keep_accents lowerCamelCase_ = vocab_file lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__snake_case ) # Used for whitespace normalization in input texts # fmt : off lowerCamelCase_ = {""" """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """""", """„"""} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowerCamelCase_ = re.compile( f"[{''.join(map(__snake_case , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]" ) def __getstate__( self ): lowerCamelCase_ = self.__dict__.copy() lowerCamelCase_ = None return state def __setstate__( self , UpperCAmelCase ): lowerCamelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase_ = {} lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCAmelCase__ ( self ): return len(self.sp_model ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = self.non_printing_characters_re.sub('''''' , __snake_case ) # Normalize whitespaces lowerCamelCase_ = """""".join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization lowerCamelCase_ = unicodedata.normalize('''NFC''' , __snake_case ) return text def UpperCAmelCase__ ( self , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ = self.preprocess_text(__snake_case ) return self.sp_model.encode(__snake_case , out_type=__snake_case ) def UpperCAmelCase__ ( self , UpperCAmelCase ): return self.sp_model.PieceToId(__snake_case ) def UpperCAmelCase__ ( self , UpperCAmelCase ): return self.sp_model.IdToPiece(__snake_case ) @staticmethod def UpperCAmelCase__ ( UpperCAmelCase ): return out_string def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = [] lowerCamelCase_ = """""" lowerCamelCase_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__snake_case ) + token lowerCamelCase_ = True lowerCamelCase_ = [] else: current_sub_tokens.append(__snake_case ) lowerCamelCase_ = False out_string += self.sp_model.decode(__snake_case ) return out_string def UpperCAmelCase__ ( self ): lowerCamelCase_ = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): if not os.path.isdir(__snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCamelCase_ = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , '''wb''' ) as fi: lowerCamelCase_ = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = False ): if isinstance(__snake_case , __snake_case ): lowerCamelCase_ = self.preprocess_text(__snake_case ) lowerCamelCase_ = self.sp_model.encode(__snake_case ) else: lowerCamelCase_ = [self.preprocess_text(__snake_case ) for t in text] lowerCamelCase_ = self.sp_model.encode(__snake_case ) if return_tensors is True or return_tensors == "pt": lowerCamelCase_ = torch.tensor(__snake_case ) return token_ids def UpperCAmelCase__ ( self , UpperCAmelCase ): return self.sp_model.decode(__snake_case ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = [f"User: {text}" if is_user else f"Bot: {text}" for is_user, text in conversation.iter_texts()] lowerCamelCase_ = ( f"{self.eos_token}{self.bos_token}" + f"{self.bos_token}".join(__snake_case ) + f"{self.bos_token}Bot:" ) return self.encode(text=__snake_case )
29
UpperCAmelCase_ : int = range(2, 20 + 1) UpperCAmelCase_ : Tuple = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =sum(a_i[j] for j in range(lowerCamelCase , len(lowerCamelCase ) ) ) __magic_name__ : Any =sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase ) , lowerCamelCase ) ) ) __magic_name__ , __magic_name__ : Tuple =0, 0 __magic_name__ : Optional[Any] =n - i __magic_name__ : Union[str, Any] =memo.get(lowerCamelCase ) if sub_memo is not None: __magic_name__ : int =sub_memo.get(lowerCamelCase ) if jumps is not None and len(lowerCamelCase ) > 0: # find and make the largest jump without going over __magic_name__ : Dict =-1 for _k in range(len(lowerCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __magic_name__ : Optional[Any] =_k break if max_jump >= 0: __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =jumps[max_jump] # since the difference between jumps is cached, add c __magic_name__ : Tuple =diff + c for j in range(min(lowerCamelCase , len(lowerCamelCase ) ) ): __magic_name__ , __magic_name__ : Tuple =divmod(lowerCamelCase , 10 ) if new_c > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __magic_name__ : str =[] else: __magic_name__ : List[str] ={c: []} __magic_name__ : List[str] =sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __magic_name__ , __magic_name__ : Union[str, Any] =next_term(lowerCamelCase , k - 1 , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __magic_name__ , __magic_name__ : Optional[int] =compute(lowerCamelCase , lowerCamelCase , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped __magic_name__ : Tuple =sub_memo[c] # keep jumps sorted by # of terms skipped __magic_name__ : List[Any] =0 while j < len(lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase , (diff, dn, k) ) return (diff, dn) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if i >= n: return 0, i if k > len(lowerCamelCase ): a_i.extend([0 for _ in range(k - len(lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __magic_name__ : Tuple =i __magic_name__ , __magic_name__ , __magic_name__ : Tuple =0, 0, 0 for j in range(len(lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __magic_name__ : Optional[Any] =ds_c + ds_b diff += addend __magic_name__ : str =0 for j in range(lowerCamelCase ): __magic_name__ : int =a_i[j] + addend __magic_name__ , __magic_name__ : Any =divmod(lowerCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return diff, i - start_i def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for j in range(lowerCamelCase , len(lowerCamelCase ) ): __magic_name__ : Tuple =digits[j] + addend if s >= 10: __magic_name__ , __magic_name__ : int =divmod(lowerCamelCase , 10 ) __magic_name__ : int =addend // 10 + quotient else: __magic_name__ : Dict =s __magic_name__ : Any =addend // 10 if addend == 0: break while addend > 0: __magic_name__ , __magic_name__ : Union[str, Any] =divmod(lowerCamelCase , 10 ) digits.append(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase = 10**15 ): __magic_name__ : List[str] =[1] __magic_name__ : str =1 __magic_name__ : str =0 while True: __magic_name__ , __magic_name__ : List[str] =next_term(lowerCamelCase , 20 , i + dn , lowerCamelCase ) dn += terms_jumped if dn == n - i: break __magic_name__ : int =0 for j in range(len(lowerCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
21
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : List[Any]=7 , UpperCAmelCase : Optional[int]=3 , UpperCAmelCase : List[str]=18 , UpperCAmelCase : Optional[int]=30 , UpperCAmelCase : str=400 , UpperCAmelCase : Dict=True , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=True , ) -> List[str]: lowerCAmelCase :Tuple = size if size is not None else {"""height""": 18, """width""": 18} lowerCAmelCase :List[Any] = parent lowerCAmelCase :Any = batch_size lowerCAmelCase :str = num_channels lowerCAmelCase :List[str] = image_size lowerCAmelCase :str = min_resolution lowerCAmelCase :Union[str, Any] = max_resolution lowerCAmelCase :Tuple = do_resize lowerCAmelCase :Optional[Any] = size lowerCAmelCase :Dict = apply_ocr def UpperCAmelCase__ ( self : Any ) -> List[Any]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __UpperCamelCase ( UpperCamelCase__ , unittest.TestCase ): lowercase_ : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCAmelCase__ ( self : Optional[int] ) -> Any: lowerCAmelCase :Dict = LayoutLMvaImageProcessingTester(self ) @property def UpperCAmelCase__ ( self : Dict ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Any ) -> Tuple: lowerCAmelCase :Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , 'do_resize' ) ) self.assertTrue(hasattr(__snake_case , 'size' ) ) self.assertTrue(hasattr(__snake_case , 'apply_ocr' ) ) def UpperCAmelCase__ ( self : int ) -> Optional[Any]: lowerCAmelCase :Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) lowerCAmelCase :Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def UpperCAmelCase__ ( self : str ) -> Tuple: pass def UpperCAmelCase__ ( self : Dict ) -> str: lowerCAmelCase :List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase :Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input lowerCAmelCase :Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , __snake_case ) self.assertIsInstance(encoding.boxes , __snake_case ) # Test batched lowerCAmelCase :Optional[int] = image_processing(__snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def UpperCAmelCase__ ( self : Dict ) -> Tuple: lowerCAmelCase :Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase :Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input lowerCAmelCase :str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowerCAmelCase :Dict = image_processing(__snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def UpperCAmelCase__ ( self : Dict ) -> int: lowerCAmelCase :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase :Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input lowerCAmelCase :Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowerCAmelCase :Union[str, Any] = image_processing(__snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def UpperCAmelCase__ ( self : int ) -> int: lowerCAmelCase :int = LayoutLMvaImageProcessor() from datasets import load_dataset lowerCAmelCase :Union[str, Any] = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) lowerCAmelCase :Dict = Image.open(ds[0]['file'] ).convert('RGB' ) lowerCAmelCase :str = image_processing(__snake_case , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowerCAmelCase :Tuple = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 lowerCAmelCase :Any = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __snake_case ) self.assertListEqual(encoding.boxes , __snake_case ) # with apply_OCR = False lowerCAmelCase :Dict = LayoutLMvaImageProcessor(apply_ocr=__snake_case ) lowerCAmelCase :Union[str, Any] = image_processing(__snake_case , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
553
from typing import List from .keymap import KEYMAP, get_character def lowerCAmelCase_ ( lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : str =getattr(lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator def lowerCAmelCase_ ( *lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : Dict =getattr(lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator class __A ( UpperCamelCase__ ): def __new__( cls :Dict , __snake_case :Optional[Any] , __snake_case :Union[str, Any] , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : int =super().__new__(cls , __snake_case , __snake_case , __snake_case ) if not hasattr(__snake_case , """key_handler""" ): setattr(__snake_case , """key_handler""" , {} ) setattr(__snake_case , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __magic_name__ : int =getattr(__snake_case , """handle_key""" , [] ) for key in handled_keys: __magic_name__ : List[str] =value return new_cls @staticmethod def A__ ( cls :Optional[int] ): '''simple docstring''' __magic_name__ : Union[str, Any] =get_character() if char != KEYMAP["undefined"]: __magic_name__ : Optional[int] =ord(__snake_case ) __magic_name__ : int =cls.key_handler.get(__snake_case ) if handler: __magic_name__ : Dict =char return handler(cls ) else: return None def lowerCAmelCase_ ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
21
0
"""simple docstring""" from functools import reduce a_ = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] = N ): """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str(int(SCREAMING_SNAKE_CASE__ ) * int(SCREAMING_SNAKE_CASE__ ) ) , n[i : i + 1_3] ) ) for i in range(len(SCREAMING_SNAKE_CASE__ ) - 1_2 ) ) if __name__ == "__main__": print(F'''{solution() = }''')
480
import os import jsonlines import numpy as np from tqdm import tqdm UpperCAmelCase_ : Dict = 2048 UpperCAmelCase_ : int = 4096 UpperCAmelCase_ : Any = 42 UpperCAmelCase_ : Optional[int] = os.environ.pop("PROCESS_TRAIN", "false") UpperCAmelCase_ : str = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def lowerCAmelCase_ ( lowerCamelCase ): def choose_first(lowerCamelCase , lowerCamelCase=False ): assert isinstance(lowerCamelCase , lowerCamelCase ) if len(lowerCamelCase ) == 1: __magic_name__ : List[str] =answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __magic_name__ : Tuple ={k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a __magic_name__ : str ={"""id""": example["""id"""]} __magic_name__ : List[Any] =example["""annotations"""] __magic_name__ : List[str] =annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: __magic_name__ : Optional[int] =["""yes"""] if 1 in yes_no_answer else ["""no"""] __magic_name__ : List[str] =[] __magic_name__ : Dict =[] __magic_name__ : str =["""<cls>"""] else: __magic_name__ : Tuple =["""short"""] __magic_name__ : Optional[int] =choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available __magic_name__ : Tuple =["""long"""] __magic_name__ : Tuple =choose_first(annotation["""long_answer"""] , is_long_answer=lowerCamelCase ) __magic_name__ : List[Any] =[] answer.update(lowerCamelCase ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: __magic_name__ : Any =True else: __magic_name__ : List[str] =False __magic_name__ : int =["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , lowerCamelCase ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =_get_single_answer(lowerCamelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : Any =example["""document"""]["""tokens"""] __magic_name__ : str =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __magic_name__ : Dict =["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __magic_name__ : Tuple =example["""document"""]["""tokens"""] __magic_name__ : Optional[int] =answer["""start_token"""] __magic_name__ : List[Any] =answer["""end_token"""] __magic_name__ : Optional[Any] =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __magic_name__ : Optional[int] =""" """.join(context[start_token:end_token] ) # checking above code if assertion: __magic_name__ : List[str] =doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : str =doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : Dict =""" """.join([old[i] for i in range(len(lowerCamelCase ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , lowerCamelCase , end="""\n""" ) print("""Old:""" , lowerCamelCase , end="""\n\n""" ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=True ): # overlap will be of doc_stride - q_len __magic_name__ : Any =get_context_and_ans(lowerCamelCase , assertion=lowerCamelCase ) __magic_name__ : Union[str, Any] =out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __magic_name__ : List[Any] =tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids __magic_name__ : Dict =input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : List[str] =[] __magic_name__ : int =[] __magic_name__ : List[str] =input_ids[:q_len] __magic_name__ : Dict =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Tuple =input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(lowerCamelCase ), "end_token": [-100] * len(lowerCamelCase ), "category": category, }, } __magic_name__ : int =out["""context"""].split() __magic_name__ : Any =splitted_context[answer["""end_token"""]] __magic_name__ : str =len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=lowerCamelCase , ).input_ids ) __magic_name__ : Optional[int] =len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=lowerCamelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __magic_name__ : Union[str, Any] =len(tokenizer(lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __magic_name__ : str =input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive __magic_name__ : Dict =answer["""start_token"""] __magic_name__ : int =answer["""end_token"""] if assertion: __magic_name__ : Any =tokenizer.decode(lowerCamelCase ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , lowerCamelCase , end="""\n\n""" ) if len(lowerCamelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __magic_name__ : Any =input_ids[:q_len] __magic_name__ : Union[str, Any] =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) __magic_name__ : Any =[] __magic_name__ : List[str] =[] __magic_name__ : List[str] =[] __magic_name__ : str =[] # null, yes, no, long, short for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Dict =input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __magic_name__ : List[Any] =start_token - i + q_len __magic_name__ : Optional[Any] =end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: __magic_name__ : Optional[Any] =-100 __magic_name__ : Optional[Any] =-100 answers_category.append("""null""" ) __magic_name__ : Optional[int] =inputs[-1][start_token : end_token + 1] answers_start_token.append(lowerCamelCase ) answers_end_token.append(lowerCamelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(lowerCamelCase ) ) print("""Old:""" , tokenizer.decode(lowerCamelCase ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=False ): __magic_name__ : List[Any] =get_strided_contexts_and_ans( lowerCamelCase , lowerCamelCase , doc_stride=lowerCamelCase , max_length=lowerCamelCase , assertion=lowerCamelCase , ) return example def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): with jsonlines.open(lowerCamelCase , """a""" ) as writer: for example in tqdm(lowerCamelCase , total=len(lowerCamelCase ) , desc="""Saving samples ... """ ): __magic_name__ : int =example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer UpperCAmelCase_ : Optional[int] = load_dataset("natural_questions") UpperCAmelCase_ : Optional[int] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") UpperCAmelCase_ : str = data["train" if PROCESS_TRAIN == "true" else "validation"] UpperCAmelCase_ : Optional[int] = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } UpperCAmelCase_ : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs) UpperCAmelCase_ : Optional[Any] = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) UpperCAmelCase_ : int = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
21
0
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __a: Any = logging.get_logger(__name__) __a: Dict = TypeVar('''DatasetType''', Dataset, IterableDataset) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = "first_exhausted" , ) -> Union[str, Any]: from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(__snake_case ): if not isinstance(__snake_case , (Dataset, IterableDataset) ): if isinstance(__snake_case , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(__snake_case )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__snake_case ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__snake_case ).__name__}.""" ) if i == 0: _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(__snake_case , __snake_case ) else (IterableDataset, Dataset) ) elif not isinstance(__snake_case , __snake_case ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( __snake_case , __snake_case , __snake_case , info=__snake_case , split=__snake_case , stopping_strategy=__snake_case ) else: return _interleave_iterable_datasets( __snake_case , __snake_case , __snake_case , info=__snake_case , split=__snake_case , stopping_strategy=__snake_case ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case = None , __snake_case = None , __snake_case = 0 , ) -> Optional[Any]: if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(__snake_case ): if not isinstance(__snake_case , (Dataset, IterableDataset) ): if isinstance(__snake_case , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(__snake_case )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__snake_case ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__snake_case ).__name__}.""" ) if i == 0: _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(__snake_case , __snake_case ) else (IterableDataset, Dataset) ) elif not isinstance(__snake_case , __snake_case ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__snake_case , info=__snake_case , split=__snake_case , axis=__snake_case ) else: return _concatenate_iterable_datasets(__snake_case , info=__snake_case , split=__snake_case , axis=__snake_case )
108
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __A ( UpperCamelCase__ ): UpperCamelCase = """xlm-roberta-xl""" def __init__( self :Dict , __snake_case :Optional[Any]=25_08_80 , __snake_case :List[Any]=25_60 , __snake_case :Optional[Any]=36 , __snake_case :Any=32 , __snake_case :int=1_02_40 , __snake_case :List[Any]="gelu" , __snake_case :Union[str, Any]=0.1 , __snake_case :Optional[Any]=0.1 , __snake_case :str=5_14 , __snake_case :Union[str, Any]=1 , __snake_case :Optional[int]=0.02 , __snake_case :str=1E-05 , __snake_case :str=1 , __snake_case :int=0 , __snake_case :Tuple=2 , __snake_case :Optional[int]="absolute" , __snake_case :str=True , __snake_case :Any=None , **__snake_case :Dict , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __magic_name__ : List[str] =vocab_size __magic_name__ : List[str] =hidden_size __magic_name__ : Union[str, Any] =num_hidden_layers __magic_name__ : Any =num_attention_heads __magic_name__ : Any =hidden_act __magic_name__ : List[str] =intermediate_size __magic_name__ : Any =hidden_dropout_prob __magic_name__ : Union[str, Any] =attention_probs_dropout_prob __magic_name__ : Any =max_position_embeddings __magic_name__ : Any =type_vocab_size __magic_name__ : List[str] =initializer_range __magic_name__ : Optional[int] =layer_norm_eps __magic_name__ : Dict =position_embedding_type __magic_name__ : Any =use_cache __magic_name__ : Dict =classifier_dropout class __A ( UpperCamelCase__ ): @property def A__ ( self :Dict ): '''simple docstring''' if self.task == "multiple-choice": __magic_name__ : str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: __magic_name__ : Optional[Any] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
21
0
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) # TODO Update this __UpperCAmelCase = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): """simple docstring""" lowerCamelCase : Optional[Any] ="esm" def __init__( self : List[Any] , lowerCAmelCase : int=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : List[str]=7_68 , lowerCAmelCase : str=12 , lowerCAmelCase : int=12 , lowerCAmelCase : str=30_72 , lowerCAmelCase : int=0.1 , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Optional[Any]=10_26 , lowerCAmelCase : Dict=0.02 , lowerCAmelCase : List[str]=1e-12 , lowerCAmelCase : Any="absolute" , lowerCAmelCase : Tuple=True , lowerCAmelCase : Any=None , lowerCAmelCase : Dict=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : Tuple=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Any , ) -> str: """simple docstring""" super().__init__(pad_token_id=__snake_case , mask_token_id=__snake_case , **__snake_case ) __lowerCAmelCase : Dict = vocab_size __lowerCAmelCase : Optional[Any] = hidden_size __lowerCAmelCase : Any = num_hidden_layers __lowerCAmelCase : int = num_attention_heads __lowerCAmelCase : Any = intermediate_size __lowerCAmelCase : List[Any] = hidden_dropout_prob __lowerCAmelCase : str = attention_probs_dropout_prob __lowerCAmelCase : Union[str, Any] = max_position_embeddings __lowerCAmelCase : List[str] = initializer_range __lowerCAmelCase : Optional[Any] = layer_norm_eps __lowerCAmelCase : Optional[int] = position_embedding_type __lowerCAmelCase : int = use_cache __lowerCAmelCase : Any = emb_layer_norm_before __lowerCAmelCase : List[str] = token_dropout __lowerCAmelCase : List[str] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) __lowerCAmelCase : Tuple = EsmFoldConfig() elif isinstance(__snake_case , __snake_case ): __lowerCAmelCase : Any = EsmFoldConfig(**__snake_case ) __lowerCAmelCase : Dict = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) __lowerCAmelCase : List[Any] = get_default_vocab_list() else: __lowerCAmelCase : Any = vocab_list else: __lowerCAmelCase : Optional[Any] = None __lowerCAmelCase : Optional[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , __snake_case ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: """simple docstring""" __lowerCAmelCase : Optional[Any] = super().to_dict() if isinstance(self.esmfold_config , __snake_case ): __lowerCAmelCase : str = self.esmfold_config.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : int =None lowerCamelCase : List[str] =True lowerCamelCase : Union[str, Any] =False lowerCamelCase : Optional[int] =False lowerCamelCase : str =False lowerCamelCase : Union[str, Any] =0 lowerCamelCase : List[str] =True lowerCamelCase : str =False lowerCamelCase : List[Any] =128 lowerCamelCase : str =None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: """simple docstring""" if self.trunk is None: __lowerCAmelCase : Dict = TrunkConfig() elif isinstance(self.trunk , __snake_case ): __lowerCAmelCase : Optional[int] = TrunkConfig(**self.trunk ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: """simple docstring""" __lowerCAmelCase : List[Any] = asdict(self ) __lowerCAmelCase : str = self.trunk.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : Union[str, Any] =48 lowerCamelCase : Any =1024 lowerCamelCase : Tuple =128 lowerCamelCase : Dict =32 lowerCamelCase : Any =32 lowerCamelCase : List[str] =32 lowerCamelCase : Optional[int] =0 lowerCamelCase : Tuple =0 lowerCamelCase : Union[str, Any] =False lowerCamelCase : Union[str, Any] =4 lowerCamelCase : str =128 lowerCamelCase : str =None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: """simple docstring""" if self.structure_module is None: __lowerCAmelCase : Dict = StructureModuleConfig() elif isinstance(self.structure_module , __snake_case ): __lowerCAmelCase : int = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) __lowerCAmelCase : Union[str, Any] = self.sequence_state_dim // self.sequence_head_width __lowerCAmelCase : str = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowerCAmelCase : Dict = asdict(self ) __lowerCAmelCase : Union[str, Any] = self.structure_module.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : Union[str, Any] =384 lowerCamelCase : Union[str, Any] =128 lowerCamelCase : List[Any] =16 lowerCamelCase : Optional[int] =128 lowerCamelCase : List[Any] =12 lowerCamelCase : int =4 lowerCamelCase : List[Any] =8 lowerCamelCase : Optional[int] =0.1 lowerCamelCase : Any =8 lowerCamelCase : str =1 lowerCamelCase : List[Any] =2 lowerCamelCase : str =7 lowerCamelCase : Dict =10 lowerCamelCase : Tuple =1e-8 lowerCamelCase : Union[str, Any] =1e5 def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: """simple docstring""" return asdict(self ) def snake_case_ () -> Optional[int]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
651
from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase_ ( lowerCamelCase="ro" , lowerCamelCase="en" , lowerCamelCase="wmt16" , lowerCamelCase=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) __magic_name__ : Dict =F"{src_lang}-{tgt_lang}" print(F"Converting {dataset}-{pair}" ) __magic_name__ : Dict =datasets.load_dataset(lowerCamelCase , lowerCamelCase ) if save_dir is None: __magic_name__ : Optional[int] =F"{dataset}-{pair}" __magic_name__ : int =Path(lowerCamelCase ) save_dir.mkdir(exist_ok=lowerCamelCase ) for split in ds.keys(): print(F"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets __magic_name__ : Dict ="""val""" if split == """validation""" else split __magic_name__ : List[Any] =save_dir.joinpath(F"{fn}.source" ) __magic_name__ : Optional[int] =save_dir.joinpath(F"{fn}.target" ) __magic_name__ : Optional[Any] =src_path.open("""w+""" ) __magic_name__ : List[Any] =tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __magic_name__ : str =x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
21
0
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( snake_case : Dict )-> Tuple: if not numbers: return 0 if not isinstance(snake_case , (list, tuple) ) or not all( isinstance(snake_case , snake_case ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) _lowerCamelCase = numbers[0] for i in range(1 , len(snake_case ) ): # update the maximum and minimum subarray products _lowerCamelCase = numbers[i] if number < 0: _lowerCamelCase = min_till_now, max_till_now _lowerCamelCase = max(snake_case , max_till_now * number ) _lowerCamelCase = min(snake_case , min_till_now * number ) # update the maximum product found till now _lowerCamelCase = max(snake_case , snake_case ) return max_prod
650
from __future__ import annotations from fractions import Fraction def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =[] __magic_name__ : List[Any] =11 __magic_name__ : Tuple =int("""1""" + """0""" * digit_len ) for num in range(lowerCamelCase , lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowerCamelCase , lowerCamelCase ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 __magic_name__ : List[str] =10 return solutions def lowerCAmelCase_ ( lowerCamelCase = 2 ): __magic_name__ : str =1.0 for fraction in fraction_list(lowerCamelCase ): __magic_name__ : int =Fraction(lowerCamelCase ) result *= frac.denominator / frac.numerator return int(lowerCamelCase ) if __name__ == "__main__": print(solution())
21
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase : Tuple =logging.get_logger(__name__) class _lowercase ( UpperCamelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ['''pixel_values'''] def __init__( self :Union[str, Any] , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :float = None , lowerCAmelCase__ :PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Union[int, float] = 1 / 255 , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , **lowerCAmelCase__ :str , ) -> List[Any]: super().__init__(**__snake_case ) __SCREAMING_SNAKE_CASE : int = size if size is not None else {"""shortest_edge""": 384} __SCREAMING_SNAKE_CASE : str = get_size_dict(__snake_case , default_to_square=__snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = do_resize __SCREAMING_SNAKE_CASE : str = size # Default value set here for backwards compatibility where the value in config is None __SCREAMING_SNAKE_CASE : str = crop_pct if crop_pct is not None else 224 / 256 __SCREAMING_SNAKE_CASE : List[str] = resample __SCREAMING_SNAKE_CASE : Any = do_rescale __SCREAMING_SNAKE_CASE : Optional[int] = rescale_factor __SCREAMING_SNAKE_CASE : Tuple = do_normalize __SCREAMING_SNAKE_CASE : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __SCREAMING_SNAKE_CASE : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Dict[str, int] , lowerCAmelCase__ :float , lowerCAmelCase__ :PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :int , ) -> Any: __SCREAMING_SNAKE_CASE : Tuple = get_size_dict(__snake_case , default_to_square=__snake_case ) if "shortest_edge" not in size: raise ValueError(f'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) __SCREAMING_SNAKE_CASE : Dict = size["""shortest_edge"""] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __SCREAMING_SNAKE_CASE : Optional[int] = int(shortest_edge / crop_pct ) __SCREAMING_SNAKE_CASE : str = get_resize_output_image_size(__snake_case , size=__snake_case , default_to_square=__snake_case ) __SCREAMING_SNAKE_CASE : int = resize(image=__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=__snake_case , size=(shortest_edge, shortest_edge) , data_format=__snake_case , **__snake_case ) else: # warping (no cropping) when evaluated at 384 or larger return resize( __snake_case , size=(shortest_edge, shortest_edge) , resample=__snake_case , data_format=__snake_case , **__snake_case ) def __magic_name__( self :int , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Union[int, float] , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :Any , ) -> Union[str, Any]: return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def __magic_name__( self :List[str] , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Union[float, List[float]] , lowerCAmelCase__ :Union[float, List[float]] , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :List[Any] , ) -> str: return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def __magic_name__( self :List[str] , lowerCAmelCase__ :ImageInput , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :float = None , lowerCAmelCase__ :PILImageResampling = None , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :float = None , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , lowerCAmelCase__ :Optional[Union[str, TensorType]] = None , lowerCAmelCase__ :ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase__ :Union[str, Any] , ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : str = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct __SCREAMING_SNAKE_CASE : Optional[int] = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE : Tuple = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE : Union[str, Any] = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE : Optional[Any] = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE : Optional[int] = size if size is not None else self.size __SCREAMING_SNAKE_CASE : int = get_size_dict(__snake_case , default_to_square=__snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('''crop_pct must be specified if size < 384.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE : Union[str, Any] = [to_numpy_array(__snake_case ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE : List[str] = [self.resize(image=__snake_case , size=__snake_case , crop_pct=__snake_case , resample=__snake_case ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE : List[str] = [self.rescale(image=__snake_case , scale=__snake_case ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE : Dict = [self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images] __SCREAMING_SNAKE_CASE : int = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] __SCREAMING_SNAKE_CASE : List[str] = {"""pixel_values""": images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
696
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( lowerCamelCase ): # A local function to see if a dot lands in the circle. def is_in_circle(lowerCamelCase , lowerCamelCase ) -> bool: __magic_name__ : Dict =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __magic_name__ : Union[str, Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. __magic_name__ : List[Any] =proportion * 4 print(F"The estimated value of pi is {pi_estimate}" ) print(F"The numpy value of pi is {pi}" ) print(F"The total error is {abs(pi - pi_estimate )}" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 , ): return mean( function_to_integrate(uniform(lowerCamelCase , lowerCamelCase ) ) for _ in range(lowerCamelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ): def identity_function(lowerCamelCase ) -> float: return x __magic_name__ : Optional[int] =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __magic_name__ : str =(max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {expected_value}" ) print(F"Total error is {abs(estimated_value - expected_value )}" ) print("""******************""" ) def lowerCAmelCase_ ( lowerCamelCase ): def function_to_integrate(lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) __magic_name__ : Dict =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {pi}" ) print(F"Total error is {abs(estimated_value - pi )}" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" import math def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowerCAmelCase ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowerCAmelCase_ : Any = "Enter the base and the power separated by a comma: " lowerCAmelCase_ : Any = map(int, input(prompt).split(''',''')) lowerCAmelCase_ : Optional[Any] = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. lowerCAmelCase_ : Union[str, Any] = res(xa, ya) lowerCAmelCase_ : List[str] = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
673
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __A ( tf.keras.layers.Layer ): def __init__( self :Optional[int] , __snake_case :Dict[str, int] , __snake_case :List[str] , __snake_case :int = None , __snake_case :int = None ): '''simple docstring''' super().__init__() __magic_name__ : Optional[int] =pad_token_id __magic_name__ : List[Any] =max_length __magic_name__ : Dict =vocab __magic_name__ : int =merges __magic_name__ : Optional[int] =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case ) @classmethod def A__ ( cls :List[Any] , __snake_case :GPTaTokenizer , *__snake_case :int , **__snake_case :Any ): '''simple docstring''' __magic_name__ : List[Any] =[""" """.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()] __magic_name__ : str =tokenizer.get_vocab() return cls(__snake_case , __snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Dict , __snake_case :Union[str, os.PathLike] , *__snake_case :Union[str, Any] , **__snake_case :int ): '''simple docstring''' __magic_name__ : Dict =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case ) return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Optional[Any] , __snake_case :List[Any] ): '''simple docstring''' return cls(**__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def A__ ( self :List[Any] , __snake_case :Dict , __snake_case :int = None ): '''simple docstring''' __magic_name__ : Optional[Any] =self.tf_tokenizer(__snake_case ) __magic_name__ : Tuple =tf.ones_like(__snake_case ) if self.pad_token_id is not None: # pad the tokens up to max length __magic_name__ : Tuple =max_length if max_length is not None else self.max_length if max_length is not None: __magic_name__ , __magic_name__ : Tuple =pad_model_inputs( __snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
21
0
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Any ) -> List[str]: '''simple docstring''' def is_in_circle(SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: Optional[int] ) -> bool: A__ = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle A__ = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(SCREAMING_SNAKE_CASE_ ) ) # The ratio of the area for circle to square is pi/4. A__ = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: int = 0.0 , SCREAMING_SNAKE_CASE_: Tuple = 1.0 , ) -> List[Any]: '''simple docstring''' return mean( function_to_integrate(uniform(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) for _ in range(SCREAMING_SNAKE_CASE_ ) ) * (max_value - min_value) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: Optional[int] = 0.0 , SCREAMING_SNAKE_CASE_: str = 1.0 ) -> int: '''simple docstring''' def identity_function(SCREAMING_SNAKE_CASE_: int ) -> float: return x A__ = area_under_curve_estimator( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A__ = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("******************" ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str ) -> List[Any]: '''simple docstring''' def function_to_integrate(SCREAMING_SNAKE_CASE_: Tuple ) -> float: return sqrt(4.0 - x * x ) A__ = area_under_curve_estimator( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
514
import math import tensorflow as tf from packaging import version def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : List[str] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Optional[Any] =tf.cast(math.pi , x.dtype ) __magic_name__ : int =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Any =tf.convert_to_tensor(lowerCamelCase ) return x * tf.tanh(tf.math.softplus(lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[Any] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Union[str, Any] =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Dict =tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCAmelCase_ ( lowerCamelCase ): return tf.clip_by_value(_gelu(lowerCamelCase ) , -10 , 10 ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=-1 ): __magic_name__ , __magic_name__ : List[Any] =tf.split(lowerCamelCase , 2 , axis=lowerCamelCase ) return a * tf.math.sigmoid(lowerCamelCase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowerCAmelCase_ ( lowerCamelCase ): return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase ) UpperCAmelCase_ : List[str] = tf.keras.activations.gelu UpperCAmelCase_ : Dict = approximate_gelu_wrap else: UpperCAmelCase_ : Dict = _gelu UpperCAmelCase_ : str = _gelu_new UpperCAmelCase_ : Any = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowerCAmelCase_ ( lowerCamelCase ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
21
0
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) UpperCAmelCase = logging.getLogger(__name__) UpperCAmelCase = tf.data.AUTOTUNE def SCREAMING_SNAKE_CASE_ ( ): snake_case_ : Tuple = argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=lowerCAmelCase_ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=lowerCAmelCase_ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=lowerCAmelCase_ , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=lowerCAmelCase_ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=lowerCAmelCase_ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=lowerCAmelCase_ , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=lowerCAmelCase_ , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=lowerCAmelCase_ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=lowerCAmelCase_ , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=lowerCAmelCase_ , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=lowerCAmelCase_ , default=1e-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=lowerCAmelCase_ , default=1e-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=lowerCAmelCase_ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=lowerCAmelCase_ , default=0.1_5 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=lowerCAmelCase_ , help="Model ID to upload to on the Hugging Face Hub." ) snake_case_ : List[Any] = parser.parse_args() return args def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: Optional[int] ): try: if args.tpu_name: snake_case_ : List[str] = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: snake_case_ : List[str] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(lowerCAmelCase_ ) tf.tpu.experimental.initialize_tpu_system(lowerCAmelCase_ ) return tpu def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: Any ): snake_case_ : List[Any] = 0 for file in file_list: snake_case_ : str = file.split("/" )[-1] snake_case_ : Tuple = re.search(R"-\d+-(\d+)\.tfrecord" , lowerCAmelCase_ ).group(1 ) snake_case_ : int = int(lowerCAmelCase_ ) num_samples += sample_count return num_samples def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: str , lowerCAmelCase_: Optional[int] , lowerCAmelCase_: Optional[int] , lowerCAmelCase_: Any , lowerCAmelCase_: Any , lowerCAmelCase_: int=None ): snake_case_ : Optional[Any] = count_samples(lowerCAmelCase_ ) snake_case_ : Optional[int] = tf.data.Dataset.from_tensor_slices(lowerCAmelCase_ ) if shuffle: snake_case_ : Union[str, Any] = dataset.shuffle(len(lowerCAmelCase_ ) ) snake_case_ : List[str] = tf.data.TFRecordDataset(lowerCAmelCase_ , num_parallel_reads=lowerCAmelCase_ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here snake_case_ : Union[str, Any] = dataset.apply(tf.data.experimental.assert_cardinality(lowerCAmelCase_ ) ) snake_case_ : Dict = dataset.map(lowerCAmelCase_ , num_parallel_calls=lowerCAmelCase_ ) if shuffle: assert shuffle_buffer_size is not None snake_case_ : Tuple = dataset.shuffle(args.shuffle_buffer_size ) snake_case_ : Optional[int] = dataset.batch(lowerCAmelCase_ , drop_remainder=lowerCAmelCase_ ) snake_case_ : Any = dataset.map(lowerCAmelCase_ , num_parallel_calls=lowerCAmelCase_ ) snake_case_ : int = dataset.prefetch(lowerCAmelCase_ ) return dataset def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: str ): if not args.no_tpu: snake_case_ : Optional[int] = initialize_tpu(lowerCAmelCase_ ) snake_case_ : str = tf.distribute.TPUStrategy(lowerCAmelCase_ ) else: snake_case_ : Optional[Any] = tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) snake_case_ : List[str] = AutoTokenizer.from_pretrained(args.tokenizer ) snake_case_ : Tuple = AutoConfig.from_pretrained(args.pretrained_model_config ) snake_case_ : Union[str, Any] = tokenizer.vocab_size snake_case_ : str = tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(f"No .tfrecord files found in {args.train_dataset}." ) snake_case_ : int = tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(f"No .tfrecord files found in {args.eval_dataset}." ) snake_case_ : Tuple = count_samples(lowerCAmelCase_ ) snake_case_ : Any = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) snake_case_ : Any = steps_per_epoch * args.num_epochs with strategy.scope(): snake_case_ : Optional[Any] = TFAutoModelForMaskedLM.from_config(lowerCAmelCase_ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built snake_case_ : Dict = create_optimizer( num_train_steps=lowerCAmelCase_ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowerCAmelCase_ , metrics=["accuracy"] ) def decode_fn(lowerCAmelCase_: str ): snake_case_ : Optional[int] = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowerCAmelCase_ , lowerCAmelCase_ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. snake_case_ : Optional[Any] = DataCollatorForLanguageModeling( tokenizer=lowerCAmelCase_ , mlm_probability=args.mlm_probability , mlm=lowerCAmelCase_ , return_tensors="tf" ) def mask_with_collator(lowerCAmelCase_: int ): # TF really needs an isin() function snake_case_ : Dict = ( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) snake_case_ : Union[str, Any] = data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(lowerCAmelCase_ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowerCAmelCase_ , ) return batch snake_case_ : Optional[Any] = args.per_replica_batch_size * strategy.num_replicas_in_sync snake_case_ : Dict = prepare_dataset( lowerCAmelCase_ , decode_fn=lowerCAmelCase_ , mask_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ , shuffle=lowerCAmelCase_ , shuffle_buffer_size=args.shuffle_buffer_size , ) snake_case_ : List[str] = prepare_dataset( lowerCAmelCase_ , decode_fn=lowerCAmelCase_ , mask_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ , shuffle=lowerCAmelCase_ , ) snake_case_ : Optional[int] = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowerCAmelCase_ ) ) model.fit( lowerCAmelCase_ , validation_data=lowerCAmelCase_ , epochs=args.num_epochs , callbacks=lowerCAmelCase_ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": UpperCAmelCase = parse_args() main(args)
666
from collections.abc import Sequence def lowerCAmelCase_ ( lowerCamelCase = None ): if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __magic_name__ : str =nums[0] for i in range(1 , len(lowerCamelCase ) ): __magic_name__ : Any =nums[i] __magic_name__ : Dict =max(lowerCamelCase , ans + num , lowerCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCAmelCase_ : List[str] = int(input("Enter number of elements : ").strip()) UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
21
0
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset _lowerCamelCase : List[str] = pd.read_csv( '''https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/''' '''position_salaries.csv''' ) _lowerCamelCase : Union[str, Any] = dataset.iloc[:, 1:2].values _lowerCamelCase : Dict = dataset.iloc[:, 2].values _lowerCamelCase : Dict = train_test_split(X, y, test_size=0.2, random_state=0) _lowerCamelCase : Union[str, Any] = PolynomialFeatures(degree=4) _lowerCamelCase : Any = poly_reg.fit_transform(X) _lowerCamelCase : Optional[Any] = LinearRegression() pol_reg.fit(X_poly, y) def __lowerCamelCase (): plt.scatter(UpperCAmelCase__ , UpperCAmelCase__ , color="red" ) plt.plot(UpperCAmelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCAmelCase__ ) ) , color="blue" ) plt.title("Truth or Bluff (Linear Regression)" ) plt.xlabel("Position level" ) plt.ylabel("Salary" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
403
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : UpperCamelCase = 42 UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""Translation""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def __call__( self :Union[str, Any] ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def A__ ( self :List[Any] ): '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __A : UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""TranslationVariableLanguages""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =sorted(set(self.languages ) ) if self.languages else None __magic_name__ : Optional[int] =len(self.languages ) if self.languages else None def __call__( self :List[str] ): '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def A__ ( self :str , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[int] =set(self.languages ) if self.languages and set(__snake_case ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __magic_name__ : Any =[] for lang, text in translation_dict.items(): if isinstance(__snake_case , __snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __magic_name__ , __magic_name__ : List[str] =zip(*sorted(__snake_case ) ) return {"language": languages, "translation": translations} def A__ ( self :List[Any] ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
21
0
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig A_ = logging.get_logger(__name__) # General docstring A_ = "MobileNetV1Config" # Base docstring A_ = "google/mobilenet_v1_1.0_224" A_ = [1, 1024, 7, 7] # Image classification docstring A_ = "google/mobilenet_v1_1.0_224" A_ = "tabby, tabby cat" A_ = [ "google/mobilenet_v1_1.0_224", "google/mobilenet_v1_0.75_192", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ): lowerCamelCase_ = {} if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = model.mobilenet_va else: lowerCamelCase_ = model lowerCamelCase_ = """MobilenetV1/Conv2d_0/""" lowerCamelCase_ = backbone.conv_stem.convolution.weight lowerCamelCase_ = backbone.conv_stem.normalization.bias lowerCamelCase_ = backbone.conv_stem.normalization.weight lowerCamelCase_ = backbone.conv_stem.normalization.running_mean lowerCamelCase_ = backbone.conv_stem.normalization.running_var for i in range(13 ): lowerCamelCase_ = i + 1 lowerCamelCase_ = i * 2 lowerCamelCase_ = backbone.layer[pt_index] lowerCamelCase_ = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" lowerCamelCase_ = pointer.convolution.weight lowerCamelCase_ = pointer.normalization.bias lowerCamelCase_ = pointer.normalization.weight lowerCamelCase_ = pointer.normalization.running_mean lowerCamelCase_ = pointer.normalization.running_var lowerCamelCase_ = backbone.layer[pt_index + 1] lowerCamelCase_ = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" lowerCamelCase_ = pointer.convolution.weight lowerCamelCase_ = pointer.normalization.bias lowerCamelCase_ = pointer.normalization.weight lowerCamelCase_ = pointer.normalization.running_mean lowerCamelCase_ = pointer.normalization.running_var if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = """MobilenetV1/Logits/Conv2d_1c_1x1/""" lowerCamelCase_ = model.classifier.weight lowerCamelCase_ = model.classifier.bias return tf_to_pt_map def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model lowerCamelCase_ = tf.train.list_variables(lowerCAmelCase__ ) lowerCamelCase_ = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) lowerCamelCase_ = tf.train.load_variable(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = array # Build TF to PyTorch weights loading map lowerCamelCase_ = _build_tf_to_pytorch_map(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue lowerCamelCase_ = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) lowerCamelCase_ = np.transpose(lowerCAmelCase__ ,(2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer lowerCamelCase_ = array.squeeze().transpose() else: lowerCamelCase_ = np.transpose(lowerCAmelCase__ ,(3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) lowerCamelCase_ = torch.from_numpy(lowerCAmelCase__ ) tf_weights.pop(lowerCAmelCase__ ,lowerCAmelCase__ ) tf_weights.pop(name + '''/RMSProp''' ,lowerCAmelCase__ ) tf_weights.pop(name + '''/RMSProp_1''' ,lowerCAmelCase__ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' ,lowerCAmelCase__ ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = features.shape[-2:] lowerCamelCase_ = conv_layer.stride lowerCamelCase_ = conv_layer.kernel_size if in_height % stride_height == 0: lowerCamelCase_ = max(kernel_height - stride_height ,0 ) else: lowerCamelCase_ = max(kernel_height - (in_height % stride_height) ,0 ) if in_width % stride_width == 0: lowerCamelCase_ = max(kernel_width - stride_width ,0 ) else: lowerCamelCase_ = max(kernel_width - (in_width % stride_width) ,0 ) lowerCamelCase_ = pad_along_width // 2 lowerCamelCase_ = pad_along_width - pad_left lowerCamelCase_ = pad_along_height // 2 lowerCamelCase_ = pad_along_height - pad_top lowerCamelCase_ = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(lowerCAmelCase__ ,lowerCAmelCase__ ,'''constant''' ,0.0 ) class __lowerCamelCase ( nn.Module ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1 , UpperCAmelCase = 1 , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = True , ): super().__init__() lowerCamelCase_ = config if in_channels % groups != 0: raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups." ) if out_channels % groups != 0: raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups." ) lowerCamelCase_ = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) lowerCamelCase_ = nn.Convad( in_channels=__snake_case , out_channels=__snake_case , kernel_size=__snake_case , stride=__snake_case , padding=__snake_case , groups=__snake_case , bias=__snake_case , padding_mode='''zeros''' , ) if use_normalization: lowerCamelCase_ = nn.BatchNormad( num_features=__snake_case , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=__snake_case , track_running_stats=__snake_case , ) else: lowerCamelCase_ = None if use_activation: if isinstance(__snake_case , __snake_case ): lowerCamelCase_ = ACTaFN[use_activation] elif isinstance(config.hidden_act , __snake_case ): lowerCamelCase_ = ACTaFN[config.hidden_act] else: lowerCamelCase_ = config.hidden_act else: lowerCamelCase_ = None def UpperCAmelCase__ ( self , UpperCAmelCase ): if self.config.tf_padding: lowerCamelCase_ = apply_tf_padding(__snake_case , self.convolution ) lowerCamelCase_ = self.convolution(__snake_case ) if self.normalization is not None: lowerCamelCase_ = self.normalization(__snake_case ) if self.activation is not None: lowerCamelCase_ = self.activation(__snake_case ) return features class __lowerCamelCase ( UpperCamelCase__ ): a__: Optional[int] = MobileNetVaConfig a__: str = load_tf_weights_in_mobilenet_va a__: Dict = 'mobilenet_v1' a__: List[Any] = 'pixel_values' a__: Dict = False def UpperCAmelCase__ ( self , UpperCAmelCase ): if isinstance(__snake_case , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__snake_case , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) A_ = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" A_ = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , UpperCamelCase__ , ) class __lowerCamelCase ( UpperCamelCase__ ): def __init__( self , UpperCAmelCase , UpperCAmelCase = True ): super().__init__(__snake_case ) lowerCamelCase_ = config lowerCamelCase_ = 32 lowerCamelCase_ = max(int(depth * config.depth_multiplier ) , config.min_depth ) lowerCamelCase_ = MobileNetVaConvLayer( __snake_case , in_channels=config.num_channels , out_channels=__snake_case , kernel_size=3 , stride=2 , ) lowerCamelCase_ = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] lowerCamelCase_ = nn.ModuleList() for i in range(13 ): lowerCamelCase_ = out_channels if strides[i] == 2 or i == 0: depth *= 2 lowerCamelCase_ = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( __snake_case , in_channels=__snake_case , out_channels=__snake_case , kernel_size=3 , stride=strides[i] , groups=__snake_case , ) ) self.layer.append( MobileNetVaConvLayer( __snake_case , in_channels=__snake_case , out_channels=__snake_case , kernel_size=1 , ) ) lowerCamelCase_ = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCAmelCase__ ( self , UpperCAmelCase ): raise NotImplementedError @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase__ ( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ): lowerCamelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) lowerCamelCase_ = self.conv_stem(__snake_case ) lowerCamelCase_ = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): lowerCamelCase_ = layer_module(__snake_case ) if output_hidden_states: lowerCamelCase_ = all_hidden_states + (hidden_states,) lowerCamelCase_ = hidden_states if self.pooler is not None: lowerCamelCase_ = torch.flatten(self.pooler(__snake_case ) , start_dim=1 ) else: lowerCamelCase_ = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__snake_case , pooler_output=__snake_case , hidden_states=__snake_case , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , UpperCamelCase__ , ) class __lowerCamelCase ( UpperCamelCase__ ): def __init__( self , UpperCAmelCase ): super().__init__(__snake_case ) lowerCamelCase_ = config.num_labels lowerCamelCase_ = MobileNetVaModel(__snake_case ) lowerCamelCase_ = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head lowerCamelCase_ = nn.Dropout(config.classifier_dropout_prob , inplace=__snake_case ) lowerCamelCase_ = nn.Linear(__snake_case , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase__ ( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ): lowerCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase_ = self.mobilenet_va(__snake_case , output_hidden_states=__snake_case , return_dict=__snake_case ) lowerCamelCase_ = outputs.pooler_output if return_dict else outputs[1] lowerCamelCase_ = self.classifier(self.dropout(__snake_case ) ) lowerCamelCase_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCamelCase_ = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCamelCase_ = """single_label_classification""" else: lowerCamelCase_ = """multi_label_classification""" if self.config.problem_type == "regression": lowerCamelCase_ = MSELoss() if self.num_labels == 1: lowerCamelCase_ = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCamelCase_ = loss_fct(__snake_case , __snake_case ) elif self.config.problem_type == "single_label_classification": lowerCamelCase_ = CrossEntropyLoss() lowerCamelCase_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCamelCase_ = BCEWithLogitsLoss() lowerCamelCase_ = loss_fct(__snake_case , __snake_case ) if not return_dict: lowerCamelCase_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__snake_case , logits=__snake_case , hidden_states=outputs.hidden_states , )
29
from sklearn.metrics import matthews_corrcoef import datasets UpperCAmelCase_ : Dict = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCAmelCase_ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCAmelCase_ : Dict = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def A__ ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def A__ ( self :Tuple , __snake_case :str , __snake_case :Tuple , __snake_case :List[str]=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ), }
21
0
"""simple docstring""" import heapq def UpperCAmelCase ( a__ ): '''simple docstring''' lowerCAmelCase :list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(a__ , [-1 * len(a__ ), (key, value)] ) # chosen_vertices = set of chosen vertices lowerCAmelCase :Tuple = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowerCAmelCase :Tuple = heapq.heappop(a__ )[1][0] chosen_vertices.add(a__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowerCAmelCase :Tuple = elem[1][1].index(a__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(a__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
553
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =OmegaConf.load(lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(lowerCamelCase ) ) ) return config def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): if conf_path is None: __magic_name__ : List[str] ="""./model_checkpoints/vqgan_only.yaml""" __magic_name__ : Dict =load_config(lowerCamelCase , display=lowerCamelCase ) __magic_name__ : Tuple =VQModel(**config.model.params ) if ckpt_path is None: __magic_name__ : Optional[Any] ="""./model_checkpoints/vqgan_only.pt""" __magic_name__ : Tuple =torch.load(lowerCamelCase , map_location=lowerCamelCase ) if ".ckpt" in ckpt_path: __magic_name__ : Any =sd["""state_dict"""] model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) model.to(lowerCamelCase ) del sd return model def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =model.encode(lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) __magic_name__ : List[Any] =model.decode(lowerCamelCase ) return xrec def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ , __magic_name__ : Optional[int] =string.rsplit(""".""" , 1 ) if reload: __magic_name__ : Optional[int] =importlib.import_module(lowerCamelCase ) importlib.reload(lowerCamelCase ) return getattr(importlib.import_module(lowerCamelCase , package=lowerCamelCase ) , cls ) def lowerCAmelCase_ ( lowerCamelCase ): if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True ): __magic_name__ : str =instantiate_from_config(lowerCamelCase ) if sd is not None: model.load_state_dict(lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # load the specified checkpoint if ckpt: __magic_name__ : str =torch.load(lowerCamelCase , map_location="""cpu""" ) __magic_name__ : Any =pl_sd["""global_step"""] print(F"loaded model from global step {global_step}." ) else: __magic_name__ : List[Any] ={"""state_dict""": None} __magic_name__ : Optional[Any] =None __magic_name__ : Tuple =load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=lowerCamelCase , eval_mode=lowerCamelCase )["""model"""] return model, global_step
21
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING a_ = logging.get_logger(__name__) class __lowercase ( UpperCamelCase__): """simple docstring""" _A : str = """upernet""" def __init__(self , lowercase__=None , lowercase__=5_12 , lowercase__=0.02 , lowercase__=[1, 2, 3, 6] , lowercase__=True , lowercase__=0.4 , lowercase__=3_84 , lowercase__=2_56 , lowercase__=1 , lowercase__=False , lowercase__=2_55 , **lowercase__ , ): super().__init__(**__snake_case ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(__snake_case , __snake_case ): snake_case_ : int = backbone_config.get("""model_type""" ) snake_case_ : Optional[Any] = CONFIG_MAPPING[backbone_model_type] snake_case_ : List[Any] = config_class.from_dict(__snake_case ) snake_case_ : Dict = backbone_config snake_case_ : Optional[Any] = hidden_size snake_case_ : List[str] = initializer_range snake_case_ : Tuple = pool_scales snake_case_ : Optional[Any] = use_auxiliary_head snake_case_ : List[str] = auxiliary_loss_weight snake_case_ : int = auxiliary_in_channels snake_case_ : Optional[int] = auxiliary_channels snake_case_ : Optional[int] = auxiliary_num_convs snake_case_ : int = auxiliary_concat_input snake_case_ : Optional[Any] = loss_ignore_index def __UpperCamelCase (self ): snake_case_ : List[str] = copy.deepcopy(self.__dict__ ) snake_case_ : Dict = self.backbone_config.to_dict() snake_case_ : Optional[int] = self.__class__.model_type return output
480
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): def A__ ( self :Tuple ): '''simple docstring''' debug_launcher(test_script.main ) def A__ ( self :Dict ): '''simple docstring''' debug_launcher(test_ops.main )
21
0
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __a: Any = logging.get_logger(__name__) __a: List[Any] = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): '''simple docstring''' _lowerCamelCase = '''encodec''' def __init__( self : str , lowerCamelCase : Any=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCamelCase : Dict=2_4000 , lowerCamelCase : Optional[int]=1 , lowerCamelCase : str=False , lowerCamelCase : Optional[int]=None , lowerCamelCase : int=None , lowerCamelCase : Any=128 , lowerCamelCase : Dict=32 , lowerCamelCase : Optional[int]=1 , lowerCamelCase : Union[str, Any]=[8, 5, 4, 2] , lowerCamelCase : Optional[int]="weight_norm" , lowerCamelCase : Dict=7 , lowerCamelCase : str=7 , lowerCamelCase : int=3 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Optional[int]=True , lowerCamelCase : Any="reflect" , lowerCamelCase : List[Any]=2 , lowerCamelCase : Any=2 , lowerCamelCase : Tuple=1.0 , lowerCamelCase : int=1024 , lowerCamelCase : Optional[int]=None , lowerCamelCase : str=True , **lowerCamelCase : Optional[int] , ) -> Any: """simple docstring""" _UpperCAmelCase = target_bandwidths _UpperCAmelCase = sampling_rate _UpperCAmelCase = audio_channels _UpperCAmelCase = normalize _UpperCAmelCase = chunk_length_s _UpperCAmelCase = overlap _UpperCAmelCase = hidden_size _UpperCAmelCase = num_filters _UpperCAmelCase = num_residual_layers _UpperCAmelCase = upsampling_ratios _UpperCAmelCase = norm_type _UpperCAmelCase = kernel_size _UpperCAmelCase = last_kernel_size _UpperCAmelCase = residual_kernel_size _UpperCAmelCase = dilation_growth_rate _UpperCAmelCase = use_causal_conv _UpperCAmelCase = pad_mode _UpperCAmelCase = compress _UpperCAmelCase = num_lstm_layers _UpperCAmelCase = trim_right_ratio _UpperCAmelCase = codebook_size _UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size _UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**__snake_case ) @property def lowerCamelCase ( self : List[str] ) -> Dict: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowerCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def lowerCamelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def lowerCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
108
UpperCAmelCase_ : Tuple = 0 # The first color of the flag. UpperCAmelCase_ : Any = 1 # The second color of the flag. UpperCAmelCase_ : str = 2 # The third color of the flag. UpperCAmelCase_ : Tuple = (red, white, blue) def lowerCAmelCase_ ( lowerCamelCase ): if not sequence: return [] if len(lowerCamelCase ) == 1: return list(lowerCamelCase ) __magic_name__ : int =0 __magic_name__ : str =len(lowerCamelCase ) - 1 __magic_name__ : Optional[Any] =0 while mid <= high: if sequence[mid] == colors[0]: __magic_name__ , __magic_name__ : Tuple =sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: __magic_name__ , __magic_name__ : Optional[Any] =sequence[high], sequence[mid] high -= 1 else: __magic_name__ : Optional[int] =F"The elements inside the sequence must contains only {colors} values" raise ValueError(lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[Any] = input("Enter numbers separated by commas:\n").strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
21
0